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PLANNING QUEUEING SIMULATIONS*

WARD WHITT
AT&T Bell Laboratories, Room 2C-178, Murray Hill, New Jersey 07974

Simple heuristic formulas are developed to estimate the simulation run lengths required to
achieve desired statistical precision in queueing simulations. The formulas are intended to help
in the early planning stages before any data have been collected. The queueing simulations con-
sidered are single replications (one long run) conducted to estimate steady-state characteristics
such as expected equilibrium queue lengths. The formulas can be applied to design simulation
experiments to develop and evaluate queueing approximations. In fact, this work was motivated
by efforts to develop approximations for packet communication networks with multiple classes
of traffic having different service characteristics and bursty arrival processes. In addition to indicating
the approximate simulation run length required in each case of a designed experiment, the formulas
can help determine what cases to consider, what statistical precision to aim for, and even whether
to conduct the experiment at all. The formulas are based on heavy-traffic limits for queues (the
limiting behavior as the traffic intensity approaches its upper limit for stability) and associated
diffusion approximations. In particular, the formulas apply to stochastic processes that can be
approximated by reflected Brownian motion, such as the queue-length process in the standard
GI/G/1 model.

(SIMULATION; EXPERIMENTAL DESIGN; DETERMINING SAMPLE SIZES; QUEUES;
HEAVY-TRAFFIC LIMITS; DIFFUSION APPROXIMATIONS; SCALING OF SPACE
AND TIME).

1. Introduction

In this paper we address a fundamental problem in planning simulation experiments
to estimate steady-state quantities associated with queueing models: estimating the re-
quired length of the simulation runs. Of course, there is a fairly well developed statistical
theory for analyzing simulation output in order to estimate confidence intervals, which
can be applied while conducting the experiment to determine when enough data have
been collected; see Fishman (1971), Chapters 6 and 10 (especially pp. 159-165, 297) of
Fishman (1973), Chapters 3 and 5 (especially pp. 120, 234) of Fishman (1978) and
Lavenberg and Sauer (1977). In contrast, the goal here is to provide formulas that can
be used to estimate required simulation run lengths in the early planning stages before
any data have been collected. These estimated simulation run lengths can then be used
to design the experiment, i.e., to determine what cases to consider, what statistical precision
to aim for, what experimental budget is appropriate, and even whether to conduct the
experiment at all. Long estimated simulation run lengths may also suggest applying
variance reduction techniques; see Fishman (1973), (1978) and Wilson (1985). We are
primarily interested in simulation, but the heuristic formulas also apply to statistical
estimation from actual system measurements.

While we draw on general statistical theory, our analysis is entirely for queueing models.
We exploit the structure of queueing models in order to estimate the data required to
achieve desired confidence intervals. In particular, our heuristic formulas are based on
heavy-traffic limits and associated diffusion approximations for queues; e.g., see Asmussen
(1987a, b), Borovkov (1976), (1984), Burman (1987), Burman and Smith (1986),
Fleming (1984), Harrison (1973), (1988), Harrison and Williams (1988), Iglehart and
Whitt (1970), Johnson (1983), Newell (1982), Peterson (1985), Reiman (1983), (1984),
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(1988a, b), Whitt (1971), (1974) and references cited there. The heavy-traffic limits
describe how the queueing processes behave as the traffic intensity p approaches its critical
value for stability, here always taken to be 1. It is significant that we use the heavy-traffic
limits, not just for the steady-state distribution, but also for the entire queueing process.
An essential role'is played by the time scaling that appears in these heavy-traffic limits.
In particular, the heavy traffic limits allow us to relate how time ¢ or the customer index
n should grow (the simulation run length) as p approaches 1; see (30) and (34). It
appears that the heavy-traffic theory for queues has important applications to experimental
design, which has not yet been fully appreciated.

However, there has been some very relevant previous work. First, Blomqvist (1967),
(1968), (1969) developed heuristic formulas for the variance of the sample mean in the
GI/G/1 model based on detailed heavy-traffic analysis. Later Moeller and Kobayashi
(1974) and Woodside, Pagurek and Newell (1980) developed similar formulas based on
heuristic diffusion approximations. Further discussion appears in Chapter 5 of Newell
(1982; e.g., p. 151). Our work can be regarded as a continuation of these efforts. In fact,
to a large extent, the supporting theory was already well established by Morse (1955).
From the heavy-traffic theory, e.g., Iglehart and Whitt (1970), one can deduce that
Morse’s exact results for the M/M/1 queue can be applied to provide approximate
results for more general models.

While we only consider queues, we do consider quite general queueing models, going
beyond the standard GI/G/m model with m servers, infinite waiting room and the FCFS
(first-come first served ) discipline, as well as the A//M/ 1 special case commonly discussed
in textbooks and the GI/ G/ 1 special case treated by Blomqvist, Moeller and Kobayashi,
and Woodside et al. Over the last 25 years, heavy-traffic analysis has shown that many
models have essentially the same heavy-traffic behavior as the GI/G/1 model, so that
the approximations considered by Blomqvist actually apply much more generally. In
fact, we specify the set of models we consider by stipulating that the process of interest,
with the standard normalization, converge in distribution to regulated or reflecting
Brownian motion (RBM) as the traffic intensity p approaches the critical value for stability;
see (30) and (32). In other words, our formulas emerge from approximating the process
of interest by RBM. To a large extent, the entire paper is summarized by the RBM
approximation (34). (The limit theorems provide theoretical support.)

In fact, the model may even be a complex open queueing network where there are
several classes of customers with a priority service discipline. We focus on a single queue,
but the results are often applicable to entire queueing networks; see §5.5. Frequently, the
simulation run length required for an open queueing network will be determined by a
bottleneck queue (the queue with the highest traffic intensity). This simplification is
mathematically supported by the phenomenon of state-space collapse for queueing net-
works in heavy traffic; see Reiman (1983), (1987b). However, we also suggest approx-
imations for open queueing networks that do not rely on state-space collapse.

While the class of queueing models covered by our analysis is substantial, by no means
are all queueing models in this class. Many queueing processes are not well approximated
by RBM; then the analysis here does not apply. For example, queues with infinitely
many servers and small closed queueing networks behave very differently. Nevertheless,
the general method here should be applicable to other limits and other stochastic models;
further discussion appears in §4.7.

This work was motivated by simulation experiments conducted to develop and evaluate
approximations of steady-state characteristics of complex queueing models, in particular,
by recent efforts to design experiments to study queues in packet communication networks;
see Fendick, Saksena and Whitt (1989). These queues have multiple classes of customers
with different service characteristics and very bursty arrival processes. Previous simulation
studies of queueing models that also serve as motivation-are Albin (1981), (1982),
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(1984a, b), (1986), Sriram and Whitt (1986) and Whitt (1983a, b), (1984a). When
conducting simulations to develop and evaluate approximations, we must typically con-
sider several design factors, such as the traffic intensity, the number of servers, and the
interarrival-time and service-time distributions (and their moments). Also there typically
are special factors for particular models such as the number of component streams with
superposition arrival processes. The overall experiment consists of many cases based on
various combinations of different levels of each factor. In order to properly design the
simulation experiment, it is necessary to estimate the length of the simulation runs required
in each case in order to achieve the desired statistical precision. The experiment might
well be modified as it is being conducted, e.g., in response to estimated confidence intervals,
but it is very helpful to have a rough idea in advance. The formulas we propose enable
practical planning with “back-of-the-envelope” calculations.

At first glance, our experimental design problem may not seem that difficult. To get
a rough idea about how long the runs should be, one “practical approach” might be to
simulate one case to estimate the required run lengths. However, such a preliminary
experiment requires that you set up the entire simulation before you decide whether or
not to do the experiment. Nevertheless, if such a sampling procedure worked, then our
experimental design problem would not be especially difficult. Our motivation stems
from the fact that one sample run can be extremely misleading. This queueing experi-
mental design problem is interesting and important primarily because a uniform allocation
of data over all cases is not nearly appropriate.

Experience indicates that, for given statistical precision, the required amount of data
increases as the traffic intensity increases and as the arrival-and-service variability (ap-
propriately quantified) increases. For example, recognizing this phenomenon for the
traffic intensity p, Albin (1984a, §3.1) used sample sizes of 60,000, 90,000, 300,000,
600,000 and 1,000,000 arrivals for p = 0.3, 0.5, 0.7, 0.8 and 0.9, respectively, in a sim-
ulation experiment to estimate the expected equilibrium queue length in single-server
queues with superposition arrival processes. In fact, surprising as it may seem, this ex-
perimental design still favors the lower traffic intensities. The statistical precision, as
measured by the relative standard error 7, i.e., the ratio of the simulation standard error
(sample standard deviation based on 20 batch means) to the simulation estimate of the
mean, still decreases with p. In fact, the relative standard error was approximately 7
=0.01, 0.02 and 0.04 for p = 0.3, 0.7 and 0.9; see §4 of Albin (1984b). Our analysis
indicates that to achieve a uniform relative standard error 7 over all p that the sample
size should be approximately proportional to 1/(1 — p)? arrivals. Given a sample size
of 60,000 arrivals for p = 0.3, our heuristic suggests sample sizes of 120,000, 300,000,
750,000 and 3,000,000 arrivals for p = 0.5, 0.7, 0.8 and 0.9, respectively. It also predicts
relative standard errors approximately as-observed with the chosen sample sizes.

We remark that the relative standard error 7 appears to be a good practical measure
of statistical precision for evaluating approximations, except possibly when very small
numbers are involved; then the absoluie standard error might be preferred. It might be
argued that relative standard error should a/ways be the preferred measure of statistical
precision, because it is independent of the measuring units, which can be chosen arbitrarily.
However, there often is a measuring unit that is naturally meaningful in an application,
so that independence of measuring unit is not always desirable. For example, in queueing
processes it is often natural to count in units of customers as opposed to units of 10°
customers or 10~® customers. Thus, if a mean queue length is 0.01 customers, then we
might prefer to measure precision of an estimate by the standard error instead of the
relative standard error. In summary, we believe that relative standard error is usually a
better measure of statistical precision, but not always, so that we study both the relative
standard error and the absolute standard error here. Studying both measures of statistical
precision also brings out important differences between them. For example, with the
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absolute standard error, the sample size should be approximately proportional to
1/(1 — p)* arrivals. The impact of the traffic intensity on the required simulation run
length in a few simple models such as M/M/1 is of course available from previous
results, even if it is not as well known as it should be. Qur analysis indicates that the
impact of the traffic intensity on the statistical precision of estimates is approximately the
same as for the M| M /1 model for a large class of models.

For more complex queueing models than A4/ M/ 1, the statistical precision of estimates
for a given simulation run length is not only affected by the traffic intensity, but also by
the variability of the basic arrival and service processes. In Albin’s experiments discussed
above, different cases had different interarrival-time and service-time distributions. How-
ever, in Albin’s experiments the sample sizes were not adjusted for the interarrival-time
and service-time distribution. This was not unreasonable, since great differences in vari-
ability were not considered. Nevertheless, Albin’s experimental results indicate that the
statistical precision of the simulation estimates decreases as the variability increases (see
§6). Consistent with these empirical findings, our analysis indicates that to achieve a
uniform relative standard error 7 that the simulation run lengths should be approximately
proportional to the variability, as measured by an appropriate asymptotic variability
parameter, which emerges from the heavy-traffic limit. 1t is significant that our approx-
imations enable us to quantify the variability as it affects statistical precision of estimators.
In particular, the asymptotic variability parameter is 1 /¢ = b/|a|, where a is the drift
and b is the diffusion coefficient of the approximating RBM; see (25), (34) and §5. It is
of course significant that appropriate RBM approximations, which just amounts to the
values of a and b, have previously been determined for many queueing models, and can
be determined for other queueing models. For the experiment in Albin (1984a, b), the
asymptotic variability parameter is just the sum of the previously studied asymptotic
variability parameters for the interarrival times and service times, say c3 + c%;
in particular, ¢% and c% are computed by the asymptotic method in Whitt (1982b), and
are readily available before performing the simulation. Since the service times are i.i.d.,
c%is just the squared coefficient of variation (variance divided by the square of the mean)
of the service time distribution. Our analysis also indicates that if the criterion is absolute
standard error instead, then the simulation run length should be approximately propor-
tional to the cube of this same asymptotic variability parameter. (For the GI/G/1 model,
the approximate effects of p and (c% + c%) were noted by Blomqvist 1969; see
(22) there.)

As we should expect, comparisons with simulations results indicate that our heuristic
formulas for the variability effect are quite accurate for high traffic intensities, e.g., -
p = 0.8, but much less accurate for lower traffic intensities (when it is less critical anyway);
see §6. In fact, Blomqvist emphasizes the limitations of the approximations because they
are not very accurate. While there is a danger of expecting too much from the RBM
approximations, we interpret the results more positively than Blomgqvist, because we
propose using the heavy-traffic estimates not as final formulas, but as guides to help
determine the run lengths. For lower traffic intensities, the formulas correctly predict the
qualitative behavior, provide quick rough approximations, and may serve as a basis for
future refined approximations, e.g., by interpolating heavy-traffic and light-traffic limits
as in Reiman and Simon (1988).

The rest of this paper is organized as follows. In §2 we review the standard statistical
analysis based on stationarity and asymptotic normality that yields confidence intervals.
In §3 we analyze the M/G/1 queue in detail, drawing on descriptions of the covariance
functions in Blomqvist (1967), Daley and Jacobs (1969), Law (1975), Abate and Whitt
(1988a) and earlier papers. For the M/G/1 model, we do not need diffusion approxi-
mations, because we can do the analysis exactly. The A//G/ 1 analysis is useful to evaluate
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the quality of the diffusion approximations and to develop refinements of the diffusion
approximations.

In §4 we apply diffusion approximations to treat more general models. A few examples
are given in §5. Finally, in §6 we make numerical comparisons using simulation results
for single-server queues with superposition arrival processes, drawing on Albin (1981)
and Fendick et al. (1989).

2. The Standard Statistical Analysis

In this section we briefly review the standard time-series framework, which does not
depend on the queueing structure; see Chapter 5 of Fishman (1978). For additional
background on stationary processes, see Chapter 3 of Parzen (1962), Chapter 9 of Karlin
and Taylor (1975) and Chapter 1 of Borovkov (1976).

2.1. A Continuous-Time Process

Let { Q(¢) : t = 0} be the stochastic process of interest and at the outset assume that
it is strictly stationary with E[Q(¢)?] < oo . Our object is to estimate the mean E[Q(0)]
by the time average

O, =1t J: 0O(s)ds, t=0. (1)

We think of Q(¢) as the queue length at time ¢, in which case @, in (1) is a natural
estimator of the mean, but Q(¢) could represent something else. For example, Q(¢) could
be some function of the queue length at time ¢ such as the square or the indicator of the
set [0, x]; then O, would be a natural estimator of the second moment and cdf, respectively.
After applying our RBM approximation, the queueing process is replaced by RBM, so
it is also useful to think of { Q(¢) : ¢ = 0} as RBM.

The standard statistical analysis, assuming ample data, is based on a central limit
assumption for Q,as t = o0 . Let = denote convergence in distribution (weak convergence,
as in Billingsley 1968) and, for any constants m and ¢ > 0, let N(m, ¢?) denote a
random variable normally distributed with mean m and variance o2 The desired limit
is

t"*(Q, — E[Q(0)]) = N(0,6*) as t—> oo,  where (2)

o% = lim ¢[Var (Q,)] = lim , (1 - M)C(s)a’s =2 J:o C(t)dt < (3)

>0 > V-t t
and C(t) i1s the (auto) covariance function, defined by

C(1) = E[Q(0)Q(1)] — (E[Q(0)D*. (4)

We call 62 in (3) the asymptotic variance of the sample mean §,. As is often done, we
assume that the limit (2) is valid. A general supporting result is Theorem 20.1 of Bil-
lingsley. Some sort of mixing or asymptotic independence of { Q(s): s < ¢} and { Q(s)
:s=1+u}asu—> oo is needed. Such mixing is often provided by regenerative structure,
but regenerative structure is not required. Specific results of this form for queueing pro-
cesses based on regenerative structure appear in Iglehart (1971), Whitt (1972) and Glynn
and Whitt (1987).
Based on (2), we use the approximation

O, ~ N(E[Q(0)], 0?/1) (5)

for the (large) ¢ of interest, where ¢ is given by (3). Note that (5) involves three ap-
proximations: the distribution being normal, the mean being E[Q(0)] (no bias, which
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is a consequence of the stationarity assumed so far), and the variance being ¢/ for o
in (3). For the general planning purposes here, it seems reasonable to assume (5), and
we do. We usually justify (5) by appealing to (2), but we only rely on (5).

However, there does remain a very important question: how large must the length ¢
of the simulation run be in order for (5) to be a reasonable approximation? In our
queueing context, experience indicates that for (5) to be a good approximation, ¢ must
increase as p increases. In fact, an approximate answer to this question also emerges from
the RBM approximation; we discuss this issue in §4.5. From our analysis, it appears
reasonable to assume (5) for the rough approximations we have in mind, but the validity
of (5) does impose a constraint. The requirement on ¢ for (5) to be reasonable turns out
to be of the same order as our requirement on ¢ for the statistical precision based on (5)
to be adequate.

Based on (5), a (1 — 3)(100)% confidence interval for E[Q(0)] is

[0 — z5/2(0?/ )%, Oy + zg/2(c?/1)"/?] where (6)
P (=232 < N(0, 1) < zg5) = 1 — B. (7)

The width of the confidence interval in (6 ) provides a natural measure of the statistical
precision. There are two natural criteria to consider: absolute width and relative width.
Relative width looks at the ratio of the width to the quantity to be estimated, E[Q(0)].
(These criteria correspond to the absolute standard error and the relative standard error
discussed in §1. The absolute standard error is an estimate of o/¢!/?; the relative standard
error is an estimate of o/¢'/2E[Q(0)].) For any given 3, the absolute width and relative
width are

20’25/2

wo(B) = T2 and  w(B) = 20%/2

t'2E[Q(0)]

As indicated in §1, out of context it is difficult to conclude which criterion is more
appropriate, but we contend that relative width usually is more appropriate.

For specified absolute width € and specified level of precision 3, the required simulation
run length, given (5), is

(8)

ta(e, B) =

2,2
4¢ Zg/2
2

(9)

For specified relative width € and specified level of precision (8, the required length of the
estimation interval, given (5), is

4622%3/2
E(E[Q(0)]?

From (9) and (10) we draw the important and well-known conclusion that both #,(e, 8)
and #,(¢, B) are inversely proportional to e? and directly proportional to o2 and z3/,.
The standard statistical theory describes how observations can be used to estimate the
unknown quantities E[Q(0)] and o2 Instead, we apply additional information about
the model to obtain rough preliminary estimates for E[Q(0)] and o2 without data. In
particular, we assume that the underlying model is a queueing model that behaves roughly
like the standard GI/G/1 queue, and that the stochastic process of interest is like the
G1/G/1 queue-length process, which behaves roughly like RBM, provided that the traffic
intensity is not too low. We address our statistical problem by obtaining rough estimates
of ¢? and E[Q(0)] in terms of basic queueing parameters such as the traffic intensity p.
We have assumed that the process Q(¢) being observed is stationary. In practice, how-
ever, we usually cannot start in equilibrium and instead have only an asymptotically
stationary process, see Chapter 1 of Borovkov (1976). Nevertheless, the limit (2) is
usually valid and the approximation (5) is usually appropriate when ¢ is large enough,

(e, B) = (10)
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provided that we replace E[Q(0)] in (2) and (5) by the long-run average, say Q. (the
limit of O, in (1) as t = oo, which we assume exists with probability one). Moreover,
the bias due to the initial conditions is usually negligible when ¢ is large enough, so that
the asymptotic variance in (3) coincides with the corresponding asymptotic mean squared
error; see §4.5, Blomqvist (1968) and §9 of Glynn and Whitt (1989). Hence, we propose
the approximations (5)—-(10) for the large class of steady-state simulations with nonsta-
tionary initial conditions.

2.2. A Discrete-Time Process

So far in this section we have focused on the continuous-time process { Q(¢): ¢ =0}.
We could instead have a discrete-time process { W, : n = 0} (which we think of as the
waiting time of the nth customer), which again we assume is stationary with E[ W?2]

< o0. We then estimate the mean E[ W;] by the sample mean W, = n~' 272} W} and
apply the assumed limit

n'2(W, — E[W,]) = N(O, o), where (11)
o% = lim n Var (W,) = Var (W,) + 2 > C(k) (12)
n—>co k=1

and C(k) is the (auto) covariance function, defined by C(k) = Cy(k) = E[ WyWy]
— (E[W,])?, k = 0, from which we obtain analogs of (5)-(10).

We close this section by remarking that for a large class of queueing systems, the
central limit theorems for continuous-time queue-length processes as in (2 ) and associated
discrete-time waiting-time processes as in (11) are intimately related via an extension of
Little’s Law L = AW; see Glynn and Whitt (1986), (1987), (1988), (1989). An important
conclusion from the L = AW central limit theory is that, with the appropriate estimators,
approximately the same amount of data are needed for estimating the means of the two
processes.

3. The M /G /1 Special Cases

We begin our queueing analysis by considering some elementary special cases. As with
§2, we review and interpret established results; see Morse (1955), Benes (1957), Blomgvist
(1967),(1968), (1969), Daley and Jacobs (1969), Pakes (1971), Law (1975), Reynolds
(1975), Abate and Whitt (1988a) and references cited there. We consider these
M/G/1 special cases so as to have some concrete exact results to compare with the
approximations and to provide a basis for creating refined approximations; see §4.4.

3.1. The Queue Length, Not Counting the Customer in Service

Suppose that Q(¢) is the queue length not counting the customer in service, if any, in
a stationary M/G/1 queue with service rate 1 and arrival rate p < 1. Let m; be the kth
moment of the service time and let ¢ = (m, — m?)/m? = m, — 1 be the squared
coefficient of variation. Of course, the steady-state mean is

E[Q(0)] = p*(ck + 1)/2(1 = p).

From (2.2) of Law (1975), we see that we can express the asymptotic variance o5 defined
in (3) in terms of the first four moments of the service-time distribution. In particular,
we can express (1 — p)o$ exactly as

e+ 1V (507 [ m cE+ 1Y
| — 2 P (EsT 1 20 () 4 o2&t
(1=r)og 2(1-p MR Y A | g

ma\ o ma \\(c5t 1
* (p(l +p)(3}772) * 30 (12}7@))( 1—0p ) (13
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Since m, = ¢% + 1, it is easy to see that each term in (13) is nondecreasing in p, m,,
ms, and my, so that the qualitative form of the effects discussed in §1 is demonstrated
for the M /G/1 model. For the special cases of M/D/1 and M/M/1, my,,/m, = 1 and
k + 1, respectively, so that

_20%(1+4p—4p>+p°) 47

2 ~ for M/M/1 and 14
"o (1= p)* (1= p)* / 9
) _p(4+11p—12p2+3p3) p

= ~ M/D/1
70 12(1 - p)* -y T /I, (1)

with the approximations in (14) and (15) being reasonably good if p is not too small,
e.g., p = 0.3. Note that ¢} increases very rapidly as p — 1. For comparison, note that
Var [Q(0)] = p2(1 + p — p2)/(1 — p)® = p?/(1 — p)? for the M/M/1 model (with
the assumed stationarity), so that ¢ is greater than (Var [Q(0)])?. It is of course a
serious error to confuse the asymptotic variance 0'2Q as defined in (3) with the steady-
state variance Var [Q(0)]; the fact that ¢} > Var [Q(0)] underscores the importance
of the correlations. It also shows that we would certainly prefer to use independent rep-
lications if we could observe stationary processes.

We now discuss approximations for (13). The heavy-traffic limit for A//G/ 1 is obtained
by considering only the first term in (13); for high p, ¢ ~ (¢3 + 1)3/2(1 — p)*. In
fact, p*(ck + 1)?/2(1 — p)*is obviously a lower bound for ¢3. For M/G/ 1, the asymp-
totic variability parameter 1/c = b/|a| in (34)is (c% + 1); see §5.1.

Motivated by this heavy traffic limit, can we obtain an approximation for the case 0
< c% < 1 by taking a convex combination of the additional factors in (14) and (15). In
particular, for M/M/ 1 rewrite the last term in (14) as p2(1 + ¢%)3/2(1 — p)* where
c% = 1;for M/D]/ 1 rewrite the last term in (15) as p(1 + ¢c%)3/2(1 — p)* where c% = 0.
Then approximate o for the general M/G/1 system with parameter ¢, 0 < c3 < 1,
by

p[l — (1 — p)c3l(1 + ¢3)°
2(1 = p)* '

Comparison with the exact value in (13) shows that (16) is usually a very good approx-
imation for traffic intensities of principal interest, e.g., p = 0.5. By “usually” we mean
for typical distributions such as Erlang or shifted-exponential. However, since it is theo-
retically possible to have infinite third or fourth moment with any second moment, the
exact value ¢ in (13) could in fact be infinite, so that (16) could be a very bad approx-
imation. In particular, we have just demonstrated for the relatively simple MG/ 1 case
that there is no bound on the possible error from using (16) or the heavy-traffic RBM
approximations. It is important to realize that the RBM approximations have this lim-
itation. However, we should not let rare pathological cases deter us from obtaining practical
approximations.

As in (50)-(52) of Whitt (1983a), we can obtain detailed approximations for ¢3 in
M/G/1 in terms of p and c3 if we approximate m; and m, in terms of ¢%. To comple-
ment (16), consider the case ¢ = 1. Using the approximations ms/m3 ~ 3c%(c: + 1)
and my/mt =~ dmums/m3 ~ 12¢%(c% + 1)?in (13) when c% = 1, we get

4 2+1 3 2 2+1 2
o= () (5 0)(55)

oh~ cHM/M/1)+ (1 — c})(M/D/1) = (16)

2\ 1—-p 2 1—0p

i+ 1
l—0p

+ (pc)(1 + p + 3p(ck + 1))( ) for M/G/1 with c%= 1.

(17)
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If instead we use the general bounds m; = m%/m; = (c( + 1)?>and ms = (c3 + 1) in
(13), see §2 of Whitt (1984b), then the analog of (17) becomes a lower bound for (13).
Note that for large c% each term of (17) is approximately proportional to (c% + 1)3
provided p is not too small. In general, approximation (17) is consistent with 02Q
~ K(c}+ 1)*for2 < x < 3.

Overall, we propose the following simple rough approximation for general M/G/ 1
systems

o5~ pi(ck+1)3%/2(1 — p)*. (18)

From (14), we see that (18) is good for M/M/ 1, but from (15), we see that (18) is too
small by a factor of p for A/ D/ 1. However, the simplicity makes (18) a useful practical
substitute for (13), (16) or (17).

Combining (9) and (10) each with (18), we determine that the estimated lengths of
the simulation run for the criteria of absolute width and relative width are approximately

2p%(c3 + 1)°z5,2 8(cs + 1)zj),
(1 = p)*e p*(1 = p)?e*
Note that the two approximate estimated run lengths have markedly different behavior
in light and heavy traffic:

la(e, B) = and  1(¢ B) = (19)

2(ck+ 1)’23,
(1—p)ie?

2p%(c3 + 1)%23),
2

8(C?§‘+ l)Z,%/z
(1 - p)%
8(c3+ 1)z3,,
pE2e

ta(e, B) =~ and (e, B) =~ as p—>1, (20)

t.(e, B) =~ and (¢, B) =~ as p—=>0. (21)
In particular, z, = 0 and 7, > o0 as p = 0. (From (14) we see that these limits hold for
the exact M/ M/ 1 values. Although light traffic is not a major focus of this paper, it is
important to note that indeed ¢, = oo as p = 0, so that the required run length is not
increasing in p throughout.) More importantly, as remarked in §1, ¢, is proportional to
1/(1 — p)*, while ¢, is proportional to 1/(1 — p)? as p = 1. Also, the effect of the
variability parameter (¢} + 1) in (20) and (21) is as described in §1.

The possible values of #,(¢, 8) and ¢,(¢, 8) for different p are displayed for the special
case of an M/M /1 model with e = 0.05 and z,, = 2.0 in Table 1. The value zg,, = 2.0
approximately produces 95 percent confidence intervals (the exact value would be 1.96).
The lengths based on the criterion of relative width ¢ = 0.05 are 27,500 for p = 0.8,
135,000 for p = 0.9 and 592,000 for p = 0.95. To have a relative width ¢ = 0.005 instead
of 0.05, these lengths would have to be multiplied by 100: Then the lengths become
2,750,000 for p = 0.8, 13,500,000 for p = 0.9 and 59,200,000 for p = 0.95. Such longer
intervals might be needed to evaluate approximations precisely.

3.2. Other M/M/1 Processes

We now consider other processes in the special case of an A/ M /1 model. (Analogs
for M/G/1 are also available, but we only need the A /M /1 formulas for our proposed
refinements in §4.4.) If we focus on the number in system, including the customer in
service, say N(t), then E[N(0)] = p/(1 — p) and the asymptotic variance of N,
=17 [y N(s)dsis

ok = 2p(1 + p)/(1 = p)*; (22)

see Morse (1955), Law (1975) or Corollary 8 to Theorem 1 of Abate and Whitt (1988a).
Then 2,(¢, ) and t,(e, B) behave just as in (20) as p = 1.
Alternatively, if we focus on the continuous-time workload (or virtual waiting time)
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TABLE 1

The Required Length of the Simulation Run for the Stationary M/M/1 Queue-length Process:
The Cases of Absolute Width w,(B) and Relative Width w,(8) Being 0.05 and the Normal
Distribution Percentile Being zg, = 2.0. (The Width of a 95 Percent Confidence
Interval for a N(0, 1) Random Variable is Approximately 4.0, so that 8 ~ 0.05.)

. Required Length of Simulation Run
Normalized
Traffic Asymptotic Absolute Width Relative Width
Intensity Variance
p 4p? (1 = p)'a® /(1 = p)* 140.05, B) 1/(1 = p)? £,(0.05, B)
0.2 0.16 0.138 2.4 133 1.6 88
0.3 0.36 0.466 7.2 784 2.0 373
0.5 1.00 1.06 16 6784 4 1696
0.7 1.96 1.85 123 9.1 X 10* 11.1 8214
0.8 2.56 2.75 625 6.88 X 10° 25 2.75 X 10*
0.9 3.24 3.38 10,000 1.35 X 107 100 1.35 X 10°
0.95 3.61 3.70 160,000 2.37 X 108 400 5.92 X 10°
0.99 3.92 3.94 108 1.58 x 10" 10,000 1.58 X 107

process, say { L(t):¢t =0}, then E[L(0)] = p/(1 — p) and the asymptotic variance of
L=t [y L(s)ds s

o =20(3 = p)/(1 = p)% (23)

see Benes (1957), Law (1975), Ott (1977a, b) or Remark 6.3 of Abate and Whitt (1988a).
If we focus on the discrete-time waiting time before beginning service, Wy, asin (11)-
(12), then E[W,] = p/(1 — p) and the asymptotic variance of W, = n~! 272} W, is

ol =p[2+ 50— 4p” + p1/(1 = p)* = 4p/(1 — p)% (24)

see Law (1975), Example 1(a) of Glynn and Whitt (1988a) or (8.3)-(8.5) of Daley
and Jacobs (1969). Note that the asymptotic variability parameters for all four processes
((14), (22), (23), and (24)) are asymptotically of the form ¢ ~ 4/(1 — p)*asp — 1;
i.e., in each case (1 — p)*c? = 4 as p = 1. The M/G/1 heavy-traffic behavior is the
same for all four processes too.

If we want to compare the discrete-time and continuous-time estimators, we should
relate the amounts of data collected, as indicated in §5 of Glynn and Whitt (1986) and
§6 of Glynn and Whitt (1988a). Continuous time ¢ corresponds to an expected number
ot of arrivals in our scaling of time, so that if we collect data over [0, ¢], then we observe
a random number of arrivals with mean p¢. The natural estimator for E| W,] based on
data over [0, t]is W, = D(t)"' 224" W), where D(¢) is the number of departures in
[0, t]. If, instead, we collect data for # arrivals, then we should multiply the asymptotic
variances for the continuous-time processes in (14), (22) and (23) by p. The asymptotic
variances for several processes are displayed in Table 2 for the case in which we use data
over [0, ¢]. (As noted in Law 1975 and Glynn and Whitt 1988a, the advantage of indirect
estimation via L = AW is asymptotically negligible as p — 1.)

4. Heavy-Traffic Limits

Our approximations for general queueing models follow from heavy-traffic limits, but
we do not prove any new theorems; we apply previous ones. These approximations are
important, because for more general models we are unable to do the analysis corresponding
to §3. We make the existence of a heavy-traffic limit our basic assumption. Thus, for the
approximations to apply, the model should be stable for p < 1 and unstable for p = 1,
with the congestion increasing sharply as p approaches 1. Our approximations thus apply
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TABLE 2

Asymptotic Variances of Several Estimators for the M/M/1 Model
Based on Data Over the Interval [0, t].

Steady-State Mean Being Estimated Estimator Asymptotic Variance o°
Expected Number Waiting E[Q(0)] Q, 20%(1 + 4p — 4p% + p3)/(1 — p)*
Expected Number in System E[N(0)] N, 20(1 + p)/(1 — p)?

Expected Workload E[L(0)] L 203 — p)/(1 — p)*
Expected Waiting Time E[W}] W, 2+ 5p — 4p% + p3)/(1 — p)*
Expected Number Waiting E[Q(0)] oW, PX2 + 5p — 4p% + pd)/(1 — p)*
No—»p 2p(1 + p)/(1 — p)*
L—p 2p(3 = p)/(1 — p)*

to general multi-server systems with unlimited waiting room and not too many servers,
but not to corresponding systems with finite waiting rooms, where arrivals are lost when
the system is full, or to infinite-server systems. The extensive heavy-traffic literature pro-
vides numerous examples of systems for which the approximations do apply.

In §4.1 we describe the approximating or limiting diffusion process, RBM. In §4.2 we
discuss the important scaling of time and space and its impact on the asymptotic variance,
defined in (3). In §4.3 we present the basic heavy-traffic limit assumption (30)-(33)
and the basic diffusion approximation (34). In §4.4 we propose a refinement of the RBM
approximation based on the M/G/1 results in §3; we suggest replacing (34) by (35).
This leads to the final approximations for the required simulation run lengths given in
(36). In §4.5, inspired by Asmussen ( 1987c), we also use the RBM approximation (34)
to investigate how long the simulation run needs to be in order for the asymptotic statistical
analysis in §2 to be a reasonable approximation; roughly speaking, the requirement on
simulation run length is the same as needed to obtain desired statistical precision (relative
standard error) assuming the asymptotic statistical analysis: the run length should be of
order 1/(1 — p)2 In §4.6 we also indicate how to apply the RBM approximation to
estimate and reduce bias associated with nonstationary initial conditions. In §4.7 we
discuss variations of the basic approach for other models, such as for infinite-server
queues.

4.1. Regulated Brownian Motion (RBM)

A prominent role is played by one-dimensional regulated or reflecting Brownian motion
(RBM), which is Brownian motion on the positive real line with constant negative drift,
constant positive diffusion coefficient and an impenetrable reflecting barrier at the origin;
see Harrison (1985) and Abate and Whitt (1987). RBM is a Markov process with con-
tinuous sample paths, i.e., a diffusion process. RBM is important because it is the common
limit process. All queueing processes that converge to RBM under a specified normal-
ization as p — 1 are in the domain of our approximation formulas.

Let R(t;a, b, X ) represent RBM with drift a (<0), diffusion coefficient b (>0) starting
at the random state X (R(0) = X = 0). It is significant for what follows that we can
rescale RBM so that it suffices to consider the ‘“dimensionless” case with drift a = —1
and diffusion coefficient b = 1, which we call canonical RBM . In particular,
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{R(t;a,b,X): tvz 0}
(cR(td;a,b,X):1=0} 2 {R(t;—1,1,¢X): 1= 0},

{cT'R(d7't; —1, 1, cX):t =0},

c=lal/b, d=b/a? a=-1/cd and b=1/c%, (25)

where £ means equality in distribution; see §2 of Abate and Whitt (1987) or New-
ell (1982).

The rescaling (25) allows us to make all limit processes identical. In particular, suppose
that X,(t¢) converges in distribution to R(¢; a, b, X) as t = co. By an elementary ap-
plication of (25) and the continuous mapping theorem, Theorem 5.1 of Billingsley,
¢X,(td) converges in distribution to R(¢; —1, 1, ¢ X) for ¢ and d defined by (25). The
reduction to canonical RBM R(t; —1, 1, X) is important because all descriptions of
RBM can be done for a single process; we need not perform separate calculations for
different parameter values.

The stationary distribution of R(¢; a, b, X) is exponential with mean b/2]|a|. If the
initial position X is endowed with this exponential distribution, then RBM becomes a
stationary process. It is easy to see that the rescaling (25) preserves stationarity. For
canonical RBM, the stationary distribution is exponential with mean 3.

Expressions for the covariance function of RBM were derived by Ott (1977a, b),
Woodside et al. (1980) and Abate and Whitt (1988a, b). One nice expression is a simple
spectral representation (mixture of exponentials) as given in Theorem 3 of Ott (1977b)
and Theorem 2 of Woodside et al., namely,

1
Cr(t) = ;ZT-J; e U2)Y x(1 — x) dx; (26)

also see Abate and Whitt (1988b). By Corollary 1 to Theorem | of Abate and Whitt
(1988a), the covariance function of canonical RBM also can be expressed directly (without
integration) as

Cr(t) = 271(1 = 2t — )[1 — ®(11)] + 271 2(1 + 1) ¢(1'/?)

where ¢(t) is the density and &(¢) is the cdf of N(0, 1). From these expressions, we easily
deduce that the asymptotic variance of canonical RBM is

11 oo}
6% = lim ¢ Var [t“ L R(s; —1, l)ds] = ZJ; Cr(t)dt = 4. (27)
> oo

In fact, for our applications based on (5), we do not need the full covariance function;
we only need the asymptotic variance (27). Consequently, we can actually get what we
need much more directly by simply applying Morse’s (1955) result for the M/M/1
queue in (22); also see Benes (1957). From the heavy-traffic theory to be discussed
below, we can deduce that (1 — p)*c%(p)/8 = 0% = 4 as p = 1. The desired RBM
result (27) is already embodied in the earlier M/M/ 1 result.

4.2. Scaling of the Covariance Function

An essential aspect of the heavy-traffic analysis is a scaling of space and time. Before
we consider the heavy-traffic limits, we see how scaling affects the covariance function
C(t) in (4) and the asymptotic variance o2 in (3). For the general stationary process
Q(t) in §2 (which could be RBM), let Q,.(¢) be an associated scaled process, defined by
Q,:(t) = yQ(zt), t = 0, where y and z are arbitrary positive scalars. Let C,.(¢) and o2,
be the covariance function and asymptotic variance of Q,.(¢). It is easy to see that
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E[Qy(0)] = YE[Q(1)],  Cu(t) = y*C(z2t)  and o}, =y%e’/z. (28)

(For af,z we do the change of variables u = zt in the integration.) In particular, note that
the key ratio in ¢,(¢, 8) for the criterion of relative width in (10) is

o3/ (E[Qy:(0)])? = o /(E[Q(0)])*2 (29)

which is independent of y. The conclusion to be drawn from (29) is that for ¢,(¢, ) an
essential role is played by the time scaling z. In our queueing framework, the heavy-
traffic limit determines what that time scaling must be.

4.3. The Assumed Heavy-Traffic Limit and RBM Approximation

For a general queueing model, we consider a family of stationary queueing processes
{Q,(¢):t =0} indexed by the traffic intensity p; i.e., the pth system has traffic intensity
p. (Think of the queue-length process, but it could be the workload process or something
else.) Such a family of processes can usually be obtained from one given model by simply
scaling time in the arrival process; e.g., A\(?) = A(\t) has arrival rate X if 4(¢) has arrival
rate 1. Our key assumption is that appropriately normalized versions of Q,(¢) converge
to a stationary version of RBM as p = 1. Our basic approximation is given by (34)
below. A refinement is given in §4.4, which leads to the approximate required simulation
run lengths in (36). Applications are illustrated in §5.

Let the normalized processes be defined by

0,()=(1 =p)Q((1 —p)7»), =0 (30)

i.e., we use the space scaling (1 — p) and the time scaling 1/(1 — p)?. The scaling in
(30) is consistent with the majority of the existing heavy-traffic limit theorems; e.g.,
Iglehart and Whitt (1970).

Let C,(¢), and C,(¢) be the covariance functions of Q,(t) and Q,(t), respectively, and
let 02 and &2 be the corresponding asymptotic variances. From (28) and (30), we see
that

C(t)=(1—p)’)Ct(1 —p)™2) and 2= (1—p)*s2. (31)

Note that the term (1 — p)* showing the first-order effect of p appears in the asymptotic
variance relation in (31).

What we assume then is that Qp(t) in (30) converges in distribution to stationary RBM .
We allow general drift and diffusion coefficients (a, b) in the limit; let the (necessarily
stationary) limit process be denoted by R(f; a, b). To treat the covariance, we want
joint convergence at any two time points. In particular, we assume that

[0411), O(12)] = [R(115 a, b), R(12;a,b)]  inR?  asp—>1 (32)
for all #, > 7, > 0. In addition to (32), we also assume that '

lim E[Q,t)] = E[R(t; a, b)] = b/2]al,

lim E[QJ(1))0/1:)]1 = E[R(t1; a, b)R(12; a, b)],

lirrl1 62 = lin} 2 A C(t)ydt =2 fo Cov [R(0; a, b), R(t; a, b)1dt, (33)
> [2nd

for all #; > ¢, > 0. We typically obtain (32) from a functional central limit theorem
(FCLT) such as Theorem 1 of Iglehart and Whitt (1970); then (32) follows from an
elementary application of the continuous mapping theorem ( Theorem 5.1 of Billingsley)
using the projection map, mapping the function space into R2. The heavy-traffic literature
contains a plethora of results supporting (32). The first two limits in (33) follow from
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extra uniform integrability (p. 32 of Billingsley). Overall, (33) is usually a minor technical
condition, which should cause little concern; i.e., given (32), we can expect (33) to hold.
For practical purposes, it suffices to prove (32) or even just convergence of the one-
dimensional distributions and assume the rest. Actually proving (33) can be difficult;
Blomgvist (1969) and Asmussen (1987c) carefully address these and related issues for
the GI/G/1 model. Convergence of C',,(t) and 62 as p — 1 is established for the M/G/
1 virtual waiting time process by Ott (1977a, b) and for several A /M/1 processes by
Abate and Whitt (1988a).

Now, using (25), we rescale Qp(t) in (30) to obtain canonical RBM as a limit. The
process (|a|/b)Q,(bt/a?), t = 0, converges to canonical RBM. The resulting approxi-
mations are

{0[1);1= 0} = {(b/lal(1 = p))R(a*(1 — p)*t/b; —1, 1)1 1= 0},
E[Q,(1)] = [1/(1 — p)IE[O(1)]
~ (b/lal(1 = p))E[R(t; —1, )] = b/2]al(1 — p),
o2~ [b3/a*(1 — p)*]lok = b3/2a*(1 — p)* and
02/ E[Q,(0)]* =~ 2b/a*(1 — p)*. (34)

We obtain the estimated required simulation run lengths #,(¢, ) and t,(¢, 8) by sub-
stituting (34) in (9) and (10), respectively. Just as in §2 where the critical assumption
was the normal approximation (5) rather than the supporting limit (2), so here the
critical assumption is the diffusion approximation (34 ) rather than the supporting limits
(32) and (33). The development of diffusion approximations in Newell (1982) and
Woodside et al. (1980) is essentially equivalent to (30)-(34), even though it may look
quite different.

4.4. M/M/1 Refinements

The direct heavy-traffic RBM approximation is (34). Based on the A/ G/ 1 results for
the expected queue length in §3.1, especially (18), it is natural to suggest modifying (34)
by multiplying E[Q,(7)] and o2 by p2. (As discussed in Whitt 1982c, factors of p* are
necessarily lost as p — 1 in the heavy-traffic limit, so it is natural to look for refinements
by considering special cases for which exact results are available.) We thus propose the
following refined approximations

b’ , % % 2b
RO~ =0 “~aa-p¢ ™ EOr ™ a3~

(35)

We can obtain (35) formally by applying the heavy-traffic limit twice, once for the system
of interest and once for the M /M /1 model. We first approximate the general queue by
RBM and then we approximate RBM by M/M/1 using (14). We have obtained (35)
by considering the queue length excluding customers in service. It would be natural to
use (22), (23) and (24) instead of (14) to create the refinement when the process of
interest is number in system, workload or waiting time, respectively. (This is done in
§5.2.) However, (35) seems like a reasonable approximation in general.

Substituting (35) into (9) and (10), we obtain our final approximations for the required
simulation run length with the absolute and relative width criteria

2b3p22§/2 8b2%/2
a4(1 _ p)462 a2p2(1 _ p)2€2 :

Given that approximation (35) is reasonable, the primary task in applying (36) is to

ta(€, B) =~ and  1(e B) = (36)
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identify the two parameters a and b. Fortunately, this can often be done without difficulty;
see §5. (The run length requirements in (36) agree with (19); for A/G/1 with service
rate l,a=—land b= (c%3+ 1).)

4.5. The Quality of the Normal Approximation (5)

As indicated in §2, our entire analysis depends on the normal approximation (5),
which in turn depends on the simulation run length ¢. Not only must ¢ be sufficiently
large so that the estimated statistical precision based on (5) is adequate, but  must be
sufficiently large so that (5) itself is a reasonable approximation. It is significant that a
rough idea about the simulation run length 7 required for (5) to be a reasonable approx-
imation also follows from the RBM approximation (34). To get a rough idea about the
required run length for (5) to be valid, we make the RBM approximation (34) and ask
whether an interval of given length is adequate for (5) to be nearly valid when the process
in question is canonical RBM.

First, the time scaling in (34) alone implies that a?(1 — p)?/b must be sufficiently
large in order for (5) to be good for the queueing process, because this is the length of
the simulation run for the approximating canonical RBM. This means that in order for
(5) to be a reasonable approximation, the simulation run length t for the queueing process
as a function of p must be of order b/a*(1 — p)% Note that this simulation run length
requirement for the queueing process is the same order, as a function of ¢ and b as well
as p, as determined by the relative width measure of statistical precision in (36).

Of course, for any fixed p, (5) involves approximation error for any finite ¢ and is
asymptotically correct as 1 = co. However, if we regard ¢ as a function of p and consider
the double limit t(p) = oo and p —> 1, it does not follow that (5) is necessarily asymp-
totically correct. Given the RBM approximation (34), we see from the time scaling that
(5) is asymptotically correct in this double limit if and only if (1 — p)%(p) = oo as
p = 1. A detailed mathematical study of the double limit p = 1 and (1 — p)%(p) —>
to, 0 < 1y < o0, has recently been made by Asmussen (1987¢), which rigorously establishes
this conclusion. Asmussen shows that serious estimation problems can occur as p = 1
when the limit of (1 — p)?#(p) is finite, especially when this limit is 0. The practical
consequence of this analysis is that the simulation run length not only should be of order
b/(1 — p)?a® but should be 1,b/(1 — p)?a’ for suitably large .

To better understand deviations from (5) for the queueing process, we can examine
canonical RBM more closely. In particular, we can assume that the simulation run length
t is chosen to satisfy ¢ = bty/a®(1 — p)? for some fixed ¢, independent of a, b and p, and
then consider the estimation problem for canonical RBM on [0, #,]. We then ask if a
simulation run length of ¢, is long enough so that (5) is nearly valid when the process
being simulated is canonical RBM. (Of course, this analysis assumes the validity of the
RBM approximation (34).) In particular, if we use ¢,(¢, 8) in (36), then

8z2
to = to(e, B, p) = pz‘z’j (37)

is the length of the simulation run length for canonical RBM. (Of course, the p? in the
denominator of (36) and (37) is an artifact of refinement (35); for RBM we can set p
= 1. The p? in the denominator signals possible difficulties for the queue if the queue is
in very light traffic.) We contend that ¢y in (37) usually is long enough. For example, if
zg2 = 2.0 and € = 0.05 as in Table 1, then ¢, = 12,800 for p = 1.

In this regard, it is worth observing that, if the basic process {Q(¢): ¢ = 0} in §2 is
canonical RBM with a < 0 < b, then the central limit theorem (2) is indeed valid. We
can verify (2) by exploiting the regenerative structure. Appropriate regeneration points
for RBM are first visits to the state 0 after first visiting any state x > 0; e.g., x = 1. Such
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regenerative cycles are positive with probability one and have moments of all orders, so
that (2) is valid.

For canonical RBM, as for any other process { O(z) : ¢t = 0} satisfying (2), the issue
is whether any given finite f, is large enough to justify approximation (5). For canonical
RBM, we can compare the asymptotic variance % = 4 in (3) and (27) with the exact
value (assuming stationarity) of the variance of the sample mean

Var [ta‘ J:OR(S; -1, l)ds] = 5! fo (1 - ltil)CR(s)a’s (38)
] 0

using (3) and one of the explicit expressions for Cz(z) in §4.1. A convenient hyperex-
ponential approximation for the covariance function that can also be used in (38) is
Cr(t) =~ 0.125¢72* + 0.125e723 1 = 0; see (5.11) of Abate and Whitt (1987) plus (2.2)
and Remark 3.2 of Abate and Whitt (1988a). The advantage of RBM here is that explicit
expressions for Cr(t) are available, so that the integration in (38) can easily be done.

4.6. Bias Considerations

If we do not work with a stationary process, then we have bias, i.e., a difference between
the mean of the estimator and the true mean. For example, it is natural to start the queue
empty. Using the RBM approximation (34), we are thus lead to consider the bias for
canonical RBM observed over [0, #,] when canonical RBM starts at the origin. We can
estimate the bias in estimating the steady-state mean E[R(co; —1, 1)] = 1 by the sample
average R,o = ¢3! f(;" R(s; —1, 1, 0)ds starting empty, using the exact expression for
E[R(t; —1,1,0)] in Theorem 1.1 of Abate and Whitt (1987) or the hyperexponential
approximation

(1/2) — E[R(t; -1, 1, 0)] ~ 0.36e75% + 0.138¢ 0764 t=0, (39)
in (1.13) there. By Corollary 1.3.4 there,

14

E(R,) — 1/2 = 1! fO(E[R(t; —-1,1,0)] — 1/2)ds

0
~ talj; E[R(s;—1,1,0)—1/2)ds = 1/41 for large #,. (40)

As in many circumstances, e.g., §9 of Glynn and Whitt (1988a), the asymptotic bias for
RBM is asymptotically inversely proportional to the run length #,. Since the width of
the confidence interval is proportional to 75'/2, see (6) and (8), the bias for RBM is
asymptotically negligible compared to the width of the confidence interval.

The bias approximation in (39) and (40) suggests that when we start with an empty-
queue we might want to follow the common practice of deleting an initial portion of the
data. First, the time scaling in the RBM approximation (34) indicates that the length of
the initial portion to be deleted in the queueing process should increase with p; in pat-
ticular, it too should be of order 5/a?(1 — p)2. For canonical RBM, we can estimate the
resulting bias when we delete the initial portion in [0, ¢] by shifting the integral in (40)
from the interval [0, #,] to the interval [¢,, t; + #].

Since E[R(t, —1, 1, 0)] is within about 1% of its steady-state mean § at 1 = 4 (see
Table 1 of Abate and Whitt 1987), a rough rule of thumb for the length ¢ of the initial
time interval [0, ¢] to delete in a queueing simulation when looking for relative statistical
precision of order 5-10% is the initial sesgment corresponding to 45/a?(1 — p)? expected
service times. For example, for the M /A /1 queue with servicerate 1, a = —1 and b = 2,
so that t = 8/(1 — p)?; for p = 0.5 this is only 32 expected service times, but for p = 0.9
this is 800 expected service times. When the initial segment [0, 4] is deleted from canonical
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RBM starting at the origin, the approximate asymptotic bias based on (39) and data
over the interval [4, 4 + ¢] becomes 0.0085/¢ instead of 0.25/¢ in (40).

Finally, the RBM approximation also provides insight into other initializations besides
an empty system that can be used to make the queueing process approach steady-state
more quickly. §13 of Abate and Whitt (1987) suggests starting out with a number of
customers between the mean and twice the mean, say % times the mean. Of course, since
we are trying to estimate the mean, evidently we do not know the mean, but we can
estimate it too by the RBM approximation. Based on (35), we would thus initialize by
letting

Q(0) = (3/2)(bp?/2lal(1 — p)) = 3bp?/4|al(1l — p). (41)
4.7. Generalizations

It should be clear that the approaches in §§4.3-4.5 also apply with other scalings than
(30) and other limit processes than RBM. We then exploit a modified version of the
limits in (32) and (33) to obtain analogs of (34) and (35). To mention one example,
for infinite-server queues or queues with large number of servers, there is often convergence
after appropriate normalization to the Ornstein-Uhlenbeck (O-U) diffusion process or
more general Gaussian processes as the arrival rate increases (Iglehart 1965, Borovkov
1967, Whitt 1982a and Prisgrove 1987). The generalized procedure can be applied there.
(This is intended for a subsequent paper.) A third diffusion approximation for multi-
server queues in between to RBM and O-U is discussed by Halfin and Whitt (1981).

5. Examples

To apply §4, we need to determine that the RBM approximation (34) is appropriate
and identify the drift and diffusion coefficients of RBM, i.c., the parameters a and b. In
§5.1 we analyze the standard GI/G/m model, in which the interarrival times and service
times come from independent sequences of i.i.d. random variables, using heavy-traffic
results in Iglehart and Whitt (1970). In §5.2 we analyze the general G/G/1 model,
without independence assumptions, based on Whitt (1968), (1980) and Fendick et al.
(1989). Then in §5.3 we analyze a general model of a packet queue in Fendick et al.,
which is a single-server queue with multiple classes and batch arrivals. In §5.4 we briefly
discuss another class of models covered by the theory: queues with service interruptions;
for this model, recent heavy-traffic approximations by Burman (1987) can be applied.
The heavy-traffic literature provides many other examples. In §5.5 we indicate how the
analysis can be applied to estimate the required simulation run lengths for open queue-
ing networks. For this analysis, we exploit queueing network approximations in
Whitt (1983a).

5.1. The Standard GI/G/m Model

Consider the standard GI/G/m model, which has unlimited waiting room, the FCFS
discipline, m servers and independent sequences of i.i.d. interarrival times and service
times. Let the squared coefficients of variation of the interarrival times and service times
be ¢2 and c%, respectively. As in §3, let the individual mean service time be 1. By Theorem
1(a) and Example 3(1) of Iglehart and Whitt, the condition (32) holds for the queue
length process (either counting the customers in service or not) with parameters a = —m
and b = m(c% + c%). The limit involving # there is connected to the family indexed by
p here by setting n = (1 — p)~2. We will not try to explain here why a and b take this
simple form; an intuitive understanding may be obtained from Chapters 7 and 8 of
Newell or §2 of Whitt (1982c). The quality of the RBM approximation typically improves
as p increases. For given p, the quality of the approximation typically decreases as m
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increases; see Halfin and Whitt. From (35), we obtain the following approximations for
the stationary GI/G/m queue length, not counting customers in service,

pA(ch+cd) 5, pchitcd)’ o2 2(c3 + ¢3)

30 =p " " 2m( = ™ EoOD T mol(1= )
(42)

E[Q(0)] =

The m appears in (42) because we have fixed the individual mean service time at 1,
so that the arrival rate is mip; i.e., the rate of activity is proportional to »#1. The m drops
out if we let the individual mean service time be m, so that the arrival rate in the pth
system is p. If the mean service time is 7 instead of 1, then the second two terms in (42)
should be multiplied by 7. The asymptotic variability parameter here is 1/c = b/|al
= (¢} + c%). Note that (42) agrees with (18) for the M/G/1 special case. The final
estimated required simulation run length is obtained by substituting b = m(ci + c%)
and a = —m into (36) or, equivalently, substituting (42) into (9) or (10).

5.2. General Single-Server Models

In preparation for considering the packet queue model in §5.3, we now consider a
general G/G/1 model, without any independence assumptions, but still the first-come,
first-served discipline. Let u, be the interarrival time between the nth and (n + 1)st
arrival and let v, be the service time of the nth arrival. We assume that {(u,, v,):n = 1}
is stationary. As in §3, we assume that Ev, = 1. Initially, let Eu, = 1 too, but we will
soonreduceittop < l.LetU,=u; + +++ +u,, Vy=v,+ -+ +v,and S, = V,
— U,, n= 1. As in §3.2, we focus on the discrete-time waiting time of the nth customer
before beginning service, which satisfies

Wy = max {W, + v, — 14,,0} =S, —min {S;: 0 <k <n}, n=1, (43)

where Sy, = 0. Let the system start empty, so that W, = 0.
We assume that the sequence {(U,, V,) : n = 1} satisfies a FCLT, converging to two-
- dimensional Brownian motion, i.e.,

nY2(Utpy — nt, Vigg — nt) = B(1) as n—> oo, (44)

where [x] is the greatest integer less than or equal to x and B(¢) is two-dimensional
Brownian motion without drift and 2 X 2 covariance matrix C with elements C;,
=%, Cin = Cy = c4sand Cy, = c%. (An example where this limit is established and
the parameters are evaluated appears in §5.3.) These parameters c%, c% and c¢%s char-
acterize the variability in heavy traffic. The associated one-dimensional central limit
theorem (CLT) is

n YU, —n, V,— n) = N0, C) as n—> . (45)

Now construct a family of queueing systems indexed by p by letting the #th interarrival
time in the pth system be u% = u,/p for all n. (The arrival rate and traffic intensity are
thus p.) Let variables in the pth system be designated by a superscript p. As in §5.1, let
n and p be related by n = (1 — p)~2. (We can also consider a stationary version of the
waiting-time sequence, which exists and is unique; Loynes 1962. However, the heavy-
traffic limit does not require working with a stationary version.) It then follows that
n~'/2S{,; converges to one-dimensional Brownian motion with negative drift and

nTPW g = Rt -1, ch+ k- 2cks) as n—> oo, (46) -

both as FCLTs; see Whitt (1968), Theorem 6.4 of Whitt (1980), and Theorem 1 of
Fendick et al. Since n = (1 — p)%, n7'2W iy = (1 — p) W {i(1-»-2} and (46) implies
(32) where Q,(t) = W|,;. The RBM limiting parameters in (46) are ¢ = —1 and b
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= ¢2 4 ¢} — 2c3s, so that the asymptotic variability parameter here is 1/c = b/|al|
= (c% + c:—2c%).
Thus, combining (34) and (46), we obtain

E[Wo] ~ (¢ + ¢k — 2¢%s) e (ch+c5— 2555)3
2(1 — p) 2(1 = p)
2 2 2 2
ow 2(CA+CS_2CAS)
d ~ 47
and - Ew) (1= 0y (47
A refinement based on the M /M/ 1 result (24) is
E”%pwmd+6§~%%x U%pri+é—%é93
2(1 - p) 2(1 - p)
. 2 2 + 2 2 2
and ol J(E[W,])? ~ 264 €5~ 2C4s) (48)

p(1 —p)?

We would also use (48) for corresponding m-server systems in which the individual
mean service time is »2, because the natural heavy-traffic approximations are the same.
For the standard GI/G/m model, c4s = 0 and (47) agrees with §5.1 and (34). For more
general models, it is significant that the asymptotic variability parameters c3, c%* and
c%sin(44)-(48) can indeed often be derived analytically, as we demonstrate for a general
packet queue model in the next section. Moreover, there is always the possibility of
estimating these parameters from data, as suggested for other purposes in Fendick et al.

5.3. A Packet Queue Model

This example is a packet queue model from §4.3 of Fendick et al. There is a single-
server queue with unlimited waiting room and the first-come first-served discipline, so
that this model is covered by §5.2. At the same time, the model is somewhat complicated,
indicating the power of the method.

There are k customer classes (customers are packets and the classes refer to different
kinds of traffic, such as voice, short data messages, long data files, facsimile, acknowl-
edgements and other signals, which may have very different characteristics). For class i,
customers arrive in batches, with the successive batch sizes for class i being i.i.d. with
mean m; and squared coeficient of variation c%. (The batches occur because the mes-
sages sent are divided into packets.) The service times of individual customers of class i
have mean 7; and squared coeficient of variation c¢2. For each class, there are spaces
between the arrivals of the customers in each batch. For class i, the spaces are 1.i.d. with
mean £; and squared coefficient of variation c2;. Following the arrival of all customers
in a batch, there is an idle period with mean w; and squared coefficient of variation c%.
All the service times, batch sizes, spacings and idle periods are assumed to be mutually
independent. Let Ap; be the arrival rate of batches of class i, where p; + « - - + pr = 1.
From above, A\p; = 1/(m;§; + w;). The associated arrival rate of customers from class i
is

Xg; = A\oim; = mi/ (migi + w;), (49)

where g; = p;m;/ 2’| pim; is the proportion of all arrivals that are of class i and X is the
total arrival rate of customers. Let r; = 7;/7 where 7 is the average service time for all
customers, defined by 7 = X5, p;m;7;/ 2%, pim;. Let B; be the proportion of busy time
in each cycle, defined by 8; = m;&;/(m;§; + w;). (When there is no spacing, & = 8; = 0.)

As we indicated above, this model is a special case of §5.2. By Theorems 2 and 3 plus
§4.3 of Fendick et al., the limits (44)~(46) in §5.2 hold for this model with
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k

2 _ 2 2 _
ci= 2 qiciy, Cs=
i=1 i=1

gilrics+ (ri—1)%ck

[\ K

=~

and  cis= 2 @i(l — r)ck (50)
=1

1

where c?; is the asymptotic-method variability parameter for the ith arrival process ( Whitt
1982b), satisfying

cki = mi(1 = B)*(cki + cfy) + Bick. (51)
As indicated by Fendick et al., quite large values of these parameters can occur in
realistic models of packet queues. Typical values are ¢ = 20, ¢% = 35 and c%s = —7,

yielding (¢4 + c% — 2¢3s) = 60. (A concrete example appears in §6.2.) For these models,
simulation runs clearly must be much longer than in the A//A /1 model with the same
traffic intensity. The formulas here indicate approximately by how much.

5.4. Queues with Interrupted Service

Other queueing models that can exhibit large variability are queues in which the server
is alternately available and unavailable. Included in this class are various priority queues.
Such models are often considered in manufacturing to represent the effects of machine
breakdown, scheduled maintenance, lunch breaks and work shifts; see Federgruen and
Green (1987a, b) and references cited there. Heavy-traffic limit theorems by Whitt (1971),
Harrison (1973) and Burman (1987) can be applied with the approximations here to
help plan simulations of these models.

5.5. Open Queueing Networks

In this section we indicate how the RBM approximation (34) or the refinement (35)
can be applied to determine approximate required simulation run lengths to estimate
steady-state performance measures for open queueing networks to desired statistical pre-
cision. We assume that the arrival rate at queue i, say \;, is known for all i, e.g., by
solving the usual traffic rate equations. If interest is focused on any single queue in the
network, then the previous analysis applies, and we apply (35). We can often obtain the
required parameters a; and b; for queue i from heavy traffic limits if queue 7 is the unique
bottleneck queue (see Reiman 1983), but we can also use practical approximations for
these parameters, whether or not there is a bottleneck queue. For example, for one queue
in an open network of multi-server queues, we can apply the queueing network approx-
imation in Whitt (1983a) to obtain

a; = —mo/T1; and b = mi(c%i + &)/, (52)

where m; is the number of servers, 7; is the mean service time, and c¢%; and c¢%; are the
approximate arrival and service variability parameters at queue . The additional ap-
proximation is only in the variability parameters ¢%;and c%; this approximation method
involves solving a system of linear equations to obtain the arrival variability parame-
ters c%;.

Suppose that we are interested in estimating the mean queue length at each queue in
an open queueing network with # queues. A natural simulation run length to choose is
the maximum required for any one queue. Using (36), (52) and the relative width
criterion in (10) with parameters e and 3, we obtain an approximate required simulation
run length

t,(e,ﬁ)mmax{ (53)

I<isn

87:(cki + C§i)2%/2]
mipi (1 = p))%€ |’
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where i is the index of the queue. Note, in comparison to (42), that the mean service
times 7, play an important role in (53) as well as the traffic intensities p;; the mean
service times and net arrival rates might be very different at different queues.

Finally, suppose that we want to estimate the fotal number of customers in the queueing
network. Then we suggest, as in Whitt (1983a), the approximation resulting from re-
garding the separate queues as mutually independent; i.e., approximate ‘the asymp-
totic variance of the total mean 27, E[Q;(0)] by the sum of the asymptotic variances,
namely,

n
O ion ™ 2 [rip?(cki+ %) /2mi(1 — pi)*l, (54)
i=1
once again using (35) and (52).

Note that the total mean and its asymptotic variance in (54) will be dominated by the
contribution of a bottleneck queue if there is one. Note that the independence approx-
imation in (54) is not exact even for a Markov Jackson open queueing network; even
though the steady state queue lengths Q;(o0) at the different queues are mutually inde-
pendent in this model, the sample averages O, in (1) at the different queues are typically
not mutually independent. Moreover, we expect there to be positive correlation between
different queues, so that (54) is likely to underestimate the true value. Finally, note that
§5.2 and §5.3 indicate possible problems in multi-class queueing networks resulting from
the approximation for b; in (52). (We are not unduly alarmed, because we are looking
for rough approximations.)

6. Numerical Comparisons

In this section we see how well our approximation formulas work by making numerical
comparisons with simulation results. Further numerical comparisons are contained in
Asmussen (1988).

6.1. Albin’s Experiments

To empirically examine the approximations in this paper, we first studied the simulation
experiments conducted by Albin (1981) to develop and evaluate approximations for
single-server queues with superposition arrival processes. (This model is a special case
of §5.3, having all the batch sizes one and all service times i.i.d. The heavy-traffic limits
are also covered by Iglehart and Whitt.) Simulation estimates of the mean queue length
(number in system) together with sample standard deviations of these estimates are
reported by Albin for four experiments in Appendices 6, 14, 17 and 20 there. The principal
factors in the experimental designs are the number of component renewal arrival processes,
the distributions of the interarrival times and service times, and the traffic intensity. For
our purposes, it is convenient that the designs were constructed so that the asymptotic-
method variability parameter of the arrival process remains unchanged as the number
of component renewal arrival processes and the interarrival-time distributions vary.

Consistent with our prediction, the sample standard deviations do not vary system-
atically with the number of component streams or the interarrival-time distribution for
a given traffic intensity and asymptotic-method variability parameter, but they do vary
systematically with the traffic intensity and the asymptotic-method variability parameter
itself. In particular, our formulas indicate that the sample standard deviation should be
approximately proportional to (¢4 + c%)*/?. (The service times are i.i.d., so that c3g
= (0.) A comparison with observed values for the case of exponential service times (c%
= 1) from Appendix 6 of Albin is contained in Table 3 here. Three different values of
c? are considered: ¢4 = 2,4 and 6. In Table 3 here the average sample standard deviations
for each value of p are displayed. The average is over the averages in all cases (different



1362 WARD WHITT

TABLE 3

Sample Standard Deviations Based on 20 Batches for Single-server Queues with Superposition Arrival
Processes and Exponential Service Times, from Appendix 6 of Albin (1981): a Comparison
of Observed Ratios of Standard Deviations (SD;/SD; when c; = i and j)
with the Heavy-traffic Approximation [(i + 1)/(j + 1)]*2.

Average Sample Standard Deviation Ratio of Standard Deviations
Traffic

Intensity SD, SDs SDs

p ci=2 ci=4 c3=6 SD, SD, SD,

0.5 0.0138 0.0196 0.0226 1.42 1.15 1.64

0.7 0.0367 0.0670 0.0964 1.83 1.43 2.62

0.8 0.075 0.156 0.244 2.08 1.56 3.25

0.9 0.302 0.659 1.127 2.18 1.71 3.73
Predicted Ratios 2.15 1.66 356 .

numbers of component streams and different interarrival-time distributions) for a given
p. Then the ratios SD;/SD; are calculated for each p; e.g., SD, is the sample standard
deviation of the estimate when ¢ = 4. Since c% = 1, the predicted ratios for SD,/SD,,
SD¢/SD, and SD¢/SD; are ([4 + 11/[2 + 11)3? = (5/3)%% = 2.15, (7/5)%? = 1.66
and (7/3)3/2 = 3.56, respectively. From Table 3 (and Albin’s more detailed data), we
see that there is a very close agreement for high values of p (as we would expect, because
the approximation is based on a heavy traffic limit), but less agreement as p decreases.
Consistent with the A//G/ 1 analysis in §3.1, we see that the observed ratios decrease as
p decreases. The impact of variability thus seems to be as predicted, quantitatively for
higher p (e.g., p = 0.8), and qualitatively for all p. It appears that a refined approximation
could be developed, stating that the asymptotic variance is directly proportional to x/*
where x is the asymptotic variability parameter (for M/G/1, x = (1 + ¢%) and here x
= (c% + 1)) and f(p) is a decreasing function of p with f(1) = 3, but we do not pursue
it here.

Of course, as predicted, the impact of variability is much less than the impact of the
traffic intensity. As indicated in the introduction, Albin’s data also support the use of
the RBM approximations to capture the principal traffic intensity effect.

6.2. The Packet Queue Model

We conclude by comparing simulation estimates with the heavy-traffic predictions for
a special case of the packet queue model of §5.3. The particular case was chosen to
realistically represent typical traffic in a packet network; see Fendick et al.

For this special case, the packet lengths for each class are deterministic, which implies
that the service times and spacings for each class are deterministic, so that ¢ = ¢2, = 0;
the idle times are assumed to have exponential distribution, so that ¢ = 1; and the batch
sizes are assumed to have a geometric distribution, so that ¢? = (m; — 1)/m;. Even
though the component variability parameters c%, c2;, c% and c are relatively small
(=<1), variability plays a big role here due to the batch arrivals and the class-dependent
- service times.

Altogether we consider 50 independent sources of traffic. There are 25 originating
sources and 25 acknowledgement sources. The acknowledgements are shorter packets
sent back from the destination to the source to indicate that a packet arrived. Since the
network is full duplex (there are separate channels in each direction ), originating packets
do not interact directly with their acknowledgements. As an approximation, we treat the
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acknowledgements as independent sources. Except for the shorter service times, we model
the acknowledgements like the originating traffic. Justification for this approximation
appears in Whitt (1988).

In this case there are 20 “‘interactive” originating sources and 20 ““interactive” ac-
knowledgement sources, each with m; = 2, ¢, = 600 and w; = 86,800; there are 5 “batch”
originating sources and 5 “batch” acknowledgement sources, each with m; = 30, & = 1200
and w; = 594,000. Time here is measured in milliseconds. The batch sources generate
less frequent longer messages.

The packet service times are 1000p for each interactive originating source, 2000 for
each batch originating source, and 100p for each acknowledgement source. The overall
mean service time is thus 721.8p. In this way, we construct a different case for each value
of p by simply multiplying all service times by a constant. In particular, we consider 5
cases: p = 0.2, 0.4, 0.6, 0.8 and 0.9. For these parameter values, the heavy-traffic variability
parameters in (50) are

c% = 19.95, c:=3580 and cis =774 (55)

so that the overall asymptotic variability parameter is (¢ + ¢ — 2¢4s) = 71.23. Formu-
las (47) and (55) imply that the expected equilibrium waiting time in this model is
35.6 times what it would be in a simple M/AM/1 queue with the same traffic intensity
p, as p = 1. The heavy-traffic approximations in (48)~(51) are displayed together with
corresponding M /M 1 values and simulation estimates in Table 4. In Table 4 each mean
waiting time is divided by the mean service time.

Simulation estimates of the expected equilibrium waiting time (divided by the mean
service time) appear together with estimates of 95 percent confidence intervals. Each
case (value of p) in each of two independent runs is based on 1,800,000 packet arrivals.
The estimated 95 percent confidence intervals are based on 20 batch means, each of
90,000 data points, assuming a ¢ distribution. (We are acting as if successive batches are
independent and identically distributed, even though that is not strictly correct.) We also
start each run with an empty system, so that the waiting time process is not actually
stationary. These discrepancies should not affect the main conclusions, however.

Several important conclusions can be deduced from Table 4. First, the high variability
in (55) has a dramatic impact; the observed average waiting times are much greater than
in an M/M/1 queue with the same traffic intensity, except for the case of the very low
traffic intensity p = 0.2. Second, for the cases with p = 0.6, the heavy-traffic estimates
apparently are quite accurate. Indeed, for p > 0.8, it is likely that the heavy-traffic ap-
proximations for both the mean and the 95 percent confidence interval are more accurate

TABLE 4

A Comparison of Simulation Estimates for the Expected Equilibrium Waiting Time (Divided by the Mean
Service Time) and its 95 Percent Confidence Interval with the Heavy-Traffic Approximation for the
Packet Queue Model in §6.2. Each Case (Value of p) in Each of Two Independent Runs
is Based on 1,800,000 Packet Arrivals. The Estimated 95 Percent Confidence
Intervals Were Based on 20 Batch Means Assuming a t Distribution

Traffic MM/ Simulation Estimates

Intensity Exact Heavy-Traffic Theory
p Values Run | Run 2 (44)-(47)
0.2 0.25 0.32 + 0.026 0.31 = 0.017 89+ 0.22
0.4 0.67 7.1 £ 0.57 82 + 0.74 233+ 0.6
0.6 1.50 40.3 + 4.5 368 £ 23 53 + 3.1
0.8 4.00 137  *46 136 =+ 14 142 + 14
0.9 9.00 293 +52 364 +82 320 +60
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than the simulation estimates. On the other hand, for p = 0.2, where the simulation
estimates are no doubt extremely accurate, the heavy-traffic approximations are horren-
dous. Nevertheless, we regard this experiment as very positive confirmation of the ap-

proach.

As indicated above, this experiment was conducted with equal run lengths. The dif-
ficulties with this design are obvious from Table 4. The statistical precision is probably
more than desired for p = 0.2, but less than desired for p = 0.8. To achieve comparable
relative precision, we could instead apply (10) and (48), and let the run lengths be
proportional to

2(c% + ¢t — 2c%)
p(1 — p)?

In particular, since the heavy-traffic variability parameters are independent of p, we would
make the run lengths inversely proportional to p(1 — p)2. The percentages of total run
length allocated to the cases p = 0.2, 0.4, 0.6, 0.8 and 0.9 would thus be 16 percent, 4
percent, 8 percent, 16 percent and 56 percent instead of 20 percent in each case. Of
course, we might further modify the allocation to represent greater concern about statistical
precision in some regions.'

o /(EIW])? = (56)
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