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In Perry and Whitt (2009) we considered two networked service systems, each having its own customers and
designated service pool with many agents, where all agents are able to serve the other customers, although
they may do so inefficiently. Usually the agents should serve only their own customers, but we want an
automatic control that activates serving some of the other customers when an unexpected overload occurs.
Assuming that the identity of the class that will experience the overload or the timing and extent of the
overload are unknown, we proposed a queue-ratio control with thresholds: When a weighted difference of
the queue lengths crosses a pre-specified threshold, with the weight and the threshold depending on the
class to be helped, serving the other customers is activated, so that a certain queue ratio is maintained.
We then developed a simple deterministic steady-state fluid approximation, based on flow balance, under
which this control was shown to be optimal, and we showed how to calculate the control parameters. In this
sequel, we focus on the fluid approximation itself, and describe its transient behavior, which depends on a
heavy-traffic averaging principle. The new fluid model developed here is an ordinary differential equation
driven by the instantaneous steady-state probabilities of a fast-time-scale stochastic process. The AP also
provides the basis for an effective Gaussian approximation for the steady-state queue lengths. Effectiveness
of the approximations is confirmed by simulation experiments.
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1. Introduction

History. This paper is an outgrowth of the authors’ first paper on this subject written in 2007.
One part was split off and significantly expanded with new material to become Perry and Whitt
(2009). This part, introducing and applying the heavy-traffic averaging principle, was revised and
submitted to Operations Research in September 2008. Following reviewer reports received in May
2009, a revision was submitted in July 2009. Following a second set of reviewer reports received
in May 2010, a version was created for publication in June 2010. This is the remaining longer
“unabridged”version to be made available online on the authors’ web pages. After submitting the
first version of this paper, the authors completed three new papers on supporting mathematical
foundations: Perry and Whitt (2010a,b,c).

Responding to unexpected overloads. In Perry and Whitt (2009) we considered how two
service systems that normally operate independently, such as call centers, can help each other when
one encounters an unexpected overload and is unable to immediately increase its own staffing. We
assumed that each service system has a service pool with many agents, each of whom has the ability
to serve customers from the other system as well as its own, even though the other customers may
be served inefficiently. The goal was to find a way to automatically respond to overloads, without
knowledge of the arrival rates, while producing only negligible sharing under normal loads.
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Toward that end, we proposed a queue-ratio control with thresholds (QR-T), which activates
serving customers from the other system when a weighted difference of the two queue lengths
(numbers of waiting customers) exceeds a threshold, allowing sharing in only one direction at
any time. There is a target queue-ratio function and threshold for each direction of sharing. The
general QR-T control allows the queue ratio to be a function of the two queue lengths, but it often
suffices to use fixed queue ratios (FQR-T), which is advantageous because the control then has
fewer parameters, namely the two ratio parameters and the two thresholds.

These queue-ratio controls are modifications of ones proposed previously in Gurvich and Whitt
(2009a,b, 2010). The thresholds and the application to respond to unexpected overloads are new.
These QR controls tend to be effective because they simplify the problem by reducing the dimen-
sion. With the QR-T control, the two system queues tend to evolve independently when the sharing
is not activated (under normal loads), but the two queues tend to evolve together in a fixed relation
when the sharing is activated (under overloads). Indeed, under overloads, the two system queues
tend to evolve dependently to the maximum extent. This maximum dependence can be formalized
by the notion of state-space collapse (SSC), as in Bramson (1998), Dai and Tezcan (2005), Gurvich
and Whitt (2009a).

The Markovian X model. To analyze this QR-T overload control and determine appropriate
control parameters, we considered a Markovian X call-center model, having two customer classes,
each with its own queue, and two service pools, each with many agents; see Aksin et al. (2007), Gans
et al. (2003), Garnett and Mandelbaum (2000) for background on the basic call-center models. To
capture a common motivation for having the systems operate independently under normal loads,
we assumed the strong inefficient-sharing condition

µ1,1 > µ1,2 and µ2,2 > µ2,1, (1)

where µi,j denotes the service rate of a class-i customer by a type-j agent; i.e., customers tend to
get served faster by their own service pool than by the other service pool. However, many of the
previous results hold under the weaker basic inefficient-sharing condition µ1,1µ2,2 ≥ µ1,2µ2,1.

A fluid model with convex costs. In order to determine appropriate queue-ratio functions
and to approximate the performance of this QR-T control, in Perry and Whitt (2009) we introduced
a convex-cost framework and a simple deterministic steady-state fluid approximation for the X call-
center model, based on balancing steady-state flow rates. Within that framework, we proved that
properly chosen queue-ratio functions minimize the average steady-state cost during an overload
incident, without requiring knowledge of the arrival rates. Moreover, we showed how to calculate
the optimal queue-ratio functions. In addition, we indicated how to determine the thresholds. We
then applied simulation to show that the optimal control for the fluid model is effective for the
original stochastic X call-center model. Indeed, the simulations show that the proposed queue-ratio
control with thresholds outperforms the optimal fixed partition of the servers given known fixed
arrival rates during the overload, even though the proposed control does not use information about
the arrival rates.

The contributions here. The present paper develops an approximation for the stochastic
processes describing the performance of the overloaded X model with the ratio control. The approx-
imation is interesting because it involves a heavy-traffic averaging principle (AP). First, the AP
directly yields an approximation for the transient behavior as well as the steady-state behavior.
The new approximation for the transient behavior is a deterministic fluid approximation, i.e.,
an ordinary differential equation (ODE), but it is an unconventional ODE. As a consequence of
the AP, the ODE is driven by a function of the ODE state involving the steady-state probabil-
ity distributions of an associated family of fast-time-scale stochastic processes; see §4. the most
familiar example of an AP is no doubt in the theory of nearly-completely-decomposable (NCD)
Markov chains, as in Courtois (1977); see Remark 2.4.1 of Whitt (2002) for more discussion and
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references. We validated the transient approximation based on the ODE by conducting simulation
experiments; see §4.

We also apply the AP to develop improved approximations for the steady-state distribution.
The heuristic steady-state fluid approximation developed in Perry and Whitt (2009) provides only
an approximation for the mean queue lengths. First, the AP provides improved approximations
for these mean steady-state values; see §6. Effectiveness is confirmed by simulations in §7. Second,
the AP provides a tractable approximation for the full steady-state joint distribution of the queue
lengths during the overload incident. In particular, the AP leads to a Gaussian approximation,
with explicit formulas for the variances; see §8. The full distribution provided by this Gaussian
approximation is vital because, for typical system sizes, the standard deviations tend to be roughly
of the same order as the mean values.

In summary, Perry and Whitt (2009) introduces the overload control problem, the X model and
the ratio control, and shows that the control is effective. However, Perry and Whitt (2009) provides
only a crude deterministic approximation of steady-state performance, based on rate balance. Here
we show how to approximate the full system performance with the control.

The Many-Server Heavy-Traffic Regime. The performance of the X model during overloads,
including the AP, can be understood by considering the many-server heavy-traffic (MSHT) limiting
regime, briefly reviewed here in §2. The overloading puts the large service system in the efficiency-
driven (ED) MSHT limiting regime. Experience indicates that in the ED regime we can accurately
approximate both the transient and steady-state performance by deterministic fluid models and
diffusion-process refinements; e.g., see Garnett et al. (2002), Whitt (2004, 2006).

With an understanding of the MSHT ED regime, we can see that an AP is appropriate here.
Thus we are able to develop the AP and the associated performance approximations heuristically.
We justify these approximations empirically through extensive simulation experiments.

In subsequent papers, Perry and Whitt (2010a,b,c), we put the AP and the associated perfor-
mance approximations on a firm mathematical basis. We show that the ODE stemming from the
AP is well defined, with good properties, and that the approximations we develop in this paper
arise as MSHT stochastic-process limits involving the AP, paralleling earlier papers by Hunt and
Kurtz (1994), Coffman et al. (2005).

We prove no limit theorems here. We contribute here by showing that an AP is appropriate
in this context and by showing how the SSC and the AP can be applied directly as engineering
principles to better understand how large systems perform. In this paper we heuristically develop
useful quantitative performance approximations.

The rest of the Paper. In §2 we specify the model and review the ED MSHT limiting regime.
In §3 we develop the deterministic fluid approximation for the steady-state performance. There are
two important cases of unbalanced overloads: (1) when both classes are overloaded after sharing,
and (2) when one class is overloaded and the other class remains underloaded even after the
sharing. In §4 we develop the deterministic fluid approximation for the transient behavior in the
fully-overloaded case; that is a system of ordinary differential equations (ODE’s) based on the
AP. In §5 we justify the approximation developed in §4 for the transient behavior of the system
during an overload by comparing the predicted performance to simulation results for the transient
behavior of the original queueing system using the QR-T control. In §6 we develop two stochastic
refinements to the deterministic approximations for the steady-state quantities. In §7 we compare
our approximations for steady-state mean values with simulations. In §8 we briefly describe a
diffusion approximation to generate normal approximations for the full steady-state distributions.
We also compare these normal distribution approximations with simulations. Finally, in §9 we draw
conclusions.

Additional material appears in an appendix. First, in §EC.1 we present additional comparisons
of the normal distribution approximations in §8 with simulations. Next, in §EC.2 we develop an
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ODE based on the AP to analyze the initially normally-loaded (without an overload) X model
operating under FQR without the thresholds, and show that this ODE predicts the bad performance
without these modifications previously shown in §4.1 of Perry and Whitt (2009) through simulation.
In order to do so, we develop the more complex six-dimensional ODE characterizing the fully
overloaded system with two-way sharing and two thresholds. In §EC.3 we continue the discussion
begun in §EC.3 of the algorithm developed to describe the bad behavior of ordinary FQR, without
any thresholds.In §EC.4 we examine the system under FQR together with one-way sharing, but
without thresholds. In §EC.5 we present more detail about the performance of FQR-T under normal
loads. In §EC.6 we present additional simulation results, considering asymmetric models and more
challenging boundary cases in order to better understand the limitations of the approximations.

2. Preliminaries

The model. We now specify the Markovian X model under consideration; it is depicted in Figure 1
of Perry and Whitt (2009). There are two customer classes, with customers from each class arriving
according to a Poisson process. There is a queue for each customer class, from which customers
are served in order of arrival. We assume that waiting customers have limited patience. A class-i
customer will abandon if he does not start service before a random time that is exponentially
distributed with mean 1/θi. There are two service pools, with pool j having mj homogeneous servers
working in parallel. The service times are mutually independent exponential random variables, but
the mean may depend on both the customer class and the service pool. The mean service time
for a class-i customer served by a type-j agent is 1/µi,j. As usual, the service times, abandonment
times and arrival processes are mutually independent. Let Qi(t) be the number of class-i customers
in queue and let Zi,j(t) be the number of type-j agents busy serving class-i customers, at time
t. With the assumptions above, the stochastic process {(Qi(t),Zi,j(t); i = 1,2; j = 1,2) : t≥ 0} is a
six-dimensional continuous-time Markov chain (CTMC), given any routing policy that depends on
the six-dimensional state.

We are using this model to describe the system during the overload incident. Our approximation
applies after the arrival rates have shifted to new values and after sharing has begun. We assume
that customers from the two classes arrive during the overload with constant arrival rates λ1 and λ2,
which make at least one class overloaded. Our goal is to develop approximations for the stochastic
process {(Qi(t),Zi,j(t); i = 1,2; j = 1,2) : t≥ 0} during the overload incident.

In Perry and Whitt (2009, 2010a) we make a strong case for focusing on the steady-state random
quantities Qi ≡ Qi(∞) and Zi,j ≡ Zi,j(∞) in the presence of overloads. First, the abandonment
always keeps the system stable, so steady state always exists. Second, steady state tends to be
approached relatively quickly; see §EC.1 of Perry and Whitt (2009) for simulation and theoretical
support. Thus, we are especially interested in the random vector (Q1,Q2). In this paper we show
that (Q1,Q2) can be approximated by a bivariate normal distribution, having correlation 0 with-
out unbalanced overloads (when there is no sharing) and having correlation 1 under unbalanced
overloads (when there is sharing). We develop explicit formulas for the means and variances.

The FQR-T control. The FQR-T control is based on two nonnegative thresholds k1,2 and k2,1

and two positive queue-ratio parameters r1,2 and r2,1. We define two (weighted) queue-difference
stochastic processes D1,2(t)≡Q1(t)−r1,2Q2(t) and D2,1(t)≡ r2,1Q2(t)−Q1(t). As long as D1,2(t)≤
k1,2 and D2,1(t)≤ k2,1, we do not allow any sharing, i.e., we only let agents serve customers from
their designated class. (Ordinary FQR without thresholds corresponds to r2,1 = r1,2 and k1,2 =
k2,1 = 0.)

However, pool-2 agents are allowed to start serving class-1 customers when D1,2(t) > k1,2, pro-
vided that no pool-1 agents are still serving a class-2 customer. (We restrict attention to one-way
sharing, i.e., sharing in only one direction at a time, but either direction is possible.) Pool 2 is
allowed to begin service as soon as no pool-1 agents are serving class-2 customers and D1,2(t) > k1,2.
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As soon as the first pool-2 agent is assigned to serve a class-1 customer, we drop the threshold
k1,2, but keep the other threshold k2,1. Thus, once one-way sharing has been activated with pool 2
helping class 1, we use ordinary FQR with ratio parameter r1,2: Upon service completion, a newly
available type-2 agent serves the customer at the head of the class-1 queue (the class-1 customer
who has waited the longest) if D1,2(t) > 0; otherwise the agent serves a customer from his own
class. (There also is the other threshold k2,1, but it will usually not be crossed during the overload
incident.) Only one-way sharing in this direction will be allowed until either the class-1 queue
becomes empty or the other difference process crosses the other threshold, i.e., when D2,1(t) > k2,1.
As soon as either of these events occurs, newly available pool-2 agents are only assigned to class 2
and the threshold k1,2 is reinstated. And similarly in the other direction.

Even though we intend to drop the threshold k1,2 when sharing is activated with pool 2 helping
class 1 (in the manner just described), we consider a centering constant κ1,2 after sharing, which
can be interpreted as a threshold. Perry and Whitt (2009) show that in some cases it is actually
optimal to use the shifted FQR-T control, i.e., keeping the queues at a fixed ratio centered about
a constant. Such is the case, for example, when the holding cost is separable and quadratic, i.e.,
of the form C(Q1,Q2) = C1(Q1) + C2(Q2), where Ci(Qi) = ai + biQi + ciQ

2
i ; see §EC.4 in Perry

and Whitt (2009). In these cases the optimal relation between the queues is Q1 + r1,2Q2 = κ1,2 or
Q1 + r2,1Q2 = κ2,1 for some κ1,2, κ2,1 ∈R, depending on the direction of sharing; explicit formulas
appear in EC.11 and EC.12 of Perry and Whitt (2009). If bi = 0 for i = 1,2, then the two centering
constants take the form κ1,2 = κ2,1 = 0, and we have ordinary FQR once sharing has been activated
in some direction.

Here we aim to more carefully describe the performance of the system in a single overload
incident. The class that is more overloaded will typically change in successive overload incidents.
Without loss of generality, we assume that class-1 is the more overloaded class in the overload
incident we are considering, so that we focus attention on the single queue-difference stochastic
process D1,2(t) and drop the subscripts on D, r and κ.

The ED MSHT limiting regime. We show that the fluid approximations developed here are
asymptotically correct in the ED MSHT limiting regime in Perry and Whitt (2010a,b,c), but we
do not establish any limits here. Nevertheless, formulating the ED MSHT limiting regime helps to
understand how we get the approximations and when they should perform well.

The MSHT regimes are specified by considering a sequence of models indexed by n; we let
a superscript denote the quantity associated with model n. The main idea is that the system
scale should grow. Accordingly, we assume that the arrival rates and number of servers grow
proportionally to n:

λ
(n)
i

n
→ λ̄i and

m
(n)
j

n
→ m̄j as n→∞, (2)

where λ̄i and m̄j are positive constants for i = 1,2 and j = 1,2. The individual abandonment-rates
θi, and service-rates µi,j remain constant for all n.

For a Markovian I model, having one service pool, one customer class and customer abandonment,
i.e., the M/M/m+M model, three different MSHT limiting regimes were identified in Garnett et
al. (2002): If the system is asymptotically overloaded, then it is called the efficiency-driven (ED)
limiting regime; if the system is asymptotically critically loaded, then it is called the quality-and-
efficiency-driven (QED) limiting regime; if the system is asymptotically underloaded, then it is
called the quality-driven (QD) limiting regime. These same cases without abandonment had been
specified by Halfin and Whitt (1981). For one class and one pool, it is natural to let n be the total
number of servers (mn = n for all n, so that m̄ = 1 in (2)). Then the regimes are determined by
the limit

(
1− ρ(n)

)√
n→ β as n→∞, where ρ(n) ≡ λ(n)/nµ is the traffic intensity in model n. The

regimes (i) ED, (ii) QED, and (iii) QD then occur, respectively, if the limit holds with (i) β =−∞,
(ii) −∞< β <∞, and (iii) β = +∞.
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We will be concentrating on overloaded systems, i.e., the ED regime, which for the I model is
discussed in Whitt (2004). That provides important background for our work on the X model here.
In that context we will consider the ED regime under the analog of the conventional more restrictive
condition that ρ(n) = ρ > 1. With customer abandonment, the ED regime is quite practical because
the queue lengths have proper steady-state distributions whenever the abandonment rates are
positive.

Before the overload occurs, a well-managed large service system will be normally loaded, which
usually means that the system will be in either the QD or QED MSHT regime, but then the new
arrival rates associated with the overload shift the system into the ED regime.

Fluid limits for scaled processes. We now indicate the kind of stochastic-process limits that
hold as n→∞ in the ED MSHT limiting regime specified by (2) with ρ

(n)
i = ρi > 1 for at least one

class i (making the system overloaded for at least one class). Our descriptions will be useful when
the system remains overloaded for at least one class after the sharing.

First, for deterministic fluid limits, we consider the scaled processes

Q̄
(n)
i (t)≡ Q

(n)
i (t)
n

and Z̄
(n)
i,j (t)≡ Z

(n)
i,j (t)
n

, t≥ 0. (3)

These scaled processes converge as n→∞, with

(Q̄(n)
i (t), Z̄(n)

i,j (t), i = 1,2; j = 1,2)⇒ (Q̄i(t), Z̄i,j(t), i = 1,2; j = 1,2) as n→∞, (4)

where⇒ denotes convergence in distribution and the limit (Q̄i(t), Z̄i,j(t), i = 1,2; j = 1,2) evolves as
a deterministic dynamical system, in particular, as a six-dimensional ordinary differential equation
(ODE) or system of ODE’s. We emphasize that the overloaded ED regime is essential for this limit
to be meaningful. In the QD and QED regimes (with appropriate initial conditions) we expect the
fluid limit to be Q̄i(t) = 0. With FQR-T, we should have minimal sharing when the system is not
overloaded, hence we also should have Z̄i,j(t) = 0 for all i, j with i 6= j and t≥ 0.

The limit in (4) is referred to as a functional weak law of large numbers (FWLLN). From this
asymptotic perspective, we think of our deterministic fluid approximation as being Q

(n)
i (t)≈ nQ̄i(t)

and Z
(n)
i,j (t)≈ nZ̄i,j(t).

Moreover, we anticipate that all processes have well-defined steady-state limits as t→∞ and that
the double limit in (4) as n→∞ and t→∞ (in any order) is valid and equals the limit as t→∞
of the ODE, which is the unique stationary point for the ODE (but none of that will be proved
here). From this asymptotic perspective, we think of our deterministic fluid approximation for the
steady-state random variables Qi and Zi,j as being Qi ≡Q

(n)
i (∞)≈ nQ̄i(∞) and Zi,j ≡Z

(n)
i,j (∞)≈

nZ̄i,j(∞) for all suitably large n, but we will not include the n in our heuristic development of the
approximations.

Refined stochastic limits. Perry and Whitt (2010c) show that there also are associated
stochastic limits that serve as refinements of the fluid limits above. For these, we introduce the
new scaled processes

Q̂
(n)
i (t)≡ Q

(n)
i (t)−nQ̄i(t)√

n
and Ẑ

(n)
i,j (t)≡ Z

(n)
i,j (t)−nZ̄i,j(t)√

n
, t≥ 0. (5)

These scaled processes also converge as n→∞, with

(Q̂(n)
i (t), Ẑ(n)

i,j (t), i = 1,2; j = 1,2)⇒ (Q̂i(t), Ẑi,j(t), i = 1,2; j = 1,2) as n→∞, (6)

where the limit (Q̂i(t), Ẑi,j(t), i = 1,2; j = 1,2) evolves as a stochastic process. The limit in (6) is
referred to as a functional central limit theorem (FCLT).
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To understand the system steady-state behavior, it suffices to center in (5) by the steady-state
fluid values, e.g., by subtracting nQ̄i(∞). Corollary 4.1 of Perry and Whitt (2010c) shows that
the limit process is essentially a two-dimensional bivariate Ornstein-Uhlenbeck BOU process with
zero means, so that the limit process (Q̂i(t), Ẑi,j(t), i = 1,2; j = 1,2) is a Gaussian process, with
multivariate normal distributions for each t.

From this new asymptotic perspective, we think of our stochastic refinement of the fluid approx-
imation as being Q

(n)
i (t)≈ nQ̄i(t) +

√
nQ̂i(t) and Z

(n)
i,j (t)≈ nZ̄i,j(t) +

√
nẐi,j(t). From this asymp-

totic perspective, we think of our refined stochastic approximation for the steady-state quantities
as being Qi ≡ Q

(n)
i (∞) ≈ nQ̄i(∞) +

√
nQ̂i(∞) and Zi,j ≡ Z

(n)
i,j (∞) ≈ nZ̄i,j(∞) +

√
nẐi,j(∞) for

some suitably large n, where the stochastic component (Q̂i(∞), Ẑi,j(∞); i, j = 1,2) is a zero-mean
multivariate normal distribution, which is essentially two-dimensional.

Even though we do not do any proofs here, we do verify these properties empirically with simu-
lation. We demonstrate the convergence as n→∞ in the MSHT limit by showing the performance
of the scaled processes for several values of n, in particular, for n = 25, 100 and 400. We see remark-
able accuracy for n = 400 and surprisingly good rough approximations even for n = 25. We also see
the rapid convergence to steady state as t→∞.

We avoid proofs partly by necessity, because the full story is too long, but also by design: We
want to show that these important mathematical ideas – MSHT scaling, SSC and the AP – can
be applied directly to establish important engineering results, without providing full mathematical
justification. For example, the scaling itself provides very important insights. We use these insights
in our fluid analysis of the system, and in choosing the thresholds for sharing.

Two time scales. There are two points of view associated with the spatial scaling by n in (3).
The first view is that of an inside observer - a customer or an agent. The experience of a customer
or an agent is largely independent of n, because the service-time and patience distributions are
independent of n. The customer waiting times tend to be independent of n as well. Since the system
is overloaded, they converge to positive limits as n→∞ (unscaled), just as in the M/M/n + M
model in the ED regime; see Whitt (2004). The waiting times initially depend on t because we
are initially shifting to the new steady state associated with the overload, but they converge to
positive deterministic steady-state values as t→∞.

On the other hand, an outside observer has a very different perspective, which changes with
n. As the system becomes larger, the time between successive arrivals becomes shorter, as does the
time between successive customer abandonments and service completions. Hence, for an outside
observer, a larger system means a faster system.

Thus, in the same system, there exist different time scales or “clocks:” One clock measures time
in units of mean service times and so is of order O(1), while another clock is of order O(1/n), i.e.,
as the system gets larger, this clock is running faster. When n is large, the faster processes will
tend to rapidly approach a local steady-state (in time of order o(1)). We will exploit the different
time scales when we construct the fluid approximation.

Scaling of the thresholds. As discussed in §6 of Perry and Whitt (2009), the scaling also
provides insight into the choice of the thresholds to use to initiate sharing. (We are now not
discussing the new centering or shifting constants associated with shifted-FQR.) On the one hand,
we want the thresholds large enough that we only rarely initiate sharing inappropriately in response
to stochastic fluctuations under normal loading; i.e., we want the thresholds to be large enough
to prevent sharing when sharing is not needed. On the other hand, we want the thresholds to be
small enough so that we actually succeed in rapidly detecting a genuine overload. There could be
a problem, because abandonment alone prevents the queues from reaching high levels. Thus, if the
thresholds are too large, then they may never be crossed, even in the presence of overloads.

The scaling in the stochastic-process limits provide guidance for the choice of the thresholds.
The scaling indicates that we could let the thresholds become smaller, relatively, as n increases, so
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that they do not have an effect (asymptotically) on the optimal queue ratio; i.e., these thresholds
could increase with n, but we should let k

(n)
1,2 /n→ 0 as n→∞. At the same time, we want these

thresholds to be large compared to the stochastic fluctuations. Since the random fluctuations should
be asymptotically of order O(

√
n), we should have k

(n)
1,2 /

√
n→∞ as n→∞. we can simultaneously

achieve both objectives if we let the thresholds k
(n)
1,2 grow like np for 1/2 < p < 1. Then, in the

fluid scale, the thresholds are asymptotically negligible, but at the same time these thresholds
will be large compared to the O(

√
n) stochastic fluctuations. This asymptotic analysis does not

tell us what the thresholds should be in any instance, but it suggests that we should be able to
find effective thresholds for large systems. We use simulation to choose appropriate thresholds and
verify their effectiveness.

The extra constants we do consider during the overload incident correspond to shifted-FQR.
Clearly, these shifting constants should be of order O(n), so that they appear in the fluid equations.
Having these shifting constants be of order O(n) is also revealing in simulations, since it allows us
to see the statistical regularity, i.e., the FWLLN. We will see that the scaled performance measures
then tend to be independent of n when n is not too small.

3. A Simple Fluid Approximation for the Steady State of the X Model

In §5 of Perry and Whitt (2009) we developed a simple deterministic fluid approximation for the
steady-state (Qi,Zi,j; i = 1,2; j = 1,2)≡ (Qi(∞),Zi,j(∞); i = 1,2; j = 1,2) of the stochastic process
{(Qi(t),Zi,j(t); i = 1,2; j = 1,2) : t ≥ 0} under the assumption that the thresholds are dropped
after they have been exceeded. A minor modification of the same argument yields corresponding
approximations when shifting constants are included after sharing has been initiated (to represent
shifted-FQR). We give a brief account here. As before, we do not directly consider the MSHT
limiting regime specified in (2), and we do not introduce the scale-factor n, but we are thinking of
that regime with a suitably large n.

In advance, we do not know which class will experience the overload and need help from the
other service pool. Indeed, the direction of sharing may switch in successive overload incidents.
However, without loss of generality, when we consider the behavior of the system in one particular
overload incident, under an unbalanced overload, we assume that class 1 is overloaded, and
more so than class 2 if class 2 is also overloaded. (The precise meaning of “unbalanced
overload” and “more so than class 2” is specified in §3.1 below.) Hence, we need only consider the
queue-difference process D1,2(t), now denoted by D(t)≡Q1(t)− rQ2(t).

The overloaded conditions for class 1. When we say that class 1 is overloaded, we mean that
λ1 > m1µ1,1, which is equivalent to ρ1 ≡ λ1/(m1µ1,1) > 1, where ρ1 is the class-1 traffic intensity in
isolation. In other words, we assume that class 1 with pool 1 alone would produce an M/M/m+M
model in the ED regime. Since we have customer abandonment, the system is stable. From §5.1 of
Perry and Whitt (2009) or Whitt (2004), we obtain the deterministic fluid approximation for the
steady-state queue length of class 1 alone, namely, Qalone

1 ≈ (λ1−m1µ1,1)/θ1.
There are two cases for the less-loaded class 2 after sharing: We may either have class 2 also

overloaded, but less so than class 1, or class 2 underloaded.

3.1. The Fully-Overloaded Case: Class 2 Overloaded After Sharing

We now describe the conditions for class 2 to be overloaded after sharing, which makes both
classes overloaded. First, class 2 might be overloaded alone. Paralleling the analysis above,
that occurs if λ2 > m2µ2,2 or, equivalently, if ρ2 ≡ λ2/m2µ2,2 > 1. In that event, the steady-state
queue length of class 2 alone would be Qalone

2 ≈ (λ2−m2µ2,2)/θ2. In order to have sharing (class 2
helping class 1) in steady-state, we need Qalone

1 > rQalone
2 +κ, where κ here is the shifting constant

associated with shifted FQR-T.
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Then, for a deterministic fluid model in steady state, there should be approximately a fixed level
of sharing, with Z1,2 type-2 agents serving class-1 customers. Thus the queue lengths should be

Q1 =
λ1− (m1µ1,1 +Z1,2µ1,2)

θ1

and Q2 =
λ2− (m2−Z1,2)µ2,2

θ2

. (7)

We now invoke SSC to conclude that we also should have Q1 = rQ2 + κ. (We obtain equality in
the fluid model, but only an approximation for the stochastic system.) Then it is easy to see that
the desired amount of sharing is the unique solution of the following linear equation in the single
variable Z1,2:

Q1 = Qalone
1 − Z1,2µ1,2

θ1

= rQ2 +κ = r

(
Qalone

2 +
Z1,2µ2,2

θ2

)
+κ. (8)

Clearly, there is one and only one value of Z1,2 yielding equality, with D≡Q1− rQ2 = κ, because
at Z1,2 = 0 the left side is greater than the right side, by assumption, and the left (right) side is
decreasing (increasing) in Z1,2, so that there must be equality for one and only one value of Z1,2.
If the solution yields Z1,2 > m2, then the required sharing is not possible. In that event, even if all
class 2 agents work on class-1 customers, the overloads can not be balanced in the desired way.
However, if 0≤Z1,2 ≤m2, then we have found our desired answer. All three variables Q1, Q2 and
Z1,2 can equivalently be found by solving the following two equations in two unknowns (Q1 and
Z1,2):

Q1 =
λ1− (m1µ1,1 +Z1,2µ1,2)

θ1

and Q2 =
Q1−κ

r
=

λ2− (m2−Z1,2)µ2,2

θ2

. (9)

The fluid equations in Perry and Whitt (2009) arise when we set κ = 0 in (9).
Now suppose that class 2 alone is underloaded. We now consider the common case in

which class 2 is initially underloaded, but becomes overloaded when it helps class 1. It is easy
to see that this case is also covered by the pair of equations in (9). The equations for Qi can be
interpreted as balancing the rate in with the rate out, assuming a fixed positive queue length for
that class. The only requirement of the solution to (9) is that 0≤ Z1,2 ≤m2 and Q2 ≥ 0. We will
then necessarily have Q1 = rQ2 +κ.

Example 1. (canonical example) A canonical (symmetric) example for FQR-T has λi = 90,
mi = 100, θi = 0.2, µi,j = 1 for all i and j, r = 1 and thresholds k1,2 = k2,1 = 10 before the overload
incident, but then a shift to λ1 = 130 under an unexpected overload for class 1. The simple fluid
approximations above yield Q1 ≈ 150 and Q2 ≈ 0 if we assume that there is no sharing after the
overload, and then Q1 ≈Q2 ≈ 50 using simple FQR (no shift. κ = 0) after sharing. The associated
approximate potential waiting times (expressed in mean service times) for class 1 are reduced from
1.5 to 0.5 at the expense of increasing class-2 waiting times from 0 to 0.5. (When the holding costs
are convex, such a tradeoff may be beneficial.) Simulation shows that this is indeed what happens,
approximately.

3.2. The Spare-Capacity Case: Class 2 Underloaded After Sharing

The remaining case is the fortunate case when the class-2 load is low when the class-1 load is
unexpectedly high. Then pool 2 might be able to help class 1 without penalty. Clearly, the FQR-T
control is very desirable in this case.

From the fluid model perspective (ignoring stochastic fluctuations), this case occurs if and only
if we can simultaneously have Q1 = κ and Q2 = 0. Assuming that there always are available agents
in pool 2, a type-2 agent immediately serves a class-1 customer, whenever an arriving customer
finds κ customers in queue 1. Hence, we must have Q1(t)≤ κ. In the fluid model, we achieve that



Perry and Whitt: Queue-Ratio Overload Control
10 Article submitted to Operations Research; manuscript no. 2008-09-505.R2, Longer Online Version

value κ for Q1 if and only if Z1,2 serves to balance the rate in and rate out at queue 1. Since the
rate into queue 1 is λ1, while the rate out is m1µ1,1 +κθ1 +Z1,2µ1,2, we obtain

Z1,2 =
λ1−m1µ1,1−κθ1

µ1,2

, (10)

while still allowing queue 2 to be empty; i.e., so that the rate into queue 2 is λ2, which is less than
or equal to the maximum rate out of queue 2, which is µ2,2(m2−Z1,2). Consequently, we still have
Q2 = 0 along with Q1 = κ. We necessarily have Z1,2 < m2.

4. The Fluid-Model System of ODE’s in the Fully Overloaded Case

We will now introduce the deterministic fluid-model ODE’s to approximate the transient behavior
of the CTMC {(Qi(t),Zi,j(t); i = 1,2; j = 1,2) : t≥ 0} in the fully overloaded case considered in §3.1.
From an asymptotic perspective, we think of this approximation as stemming from the FWLLN
(4), but we develop the approximation directly, without considering a sequence of models. (See
Perry and Whitt (2010a,b,c) for the associated supporting asymptotic results.)

We start when the overload begins, at the instant the arrival rates change. The ODE’s should
apply to all possible initial conditions, but the standard case is for the system to be initially in
steady state with the two service pools operating independently at normal levels. The sudden shift
in the arrival rates causes the system to go through two transient periods. In the first transient
period, the two systems continue to operate independently, with each responding to its own new
arrival rate. In the fully overloaded case being considered, the first transient period ends and the
second transient period begins after D(t) exceeds its threshold and sharing is initiated, with all
servers in both pools busy. That is when the AP begins to operate. The system evolves in this
second transient period approaching the steady state associated with the overload. It is this new
steady state, in overload, that we are primarily trying to describe. In this section we are focusing on
the second transient period. (See §8 of Perry and Whitt (2010a) for discussion of the first transient
period.)

4.1. A Heavy-Traffic Averaging Principle

In §3.1 we exploited SSC to deduce the steady-state relation Q1 = rQ2 + κ in the fully-overloaded
case (using shifted FQR with centering constant κ), with pool 2 serving some of the class-1 cus-
tomers. However, it is evident that SSC does not actually occur in such a simple way. Instead, the
queue-difference process D(t)≡Q1(t)− rQ2(t) oscillates around the centering constant κ. The key
observation is that the queue-difference process D(t) moves back and forth across the boundary κ
relatively quickly, because it has a strong drift pointing toward κ on both sides (under typical over-
load conditions). These boundary crossings occur in a faster time scale than the relative changes
in the other processes under consideration. All processes move due to the same arrivals and service
completions (which are happening quickly because of the scale), but the processes Qi(t) and Zi,j(t)
tend to be large, of the same order as the number of servers, which we assume is itself large, e.g.,
100. In a very small amount of time, the fluid processes Qi(t) and Zi,j(t) do not change much
relative to their values, while D(t) moves rapidly between the two regions (−∞, κ) and [κ,∞).

Since the process D(t) moves back and forth across its boundary κ rapidly, we conclude that
D(t) approximately reaches a time-dependent steady state instantaneously at each time t, where
that steady-state distribution depends on the time-dependent quantities Qi(t) and Zi,j(t). Let
Dt(∞) denote a random variable with that time-dependent steady-state distribution. We will then
exploit the time-dependent probabilities π1,2(X(t)) ≡ P (Dt(∞) ≥ κ). To obtain the steady-state
quantity Dt(∞), we introduce a new stochastic process Dt ≡ {Dt(s) : s≥ 0}, which is the process
{D(t + s) : s ≥ 0}, initialized at D(t), but with the transition rates of the stochastic process D,
under the extra condition that (Q1,Q2,Z1,2) remain fixed at their values at time t.
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This AP allows us to regard Dt approximately as a pure-jump continuous-time Markov process
(MP), with state space {k + rj : k ∈Z, j ∈Z}. with transition rates that depend only on the fluid-
model state at time t. There are four possible transitions in each state: ±1 and ±r. We obtain
simplification without practical sacrifice by assuming that r is rational. For rational r≡ j/k, this is a
CTMC on the state space {j/k : j ∈Z}. We multiply by k to make all the states integers. Moreover,
then the CTMC can be represented as a homogeneous quasi-birth-and-death (QBD) process, as
in Definition 1.3.1 and §6.4 of Latouche and Ramaswami (1999). For each t, we can apply the
logarithmic reduction algorithm in §8.7 of Latouche and Ramaswami (1999) to efficiently calculate
the steady-state distribution of Dt, i.e., the distribution of Dt(∞). As a consequence, we can
calculate the desired probabilities π1,2(X(t)), given any state vector X(t)≡ (Q1(t),Q2(t),Z1,2(t)).

We now specify the transition rates of the CTMC Dt given the time t and the state X(t), using the
integer state space. Let λ

(j)
+ (m,X(t)), λ

(k)
+ (m,X(t)), µ

(j)
+ (m,X(t)) and µ

(k)
+ (m,X(t)) be the transi-

tion rates of the FTSMC Dt for transitions of +j, +k,−j and−k, respectively, when Dt(s) = m > κ.
Similarly, we define the transitions when Dt(s) = m≤ κ: λ

(j)
− (m,X(t)), λ

(k)
− (m,X(t)), µ

(j)
− (m,X(t))

and µ
(k)
− (m,X(t)).

First, for Dt(s) = m∈ (−∞, κ], the upward rates are

λ
(k)
− (m,X(t)) = λ1, and λ

(j)
− (m,X(t)) = µ1,2Z1,2(t)+µ2,2Z2,2(t)+ θ2Q2(t), (11)

corresponding, first, to a class-1 arrival and, second, to a departure from the class-2 queue, caused by
a type-2 agent service completion (of either customer type) or by a class-2 customer abandonment.
Similarly, the downward rates are

µ
(k)
− (m,X(t)) = µ1,1Z1,1(t)+ θ1Q1(t) and µ

(j)
− (m,X(t)) = λ2, (12)

corresponding, first, to a departure from the class-1 customer queue, caused by a class-1 agent
service completion or by a class-1 customer abandonment, and, second, to a class-2 arrival.

Next, for Dt(s) = m∈ (κ,∞), we have upward rates

λ
(k)
+ (m,X(t)) = λ1 and λ

(j)
+ (m,X(t)) = θ2Q2(t), (13)

corresponding, first, to a class-1 arrival and, second, to a departure from the class-2 customer queue
caused by a class-2 customer abandonment. The downward rates are

µ
(k)
+ (m,X(t)) = µ1,1Z1,1(t)+µ1,2Z1,2(t)+µ2,2Z2,2(t)+ θ1Q1(t) and µ

(j)
+ (m,X(t)) = λ2, (14)

corresponding, first, to a departure from the class-1 customer queue, caused by (i) a type-1 agent
service completion, (ii) a type-2 agent service completion (of either customer type), or (iii) by a
class-1 customer abandonment and, second, to a class-2 arrival.

We conclude the definition of the FTSP by noting that great simplification occurs in the special
case r = 1, because then the CTMC reduces to a simple birth-death (BD) process instead of a QBD
process. Then it is easy to calculate π1,2(X(t)); e.g., see Theorem 5.1 of Perry and Whitt (2010c).

4.2. The ODE

In the previous subsection, we observed that the rate of change of the fast-time-scale queue dif-
ference process Dt depends on (i) the state X(t) and (ii) whether or not Dt(s) > κ. In the same
way, the rates of the CTMC X at time t depend on (i) X(t) itself and (ii) the state of D(t). Now,
for the deterministic fluid approximation of the evolution of X(t), we let the rates (derivatives)
depend on (i) X(t) itself and (ii) the steady-state probability π1,2(X(t)) = P (Dt(∞) > κ).

First, given Zi,j(t) and πi,j(X(t)), we obtain ODE’s for the two queue-length processes. Let
ẋ ≡ ẋ(t) denote the derivative of x evaluated at t. We let the derivative Q̇1(t) equal the rate
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of increase of Q1(t) minus its rate of decrease. The rate of increase is simply the arrival rate
to customer queue 1, λ1. The rate of decrease is more complicated. First, there is the rate of
abandonment from queue 1, which is Q1(t)θ1. Second, there is the rate of decrease from queue 1
due to service completions by servers who will next take customers from queue 1, which depends
on the state of the queue-difference stochastic process. Exploiting the AP, we will not focus on
the actual state of the queue-difference process, but instead focus on the average state, assuming
that the queue-difference process oscillates relatively rapidly compared to the other processes. We
thus assume that a proportion π1,2(X(t)) of the time that the queue-difference exceeds the shifting
constant κ. That portion of the decrease rate is π1,2(X(t)) (Z1,2(t)µ1,2 +Z2,2(t)µ2,2). There will be
corresponding, but different, rates of decrease for the proportion of time 1− π1,2(X(t)) that the
queue-difference is less than or equal to κ. That reasoning leads to the system of three ODE’s

Q̇1(t)≡ λ1−m1µ1,1−π1,2(X(t)) [Z1,2(t)µ1,2 +Z2,2(t)µ2,2]− θ1Q1(t)

Q̇2(t)≡ λ2− (1−π1,2(X(t))) [Z2,2(t)µ2,2 +Z1,2(t)µ1,2]− θ2Q2(t)

Ż1,2(t)≡ π1,2(X(t))Z2,2(t)µ2,2− (1−π1,2(X(t)))Z1,2(t)µ1,2,

(15)

More compactly, we have a single three-dimensional ODE with the general form Ẋ(t) = Ψ(X(t), t)
for a function Ψ. In addition, our ODE is autonomous (or time invariant) because Ψ(X(t), t) ≡
Ψ(X(t)). An autonomous ODE does not depend explicitly on the time-argument t, and its behavior
is invariant to shifts in the time origin. Thus we propose the autonomous ODE

Ẋ(t)≡ (Q̇1(t), Q̇2(t), Ż1,2(t)) = Ψ(X(t))≡Ψ(Q1(t),Q2(t),Z1,2(t)), t≥ 0, (16)

where Ψ : [0,∞)2 × [0,m2]→ R3 is displayed via (15) above. The derivatives in (15) are evident
given the transition rates of the CTMC, given that we replace the CTMC by an ODE and invoke
the AP.

In summary, we can apply standard iterative algorithms for solving ODE’s to solve the ODE
(16), where we calculate π1,2(X(t)) at each step. We used the classical forward Euler algorithm
for the ODE together with the logarithmic reduction algorithm for QBD’s from Latouche and
Ramaswami (1999); additional details are provided in §5 and §9 of Perry and Whitt (2010a).

Steady state. We now characterize the steady state of the fluid model in the fully overloaded
case with one-way sharing. We can directly apply the ODE for Z1,2(t) to find π1,2 by noting again
that in steady state Ż1,2(t) = 0. Thus,

π1,2 =
Z1,2µ1,2

Z1,2µ1,2 +(m2−Z1,2)µ2,2

. (17)

This yields (9). In §6.1 we show how to use the AP to refine the fluid equations (9).

5. Validating the Transient Approximation through Simulation Experiments

We now want to provide evidence that our proposed approximation is effective for the transient
behavior. Accordingly, in this section we compare numerical results for the transient behavior of
the fluid model, based on our algorithm from Perry and Whitt (2010a), to simulation estimates of
the actual performance measures in the original queueing model. This will show that the transient
approximations are computable and sufficiently accurate for engineering applications. We will show
that the deterministic fluid model does not capture important stochastic fluctuations unless the
scale is very large, but the fluid model provides remarkably accurate approximations for the mean
values of the key queueing processes, Q1(t), Q2(t) and Z1,2(t), provided that the scale is not too
small.
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In order to demonstrate the MSHT limits in the ED regime described in §2, we report results
for scaled processes, as in (3), for several values of n. We will then be confirming the FWLLN
in (4) via the simulation. Our simulation examples throughout the paper will have parameters
related to a base case that we consider here as well. It has several parameters depending on
n: mi ≡m

(n)
i = n, λ1 ≡ λ

(n)
1 = 1.3n, λ2 ≡ λ

(n)
2 = 0.9n and κ ≡ κ(n). Here we take κn = 0, but we

will later also consider a positive κ, specifically κ ≡ κn = 0.1n. The other model parameters are
independent of n: θ1 = θ2 = 0.2, µ1,1 = µ2,2 = 1.0 and µ1,2 = µ2,1 = 0.8. The arrival rates are chosen
to put class 1 in a focused overload, while class 2 is initially normally loaded or slightly underloaded,
but becomes overloaded too after the sharing. The rest of the parameters are chosen to make a
symmetric model, where serving the other class is less efficient. We use the FQR-T control with
ratio parameter r = 0.8; this makes the QBD matrices be as in (23) and (24) of Perry and Whitt
(2010a), following the general structure in Section 4.2 there; the algorithm is given in §9.3 there.

We have in mind large-scale applications, e.g., with n≥ 50, but to test the limits of the approxi-
mations, we also consider smaller systems. Specifically, we consider the three cases: n = 10, n = 25
and n = 100, initialized empty. Since the processes are scaled, they all have the same fluid approx-
imation. For each n, we ran 1000 independent replications, sampling each of the 1000 simulated
sample paths every h≡ 0.01 time units over the time interval [0, T ] = [0,50]. This gives 5001 sample
points for each replication.

Figures 1-3 show the fluid approximation together with simulation estimates of the time-
dependent mean values for each n, specifically, the averages of the 1000 observed values of three
scaled processes Q̄

(n)
i (t)≡ n−1Q

(n)
i (t), i = 1,2, and Z̄

(n)
1,2 (t)≡ n−1Z

(n)
1,2 (t) at each of the 5001 sample

points. Figure 4 shows one sample path of {Q̄(n)
1 (t) : 0≤ t≤ 50}, when n = 100, together with the

fluid approximation, to show the typical stochastic fluctuations. These stochastic fluctuations are
the reason for using a large number of replications in order to accurately estimate the mean values
at each point along the sample path. The statistical precision of the estimators is directly visible in
the plots, because the processes are effectively in steady state in the second half of the time interval
[0,50]. As n grows larger, the impact of these fluctuations decreases; they are of order 1/

√
n by

(6). The stochastic fluctuations show the importance of the diffusion refinements in §8.
Consistent with the FWLLN in (4), the larger the system, the better the fluid approximates the

means. The figures clearly show that n ≥ 100 is “large enough,” in the sense that the simulated
means are extremely close to the fluid approximation. Even a relatively small system, with only 25
agents in each pool, is approximated quite well by the fluid. However, the fluid approximation is
quite rough when n = 10. There is approximately 25% difference between the fluid and the means
of Q̄

(n)
2 (t) when n = 10.

Nevertheless, the fluid approximation is useful even for small systems, because the shape of
the curves of the simulation means for n = 10 is the same as the shape of the fluid curve; in
particular, the rate of convergence to steady state is about the same in all systems. Since the fluid
approximation was shown to converge exponentially fast to steady state in §7.3 of Perry and Whitt
(2010a), we see that the same must be true, approximately, for the queueing system even for quite
small numbers of servers.

6. Stochastic Refinements to the Steady-State Fluid Approximation

In this section we present two stochastic refinements to the deterministic fluid-model approxi-
mations for the steady-state quantities Qi and Z1,2 describing performance during the overload,
assuming shifted FQR is used then. The first exploits the AP to determine the average queue dif-
ference for the fully-overloaded case in §3.1. The second develops a birth-and-death-process (BD)
approximation for the steady-state queue length Q1 in the spare-capacity case of §3.2.
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Figure 1 A comparison of simulation estimates
of E[Q̄

(n)
1 (t)] for n = 10,25,100 to the

fluid approximation in the base case.
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Figure 2 A comparison of simulation estimates
of E[Q̄

(n)
2 (t)] for n = 10,25,100 to the

fluid approximation in the base case.

6.1. The Average Difference E[D] in the Fully-Overloaded Case

We have observed that SSC does not happen exactly; we do not get precisely Q1(t) = rQ2(t) + κ.
Instead, under the overloading we are considering, the queue-difference process D(t) oscillates
around the centering constant κ. As discussed in §4.1 above, we can apply the AP to find an
approximating steady-state distribution of D(t) by treating it as a fast-time-scale Markov process
(MP). Let D denote a random variable with the limit of these steady-state distributions as t→∞.

We propose refining our fluid approximation for the steady-state distribution by replacing the
target difference κ by the mean E[D]. To find E[D] we solve the balance equations of the FTSP
above, and then take the mean

E[D] =
∞∑

j=−∞
jP (D = j). (18)

Since the drifts tend to point strongly toward the centering constant κ, it usually suffices to perform
the sum for κ− 20≤ j ≤ κ+20.

We now obtain our refined approximation, assuming that the queue difference is E[D] instead
of κ. The calculation of E[D] can be easily done if Q1, Q2 and Z1,2 are known. Since they depend
on the value E[D], we need to solve for them simultaneously. To do that, we propose an iterative
algorithm which solves the three equations

Q1 =
λ1− (m1µ1,1 +Z1,2µ1,2)

θ1

, Q2 =
Q1−E[D]

r
=

λ2− (m2−Z1,2)µ2,2

θ2

,
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E[D] =
∞∑

j=−k2,1

jP (D = j). (19)

For the iterative procedure, it is natural to start with the values of Q1, Q2 and Z1,2 obtained
from (9), and then calculate the distribution of D and E[D]. We can then obtain new values of Q1,
Q2 and Z1,2 by solving (9) again with E[D] replacing κ. We then can keep iterating. Experience
indicates that this iteration consistently converges in a few iterations (typically only two), yielding
the solution to (19).

6.2. A BD-Process Refinement for the Spare-Capacity Case

For the case in which queue 2 has spare capacity, considered in §3.2, we now develop another
refinement, obtaining a non-degenerate approximation for the distribution of Q1. In this case,
because of the available agents in pool 2, as soon as Q1 exceeds the centering constant κ, an idle
pool-2 agent serves a customer from class 1. Thus, it is evident that we must have Q1 ≤ κ.

Because of the averaging principle, it is not hard to estimate the approximate distribution of
Q1. To do so, we observe that we can regard the class-1 queue as evolving below the level κ1,2 by
itself as a BD process. When the queue length is j, the birth rate is a constant λ1, while the death
rate is approximately m1µ1,1 + θ1j. (Queue 2 plays no role.) For the reason given, the birth rate is
0 when the queue is at κ. The death rate should be small when the queue length is small. For the
approximation to be good, we do not want Q1 to spend much time at very low levels, like 1 or 0.
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That can be verified approximately by looking at the approximate BD steady-state distribution.
In any case, we let the death rate be 0 when the queue length is 0. Our refined approximation for
the distribution of Q1 is the steady-state distribution of this finite-state BD process.

Since Qalone
1 = (λ1 −m1µ1,1)/θ1 > κ, the birth rate always exceeds the death rate here. Indeed,

the BD process here for κ−Q1(t) is stochastically bounded above by the queue-length process in
an M/M/1/κ queue, where κ serves as the size of a finite waiting room. If we take the asymptotic
perspective in §2, this stochastic bound shows that the difference κ−Q1 should be of order O(1)
as n→∞. Hence this adjustment should be asymptotically negligible in both the diffusion scale
(
√

n) and the fluid scale (n). However, the refinement can help in actual examples, even large ones
with 1000 servers in each pool.

As a refined deterministic fluid approximation, we use the mean value of the steady-state distri-
bution of the BD process here. However, by this method, we also obtain an estimate for the variance
and the entire distribution of Q1. The observed M/M/1 structure indicates that the distribution
of κ−Q1(t) should be approximately a truncated geometric distribution. That is quite different
from the approximate normal distribution we derive for the fully-overloaded case in §8.

7. Simulation Experiments to Evaluate the Steady-State Mean Values

The overloaded case. We have developed deterministic fluid approximations for the steady-state
mean values in the fully overloaded case via the solutions to the two equations in (9) and the three
equations in (19). We now compare these approximations to simulation estimates. In order to use
the simulation to substantiate the conjectured stochastic-process limits in §2, we choose parameters
corresponding to scaled systems, indexed by n, letting n take the values 25, 100 and 400. We have
considered much larger n, such as n = 1000, but from the results for n = 400, we see that accurate
results will be obtained for all n larger than 400.

We consider the base case, introduced in §5, with r = 1. This makes the model symmetric and
reduces the fast-scale MP to a BD process. In the Appendix we present corresponding results for
asymmetric models.

In all our simulation experiments, we used 5 independent runs, each with 300,000 arrivals. We
report averages together with the half widths of the 95% confidence intervals, based on a t statistic
with four degrees of freedom. Simulation results for the base case above are presented in Table
1 below. Table 1 shows both the steady-state mean values and the associated scaled values (i.e.,
divided by n). The unscaled values helps us evaluate the performance of the actual system, while
the scaled values show the convergence of the stochastic-process limits in (4). Table 1 clearly shows
that the level of accuracy grows as n gets larger, but even for relatively small systems, the fluid
approximation gives reasonable results.

Table 1 also gives the approximation for the steady-state mean of the unscaled weighted-
difference process D(t), as developed in §6.1, and compares it to simulation results. The sixth row
in the table is especially insightful. It shows that E[D] is about the same distance from κ1,2 for
each n, thus strengthening our claim that D(t) should have fluctuations of order O(1) as n→∞.

In closing, we remark that we rounded up the centering constant κ to the nearest integer when
n = 25; i.e., we used κ = 3 when n = 25. In the table we show the fluid solution using κ = 2.5 so as
to make the scaled fluid solutions uniform. However, the solution using κ = 3 is similar.

Independent Cases. One of our objectives is to avoid sharing without unbalanced overloads.
That occurs in two scenarios: (i) under normal loads, and (ii) under balanced overloads. In both
of these cases our FQR-T control makes the X model operate approximately as two independent
M/M/n + M systems, each operating in the QD or QED regime in the first scenario (depending
on the actual load of each queue), or the ED regime in the second scenario. We present supporting
simulation results in the Appendix.
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n=25 n=100 n=400
perf. meas. 2 equ. 3 equ. sim. 2 equ. 3 equ. sim. 2 equ. 3 equ. sim
E[Q1] 16.6 14.4 15.7 65.6 63.1 63.6 262.2 259.7 258.3

±0.3 ±1.9 ±5.0
E[Q1/n] 0.656 0.575 0.629 0.656 0.631 0.636 0.656 0.649 0.646

±0.013 ±0.019 ±0.013
E[Q2] 13.6 16.4 15.9 55.6 58.6 58.6 222.2 225.3 223.9

±0.4 ±1.8 ±5.0
E[Q2/n] 0.556 0.656 0.636 0.556 0.586 0.586 0.556 0.563 0.560

±0.016 ±0.018 ±0.013
E[D] − −2.0 −0.2 − 4.6 5.0 − 34.4 34.4

±0.3 ±0.1 ±0.04
κ−E[D] − 5.0 3.2 − 5.4 5.0 − 5.6 5.6

±0.3 ±0.1 ±0.04
E[Z1,2] 5.3 5.8 5.6 21.1 21.7 21.9 84.4 85.1 84.2

±0.1 ±0.04 ±1.2
E[Z1,2/n] 0.211 0.231 0.224 0.211 0.217 0.219 0.211 0.213 0.210

±0.003 ±0.004 ±0.003
Table 1 A comparison of the basic fluid approximations based on two equations in (9) and its refinement based
on the three equations in (19) with simulation results in the base case, having m1 = m2 = 1.0n, λ1 = 1.3n, λ2 = 0.9n,

µ1,1 = µ2,2 = 1.0, µ1,2 = µ2,1 = 0.8, θ1 = θ2 = 0.2 and κ = 0.1n (rounding up to the nearest integer if necessary).

The spare-capacity case. For the spare capacity case, we modify the base case above to make
queue-1 overloaded, while pool-2 has enough spare capacity to potentially serve all the extra class-1
customers. As before, we just change the arrival rates, in this case to λ1 = 1.1n and λ2 = 0.8n.

It is easy to see that pool 2 has spare capacity (in the fluid scale). We can analyze the available
capacity from this deterministic-fluid-approximation perspective as follows: First, we observe that
class 1 has an extra arrival rate of 0.1n, whereas pool 2 has 0.2n “extra” service rate, assuming
that 0.8n servers are enough to take care of all the class-2 arrivals. Since pool-2 agents serve class-1
customers at rate µ1,2 = 0.8, we initially estimate that we need to have at least 0.125n pool-2 agents
working with class-1 customers. However, upon further analysis, we see that the number of pool-1
agents needed is actually less than that, because queue 1 will stabilize at the centering constant
κ = 0.1n, and thus θ1Q1 = 0.02n class-1 customers will abandon. Hence, only about 0.105n pool-2
agents should be needed to serve class 1. In any case, pool 2 has spare capacity.

We compare the approximation from §3.2 with simulation results in Table 2. The approximations
are given in §3.2. Our initial approximation for Q1 from §3.2 is κ, but that is not shown in Table 2.
Instead, we only show the BD refinement from §6.2. (The cruder approximation would yield values
of 2.5, 10.0 and 40.0 in the first row.) We see that the refined approximation is much better for
large n. For the approximation of Z1,2, we use (10).

8. A Diffusion-Process Refinement

In the fully-overloaded case, we now go beyond the deterministic fluid approximation to obtain
a diffusion-process refinement, which yields a non-degenerate approximation for the steady-state
distribution of the two queue lengths. The approximating distribution is bivariate normal, where
the means are the previous fluid approximations. In addition, the approximating correlation is 1
and the variances are

V ar(Q1)≈ r2(λ1 +λ2)
(1+ r)(rθ1 + θ2)

and V ar(Q2)≈ (λ1 +λ2)
(1+ r)(rθ1 + θ2)

. (20)
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n=25 n=100 n=400
perf. meas. approx. sim. approx. sim. approx. sim.
E[Q1] 1.1 3.3 5.2 6.4 29.0 30.1

±0.1 ±0.6 ±0.5
E[Q1/n] 0.04 0.13 0.05 0.06 0.07 0.07

±0.00 ±0.01 ±0.00
E[Q2] 0 3.4 0 2.7 0 1.0

±0.05 ±0.5 ±0.2
E[Q2/n] 0 0.14 0 0.027 0 0.003

±0.00 ±0.005 ±0.000
E[Z1,2] 2.5 3.9 10.0 12.2 40.0 43.4

±0.1 ±0.5 ±1.2
E[Z1,2/n] 0.100 0.156 0.100 0.122 0.100 0.108

±0.007 ±0.007 ±0.003
Table 2 A comparison of the approximation for the steady-state performance measures in the spare-capacity

case with simulation results. The arrival rates are now λ1 = 1.1n and λ2 = 0.8n.

A special case. We base our approximation on a special case for which we can easily do the
asymptotic analysis exactly, and then we extend the approximation heuristically to other cases. The
special case has θ1 = θ2 and µ1,2 = µ2,2 (with class 1 overloaded as usual). Under those additional
assumptions, the total queue length Qs(t)≡Q1(t)+Q2(t) behaves the same as the queue length in
the M/M/m+M model in the ED regime, as analyzed in Whitt (2004). In this special case, we can
directly obtain a FCLT like (6) for the total queue-length stochastic process, centered about the
steady-state fluid limit. From Whitt (2004), we see that the limit is an Ornstein-Uhlenbeck diffusion
process with infinitesimal mean m(x) =−θ1x and infinitesimal variance σ2 ≡ σ2(x) = 2(λ1 + λ2).
That diffusion process has a normal steady-state distribution. We invoke SSC to treat the individual
queue lengths; that yields the correlation 1.

Here are additional details: Since the system is fully overloaded, as an approximation we assume
that all the agents are busy all the time. (That is asymptotically correct in the MSHT limit.) Thus,
the departure rate by service completion has the constant value m1µ1,1 +m2µ2,2. The assumption
that µ1,2 = µ2,2 implies that it does not matter which class the type-2 agents are serving. Since
the total arrival process is a superposition of two independent Poisson processes, the total arrival
process is directly a Poisson process with rate λ1 + λ2. Finally, since θ1 = θ2, there is a common
abandonment rate for both classes.

A heuristic refinement. Now we heuristically extend this same tractable OU approximation
with a normal steady-state distribution to more general cases. First, when µ1,2 6= µ2,2, we again act
as if all agents are busy all the time. The total service rate at time t is then m1µ1,1 +Z1,2(t)µ1,2 +
(m2 −Z1,2(t))µ2,2. To obtain the desired constant rate, we act as if Z1,2(t) is constant, assuming
its determined deterministic steady-state fluid approximation. This is a heuristic approximation,
because we are ignoring the stochastic fluctuations in Z1,2. Experiments show that this simple
approximation works pretty well, but as n→∞ in the ED regime the infinitesimal mean of the
scaled queue-length process does in fact depend on the stochastic behavior of the scaled version of
the stochastic process Z1,2 (as we would expect); i.e., simulations show that this heuristic extension
is not asymptotically correct as n→∞, but it is a useful approximation, because it is easier to
calculate and the error tends to be small.

We also treat the abandonments in a similar way when θ1 6= θ2. We will approximate by a constant
abandonment rate applying to all customers. For this step we also will invoke SSC (ignoring the
difference), and assume that Q1(t)≈ rQs(t)/(1+r) (and similarly for Q2). Thus our approximating
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constant abandonment rate to apply to the total queue length is θ ≈ (rθ1/(1 + r)) + (θ2/(1 + r)).
With the new approximating total service rate and average abandonment rate, we again are in the
domain of an OU approximation, with normal steady-state distribution. Paralleling our previous
analysis, we obtain a new approximate variance for the total queue length,

V ar(Qs)≈ (1+ r)(λ1 +λ2)
(rθ1 + θ2)

. (21)

Then SSC again gives a joint normal distribution for (Q1,Q2) with correlation 1. The individual
variances are thus approximated by (20).

Comparison with simulation. We now compare the approximating normal steady-state dis-
tributions to simulation results. We again consider the base case in Table 1 with λ1 = 1.3n and
λ2 = 0.9n. The results are given in Table 3.

We give the standard-deviations of the total queue length Qs = Q1 + Q2 as well as the two
queues. As before, we treat both the actual values and the scaled values, but now we are scaling in
diffusion scale (dividing by

√
n after subtracting the order-O(n) mean), as in (5), so that we will

be substantiating the stochastic-process limit in (6). To further substantiate both the stochastic-
process limit and the normal approximations, we also give the quantiles of the scaled queue lengths
Q̂1 and Q̂2. To save space, we omit the confidence intervals for the scaled standard deviations;
these can be computed from those of the actual queues by dividing the half widths by

√
n.

We also give the quantiles for the centered steady-state queue difference D̃≡D−E[D]. (Table
1 already showed that the approximation for the mean E[D] is accurate for n≥ 100.) The approx-
imate distribution of D is obtained from the QBD FTSP. The quantiles of the distribution of D̃
pose a problem, since D is integer-valued. We thus calculate a linear interpolation of two values.
For example, for the 0.05 quantile, we took the largest value d0 such that P (D̃ ≤ d0) < 0.05 and
linearly interpolate this value with the smallest value d1 such that P (D̃ ≤ d1) > 0.05. The linear
interpolation becomes just the weighted average of the two values d0 and d1. As in Table 1, D̃ is
not scaled by any division.

The exact asymptotic distribution. In fact, we have established a FCLT in Perry and Whitt
(2010c) that provides the exact limiting distribution. Consistent with above, it is multivariate
normal, but the variances and covariances are different in general; see Corollary 4.1 of Perry and
Whitt (2010c). The exact asymptotic results show that there is another term, but it tends to be
small. Interestingly, this second term has a contribution from the asymptotic variance of the FTSP
Dt. Overall, the FCLT provides strong support for the elementary approximations in (20).

9. Conclusions

In this paper we further investigated the FQR-T routing policy for the X model, proposed in Perry
and Whitt (2009) as a way for two service systems to help each other during unexpected overloads.
We showed how the performance of the FQR-T control can be analyzed, exploiting the fact that
the overload puts the system in the ED MSHT limiting regime, reviewed in §2. Even though the
approximations have a complicated basis, supported by stochastic-process limits (explained in §2,
but not established here), the steady-state approximations developed in §3, §6, and §8 are relatively
simple and easy to apply.

However, those approximations were not so easy to develop. From the theoretical point of view,
the main contribution of this paper is the reduction of a complicated queueing model to more
elementary and elegant approximate models, using the heavy-traffic averaging principle (AP) in the
development of the deterministic fluid approximation (the system of ODE’s in §4.1) and state-space
collapse (SSC) in the diffusion approximations (and resulting approximate normal distribution in
§8). The relatively simple initial fluid approximation in §3 was refined in useful ways in §6 and §8.
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n=25 n=100 n=400
perf. meas. Approx. Sim. Approx. Sim. Approx. Sim.
std(Qs) 16.6 16.0 33.2 33.7 66.3 67.6

±0.3 ±1.4 ±2.9
std(Q̂s) 3.32 3.21 3.32 3.37 3.32 3.38
std(Q1) 8.3 8.8 16.6 17.2 33.2 33.9

±0.1 ±0.7 ±1.4
std(Q̂1) 1.66 1.75 1.66 1.72 1.66 1.7
std(Q2) 8.3 8.6 16.6 17.1 33.2 33.9

±0.1 ±0.7 ±1.5
std(Q̂2) 1.66 1.73 1.66 1.71 1.66 1.69

0.05 −2.72 −2.75 −2.72 −2.84 −2.72 −2.72
±0.06 ±0.11 ±0.19

0.25 −1.12 −1.27 −1.12 −1.14 −1.12 −1.18
Q̂1 ±0.08 ±0.03 ±0.08
quantiles 0.75 1.12 1.13 1.12 1.14 1.12 1.11

±0.08 ±0.08 ±0.08
0.95 2.72 2.97 2.72 2.82 2.72 2.92

±0.11 ±0.20 ±0.16
0.05 −2.72 −2.94 −2.72 −2.82 −2.72 −2.68

±0.14 ±0.15 ±0.21
0.25 −1.12 −1.18 −1.12 −1.14 −1.12 −1.17

Q̂2 ±0.08 ±0.04 ±0.06
quantiles 0.75 1.12 1.18 1.12 1.14 1.12 1.11

±0.07 ±0.09 ±0.08
0.95 2.72 2.90 2.72 2.80 2.72 2.91

±0.10 ±0.20 ±0.15
0.05 −17.4 −13.4 −18.4 −16.6 −19.5 −18.2

±0.7 ±0.6 ±0.6
0.25 −7.4 −6.0 −8.4 −7.6 −8.5 −8.0

centered D ±0.0 ±0.6 ±0.0
quantiles 0.75 −1.4 −0.8 −1.4 −1.0 −1.4 −1.0

±0.6 ±0.1 ±0.0
0.95 0.5 5.0 0.5 1.0 0.5 1.0

±1.8 ±0.1 ±0.0
Table 3 A comparison of the approximating distributions of steady-state performance measures in the

unbalanced-overload case with simulation results for the base case with λ1 = 1.3n and λ2 = 0.9n.

Simulation experiments in §5, §7, and the Appendix confirm that the approximations for both the
transient mean values and the steady-state distributions are quite accurate.

Many open problems remain. First, it remains to develop corresponding performance approx-
imations for the X model with non-exponential distributions, paralleling the previous results in
Whitt (2006) for the single-class single-pool I model.

Second, the whole discussion was limited to the overloaded two-class-two-pool X-model setting,
but the control and the results should be extended to other MSHT regimes and more complex
systems, as in Gurvich and Whitt (2009a,b, 2010). For applications to modern call centers, we
would want the two service systems to be more general than the I models considered here. Also,
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we would like to consider sharing among more than two service systems. The QR-T and FQR-T
controls extend quite naturally to more complex systems, but our mathematical analysis, both here
and in our other papers, evidently does not extend so easily. Such extensions remain a topic for
future research.
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e-Companion
This appendix contains supplementary material. First, in §EC.1 we continue to compare our

normal-distribution approximations with simulations, going beyond §8.
We next show how variations of the same AP method can be used to analyze a different model. In

particular, in §EC.2 we develop an ODE based on the AP to analyze the initially normally-loaded
(without an overload) X model operating under FQR without the thresholds, and show that this
ODE predicts the bad performance without these modifications previously shown in §4.1 of Perry
and Whitt (2009) through simulation. In §EC.3 we continue the discussion begun in §EC.3 of the
algorithm developed to describe the bad behavior of ordinary FQR, without any thresholds.In
§EC.4 we examine the system under FQR together with one-way sharing, but without thresholds.

We next present more about the main model of this paper. In §EC.5 we present more detail
about the performance of FQR-T under normal loads. In §EC.6 we present additional simulation
results, considering asymmetric models and more challenging boundary cases in order to better
understand the limitations of the approximations.

EC.1. Simulation Experiments to Evaluate the Normal Approximations

EC.1.1. The Unbalanced-Overload Case

We now elaborate further on the example given in §8. To illustrate how the approximations perform,
we show two figures based on a simulation run with n = 100 (the second case in Table 3). To show
that SSC actually occurs with FQR-T, we show a plot of a segment of the queue-length sample
paths in Figure EC.1. We have centered about the means, so that the average difference should be
zero. To visually justify the normal approximation, we show a histogram of the class-1 queue-length
distribution in Figure EC.2.

EC.1.2. The Balanced-Overload Case

In the balanced-overload case, we compare the simulation results to approximations based on the
assumption that the two queues operate independently. The approximations are calculated using
Whitt (2004). We simulated the same systems as before, again changing only the arrival rates to
λ1 = λ2 = 1.2n. The results are shown in Table EC.1.

Of course, the two queues are not actually completely independent, because agents are sometimes
serving customers from the other class. Thus there is some dependency between the queues. This
causes the queues to be somewhat larger than if the two service pools were operating independently,
because serving the other class is done somewhat inefficiently. However, the sharing is not altogether
bad: although there is some increase in the queues sizes (as shown in Table 3 of the supplement),
we also gain by decreasing the variance of the queues. From the efficiency point of view, we see a
tradeoff between the economies of scale provided by the sharing and the inefficiency caused by the
slower service rates when sharing.

For this reason, the simulations do not match the approximations precisely, but the differences
are not large. Indeed, to show the differences more clearly, for the case n = 100 we added another
column of simulation results for an M/M/100 + M system having a Poisson arrival process with
rate λ = 120. Table EC.1 shows that the simulation results for this case are much closer to the
approximations, showing that the errors, though not large, are not due to stochastic fluctuations.
To further illustrate the difference (and the resemblance), we show histograms of the distribution
of Q1 in the two cases in Figures EC.3 and EC.4. It is easy to see that the queues in both systems
have a distribution that is very close to a normal distribution, and that the variance of the queue
in the X model is smaller than the variance of the queue in the M/M/100+M system.
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Figure EC.1 State-space collapse for n = 100.
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Figure EC.2 Histogram of Q1 for n = 100.

n=25 n=100 n=400
perf. meas. Approx. Sim. Approx. Sim. Sim. Approx. Sim.

X model Ind.
std(QΣ) 17.3 17.3 34.6 33.2 34.7 69.3 63.9

±0.5 ±2.6 ±0.7 ±3.9
std(Q̂Σ) 3.46 3.46 3.46 3.32 3.47 3.46 3.20
std(Q1) 12.2 10.37 24.5 20.4 24.7 49.0 38.1

±0.2 ±1.3 ±0.64 ±1.7
std(Q̂1) 2.45 2.07 2.45 2.04 2.47 2.45 1.91

0.05 −4.03 −3.38 −4.03 −3.35 −4.07 −4.03 −3.17
±0.07 ±0.26 ±0.13 ±0.26

0.25 −1.65 −1.38 −1.65 −1.37 −1.73 −1.65 −1.24
Q̂1 ±0.07 ±0.11 ±0.09 ±0.09
quantiles 0.75 1.65 1.30 1.65 1.35 1.69 1.65 1.30

±0.07 ±0.07 ±0.10 ±0.12
0.95 4.03 3.50 4.03 3.45 4.14 4.03 3.07

±0.07 ±0.20 0.09 ±0.05
Table EC.1 A comparison of approximations for the standard deviations and quantiles of the steady-state

queue lengths with simulation estimates in the balanced-overload case with λ1 = λ2 = 1.2n.
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Figure EC.3 A histogram for Q1 in the
balanced-overload case with n =
100, λi = 1.2n and κ1,2 = 10.
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Figure EC.4 A histogram for the queue length
in an M/M/100+ M model.

EC.2. Analytically Showing the Bad Behavior Without Thresholds

In §4.1 and Perry and Whitt (2009) and §EC.2, we applied simulation to demonstrate the need for
the thresholds and one-way sharing (allowing sharing in only one direction at a time) in FQR-T.
We showed that basic FQR can perform poorly under normal loads, because it can activate sharing
simultaneously in both directions that makes the system overloaded under the common assumption
of inefficient sharing, as in (1). When customers do not abandon, the system becomes unstable
and explodes because of the inefficient sharing. Indeed, the queue lengths tend to grow directly
proportional to t. When customers do abandon, in both service pools a significant proportion of
agents are serving customers of the other class. As a consequence, the queue lengths stabilize at
undesirably high levels.

We now show that we can predict this performance analytically, employing a variant of the fluid
model just developed. This requires that we allow two-way sharing, with both pools simultaneously
serving customers of the other class. To treat FQR, we would have no thresholds at all, but the
same bad behavior can occur if there are two thresholds, both of which are too small. We will thus
first develop a more general six-dimensional ODE. Afterwards, we will specialize to the specific
example considered in Perry and Whitt (2009) in order to obtain closed-form expressions for key
performance measures.

EC.2.1. The Fluid-Model with Two Thresholds and Two-Way Sharing

We will now introduce the system of six deterministic fluid-model ODE’s to approximate the
evolution (transient behavior) of the CTMC X(t) ≡ (Qi(t),Zi,j(t); i = 1,2; j = 1,2) in the fully
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overloaded case considered in §3.1 when there is two-way sharing with two thresholds. As before,
we focus on D(t) ≡D1,2(t), considering the fully overloaded cases, with class 1 more overloaded
than class 2. As before, the queue-difference process D(t) oscillates around the threshold κ1,2. As
before, we rely on the AP.

The Fast-Time-Scale Process. As before, let Dt(∞) denote a random variable with the
time-dependent steady-state distribution of the fast-time-scale process. We now exploit the time-
dependent probabilities

π1,2(X(t))≡ P (Dt(∞) > κ1,2) and π2,1(X(t))≡ P (Dt(∞) <−κ2,1) t≥ 0, (EC.1)

which will depend on the state of the approximating ODE X(t) at time t.
Again, the AP allows us to regard Dt approximately as a pure-jump continuous-time Markov

process (MP), with state space {k+rj : k ∈Z, j ∈Z}, with transition rates that depend only on the
fluid-model state at time t. There are four possible transitions in each state: ±1 and ±r. As before,
we obtain simplification without practical sacrifice by assuming that r is rational. For rational
r≡ j/k, this is a continuous-time Markov chain (CTMC) on the state space {j/k : j ∈Z}. We then
multiply by k to obtain an integer state space. Moreover, then the CTMC can be represented as
a homogeneous quasi-birth-and-death (QBD) process, as in Definition 1.3.1 and §6.4 of Latouche
and Ramaswami (1999). (Now the middle region [−κ2,1, κ1,2] is treated as part of the boundary.)
For each t, we can apply the logarithmic reduction algorithm in §8.7 of Latouche and Ramaswami
(1999) to efficiently calculate the steady-state distribution of Dt, i.e., the distribution of Dt(∞).
As a consequence, we can calculate the the desired probabilities πi,j(X(t) in (EC.1) for any fluid
state X(t).

We now specify the transition rates of the CTMC Dt given the time t and the state X(t),
using the integer state space. Let λ

(j)
+ (m,X(t)), λ

(k)
+ (m,X(t)), µ

(j)
+ (m,X(t)) and µ

(k)
+ (m,X(t))

be the transition rates of the FTSMC Dt for transitions of +j, +k, −j and −k, respectively,
when Dt(s) = m > κ1,2. Similarly, we define the transitions when Dt(s) = m <−κ2,1: λ

(j)
− (m,X(t)),

λ
(k)
− (m,X(t)), µ

(j)
− (m,X(t)) and µ

(k)
− (m,X(t)), and the transitions when Dt(s) = m, −κ2,1 ≤m≤

κ1,2: λ
(j)
0 (m,X(t)), λ

(k)
0 (m,X(t)), µ

(j)
0 (m,X(t)) and µ

(k)
0 (m,X(t)).

There are different formulas for these constant rates in the three regions. First, for Dt(s) = m∈
[−κ2,1, κ1,2], the upward rates are

λ
(k)
0 (m,X(t)) = λ1 and λ

(j)
0 (m,X(t)) = µ1,2Z1,2(t)+µ2,2Z2,2(t)+ θ2Q2(t), (EC.2)

corresponding, first, to a class-1 arrival and, second, to a departure from the class-2 customer queue,
caused by a type-2 agent service completion or by a class-2 customer abandonment. Similarly, the
downward rates are

µ
(k)
0 (m,X(t)) = µ1,1Z1,1(t)+µ2,1Z2,1(t)+ θ1Q1(t) and µ

(j)
0 (m,X(t)) = λ2, (EC.3)

corresponding, first, to a departure from the class-1 customer queue, caused by a class-1 agent
service completion or by a class-1 customer abandonment, and, second, to a class-2 arrival.

Next, for Dt(s) = m∈ (κ1,2,∞), we have upward rates

λ
(k)
+ (m,X(t)) = λ1 and λ

(j)
+ (m,X(t)) = θ2Q2(t), (EC.4)

corresponding, first, to a class-1 arrival and, second, to a departure from the class-2 customer queue
caused by a class-2 customer abandonment. The downward rates in this region are

µ
(k)
+ (m,X(t)) = µ1,1Z1,1(t)+µ2,1Z2,1(t)+µ2,2Z2,2(t)+ θ1Q1(t) and µ

(j)
+ (m,X(t)) = λ2, (EC.5)
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corresponding, first, to a departure from the class-1 customer queue, caused by (i) a type-1 agent
service completion, (ii) a type-2 agent service completion, or (iii) by a class-1 customer abandon-
ment and, second, to a class-2 arrival.

Finally, for Dt(s) = m∈ (−∞,−κ2,1), the upward rates are λ
(k)
− (m,X(t))≡ λ1 and

λ
(j)
− (m,X(t))≡ µ2,2Z2,2(t)+µ1,2Z1,2(t)+µ2,1Z2,1(t)+µ1,1Z1,1(t)+ θ2Q2(t), (EC.6)

corresponding, first, to a class-1 arrival and, second, to a departure from the class-2 customer
queue, caused by (i) a type-1 agent service completion, (ii) a type-2 agent service completion, or
(iii) by a class-2 customer abandonment. The downward rates in this region are

µ
(k)
− (m,X(t))≡ θ1Q1(t) and µ

(j)
− (m,X(t))≡ λ2, (EC.7)

corresponding, first, to a departure from the class-1 customer queue, caused by a class-1 customer
abandonment, and, second, a class-2 arrival.

For each time t and state X(t), we can apply the QBD algorithm with the rates above to find
the distribution of Dt(∞) and then the important quantities π1,2(X(t)) and π2,1(X(t)) in (EC.1).

The ODE’s. As in §4, we are considering the fully-overloaded case in §3.1, so that the arrival
rates are sufficiently high that both approximate queue lengths are positive in steady state. We
again consider the transient behavior of the fluid model under the assumption that all agents are
busy. We are thus describing the transient behavior in the second transient period, leading to
steady state.

First, given Zi,j(t) and πi,j(X(t)), we obtain ODE’s for the two queue-length processes. As before,
we let the derivative Q̇1(t) equal the rate of increase of Q1(t) minus its rate of decrease. The rate of
increase is simply the arrival rate to customer queue 1, λ1. The rate of decrease is more complicated.
First, there is the rate of abandonment from queue 1, which is Q1(t)θ1. Second, there is the rate
of decrease from queue 1 due to service completions by servers who will next take customers from
queue 1, which depends on the state of the queue-difference stochastic process. Exploiting the AP,
we will not focus on the actual state of the queue-difference process, but instead focus on the
average state, assuming that the queue-difference process oscillates relatively rapidly compared to
the other processes. We thus assume that a proportion π1,2(X(t)) of the time κ1,2 is exceeded. That
portion of the decrease rate is π1,2(X(t)) (Z1,1(t)µ1,1 +Z1,2(t)µ1,2 +Z2,1(t)µ2,1Z2,2(t)µ2,2). There
will be corresponding, but different, rates of decrease for the proportion of time π2,1(X(t)) that
the queue-difference is below the −κ1,2, and the proportion of time 1 − π1,2(X(t)) − π2,1(X(t))
that the queue-difference is between the two thresholds. Note that Q1 is decreased due to service
completions only when Dt >−κ2,1, i.e., a proportion of 1− π2,1(X(t)) of the time. Similarly, Q2

is decreased due to service completions only when Dt < κ1,2, or a proportion 1−π1,2(X(t)) of the
time. That reasoning leads to the two ODE’s for the queue-length processes:

Q̇1(t) = λ1−Q1(t)θ1−π1,2(X(t)) (Z1,1(t)µ1,1 +Z2,1(t)µ2,1 +Z1,2(t)µ1,2 +Z2,2(t)µ2,2)
−(1−π1,2(X(t))−π2,1(X(t)) (Z1,1(t)µ1,1 +Z2,1(t)µ2,1)

Q̇2(t) = λ2−Q2(t)θ2−π2,1(X(t)) (Z2,2(t)µ2,2 +Z1,2(t)µ1,2 +Z2,1(t)µ2,1 +Z1,1(t)µ1,1)
−(1−π2,1(X(t))−π1,2(X(t)) (Z2,2(t)µ2,2 +Z1,2(t)µ1,2) . (EC.8)

Assuming that the system is indeed fully overloaded, all the servers will be working, so that

Z1,1(t)+Z2,1(t) = m1 and Z1,2(t)+Z2,2(t) = m2 . (EC.9)

Now we propose approximating ODE’s for Zi,j(t), exploiting the proportions πi,j(X(t)):

Ż1,1(t) = (1−π2,1(X(t))Z2,1(t)µ2,1−π2,1(X(t))Z1,1(t)µ1,1

Ż1,2(t) = π1,2(X(t))Z2,2(t)µ2,2− (1−π1,2(X(t))Z1,2(t)µ1,2 (EC.10)
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Combining §4.1, equations (EC.8)–(EC.10) and appropriate initial conditions, we have a spec-
ification of the transient dynamics of the fluid model, assuming that the system remains fully
overloaded: a system of six ODE’s or one six-dimensional ODE.

Steady state. We now characterize the steady state of this six-dimensional fluid model in
the fully overloaded case as the solution to eight equations. For that purpose, let Qi ≡ Qi(∞),
Zi,j ≡Zi,j(∞) and let D≡D∞ be the queue-difference process when the system is in steady state
(for simplicity, we use the same notation). Hence, D(∞) stands for the steady-state distribution
of D∞, i.e., the steady-state of the weighted-difference process when the system itself is in steady
state. As before, we define

π1,2 ≡ P (D(∞) > κ1,2) and π2,1 ≡ P (D(∞) <−κ2,1). (EC.11)

We can find the steady-state values Qi and Zi,j, i, j = 1,2, by simply setting the derivatives on the
left sides of the ODE’s in (EC.8) and (EC.10) equal to 0. We then have to solve the 8 equations
(EC.8) – (EC.11) with the 8 unknowns: the two Qi, four Zi,j and the two πi,j.

Solving these eight equations is not easy since two of them, (EC.11), involve solving the MP
balance equations or applying a variant of the QBD algorithm in Perry and Whitt (2010a). To
solve these eight equations, we propose an iterative algorithm: We start by setting Z1,1 = m1,
Z2,2 = m2 and Q1 = Q2 = 0. We then solve numerically the balance equations to find π1,2 and π2,1.
We can then use these two πi,j in the other Qi and Zi,j equations to get their new values. We then
use these values of Qi and Zi,j in the balance equations to solve for the πi,j again, and keep iterating
until convergence. Extensive numerical experience indicates that this algorithm converges rapidly
to values that are extremely close to simulation results. (It typically takes only a few iterations.)

EC.2.2. A Symmetric Special Case

Having developed the more general approximate fluid model for the overloaded X model with the
FQR-T control, allowing two-way sharing and having two thresholds, we now want to consider the
specific case of pure FQR as in Gurvich and Whitt (2009a,b, 2010) and §4.1 of Perry and Whitt
(2009). As pointed out in Perry and Whitt (2009), the bad behavior should not be unexpected,
because the X model with service rates depending on both the customer class and the service pool
violates the conditions in the theorems in Gurvich and Whitt (2009a,b, 2010).

In what follows, we simplify the equations by considering a symmetric system. That will allow
us to obtain explicit expressions for the performance measures.

In the symmetric model we have r = 1. Then the MP {Dt(s) : s≥ 0} becomes a birth-and-death
(BD) process. Then FQR reduces to the policy of serving the longer queue (SLQ). It also reduces to
our FQR-T control with thresholds set at κ1,2 = κ2,1 = 0 for all n, without imposing the constraint
of one-way sharing. (That still leave three regions: (−∞,0), {0} and (0,∞). Throughout this section
we will refer to this policy as the SLQ policy.

For the SLQ policy, it is important to specify how ties are broken, because the control tends to
make ties occur quite frequently. Here we are assuming that a server will always serve a customer
from his own class if the queue lengths are equal. The symmetry implies that π1,2 = π2,1, Z1,2 = Z2,1

and Q1 = Q2.
We first consider the case of no customer abandonment, and then afterwards the case of customer

abandonment. For both, we will give numerical results for a symmetric X model with parameters:
mi = n, λi = 0.99n, µ≡ µi,i = 1 and ν ≡ µ1,2 = µ2,1 = 0.8, where inefficiency occurs because ν < µ
(serving the other class is less efficient). With these parameters, if each service pool served only its
own class, then the system would be stable, even without abandonments.

Without abandonment. We now show how to analyze such a symmetric X model with the
SLQ routing policy. To do so, we will work in the fluid scaling, dividing by n. For that purpose,



ec8 e-companion to Perry and Whitt: Queue-Ratio Overload Control

let z(t)≡Zi,i(t)/n, be the proportion of agents serving their own class in each of the pools, and let
q(t)≡Qi(t)/n. Since we consider the systems normalized by n, we take λ≡ λi/n, so that in our
example above λ = 0.99. Because of the symmetry, we omit the class subscripts. To preserve the
symmetry, we assume that the initial conditions are symmetric as well.

We now develop ODE’s describing the evolution of z(t) and q(t). The reasoning is very similar
to before, but we will obtain significant simplification by exploiting the symmetry. We first find the
time-dependent proportion of time that the two queues are equal. Let π(t) be that proportion, i.e.,
π(t) = P (Dt(∞) = 0), t≥ 0. (See §4.1 for more details.) By symmetry, the amount of time queue
1 is bigger than queue 2 is equal to the amount of time queue 1 is smaller than queue 2. Hence,
(1−π(t))/2 is the amount of time queue 1 is bigger than queue 2.

We first write down the ODE for z. It is easy to see that

ż(t) = π(t)(1− z(t))ν +
1−π(t)

2
[ν− z(t)(µ+ ν)] . (EC.12)

In equilibrium, ż(∞) = 0, so that we get

z ≡ z(∞) =
ν(1+π)

2νπ +(1−π)(µ+ ν)
, (EC.13)

where π ≡ π(∞). In our numerical example with µ = 1 and ν = 0.8, equation (EC.13) becomes
z = (4+4π)/(9−π).

To find the value of z above, we need to solve for π. We will find an expression for π by
approximating the absolute difference process between the queues: {|D(t)| : t≥ 0} by a BD process.
For all states j ≥ 1, the birth rate is λ̂j = λ, corresponding to an arrival at the larger queue, while
the death rate is µ̂j = λ+2[zµ+(1− z)ν], corresponding to an arrival to the shorter queue, or any
service completion (since the newly available agent will take a customer from the larger queue).
There is a different birth rate when the two queues are equal. The birth rate (to make either of
the queues longer) when the difference is zero is λ̂0 = 2λ + 2[zµ + (1− z)ν], where 2λ corresponds
to an arrival to either of the queues, while 2[zµ+(1− z)ν] corresponds to any service completion.
Solving for the steady-state of this BD process, we get π = (1− ρ)/(1− ρ+(λ̂0/µ̂)), where

ρ≡ λ̂j

µ̂j

=
λ

λ+2[zµ +(1− z)ν]
, j 6= 0. (EC.14)

Hence we get

π =
zµ+(1− z)ν

λ+2zµ+2(1− z)ν
. (EC.15)

Solving the two equations (EC.13) and (EC.15) for π and z with the rates of our numerical example,
we get z = 0.61 (Zi,i = 61) and π = 0.32.

Using the values of z just determined, we can now find the deterministic fluid approximation for
the evolution of the queues, after z achieves its steady-state, and is fixed. In the fluid approximation
work flows to and out of the system in constant rate, hence the rate of change in the queue length
is the arrival rate minus the departure rate, yielding: q̇(t) = λ− zµ− (1− z)ν, so that

q(t) = q(0)+ [λ− ν− (µ− ν)z]t, t≥ 0.

Applying the rates from our numerical example, we get q(t) = q(0) + 0.068t or Q(t) = Q(0) + 6.8t,
t≥ 0.

To evaluate the accuracy of the approximations above, we performed simulation experiments. As
before, we used 5 independent runs, each with 300,000 arrivals. We report averages together with
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the half widths of the 95% confidence intervals, based on a t statistic with four degrees of freedom.
Here the simulation results are: slope of E[Q1(t)] = 6.8± 0.4, E[Z1,1] = 61.2± 0.6, π = 0.33± 0.00,
while the respective approximations are 6.8, 61.0 and 0.32. Figures in §4.1 of ? compare the sample
paths of Q1(t) and Z2,1(t), starting empty, in one simulation run. The queue-length sample path
and the straight line are almost indistinguishable.

With Abandonment. When we consider the symmetric model with abandonments, we have a
new ODE for the queue length:

q̇(t) = λ− z(t)µ− (1− z(t))ν− q(t)θ,

where θ ≡ θi, i = 1,2 is the abandonment rate for both classes, which we take to be 0.2 in our
example. In steady-state, we have q̇(t) = 0, and thus, for q≡ q(∞),

q =
λ− zµ− (1− z)ν

θ
. (EC.16)

An initial approximation for q can use the same value of z we obtained before without abandon-
ments. If we use z = 0.61 from before (without abandonment), then we get q = 0.34, which turns
out to be quite accurate. However, proceeding more carefully, we can incorporate the abandonment
and investigate how it changes the value of z. We see that it does so through the way it changes
the value of π. To do the analysis, we need to consider once again the birth and death rates of the
process |D(∞)|: Let λ̂j be the birth rate, and µ̂j be the death rate when the difference between
the two queues is j. We then have λ̂0 = 2λ + 2[zµ + (1− z)ν] + 2qθ; for j > 0, the birth rates are
λ̂j = λ+ qθ, while the death rates are µ̂j = λ+2[zµ+(1− z)ν] + qθ.

Solving the BD balance equations, we get an expression for π in terms of z and q. Once again we
get π = (1−ρ)/(1−ρ+(λ̂0/µ̂)), but where ρ is redefined as ρ≡ (λ+qθ)/(λ+2[zµ+(1−z)ν]+qθ).
Hence

π =
zµ+(1− z)ν

λ+2zµ+2(1− z)ν + qθ
.

From equation (EC.16), we get qθ = λ− zµ− (1− z)ν, thus

π =
zµ+(1− z)ν

2λ+ zµ+(1− z)ν
. (EC.17)

Solving the two equations (EC.13) and (EC.17) in the two unknowns π and z, we get z = 0.607
and π = 0.318 in our numerical example. Inserting that value of z in equation (EC.16), we get
q = 0.343, or Qi = 34.3 and Zi,i = 60.7. On average, 39.3 agents are serving customers from the other
class, hence the total service rate of each class reduces from 100µ = 100 to 60.7µ + 39.3ν = 92.14,
which is less than the arrival rate λi = 99. That explains why the system becomes congested. The
corresponding simulation estimates are: E[Q1] = 34.3±0.8, E[Z1,1] = 61.0±0.0 and π = 0.34±0.01.
Figures showing typical sample paths are given in §3 of the online supplement.

EC.3. Extra Details About the Bad Behavior of FQR

In this section we elaborate on the case with customer abandonment in §EC.3. First in Table EC.2
we compare the new approximations to simulations. As in the main paper, we ran five independent
simulations, each with 300,000 arrivals, and use the t distribution with 4 degrees of freedom to
construct the confidence intervals.

Figures EC.5 and EC.6 show the sample paths of Q1(t) and Z2,1(t) taken from one simulation
run. For contrast, in Figures EC.7 and EC.8 we also show the sample paths of Q1(t) and Z2,1(t) in
the same system, but with the FQR-T control using κi,j = 10. With FQR-T, we get E[Z1,2] = 2.0
and E[Q1] = 9.4, so that the average service rate for class i is now 98µ+2ν = 99.6, which is larger
than the arrival rate λ1. Hence, with FQR-T the system remains normally loaded, even though
there is some sharing, and even in this extreme example with both arrival rates so close to the
maximum offered service rates.
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E[Q1] E[Z1,1] π

Approx. 34.3 60.7 0.32
Sim. 34.3 61.0 0.34
results ±0.8 ±0.0 ±0.01

Table EC.2 A comparison of approximations for the system performance with SLQ routing to simulation
results when there are customer abandonments.
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Figure EC.5 Sample path of Z2,1(t) with SLQ,
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Figure EC.6 Sample path of Q1(t) with SLQ,
with abandonments.

EC.4. SLQ with One-Way Sharing

We have seen that performance degrades seriously if we drastically reduce the thresholds and elim-
inate the one-way sharing. It is natural to wonder what happens if we only reduce the thresholds,
keeping one-way sharing. We find that the performance is not nearly as bad when we impose
one-way sharing, but it still degrades significantly. We now illustrate that.

For the example in §EC.3, we see that the total arrival rate is λ = λ1 +λ2 = 198, while the total
rate out is 200 without sharing, but with sharing the total rate out is 200− 0.02(Z1,2(t)+Z2,1(t)).
We thus see that the total rate in actually exceeds the total rate out whenever Z1,2(t)+Z2,1(t) > 10.
The traffic intensity varies from 0.99 with no sharing at all to 198/180 = 1.10 with full sharing. We
have yet to mathematically analyze the performance in this case, so we rely on simulation.

Figure EC.9 shows the class-1 queue-length process without abandonments over a long time
interval, in particular, for t = 25,000, which corresponds to 5×106 arrivals to both queues. Without
abandonments, it is unclear whether the system is stable or not, but there is clearly significant
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Figure EC.7 Sample path of Z2,1(t) with FQR-
T, with abandonments.
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Figure EC.8 Sample path of Q1(t) with FQR-T,
with abandonments.

congestion. We estimate that Z1,2 = Z2,1 ≈ 3.6, indicating that the system is close to the critical
boundary case. In Figure EC.10 we show both Zi,j processes, during a short time interval, to make
it easy to observe the way the two processes oscillate.

We are also interested in the way the system behaves if we incorporate abandonments. For this
purpose we add an exponential patience distribution with rate θi = 0.2, for every customer from
both classes. Figure EC.11 shows a sample path of Q1(t), and figure EC.12 shows a sample path
of Z2,1(t). The figures suggest that one-way sharing is not much worse than FQR-T, at least when
n = 100. Yet, for larger systems, as the thresholds κi,j become larger, there will be less sharing
in the balanced loading, and the advantages of the FQR-T control will become more apparent.
Simulation results for this case are shown in Table EC.3. The amount of sharing and the mean
queue length are only slightly larger than the estimates for FQR-T given above.

E[Q1] E[Z2,1]
Average 11.0 2.8
conf. int. ±0.8 ±0.2

Table EC.3 Simulation results for the SLQ using one way sharing, when there are customers abandonments
with rate θ = 0.2.
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a short time scale with SLQ mod-
ified by one-way sharing when
there are no abandonments.

EC.5. The Performance of FQR-T When Sharing Is Not Desired

One of our objectives is to avoid sharing without unbalanced overloads. That occurs in two scenar-
ios: (i) under normal loads, and (ii) under balanced overloads. In both of these cases our control
makes the X model operate approximately as two independent M/M/n + M systems, each oper-
ating in the QD or QED regime in the first scenario (depending on the actual load of each queue),
or the ED regime in the second scenario. If we use FQR without thresholds or one-way sharing,
then the underloaded system may become overloaded due to the slower service rates for the other
class, leading to serious performance degradation.

Table EC.4 shows results for a normally loaded case. We modify the base case used above only
by changing the arrival rates. Now the arrival rates are λ1 = λ2 = 0.98n. With this change, we
have a fully symmetric model, so we only show results for class 1. Since the arrival rates are close
to the maximum possible service rates miµi,i = 1.0n, the system should actually be regarded as
critically loaded, but since there is significant abandonment, the system is not too heavily loaded.
In Table EC.4 we only show the trivial null fluid approximations for the performance measures. In
this case, we could obtain more accurate performance approximations by exploiting the I-model
approximations developed by Garnett et al. (2002). Since E[Z1,2] is quite small in each case, we
conclude that our control is effective in preventing sharing here.

Table EC.5 shows results for a balanced overloaded case. Again, we modify the base case used
above only by changing the arrival rates. Now the arrival rates are λ1 = λ2 = 1.2n. We again have
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modified by one-way sharing
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n=25 n=100 n=400
perf. meas. approx. sim. approx. sim. approx. sim.
E[Q1] 0 4.8 0 7.3 0 10.5

±0.3 ±1.0 ±2.6
E[Q1/n] 0 0.19 0 0.07 0 0.03

±0.01 ±0.01 ±0.01
E[D] 0 0.00 0 −0.15 0 0.10

±0.27 ±0.24 ±0.49
E[Z1,2] 0 1.3 0 1.9 0 1.3

±0.1 ±0.2 ±0.4
E[Z1,2/n] 0 0.052 0 0.019 0 0.003

±0.005 ±0.002 0.001
Table EC.4 A comparison of the trivial I-model fluid approximation with simulation results for the steady-state

performance measures in the case of balanced normal loading. The arrival rates are now λ1 = λ2 = 0.98n.

a fully symmetric model, so we only show results for class 1. The fluid approximation for class 1 is

Qalone
i =

λi−miµi,i

θi

=
1.2n−n

0.2
= n.
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Since E[Z1,2] is quite small in each case, we conclude that our control is again effective in preventing
sharing.

n=25 n=100 n=400
perf. meas. approx. sim. approx. sim. approx. sim.
E[Q1] 25 26.7 100 103.9 400 407.7

±0.5 ±1.9 ±7.1
E[Q1/n] 1 1.07 1 1.04 1 1.02

±0.02 ±0.02 ±0.02
E[D] 0 0.0 0 0.8 0 0.4

±0.4 ±0.7 ±3.2
E[Z1,2] 0 1.7 0 3.0 0 4.2

±0.0 ±0.2 ±1.7
E[Z1,2/n] 0 0.07 0 0.03 0 0.01

±0.00 ±0.00 ±0.00
Table EC.5 A comparison of the I-model fluid approximation with simulation results for the steady-state

performance measures in the case of balanced overloads. The arrival rates are now λ1 = λ2 = 1.2n.

EC.6. More Comparisons with Simulations

In this section we present additional simulation results in order to give a better picture of the way
that the FQR-T routing policy performs.

EC.6.1. Different Primary Service Rates

In the main paper we assumed that the primary service rates for the two classes are identical, i.e.,
that µ1,1 = µ2,2. Here we perform simulations to show what happens when they are not equal. In
particular, here we assume that

µ1,1 = 1 < 2 = µ2,2. (EC.18)

There are different cases, depending on what we assume for the service rates for serving the other
class. Indeed, there are two main cases: we can assume that service-pool 2 is uniformly faster or we
can assume that class-1 tasks are uniformly harder (take longer). That is, the differences can be
determined primarily by the agents or primarily by the customers. We consider those two cases in
turn. In all cases, we consider variants of the same base case with n = 100. In particular, we have

m1 = m2 = 100, θ1 = θ2 = 0.2 and κ1,2 = κ2,1 = 10. (EC.19)

We choose the service rates µi,j to represent different cases, and we choose the arrival rates λi to
make one class overloaded and the other class underloaded, just as in the main case with unbalanced
overloads.

EC.6.1.1. One Service Pool Is Uniformly Faster In some cases, one service pool might
be faster than the other since it may consist of better trained agents. To represent this first case,
we let

µ1,2 = 1.6 and µ2,1 = 0.8 (EC.20)

There are now two further subcases, depending on which class is overloaded. In the first subcase,
class 1 is overloaded, while pool-2 is normally loaded. In particular, we let λ1 = 130 and λ2 = 190.
Note that since µ2,2 = 2, service pool 2 is indeed underloaded with this arrival rate. In the second
subcase we let class 2 be the overloaded one. To achieve that, we let λ1 = 90 and λ2 = 230. The
results are shown in Table EC.6.
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fluid Q1 overloaded Q2 overloaded
perf. meas. 2 equ. 3 equ. sim. 2 equ. 3 equ. sim.
E[Q1] 65.6 61.7 64.2 55.6 59.8 59.2

±2.3 ±2.2
E[Q2] 55.6 60.4 59.9 65.6 62.2 62.3

±2.7 ±2.2
E[Z1,2] 10.6 11.0 11.1 21.1 21.9 21.8

±0.2 ±0.5
distribution Q1 overloaded Q2 overloaded
perf. meas. approx. sim. approx. sim.
std(QΣ) 40.0 38.8 40.0 39.4

±2.8 ±3.3
std(Q1) 20.0 20.5 20.0 19.7

±1.7 ±1.7
std(Q2) 20.0 20.8 20.0 20.7

±1.5 ±1.6
Table EC.6 A comparison of the fluid approximations for the steady-state performance with simulation when
pool-2 agents are uniformly faster. In both cases µ1,1 = 1, µ2,2 = 2, µ1,2 = 1.6, µ2,1 = 0.8, θi = 0.2 and κi,j = 10. On

the LHS Q1 is overloaded: λ1 = 130, λ2 = 190. On the RHS Q2 is overloaded: λ1 = 90, λ2 = 230.

EC.6.1.2. Service of One Class Takes Uniformly Longer We now consider a system in
which class-1 customers are harder to handle; they require more service time on average. In this
case we let

µ1,2 = 0.8 and µ2,1 = 1.6 (EC.21)

Again there are two further subcases, depending on which class is overloaded. In the first subcase,
class 1 is overloaded, while pool-2 is normally loaded: λ1 = 130 and λ2 = 190. In the second subcase,
class 2 is overloaded, while class 1 and pool-1 are normally loaded: λ1 = 90 and λ2 = 230. The
results are shown in table EC.7 below.

An important observation is that sharing in the first case, when Q1 is overloaded, is actually
worse than not sharing at all from the perspective of total queue length. Without sharing, Q1 ≈ 150
and Q2 ≈ 0, thus the proportion of customers lost due to abandonments is approximately θ1Q1 =
0.2 · 150 = 30. In contrast, with sharing, both queues are bigger than 90, thus the proportion of
customers lost is larger than 0.2 · 180 = 36. Moreover, the total queue length is larger.

Another observation is that the variances when Q1 is overloaded are higher than the approxima-
tion, whereas the variances in the other case are smaller. These two features tend to make sharing
in the first case undesirable. In cases like this we might want to have different thresholds, to make
sure we share quickly when Q2 is overloaded, and possibly not share at all when Q1 is overloaded.

EC.6.2. Extreme Differences Between The Two Classes

The remaining simulation experiments are designed to test the limits of the FQR-T control. First,
we see how well our approximations perform when the classes are very different. To illustrate,
here we let the abandonment rates for the two classes be very different. In particular, now we
assume that θ1 À θ2. (Recall that our diffusion approximations in §§8 and EC.1 exploited equal
abandonment rates in order to justify an exact analysis.) In the numerical example in §EC.2 we
saw that in the overloaded case, when µi,j 6= µi,i, our normal approximations for the steady-state
distributions were quite a good approximation for the true distributions of the queues.
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fluid Q1 overloaded Q2 overloaded
perf. meas. 2 equ. 3 equ. sim. 2 equ. 3 equ. sim.
E[Q1] 95.7 91.2 93.6 23.1 25.6 26.6

±1.6 ±1.4
E[Q2] 85.7 95.2 94.3 33.1 29.1 32.3

±0.7 ±1.2
E[Z1,2] 13.6 14.5 14.4 14.6 15.1 15.0

±0.2 ±0.4
distribution Q1 overloaded Q2 overloaded
perf. meas. approx. sim. approx. sim.
std(QΣ) 40.0 41.1 40.0 33.3

±1.0 ±1.4
std(Q1) 20.0 20.6 20.0 16.5

±0.3 ±0.7
std(Q2) 20.0 21.8 20.0 18.4

±0.5 ±0.7
Table EC.7 A comparison of the fluid approximations for the steady-state performance with simulation when
class-1 customers take longer to serve. In both cases µ1,1 = 1, µ2,2 = 2, µ1,2 = 0.8, µ2,1 = 1.6, θi = 0.2 and κi,j = 10.

On the LHS Q1 is overloaded: λ1 = 130, λ2 = 190. On the RHS Q2 is overloaded: λ1 = 90, λ2 = 230.

To see what happens with very different abandonment rates, we modify the base case by letting
θ1 = 1.0 and θ2 = 0.1. The numerical example we consider has the following rates:

λ1 = 1.3n, λ2 = 0.9n, µi,i = 1, µi,j = 0.8, θ1 = 1, θ2 = 0.1 and κi,j = 0.1n. (EC.22)

In Figures EC.13 and EC.14 we show histograms of the distributions of Q1 and Q2, respectively.
Two features appear in the histograms, which did not appear in the previous examples. First, both
queues have a mass at zero. Second, the distribution of Q1 changes at a neighborhood of Q1 = 10,
i.e., when Q1 ≈ κ1,2. This jump in the distribution of Q1 occurs because Q2 has a large mass at
zero. At such times, Q1 tends to be in the neighborhood of κ1,2. That is when customers from Q1

are sent to service pool 2.
These two features are not accounted for in our approximations, and thus our approximations in

this case are not as accurate as for previous cases. Nevertheless, as can be seen from the simulation
results in Tables EC.8 and EC.9, the approximations work remarkably well. The standard-deviation
approximations are very similar to the simulation results. It is just when we take a closer look at
the distributions, and consider the quantiles, that we see our approximations are not nearly exact,
especially for Q2, which has a large mass at zero, hence has a “less normal” distribution.

We should point out that the degradation in the performance of the approximation here is largely
due to class 1 becoming much less overloaded. Reasoning as before, we see that without any sharing
the class-1 queue length would be Q1 ≈ 150 when θ1 = 1.0, but only Q1 ≈ 30 when θ1 = 0.1. The
approximation would perform much better if we had taken the “easier case” with the abandonment
rates in (EC.22) switched to θ1 = 0.1 and θ2 = 1.0, because then the system would have been even
more overloaded.

Since D receives only integer values, we take the linear interpolation to approximate its distri-
bution. See §EC.2 for more details.
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n=25 n=100 n=400
perf. meas. 2 equ. 3 equ. sim. 2 equ. 3 equ. sim. 2 equ. 3 equ. sim
E[Q1] 5.3 4.7 6.0 21.1 20.3 20.9 84.4 83.6 83.9

±0.0 ±0.4 ±1.9
E[Q1/n] 0.211 0.19 0.24 0.211 0.203 0.209 0.211 0.209 0.209

±0.0 ±0.004 ±0.004
E[Q2] 2.3 10.5 6.9 11.1 20.9 19.2 44.4 55.0 54.6

±0.1 ±0.4 ±2.0
E[Q2/n] 0.111 0.42 0.27 0.111 0.201 0.192 0.111 0.137 0.136

±0.01 ±0.004 ±0.005
E[D] − −5.9 −0.9 − −0.6 1.7 − 28.7 29.3

±0.1 ±0.3 ±0.3
κ1,2−E[D] − 15.9 3.9 − 10.6 8.3 − 11.3 10.7

±0.1 ±0.3 ±0.3
E[Z1,2] 2.7 3.5 3.1 11.1 12.1 12.0 44.4 45.5 44.9

±0.0 ±0.4 ±1.0
E[Z1,2/n] 0.111 0.14 0.12 0.111 0.121 0.120 0.111 0.114 0.112

±0.00 ±0.004 ±0.003
Table EC.8 A comparison of the fluid approximations for the steady-state performance measures with

simulation results with very different abandonment rates. Here, λ1 = 1.3n, λ2 = 0.9n, µ1,1 = µ2,2 = 1, µ1,2 = 0.8,
θ1 = 0.1, θ2 = 1 and κ1,2 = 0.1n.

EC.6.3. Challenging Intermediate Cases

More challenging cases occur when the parameter values put the system on the boundary between
when sharing is desired and not desired. In this section we consider such a boundary case. To do
so, we suppose that Qalone

1 ≈ κ1,2 while Q2 is critically (normally, but heavily) loaded. This scenario
can be regarded as an intermediate case, because we should have sharing if Qalone

1 > κ1,2, while
we should not have sharing if Qalone

1 < κ1,2. We thus should anticipate that neither SSC nor the
independent-queue approximation will be especially accurate.

The specific model we consider has n = 400 with mi = n = 400 servers in each service pool, and
the following parameters:

λ1 = 441, λ2 = 398, µi,i = 1, µi,j = 0.8, θi = 1 and κi,j = 40. (EC.23)

Note that a simplified fluid approach would consider this system as one with spare capacity, just as
in §3.2, since service-pool 2 has two extra servers that can potentially serve 1.6 class-1 customers
per unit time, whereas Q1 has just one “extra arrival” per unit time (when we consider the fact
that Q1 must be at least 40 before the sharing is activated). However, here Q2 is critically loaded,
and thus becomes overloaded when class-1 customers are served in service-pool 2.

Figures EC.15 and EC.16 show histograms of the distributions of the two steady-state queue
lengths. We see that both distributions have a mass at zero, and are far from normal. In Figure
EC.18 we reduce the vertical axes to make it easier to observe the shape of the distribution of Q2.
Figure EC.17 is a plot of the sample paths of the two queue-length processes over a short time
interval, both centered about their steady-state means. We observe that even in this case there is
a strong dependency between the two queues, and that the SSC assumption is not far from reality.
In fact, it seems that when both queues are positive, they move together. It is only only when
Q2(t) = 0 and Q1(t) > 0 that Q1(t) moves separately.

With these parameters in (EC.23), we see that the two-equation fluid approximation in (9) in
the main paper fails badly. First, we cannot find the desired fluid approximations for the Qi and
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n=25 n=100 n=400
perf. meas. Approx. Sim. Approx. Sim. Approx. Sim.
std(QΣ) 10 9.1 20 19.7 40 39.9

±0.1 ±0.7 ±2.2
std(Q̂Σ) 2 1.8 2 1.97 2 2.0
std(Q1) 5 4.9 10 9.9 20 19.8

±0.1 ±0.2 ±1.0
std(Q̂1) 1 1.0 1 0.099 1 1.0
std(Q2) 5 6.2 10 11.6 20 21.5

±0.1 ±0.3 ±1.1
std(Q̂2) 1 1.2 1 0.116 1 1.1

0.05 −1.65 −1.21 −1.65 −1.55 −1.65 −1.62
±0.01 ±0.04 ±0.06

0.25 −0.68 −0.81 −0.68 −0.45 −0.68 −0.43
Q̂1 ±0.01 ±0.79 ±0.07
quantiles 0.75 0.68 0.60 0.68 0.64 0.68 0.66

±0.01 ±0.04 ±0.03
0.95 1.65 1.8 1.65 1.68 1.65 1.66

±0.01 ±0.09 ±0.12
0.05 −1.65 −1.38 −1.65 −1.90 −1.65 −1.41

±0.02 ±0.06 ±0.86
0.25 −0.68 −1.10 −0.68 −0.86 −0.68 −0.75

Q̂2 ±0.11 ±0.04 ±0.06
quantiles 0.75 0.68 0.82 0.68 0.75 0.68 0.70

±0.02 ±0.07 ±0.06
0.95 1.65 2.30 1.65 2.07 1.65 1.80

±0.13 ±0.07 ±0.12
0.05 −28.5 −15.6 −33.5 −25.2 −36.5 −32.6

±0.7 ±0.6 ±1.1
0.25 −13.5 −7.0 −15.5 −12.4 −16.5 −15.4

centered D ±0.0 ±0.7 ±0.7
quantiles 0.75 −2.5 −1.0 −3.5 −2.0 −3.5 −3.0

±0.0 ±0.0 ±0.0
0.95 0.5 6.6 −0.5 1.0 −0.5 0.0

±0.7 ±0.0 ±0.0
Table EC.9 A comparison of the fluid approximations for the steady-state performance measures with

simulation results with very different abandonment rates. Here, λ1 = 1.3n, λ2 = 0.9n, µ1,1 = µ2,2 = 1, µ1,2 = 0.8,
θ1 = 1, θ2 = 0.1 and κ1,2 = 0.1n.

Z1,2 using the two equations in (9), since the system is operating in the spare-capacity regime.
Indeed, if we use (9) in the main paper, then we get Q1 = 39.7 and Q2 =−0.3. It is also easy to
see that the spare-capacity approximations do not apply here. If we use equation (10) in the main
paper, then we get that Z1,2 = 2.5 which makes class-2 overloaded, and so there is no spare capacity
in service pool 2. We can modify (10) in the main paper, and assume Q1 = 40 (and not 39) since
pool-2 is heavily loaded. This will give us Z1,2 = 1.25 and Q2 = 0. However, that result is far from
the simulation results, as can be seen in Table EC.10.
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Figure EC.13 Histogram for Q1 when θ1 À θ2
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Figure EC.14 Histogram for Q2 when θ1 À θ2

On the other hand, we see that the three-equation approximation in (19) of the main paper,
actually yields something reasonable. It is in cases like this that we really see the value of the more
complex three-equation approximation in (19) of the main paper. Here this refined approximation
is needed in order to obtain a reasonable approximation.

Lower arrival rates. The effectiveness of the three-equation approximation in the boundary
case with λ1 = 441 shows that it should also be not too bad for even lower arrival rates. We
look at that now. Table EC.11 below gives results for three cases with lower arrival rates for
class 1. In all three cases, we have kept the same parameter values as in (EC.23), except that
we change λ1. Now we consider λ1 = 430, 420 and 415. As the load on Q1 becomes smaller, the
three-equation approximation, and the SSC assumption, become less accurate. Overall, we see that
the three-equation fluid approximation for E[Q1] and the SSC standard-deviation approximations
work pretty well at the boundary (λ1 = 441) and even slightly below the boundary (λ1 = 430), but
then they deteriorate. However, the independent-queue approximation is then good for E[Q1].

For λ1 = 415, it seems that the independent assumption gives better approximations for the
distributions. In the table we also include the value of E[Z2,1] since as the loads get smaller, we start
seeing more sharing in the “wrong” direction. This makes our approximations even less accurate,
since we assume that Z2,1 = 0 in our approximations.

For the standard deviations, the SSC approximations remain pretty good for the individual
queues, while the independent approximation is pretty good for the total queue length. Although
Q2 operates in the OED regime when both queues are independent, we approximate its fluid at zero,
hence we approximate its standard deviation as being zero. We could do better in the independent
case, using the QED approximations for Q2 from Garnett et al. (2002). That would evidently make
the independent approximations perform well for λ1 = 415.
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Figure EC.15 A histogram of Q1 in the inter-
mediate case.
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Figure EC.16 A histogram of Q2 in the inter-
mediate case.

fluid parameters spare 3 equ. sim
E[Q1] 40 27.1 31.5

±0.7
E[Q2] 0 15.4 14.2

±1.0
E[Z1,2] 1.6 17.4 12.6

±0.4
distribution spare SSC sim.
std(QΣ) 20.5 29.0 24.4

±0.6
std(Q1) 20.5 14.5 15.6

±0.5
std(Q2) − 14.5 13.7

±0.3
Table EC.10 A comparison of the fluid approximations with simulation results for the steady-state

performance measures in the intermediate case. In the “spare” column we solve equation (10) in the main paper
with a slight modification, taking Q1 = 40 as described above. This makes Q2 = 0, and QΣ = Q1, hence both have

the same standard-deviations.
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Figure EC.17 A plot of the queues centered
about their fluid.
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Figure EC.18 A closer look at Q2 in the inter-
mediate case.

fluid λ1 = 430 λ1 = 420 λ1 = 415
perf. meas. ind. 3 equ. sim. ind. 3 equ. sim. ind. 3 equ. sim.
E[Q1] 30 18.8 24.9 20 9.8 18.2 15 7.7 15.9

±1.0 ±1.1 ±1.1
E[Q2] 0 12.0 10.8 0 2.1 8.7 0 3.8 8.6

±0.5 ±0.6 ±0.8
E[Z1,2] 0 14.0 8.1 0 4.1 4.4 0 5.8 3.1

±0.8 ±0.6 ±0.3
E[Z2,1] 0 0 0.07 0 0 0.19 0 0 0.34

±0.05 ±0.12 0.14
distribution λ1 = 430 λ1 = 420 λ1 = 415
perf. meas. ind. SSC sim. ind. SSC sim. ind. SSC sim.
std(QΣ) 20.1 28.8 22.6 20.5 28.6 19.8 20.4 28.5 20.2

±0.7 ±0.9 ±1.0
std(Q1) 20.1 14.4 15.4 20.5 14.3 14.4 20.4 14.3 14.4

±0.3 ±0.5 ±0.3
std(Q2) 0 14.4 12.8 0 14.3 11.4 0 14.3 11.9

0.6 ±0.5 ±0.7
Table EC.11 A comparison of the fluid approximations for the steady-state performance measures based on the

three equations in (19) of the main paper with simulation results with reduced arrival rates for class 1.


