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Abstract

We establish a limit theorem supporting a Poisson approximation for the
departure process from a multi-server queue that tends to have many busy
servers. This limit can support approximating a flow out of such a queue in
a complex queueing network by an independent Poisson source. The main
ideas are: (i) to scale time so that previous many-server heavy-traffic limits
can be applied and (ii) for time-varying arrival-rate functions, to scale (spread
out) time by a large factor about each fixed time.
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1. Introduction

Complex queueing systems are typically networks of queues, with arrival
processes at individual queues being composed of departures and overflows
from other queues, with the service-time cumulative distribution functions
(cdf’s) often being not nearly exponential. Thus an arrival process at an
internal queue usually can not be assumed to be exactly a Poisson process;
e.g., see [1]. Nevertheless, a Poisson approximation may be reasonable.

Example 1.1. final checkout in online shopping. Suppose that we want to
develop a stochastic arrival process model for the final checkout in a complex
online shopping system. Many separate people shop online until they are
ready for final checkout, To illustrate, we model the checkout as the second
queue in a two-queue Gt/GI/∞ → ·/GI/1 network, in which the first queue
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is an infinite-server (IS) model with a general arrival process having a time-
varying arrival-rate function λ(t), which is independent of service times that
are independent and identically distributed (iid) with a general cdf F having
a continuous probability density function (pdf) f with F (t) =

∫ t

0
f(s) ds,

t ≥ 0. The output of the IS queue is the arrival process to a final single-
server (SS) checkout queue, with general service cdf, unlimited waiting room
and service in order of arrival. The exact form of the departure-rate function
from the IS queue is

δ(t) =

∫ ∞

0

f(y)λ(t− y) ds, (1)

as given in Theorem 1 of [2]; it is the same for Gt as for Mt; see §5 of [3].
In this setting we provide support for approximating the final SS queue by
an Mt/GI/1 queue, where the arrival process is a nonhomogeneous Poisson
process (NHPP) with arrival-rate function δ(t) in (1). An efficient algorithm
to calculate performance measures when λ(t) is periodic is given in [4].

For a concrete simulation, consider the stationary GI/GI/∞ → ·/GI/1
model in which all service times are iid and the external arrival process is a
renewal process. To introduce extra variability, we assume that all three GI
components have the hyperexponential cdf (H2, mixture of two exponentials)
with squared coefficient of variation (scv, variance divided by the square of
the mean) c2 = 4 and balanced means as on p. 137 of [5]; that leaves only
the mean or its reciprocal, the rate, to be specified. We let the arrival rate be
λ = 100 and the service rates at the two queues be µ1 = 1 and µ2 = 200. By
Little’s law, these rates make the mean steady-state number of busy servers
in the IS queue be 100, which we regard as moderately large scale. In actual
online checkout, the mean number of busy shoppers is likely to be much
larger, and the difference between the two service rates is likely to be even
greater.

In this context, we suggest that the performance at the final SS queue
can be approximated by the M/H2/1 model, for which the mean steady-
state waiting time before starting service has the Pollaczek-Khintchine (PK)
formula EW = ρµ−1

2 (1 + c2)/2(1 − ρ) = 0.0125 for ρ = 0.50, µ2 = 200 and
c2 = 4. The intuition is that, with many busy servers, the departure process
from the IS queue is much like the superposition of iid renewal processes,
one for each server, for which the limit is Poisson, as discussed in §9.8 of
[6]. Of course, the servers do not remain busy all the time and the number
of busy servers is random, varying over time, so that that representation is
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only approximate. Thus, there remains something to prove for departure
processes.

A simulation experiment was conducted for this example. It shows that
the interarrival-time cdf at the second queue is approximately exponential
with mean 0.01 and that the estimated mean wait EW is only 8% above the
PK formula for M arrivals; see the appendix for more details.

We conclude this example by mentioning that part of the justification
for the M/H2/1 approximation with a Poisson arrival process for the SS
queue is the relatively low traffic intensity at the SS queue, because the
departure process from the H2/H2/∞ IS queue with many busy servers is
only approximately Poisson over a short time scale. For example, the central
limit theorem for the departure process will not have the same variability
parameter as for a Poisson process. As discussed in §9.8 of [6], there is
different variability at different time scales. As ρ ↑ 1, the ratio of the actual
mean EW (ρ) to the mean with Poisson arrivals increases. We found that
the M/H2/1 approximation for the mean EW was 27% low when the service
rate at the second queue was decreased so that ρ2 = 0.90. See [7] for a related
superposition process example.

In [8] we previously established a limit theorem supporting the Poisson ap-
proximation for the departure process in the simulated example; our purpose
here is to extend the result to a larger class of models. First, for infinite-
server models, we extend the result established for the GI/Ph/∞ model in
[9] to the Gt/GI/∞ model, having a general service-time distribution (the
GI) instead of Ph and from a renewal arrival process (GI) to general (allow-
ing non-renewal) arrival process with a time-varying rate (the Gt). The proof
is similar, except now we apply the two-parameter MSHT FWLLN for the
Gt/GI/∞ model reviewed in [10] instead of the single-parameter FWLLN
for the GI/Ph/∞ model in [9].

We are also interested in establishing a result that applies to models
with finitely many servers, perhaps including customer abandonment and
feedback. A concrete example of a closed network of two ·/GI/s queues
which could be used in this way is contained in [11]. In that model there
is one SS station with state-dependent service rate and one IS station. In
the same spirit, our approach provides the basis for an alternate proof of a
Poisson limit for a queue with delayed feedback (which can be regarded as a
·/GI/∞ IS queue) in [12]; they established the Poisson limit using a coupling
technique.
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The Poisson limit in [8] was established using martingale methods The
“martingale method” means that we focus on the stochastic departure rate
or intensity of the departure process and its integral, called the compensator,
which depends on a specification of the history or filtration; see [13] and [14]
for introductions and [15] and [16] for advanced accounts. We will estab-
lish the Poisson limit, independent of the history of the queueing system,
by showing that the compensators approach a deterministic limit; e.g., see
Theorem VIII.4.10 in [16] and Problem 1 on p. 360 of [15].

We have special interest in many-server queues with time-varying arrival-
rate functions. To obtain useful Poisson limits for those models, we will
introduce a new scaling method, spreading out time about a fixed reference
time. The Poisson limit then provides support for approximating the depar-
ture process by an NHPP. For the required MSHT FWLLN’s in Gt/GI/∞
and Gt/GI/st +GI models with general nonstationary arrival processes, we
can apply [10, 17] and [18, 19], respectively. These limits exploit a random-
measure or two-parameter framework. We present our results with minimum
technicalities; we refer to those papers for the details.

In §2 we review the MSHT FWLLN in a Gt/GI/∞ model and establish
the required FWLLN for the departure rate process in Theorem 2.1. In §3
we establish the main result, Theorem 3.1, which provides general conditions
for the desired Poisson limit in terms of associated MSHT limits. We present
additional supplementary material on the simulation for Example 1.1 and a
direct NHPP approximation for the departure process in an appendix, which
is available from the author’s website.

2. Review of the MSHT FWLLN for Gt/GI/∞ Queues

We start by reviewing the MSHT FWLLN in Theorem 3.1 in [10], because
we will use established properties as conditions in our new theorem for other
models.

Let ⇒ denote convergence in distribution and let D ≡ D(I,R) be the
usual Skorohod space of right-continuous real-valued functions with left limits
on a subinterval I of the entire real line R, possibly R itself [6, 15, 16]. In our
setting with a continuous limits, convergence in the Skorohod J1 topology is
equivalent to uniform convergence over bounded subintervals of I.

We consider a sequence of queueing models indexed by n. Let the arrival
process have a well-defined arrival rate for each n; i.e., let An(t1, t2) be the
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number of arrivals in model n in the time interval (t1, t2] and assume that

E[An(t1, t2)] = nΛ(t1, t2), where Λ(t1, t2) ≡

∫ t2

t1

λ(s) ds (2)

for −∞ < t1 < t2 < +∞, with ≡ denoting equality by definition. This can
be achieved by scaling (accelerating) time in a fixed arrival process. Thus,
the arrival rate in model n is

λn(t) = nλ(t), −∞ < t < +∞. (3)

As a regularity condition, we also assume that 0 ≤ λ(t) ≤ λU < ∞. We
furthermore assume that the system starts empty at time −t0 ≤ 0. That
avoids having to carefully treat the initial conditions, but for a way to do so,
see [20]. Let Ān(t1, t2) ≡ n−1An(t1, t2). We assume a FWLLN is valid for
the arrival processes; i.e.,

sup
tL≤t1<t2≤tU

|Ān(t1, t2)− Λ(t1, t2)| ⇒ 0 as n → ∞

for all tL and tU with −∞ < −t0 ≤ tL < tU < ∞ (weak convergence
uniformly over bounded intervals).

Assumption 1 of [10] allows a general sequence of arrival processes, but
they are required to satisfy a functional central limit theorem (FCLT) be-
cause the primary concern was establishing the MSHT FCLT. That FCLT
condition can be weakened to having only a FWLLN, because Theorem 3.1
only requires the MSHT FWLLN conclusion. The proof of the FWLLN for
the number of busy servers under the weaker FWLLN condition is not dis-
cussed in [10], but it is discussed in [14]; see Theorem 3.6 and §§3.4, 4.3, 5.2,
6.1 and 6.2.

Assumption 2 of [10] stipulates that the service times come from a single
i.i.d. sequence, independent of n and the arrival processes, distributed as a
random variable S having a general cdf F . In addition, we require that the cdf
F have a continuous pdf f in terms of which we can write F (t) =

∫ t

0
f(s) ds,

t ≥ 0, for F c(t) ≡ 1 − F (t), and a failure-rate function h(t) ≡ f(t)/F c(t)
that is bounded over finite intervals. In [10] the system starts empty at time
0. Without loss of generality, we assume that the system starts empty at
time −t0 < 0. We then can let t0 → ∞ to obtain the simple approximation
formula in (1).
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Let N e
n(t, y) be the number of customers in service at time t in model n

that have been so for at most time y. Let N̄ e
n be the FWLLN-scaled version

N̄ e
n(t, y) ≡ n−1N e

n(t, y). A variant of (3.5) and (3.7) of Theorem 3.1 of [10]
then implies that

sup
tL≤t≤tU ,yL≤y≤yU

|N̄ e
n(t, y)−N e(t, y)| ⇒ 0 as n → ∞ (4)

for all tL and tU with −∞ < −t0 ≤ tL < tU < ∞ and for all yL and yU
with −∞ < yL < yU < ∞ (again weak convergence uniformly over bounded
intervals), where

N e(t, y) ≡

∫ y

0

F c(s)λ(t− s) ds. (5)

Let Dn(t) ≡ An(t) − N e
n(t, t + t0) be the associated departure counting

process in model n and let D̄n(t) ≡ n−1Dn(t) be the fluid-scaled version.
Along with (4), we also have the limit

D̄n ⇒ D in D([−t0,∞) as n → ∞, (6)

where

D(t) ≡ Λ(t)−N e(t, t+ t0) =

∫ t+t0

0

F (s)λ(t− s) ds, t ≥ −t0. (7)

For the new part, let ∆n(t) be the stochastic departure rate at time t in
model n. The departure rate can be expressed as a stochastic integral (which
is just a random sum) via

∆n(t) =

∫ t+t0

0

h(y) dyN
e
n(t−, y) dy, t ≥ −t0. (8)

As in (2.1) of [8], we use the left limit t− in (8) to make ∆n(t) be the
predictable stochastic intensity with respect to the appropriate history that
includes the ages of all the customers in service and the history of the arrival
process at each time t; see §1.3 of [13] and [14]. That can be understood
and justified by a discretization argument, dividing the interval [−t0, t] into
k subintervals, doing a discrete-time analysis and then letting k → ∞. A
detailed proof is given in §5.2 of [17]; see Lemma 5.4.

To elaborate, ∆n(t) being a stochastic intensity means that the centered
process Dn(t)− Cn(t) is a martingale with compensator

Cn(t) =

∫ t

−t0

∆n(s) ds, t ≥ −t0, (9)
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again with respect to the full system history at time t.
Let ∆̄n ≡ n−1∆n for in (8) be the FWLLN-scaled departure rate process.

We first establish a bound on the expectations.

Lemma 2.1. (expectation bound) Under the assumptions above for the se-

quence of Gt/GI/∞ models,

E[∆̄n(t)] ≤ Kmax {1, t+ t0} sup
0≤s≤t+t0

{h(s)} < ∞ (10)

for all n and t.

Proof. Since Nn(t) ≡ N e
n(t,∞) ≤ An(−t0, t) we can apply (2). Since the

failure rate function h is bounded over bounded intervals, we can replace it
by a constant outside the integral.

Theorem 2.1. (MSHT limit for the departure rate) For the Gt/GI/∞ model

under the assumptions above,

∆̄n ≡ n−1∆n ⇒ δ in D([−t0,∞),R) as n → ∞, (11)

where

δ(t) ≡

∫ t+t0

0

h(y)dyN(t, y), t ≥ −t0, (12)

so that

δ(t) =

∫ t+t0

0

f(y)λ(t− y) dy and D(t) =

∫ t

−t0

δ(s) ds, t ≥ −t0. (13)

Proof. We first apply Lemma 2.1 to get bounded expectations. Then we
apply the Skorohod representation theorem, Theorem 3.2.2 of [6], to reduce
the argument to a deterministic one, but use the same notation. We establish
the desired uniform convergence over bounded intervals by showing, for any
t in a bounded an interval and any sequence {tn} with tn → t as n → ∞,
that n−1∆n(tn) → δ(t) as n → ∞. To do that, we exploit the fact that the
convergence in (4) corresponds to the weak convergence of finite measures,
where we regard N̄ e

n(t, y) as a function of y as a cdf. Hence, we can show, for
each t ≥ −t0 that we have the associated convergence of the integrals

n−1∆n(tn) =

∫ tn+t0

0

h(y) dyN̄
e
n(tn, y)

→

∫ t+t0

0

h(y)F c(y)λ(t− y) dy as n → ∞.
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We use the fact that h is continuous and bounded on the interval [0, t+ t0].
The limiting integral simplifies, yielding

∫ t+t0

0

h(y)F c(y)λ(t− y) dy =

∫ t+t0

0

f(y)λ(t− y) dy

by the simple relation h(y)F c(y) = f(y). That convergence implies that
∆̄n → δ in D(R,R) as n → ∞, which implies the weak convergence for the
original processes.

Remark 2.1. (starting empty in the distant past) In many papers on IS
queues, the system is assumed to start empty in the distant past (at −∞).
That is tantamount to letting t0 → ∞. As t0 → ∞, δ(t) in Theorem 2.1
approaches (1), the departure rate E[λ(t − S)] in the Mt/GI/∞ model in
equation (4) of Theorem 1 in [2] and in the associated Gt/GI/∞ fluid model;
see §4 of [21].

3. The Supporting Limit for a Poisson Approximation

We now establish the Poisson limit for the departure process from a gen-
eral Gt/GI/∞ model. At the same time, we provide a framework for treating
many other models. To do so, we assume some of the conclusions deduced
for the Gt/GI/∞ model is §2 rather than specify the detailed model. Thus,
we now consider a more general multi-server queue. As before, we assume
that the servers work independently in parallel having an individual remain-
ing service-time failure rate function h. However, the queue may be in the
middle of a complex network and there may be customer abandonment and
feedback.

As in §2, we consider a sequence of models indexed by n in a MSHT
framework. That typically means that the arrival rate is allowed to grow
without bound as in (2) and if the there are finitely many servers, then that
number is allowed to grow as well. We directly assume that the processes
N e

n(t, y), Dn(t), Cn(t) and ∆n(t) are well defined with the same meaning as in
§2, but we do not fully specify the system; e.g., we do not specify the arrival
process. We directly assume that the stochastic departure rate can be defined
by the stochastic integral in (8) and that Dn(t)−Cn(t) is a martingale with
respect to the system history up to time t, where Cn(t) is the compensator
and is the integral of ∆n(t) as in (9). We also assume that the limits in (4)
and (8) hold, but without assuming the explicit form of the limits N e(t, y)
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and D(t) in (5) and (7). Finally, we assume that the bound in (10) holds.
Under these assumptions, we also have the conclusions of Theorem 2.1 with
the limit in (12), but without the explicit limit in (13), because the same
proof applies. For example, these assumptions apply to the Gt/GI/s + GI
model with finitely many servers and customer abandonment, for which a
FWLLN was established in [21, 22].

Paralleling [8], we will do an additional slow-time scaling in order to
establish the supporting Poisson limit. However, in order to capture the
time-varying arrival rate appropriately, instead of simply undoing the MSHT
scaling in (2), we do the time scaling about an arbitrary time t, which we
regard as fixed.

For this purpose, we introduce two-parameter processes

Dn(t, u2)−Dn(t, u1) ≡ Dn(t + u2/n)−Dn(t + u1/n),

Cn(t, u2)− Cn(t, u1) ≡ Cn(t+ u2/n)− Cn(t+ u1/n),

∆n(t, u) ≡ ∆n(t+ u/n)/n, −∞ < u1 < u2 < +∞. (14)

Note that the definitions for Cn(t, u) and ∆n(t, u) follow from the definition
for Dn(t, u). With these definitions and the assumptions above,

Cn(t, u2)− Cn(t, u2) =

∫ u2

u1

∆n(t, v) dv, −∞ < u1 < u2 < +∞, (15)

{Dn(t, s) − Cn(t, s) : s ≥ u1} is a martingale and ∆n(t, u) is a predictable
stochastic intensity with respect to the system history.

With this preparation, we are able to establish our desired result. In
our setting, weak convergence of the processes with nondecreasing sample
paths to a Poisson process in D(I,R) is equivalent to convergence of all
finite-dimensional distributions; see VI.3.37 of [16].

Theorem 3.1. (Poisson limit) Under the assumptions in this section above,

Dn(t, ·) ⇒ Πδ(t)(·) in D(R,R) as n → ∞, (16)

where Πc is a homogeneous Poisson process with constant rate c and δ(t) is

the limit in (12); i.e., for any integer k, any k-tuple of disjoint subintervals

((ui,1, ui,2] : 1 ≤ i ≤ k) and any k-tuple of nonnegative integers (ji : 1 ≤ i ≤
k),

P (Dn(t, ui,2)−Dn(t, ui,1) = ji : 1 ≤ i ≤ k) →

k∏
i=1

e−µi(t)µi(t)
ji

ji!
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as n → ∞, where µi(t) ≡ δ(t)(ui,2 − ui,1).

Proof. The proof is similar to the proof of Theorem 2 in [8]. The limit in
(11) implies that

sup
uL<u<uU

|n−1∆n(t+ (u/n))− δ(t)| ⇒ 0 as n → ∞

for all uL and uU with −∞ < uL < uU < +∞. Then, paralleling the proof
of Theorem 2 in [8], we write

Cn(t+ (u2/n))− Cn(t+ (u1/n)) =

∫ u2/n

u1/n

∆n(t+ v) dv

=

∫ u2

u1

n−1∆n(t+ v/n) dv

⇒

∫ u2

u1

δ(t) dv = δ(t)(u2 − u1) as n → ∞. (17)

Combining (17) with (14), we have the analog of Corollary 2 of [8], i.e.,

Cn(t, u2)− Cn(t, u1) ⇒ δ(t)(u2 − u1) as n → ∞.

That implies that the limit (16) holds, as claimed, by Theorem VIII.4.10 of
[16].

Remark 3.1. (supporting an NHPP approximation) The statement of The-
orem 3.1 may seem a bit paradoxical, because it states that the departure
process is asymptotically a homogeneous Poisson process but with the time-

varying rate δ(t) in (12). That dichotomy arises because of our scaling about
the fixed time t. For applications, we interpret the limit as supporting an
NHPP approximation with time-varying rate δ(t).

Remark 3.2. (the stationary case) For a stable stationary model without
abandonment, the rate out equals the rate in, so that the departure rate must
equal the constant arrival rate. Consistent with that basic property, we see
that δ(t) = λ for all t if the arrival process has a constant arrival rate λ.

Remark 3.3. (models with finitely many servers) For the stationaryGI/M/s
and the M/M/s+M models, the papers [23] and [24] can be applied to es-
tablish analogs of Theorem 2.1. For the quality-and-efficiency-driven (QED)
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and efficiency-driven (ED) MSHT regimes, δ(t) = µs for all t. The FWLLN
follows immediately from the MSHT FCLTs established in those papers.
These result can be extended to general arrival processes using §7.3 of [14].
Extensions to the G/G/s and G/GI/s+GI follow from [17, 18].

We can also apply [19] to obtain the analog of Theorem 2.1 for the
Gt/M/st+GI Model with customer abandonment, which alternates between
overloaded intervals and underloaded intervals. With exponential service
times, it suffices to look at N(t), the number of customers in service at each
time, instead of the more complicated two-parameter process N e(t, y). The
departure rate at time t is simply µmin {X(t), s(t)}, where µ is the fixed
service rate, X(t) is the number of customers in the system and s(t) is the
number of servers at time t. The FWLLN is given for overloaded intervals in
(4.2) of Theorem 4.1 and §3 of [19]; then δ(t) = s(t)µ. The FWLLN is given
for underloaded intervals in (5.1) and (5.2) of Theorem 5.1 of [19]; except for
the initial conditions, δ(t) is the same as in an IS system. Extensions to GI
service follow from [22].
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Appendix A. The Simulation Experiment for Online Checkout

In this first section we describe the simulation experiment related to Ex-
ample 1.1.

Appendix A.1. The H2/H2/200 → ·/H2/1 Model

To provide a concrete illustration in the setting of the online checkout
example in Example 1.1, we simulated the H2/H2/200 → ·/H2/1 model with
external arrival rate λ = 100, µ1 = 1 and µ2 = 200 specified there. The
interarrival times and service times come from three mutually independent
sequences of iid random variables, each with H2 distributions having scv
c2 = 4 and balanced means as on p. 137 of [5]. As a consequence, the traffic
intensity at both queues is ρi = 100/200 = 0.50, i = 1, 2.

Because we never see all servers busy in a long simulation, even though
that event necessarily has (small) positive probability in the model, the first
queue behaves like an H2/H2/∞ model. So the model illustrates both The-
orems 2.1 and 3.1.

The important point for the relevance of the theory in this paper is that
the service rate at the first many-server queue is much lower than the arrival
rate and the service rate at the second queue. By Little’s law, the mean
number of busy servers at the first queue is λ/µ1 = 100. From [10] and
earlier papers, we know that the distribution is approximately normal. Thus,
this example illustrates a many-server queue that tends to have many busy
servers, for which Theorem 3.1 is intended. In fact, for the online shopping
example, the actual parameters λ and µ2 are likely to be many times larger
relative to µ1, which we have taken as our unit to measure time, so that this
is far from an extreme example.

Because of the H2 distributional assumptions, the departure process from
the first queue is not exactly Poisson. Nevertheless, we suggest that the
steady-state performance of the second queue may be well approximated
by the steady-state distribution of an M/H2/1 queue with an independent
Poisson arrival process, for which the mean waiting time is given by the
Pollaczek-Khintchine formula

EW =
τρ(1 + c2s)

2(1− ρ)
=

(0.005)(0.5)(1 + 4.0)

2(1− 0.5)
= 0.01250 (A.1)

where τ = 1/200 = 0.005 is the mean service time, ρ = 0.5 and c2s = 4.0.
In contrast, if the arrival proess were a renewal process with an H2 distri-
bution, like the service-time distribution at the first queue, then a common
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approximation for the waiting time would be

EW ≈
τρ(c2a + c2s)

2(1− ρ)
=

(0.005)(0.5)(4.0 + 4.0)

2(1− 0.5)
= 0.02000 (A.2)

Our simulation estimate of the mean waiting time at the second single-seerver
queue is EW = 0.01350, which is only 8% above the exact Poisson value.

Appendix A.2. The Experimental Design

The simulation experiment consisted of 100 iid replications of the model
over the time interval [0, 1020], where we used the data over [10, 1010], an
interval of length 1000 to estimate the interdeparture distribution. Since the
arrival rate is 100, there was a total sample of 100×100×1000 = 107 arrivals
and thus essentially the same number of departures and interdeparture times.
We delete initial and terminal intervals of length 10, having about 100×10 =
1, 000 arrivals and departures, to avoid end effects, and to allow the departure
process approach steady state (stationarity). From the very large sample size,
it is evident that we should have extraordinarily high precision. (We found
the answers are significantly distorted if the end effects are not properly
removed; the last interdeparture times can be quite large.)

It is important to estimate the interdeparture-time variance carefully,
because there is dependence among the interdeparture times. Thus, we es-
timate the second moment by the sample average, just like we estimate the
mean. We then estimate the variance by σ̂2 = m̂2 − (m̂1)

2, where m̂k is the
direct estimate of the kth moment as a sample average (using the fact that
the mean of a sum is always the sum of the means, whether or not there is
dependence).

Appendix A.3. The Interdeparture-Time Distribution

The estimated mean and variance of an interdeparture time from the
first many-server queue were 0.0100 and 0.00010466, respectively, so that
the estimated scv of one interval is c2d = 1.05, which is close the Poisson
value c2 = 1.00. By visual comparison, the histogram of the interdeparture-
time distribution matches the exponential distribution perfectly, and is very
different from the corresponding H2 distribution with scv c2 = 4. We show
two views of histograms of the interarrival-time distributions in Figures A.1
and A.2; then we show two views of histograms of the interdeparture-time
distributions in Figures A.3 and A.4, showing that the interdeparture-time
distribution is very nearly exponential.
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Figure A.1: First estimated interarrival-time histogram from an H2 renewal process com-

pared to an exponential distribution
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Figure A.2: Second estimated interarrival-time histogram from an H2 renewal process

compared to an exponential distribution
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Figure A.3: First estimated interdeparture-time histogram from the H2/H2/200 model

with λ = 100 compared to an exponential pdf
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Figure A.4: Second estimated interdeparture-time histogram from the H2/H2/200 model

with λ = 100 compared to an exponential pdf
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Appendix A.4. Performance at the Second Single-Server Queue

The performance at the second queue is not only affected by the dis-
tribution of an interarrival time to that queue, which of course is just an
interdeparture time from the previous many-server queue, but also depends
on the dependence among successive interarrival times. It is important to
note that there is indeed dependence among successive interdeparture times
from the first queue. However, the dependence among a nearby interdepar-
ture times tends to be quite small.

An important reference point for understanding is the conventional heavy-
traffic limit theorem for the single-server queue in [6] and, in particular, the
heavy-traffic bottleneck phenomenon; see Example 9.9.1 on p. 335 of [6]
and the references cited there. As the traffic intensity of the second queue ρ2
increases toward the critical value 1, the performance at the second queue will
approach the performance of that queue with the external arrival process, as if
the first queue were not even there; i.e., in this case it will approach (A.2) with
c2a = 4 by virtue of the heavy-traffic bottleneck phenomenon. However, the
dependence among successive interdeparture times tends to be quite small;
it is only the cumulative impact of all the interdeparture times that captures
that heavy-traffic bottleneck phenomenon, and that dependence over many
interarrival times only occurs in heavy traffic.

We estimated the mean waiting time at the second queue with µ2 = 200
and ρ2 = 0.50 as EW ≈ 0.0135, which is 0.0010 more than the 0.01250
exact value for the M/H2/1 queue in (A.1); thus the Poisson approximation
is 7.4% too low. When we decreased the service rate at the second queue
to µ2 = 140, to obtain ρ2 = 0.714, the estimated mean mean waiting time
at the second queue as EW ≈ 0.0520, that is 0.0065 more than the 0.0446
exact value for the M/H2/1 queue in (A.1); thus the Poisson approximation
is 12.5% too low.

In general, if we increased the scale at the first queue by multiplying the
arrival rate and number of servers by 10 or 100, we would see that the Poisson
approximation for the arrival process at the second queue improve. On the
other hand, if we decrease the service rate µ2 toward 100, so that the traffic
intensity ρ2 increases toward 1, then we would see the H2/H2/1 approxima-
tion at the second queue become good. In general, the departure process
behaves like the superpostion of renewal processes, one for each server, for
which a discussion can be found in §9.8 of [6].

To further expose the heavy-traffic effect, we also decreased the service
rate at the second queue to µ2 = 111.11, to obtain ρ2 = 0.900. Then the
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estimated mean mean waiting time at the second queue increases to EW ≈
0.278, that is 0.076 more than the 0.2025 exact value for the M/H2/1 queue
in (A.1); thus the Poisson approximation is 27% too low. On the other hand,
the simulation estimate is only 0.046 below the heavy-traffic approximation
0.324 in (A.2); the HT approximation is 16.5 too high. At ρ = 0.9, the
heavy-traffic approximation is closer than the Poisson approximation.

However, in the onliine checkout application, we are likely to have a
much external larger arrival rate and a lower traffic intensity ot the checkout
queue, so the Poisson approximation is likely to be appropriate. However,
the heavy-traffic approximation is likely to become relevant in overload, as
in [7, 25].

The theory here and in [8] provides a useful theoretical reference point,
along with the heavy-traffic limits, which cover the case in which ρ2 ↑ 1.

Appendix B. A Direct Poisson Approximation

In this section we directly develop a Poisson approximation for the de-
parture process from a Gt/GI/s many-server queue. In particular, consider
a queueing model with a large number s of servers, each with i.i.d. service
times, independent of the arrival process, and distributed according to a ran-
dom variable S with cdf F having a continuoous pdf f with F (t) =

∫ t

0
f(s) ds,

t ≥ 0.
Let N e(t, y) be the number of customers in service at time t that have

been so for at most time y. Let N(t) ≡ N e(t,∞) be the total number of
customers in service at time t.

Even though we have not yet defined the arrival process, we can conclude
that (under regularity conditions) there should be a well defined departure
rate at time t. (As one regularity condition, we assume that there is a well-
defined arrival rate function, so that the probability of an arrival at any
specific time is 0.) The departure rate can be expressed as a stochastic
integral (which is just a random sum) via

∆(t) ≡

∫ ∞

0

h(y) dyN
e(t−, y), (B.1)

where ≡ denotes equality by definition, h(t) ≡ f(t)/F c(t) is the failure (or
hazard) rate and F c(t) ≡ 1−F (t). As in (2.1) of [8], we use the left limit t−
in (B.1) to make ∆(t) be the predictable stochastic intensity with respect to
the appropriate history; see §1.3 of [13].
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It should be noted that the departure rate ∆(t) in (B.1) is in general
stochastic, depending on the stochastic process {N e(t, y) : y ≥ 0}, which in
turn depends on the model history up to time t. Nevertheless, we propose
(B.1) as a basis for a tractable deterministic approximation for the depar-
ture rate, independent of the history, in the case that the stochastic process
N e(t, y) has relatively low variability, as often occurs when (i) the number of
customers in service is relatively large and (ii) the service times are relatively
long. In that case, we propose approximating the departure process be an
NHPP with time-varying rate

δap,1(t) ≡ E[∆(t)] =

∫ ∞

0

h(y) dyE[N e(t−, y)]. (B.2)

Of course, the expectation E[N e(t, y)] appearing in (B.2) is typically difficult
to compute, but it readily can be estimated by simulation.

For a more elementary analytical deterministic approximation, we can
exploit a MSHT FWLLN. Our main example is the Gt/GI/∞ model with
time-varying arrival rate function λ ≡ λ(t). We can exploit the FWLLN in
Theorem 3.1 of [10]. Assuming that the system started empty in the distant
past, in addition to the other conditions there, that leads to the NHPP
approximation with rate

δap,2(t) =

∫ ∞

0

h(y) dy

∫ y

0

F c(s)λ(t− s) ds =

∫ ∞

0

f(y)λ(t− y) ds (B.3)

with the final relation in (B.3) holding because of the simple relation h(y)F c(y) =
f(y). If the arrival rate is constant λ, so that we have the stationaryG/GI/∞
model, then δ(t) = λ and the approximating NHPP is homogeneous Poisson
with rate λ, the same as the arrival rate. Our asymptotic results support
an NHPP approximation with the time-varying rate (1) for the Gt/GI/∞
model.
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