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Calculation of the GI/G/1 Waiting-Time Distribution and its
Cumulants from Pollaczek’s Formulas
Joseph Abate, Gagan L. Choudhury, and Ward Whitt

Calculation of the GI/G/1 Waiting-Time -, -
Distribution.and its Cumulants from ‘
Pollaczek’s Formulas :

In 1952 Félix Pollaczek derived contour-mtegral expres-
sions for the Laplace transform and the cumulants of the
GI/Gf1 steady-state waiting-time distribution. We show
that it is easy to compute the GI/G/1 waiting-time dis-
tribution and its cumulants (and thus its moments) from'
Pollaczek’s formulas. For the waiting-time distribution,”
we use numerical transform inversion, numierically in-
tegrating the Pollaczek contour integral to obtain the
transform values. For the cumulants and the probabii-
ity of having to wail, we directly inlegrate the Pollazcek
contour integrals numerically. The resulting algorithm -
is evidently the first for a GI/G/1 queue in which nei-
ther the transform of the interarrival-time distribution
nor the transform of the service-time distribution need

. be rational. The algorithm can even be applied to long-"
tail distributions, i. ¢., distributions with some infinite
moments. To treat these distributions, we approximate
them by suitable cxponemially-dampéd versions of these -
distributions. Overall, the aigorithm is rem'arkébly sim- .
pie comparcd to altemalwe algoruhms rcqumng morc_‘
stmcmrc ; :

Berechnung der GI/G/1 Wartezeit- Verteilung
und deren Kumulanten aus den Formeln von
Pollaczek

Félix Pollaczek entwickelte 1952 Formelausdriicke mit Kon-
turintegralen fiir die Laplace Transformation und Kumu-
lanten der slalionaren GI/G/1 Wartezeit-Verteilung. Wir
zeigen, dass von diesen Formeln Poilaczeks die GI/G/
Warlezeit-Verlet lung und deren Kumulanten (und daher
auch deren Momente) einfach berechnet werden kénnen.
Fiir die Wartezeit-Verteilung werden durch numerische In-
tegration von Pollaczeks Konturintegral Transformations-
werte gewonnen und dann eine eine numerische Riickirans-
formation durchgefuhr, Fir die Wartewahrscheinlichkeit
und deren Kumulanten werden die Konturiniegrale von
Pollaczek direk! integriert. Der auf diese Weise eniste-
hende Algorithmus fiir das Wartesystem Gl/G/1 ist offen-
sichtlich der erste, bei dem weder die Transformierte der
Zwischenankunfiszeit-Veneilung noch die der Servicezeit-
Yerteilung eine rationale Form haben missen. Dieser Algo-
rithmus kann seibst bei “long-tail” Verteilungen angewendet
werden, z. B. Verteilungen mit einigen nicht-endlichen Mo-
menten. Zur Behandlung solcher Verleilungen werden diese
durch geeignete exponenticl] abklingende Versionen dieser
Verteilungen approximiert. Insgesamt ist der hier vorgestellte
Algorithmus bemerkenswert einfach verglichen mit alterna-
tiven Algarithmen, die mehr Strukturmerkmale erfordern.

1. Introduction and Summary

In 1987 the Cperations Research Society of Amer-
ica celebrated its 35th anniversary by making special
commemorative T-shirts. One of these, now frequently
worn by six-year old Daniel Whitt as a night shirt, dis-
plays the famous Pollaczek-Khintchine formula for the
mean steady-state waiting time in the M/G/1 queue:

5({{‘;,3(”%)- (1)

As a consequence, *FPollaczek” is a household word
in some households. Of course, the number of these
households may not be sc large, but surely every student
of queueing theory learns (1) and comes to know the
name of Félix Pollaczek. Among queueing theorists,
Félix Pollaczek is highly henored as a pioneer in the
serious mathematical study of queueing models. Félix
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Pollaczek is also honored for his persistence in face of
adversity; see Cohen [1]. Thus, we are pleased 1o be
able to contribute to this special issue in memory of
Félix Pollaczek on the 100th anniversary of his birth.

It is natural to wonder what Pollaczek would think
of queueing theory today. What questions would inter-
est him if he were still with us? During his long life,
Pollaczek had the opportunity to see the beginning of
the rapid development of computers. Nevertheless, he
probably would be impressed with the much greater
emphasis today on computational methods for queues
and related stochastic models. No doubt he would enjoy
the vivid color graphics displaying queueing resuits. He
would see how the focus on numerical algorithms has
contributed to the development of new theory, includ-
ing new ways of looking at old models. Now we are
much more inclined to ook for expressions that will
lead to effective numerical algorithms; e. g, see Neuts
{2}, (3]-

However, new algorithmic goals do not necessar-
ily mean that we must abandon the established re-
sults. For example, many distributions of interest in
queueing theory have been characterized in the form
of transforms. Instead of lamenting about the “Laplace
curtain” obscuring the desired queueing descriptions,
and looking for new characterizations, we can try to
calculate the distributions and their momenis by nu-
merically inverting these transforms. We have been
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exploring this approach, and we have found it to be
very effective. We have found that it is possible to
calculate probability distributions directly from their
transforms; see Abate and Whitt [4], [5], [6], [7])-
We have found that it is possible to calculate mo-
ments and asymptotic parameters from moment gener-
ating functions, see Choudhury and Lucantoni [8]. We
also have recently developed algorithms for calcuiat-
ing the steady-state distributionsin BMAP/GI/1 queues
that combine matrix-analytic methods in Lucantoni [9]
with transform inversion; see Abate, Choudhury and
Whitt [10],[11] and Choudhury, Lucantoni and Whitt
[12],[13],[14]. We have also developed multidimen-
sional transform inversion algorithms and applied them
to calculate the time-dependent distributions in station-
ary and time-dependent models; see Choudhury, Lu-
cantoni and Whitt [15),[16],[17].

With this in mind, we think that Pollaczek might well
want 10 see what numerical algorithms he could develep
from his own resuits. He might hope that the new com-
putational emphasis would not eliminate the need for
his analytical results, but instead wouid help make his
early analytical results even more useful. Since he no
longer can do this, we intend to do it for him. If he is
watching, we hope that he is pleased,

In fact, a significant start in this direction was already
made by De Smit [18],[19]. Pollaczek had the oppor-
tunity to appreciate De Smit’s [20],[21] generalization
(in a thesis directed by Cohen) of his analysis of the
difficult GI/G/s mode! in Pollaczek [22],[23], but he
did not have the opportunity to see the later numeri-
cal algorithms for the special-case of hyperexponential
service-time distributions based on Wiener-Hopf meth-
ods in the 1983 papers.

Pollaczek’s general G1/G/s results actually do not
require that the service-time distributionbe H; (hyper-
expanential} or even have a rational Laplace transform.
In pamcular the double transform of the waiting times
of successive customers 3 o, 7" Ee~%W= is obtained
from the solution of s simultaneous linear integral equa-
tions, involving s-dimensional contour integrals; see
De Smit [21, pp. 157-159]. We believe that this repre-
sentation can be the basis for effective algorithms with
general distributions, at least when s is not too large,
but this remains an important topic for future research.

In this paper we have a more modest goal. Here
we investigate whether it is possible 1o do numerical
calculations from Pollaczek’s more elementary GI/G/1
formulas. Pollaczek [24] derived contour-integral ex-
pressions for the Laplace transform and the cumulants
of the steady-state waiting-time distributionin the gen-
eral GI/G/1 queue. This GI/G/1 model has one server,
the first-in first-out service discipline, and i.i.d. {inde-
pendent and 1denucally distributed) service times that
are independent ‘of i.i.d. interarrival times, where both
the interarrival times and service times can have general
distributions.

To state Pollaczek’s results, let V be a generic service
time and Jet U be a generic interarrival time, We assume
throughout that 0 < EV < EU < oo, so that p =
EV/EU < 1 and the steady-state waiting time has a

proper distribution; see Asmussen [25]. Let G(t) be the
cumulative distribution (cdf) of V' — U7 and let ¢(z) be
its transform, defined by

#(z) = BV -Vl _/ e da(t)
= Be*V e~V | (2)

which we assume is analytic for complex z in the strip
|Re z| < & for some § > 0. A natural sufficient condi-
tion for this analyticity condition is for the service-time
and interarrival-time distributions to have finite mo-
ment generating functions in a neighborhood of the
origin, and thus moments of all orders, but neither the
transform of the interarrival-time distribution nor the
transform of the service-time distributions need be ra-
tional. (As a consequence, neither distribution need be
phase type.)

Moreover, as noted in Pollaczek [23, p. 40] and Co-
hen [26, Section 11.5.9, p. 31], it is possible to treat the
case of more general service-time distributions by con-
sidering limits of service-time distributions that satisfy
this analyticity condition. We discuss this extension
here in Section 4. Now we assume that #(z) in (2) is
indeed analytic for complex z in the strip |[Re 2| < §
for some § > 0.

Let W be the steady-state waiting time. Our first
Pollaczek formula is for the Laplace transform of W,
namely,

Eem'W = (3)
= exp{ 5 [ =yl - 6= s

where s is a complex number with Re(s) > 0, C is a
contour to the left of, and parallel to, the imaginary axis,
and to the right of any singularities of log[l — ¢(—z))
in the left half plane; see Syski [27, (xii), p. 33], [28,
Theorem 3, p. 41] or Cohen [26, Chapter 5] as well
as Pollaczek [24],[29] and Le Gall {30] (in French).
Formula (3) was also derived by Kingman [31, p. 348].
Let ¢, (W) be the nth cumulant of W, i. e, the nth
derivative of log Ee*" evaluated at s = 0. Recall that
the first cumulant is the mean, the second cumulant
is the variance, the third cumulant is the centra] third
moment E(W — EW )3, and the fourth cumulant is

ca(W) = B(W ~EW)* - 3(E(W - EW)*)?; (4)

see, €. g., Riordan [32, p. 37]. From (3), we obtain two
more Pollaczek formulas

ol i) = L2 [ ol - g2 2 ()

and

P(W > 0) =
=t-ap -k [l oo %) (@

where C is the contour in (3); see Syski [28, (5.7)(5.9),
p. 42).
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Our goal is to compute using (3), (5) and (6). How-
gver, first we point out the connection to the well known
Spitzer [33] formula

Ee '™ = exp {f:n'lE [e"si - 1]} , (7)

n=1

where s is again a complex number with Re s > 0,
S, is the nth partial sum of i.i.d. copies of V - U
{with distribution the n-fold convelution of &), and
"zt = max{z, 0}; see Cohen [26, (5.50), p. 280] and
Asmussen [25, (4.3), p. 174]. A nice derivation of (7)
appears in Chung [34, Section 8.5]. For additional
discussion, see Spitzer [33},[35],[36],[37], Kingman
[38],[39],{31],{40]. Kemperman [41], Le Gali [30] and
Siegmund [42, Chapter VIII].
Paralleling (5) and (6), we also have the formulas

EW = ) n"'E(5}),

n=1

Var(W) = Y n 'E((S}?)) (8)

n=l

and el

P(W>0)=1—exp {—- Z n“lP(Sn>0)} i (9)
n=1

for (9) see Kingman [31, p. 350].

Even though (3) and (7) look quite different, they are
easily shown to be equivalent, as was done by Syski
[27),[28], and as evidently was known 1o Pollaczek
(see, e. g., Pollaczek [23, p. 40]). Theorem 2 of King-
man [31] also established (3) from Spitzer’s formula,
exploiting an alternative integral representation estab-
lished by Spitzer [35], but without reference to Pol-
laczek. Kingman [31] also shows that (3) is equivalent
to yet another integral representation for the Laplace
transform of W in the GI/G/1 queue established by
Smith [43]. Later, Kingman [40] discusses the connec-
tion to Pollaczek [24],[29).

It is significant that the integral representations
equivalent to (3) have played an important rele in
asymptotics. In particular, Kingman [38],[39] used
these integral representations to establish his classic
heavy-traffic limit thecrems for the GI/G/1 queue; see
also Cohen [26, p. 596).

In the remainder of this paper we point out that it is
relatively straightforward to numerically calculate the
tail probabilities P(W > z) from (3), the cumulants
cn (W) from (5) and the probability of delay P(W > 0)
from (6). In Section 2 we describe the algorithms; in
Section 3 we discuss a few examples; in Section 4 we
discuss the case in which the transform ¢(z) in (2)
is not analytic in z for z in a strip |Re 2| < § for
some § > 0; in Section 5 we discuss how to obtain
the waiting-time asymptotic decay rate 77 in (12) below
from the cumulants in (5); and in Section 6 we state our
conclusions.

Pollaczek [24],[29] also derived expressions for the
transient distributions, which can also be the basis for
effective algorithms. We intend to discuss algorithms

for the transient behavior in a subsequent paper; see
[15],[16),[17] for related work.

2. The Algorithms

We first describe an algorithm to compute the tail prob-
abilities P(W > z) based on (3). Then we describe
an algorithm to compute the cumulants ¢, (W) and the
probability of detay P(W > 0) based on (5) and (6).
All computations are done using double precision.

2.1 Tail Probabilities

Abate and Whitt [4],[7] describe algorithms for com-
puting tail probabilities F¢(2) = P(W > z) by nu-
merically inverting the Laplace transform
. L] - —W
(s) = f e Fe(s)de =~ 2 (10)
o L)

For example, the algorithm EULER there reduces to
a finite weighted sum of terms Re ﬁ"(u + kut) over
integers k for appropriate real numbers v and v (lhe
number of different & might be as low as 30.) To apply
this algorithm, it suffices to compute Re #4(s) in (10)
for s of the required form s = u+ kvi. For this purpose,
it suffices to compute Ee=*% in (3) for s of this same
form.

The standard expression for (3), e. g., as in Syski
[27],[28], bas the contour just to the left of the imagi-
nary axis, but this poses numerical difficulties because
of the singularity in the first portion of the integrand,
s/z(s — z), and in the second portion, log[1 — ¢(—2)],
at z = 0. However, this difficult is easily avoided by
moving the vertical contour of integration to the left,
but still keeping it to the right of the singularity of
log[1 — ¢({—2)] in the left halfplane closest to the ori-
gin, which we denote by —. It turns out that this critical
singularity of log(1 — ¢(—z)] also corresponds to the
singularity of Ee=*" in the left halfplane closest to the
arigin, i. e.,

n=sup{s > 0: Ee'" < o0)}. (11)

Given a reasonable estimate of 1, we perform the
integration (3) by putting the contour at —»/2. On this
contour, z = —n/2 + iy and y ranges from —oo to
+o0. Eq. (3) becomes Ee~*% = exp(—1I), where

I=s ( j om oy loglt ~ #(al)dy +
+ [ gyt = 6(-2) dy)

= :.2*1;-/:0 ('z:(ss——z) log[l - ¢(~2)] +
+ ool - é(-a)) &y (12
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withZ = —n/2—1iy.Ingeneral, I in(12)iscomplex; we
compulte its real and imaginary parts by integrating the
real and imaginary parts of the integrand, respectively.
However; if s is teal, then so is I. In that case, the real
parts of the two components of the integrand are the
same, thereby simplifying the computation somewhat.

For the GI/G/1 queue, the desired parameter 7 in (11)
can usually be easily found by sclving the transform

equation
$(n) =1 (13)

for ¢ givenin (2); see Asmussen [25, p. 269] and Abate,
Choudhury and Whitt [10]}. (We describe yet another
way to get 77 in (11) from the cumulants using (5) in
Section 5.) Since ¢ is convex, 7 in (13} is easily found
by search. It suffices to restrict attention to the interval
(0, n,), where

. = sup{s > 0: Ee'V < oo} (14)

with V being a service time. (Of course n, can be
infinite, but that presents no major difficulty; in that case
we start the search in the interval (0, 1. If the interval
does not contain a root of (13), then we geometrically
increase the upper limit until it contains the root.) The
value of 7, in (14) is easily found from the service-time
Laplace transform using the algorithm in Choudhury
and Lucantoni [8].

However, it can happen that transform eq. (13) does
not have a root even though the transform ¢ in (2)
satisfies the analyticity condition; e. g., see the M/G/1
example in Example 5 of Abate, Choudhury and Whitt
[10]. This means that = #, > 0 forn in (11) and 7,
in (14), so that we can still put the vertical contour at
—n/2. We remark that our algorithm has no difficulty
with Example 5 of [10].

The specific numerical integration procedure we
used is fifth-order Romberg integration, -as described
in Press, Flannery, Teukolsky and Vetterling [44, Sec-
tion 4.3]. We first divide the integration interval {0, oo)
in (12) into a number of subintervals. If % is not too
close to 0, then no special care is needed and it suf-
fices to use the two subintervals (0, 1), and {1, co) and
then transform the infinite interval into (0, 1) using the
transformation in [44, eq. (4.4.2)].

However, more care is required for less well be-
haved distributions (e. g., highly variable, nearly de-
terministic, or when 7 is close to 0). Then we exam-
ine the integrand more carefully and choose subinter-
vals so that the ratio of the maximum to the mini-
mum value within any subinterval is at most 10 or
100. This helps ensure that computational effort is
expended where it is needed. Indeed, a version of
the algorithm was developed to do this automatically.
In this automatic procedure, the integration interval

0,00} in (12) is divided into m + 1 subintervals:

0, 51), (b1, b2)s + o vy (b1, bm), (b, 00). The last in-
finite subinterval {by,, 00} is transformed into the finite
interval (0, b.1) using the transformation in {44, eq.
(4.4.2)]. Within each subinterval, a fifth-order Romberg
integration procedure is performed. An error tolerance
of 10712 is specified and the program generates suc-
cessive partitions (going from n to 2n points) until the

estimated improvement is no more than either the toler-
ance value itself or the product of the tolerance and the
accumulated value of the integral so far (in the current
subinterval as well as in earlier subintervals).

The specific procedure used for choosing the subin-
tervals is as follows. If the integrand doesn’t differ by
more than a factor of 10 in the interval (0, 1) then by is
chosen as 1. Otherwise, by is chosen such that the inte-
grand roughly changes by a factor of 10 in the interval
{0, b1 ). The endpoint by is roughly determined by eval-
uvating the integrand at 0 and at the points 10~™ with
n=10,9,...,0.For 2 < i < i, the ratio b; /b;.; is
assumed to be a constant X, where X is an input pa-
rameter. The number m is determined by looking at the
ratio of the contribution from the subinterval (b;_,, b;)
to the total contribution so far. If this ratio is less than a
constant €, where ¢ is a second input parameter, then m
is set to %, i. e., the next interval is made the last inter-
vai. A good choice of K and € depends on the service-
time and interarrival-time distributions. Typically less
well behaved distributions require smaller X andfor e,
Our numerical experience indicates that K = 3 and
€ = 10~* works pretty well for most cases of interest,
Specifically, we observed that, with these choices of
K and ¢, the computation time for each point of the
waiting-time distribution is less than 1 minute (often
much less) on a SUN workstation for all the numerical
examples reported in this paper.

The Laplace transform inversion algorithm EULER
also gives an estimate of the final error. If it is close o
or below the 10~2 precision specified, we can be fairly
confident of a good computation.

2.2 The Cumulants and the Probability of Delay

The algorithms for the cumulants ¢,,(W) and the prob-
ability of delay P(W > 0) using (5) and (6) are easier
than the algorithm for the tail probabilities P(W > z)
based on (3), because they do not require the numerical
transform inversion step. We simply calculate the inte-
grals in (5) and (6}, using the same contour, the same
subintervals and the same Romberg integration.

Since ¢ {w) and P(W > 0) are real quantities (un-
like Ee~*W), there is further simplification in the inte-
grals. From (5) and (6), we get

=]

en(W)= g—_y_/Re (log%_—:is——_z_)]) dy (15)
and ’
P(W >0) = (16)

- 1-exp {1 [ (el "

where z = —n/2 + iy. We observed that the com-
putation time for each cumulant of the wailing-time
distribution is typically between a fraction of a second
to a few seconds on a SUN workstation.
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3. Gamma Queue Examples

We tried a variety of examples, including examples with
deterministic and two-point distributions. As noted in
Abate and Whitt [4], such deterministic distributions
tend to be more difficult for the nurnerical transform
inversion, but satisfactory accuracy can usually be ob-
tained at the expense of somewhat greater computa-
tional effort.

The computation tends to be much gasier with
smooth densities. There is no requirement that the trans-
forms be rational. To illustrate, in this section we con-
sider T, /Tg/1 queues, where I' denotes the gamma
distribution, and « and # are the shape parameters of
the interarrival-time and service-time distributions, re-
spectively. The gamma distribution with scale parame-
ter A and shape parameter o has density

f(a:) — _(lajAa rx-le—lz, z>0, (17)

mean o/, variance &/ A? and Laplace transform

Ee=tV Ej;m e’ f(z)dz = (,\is)a' (18)

The transform in (18) is rational if, and only if, the
shape parameter « is a positive integer. When a = k
for an integer k, the gamma distribution is also called
Erlang of order k (B} }. From Abate and Whitt [4, Sec-
tion 12], which considers convolutions of exponential
distributions, we expect that this distribution will not
be very difficult, at least when « is not too small.

We stipulate that the mean service time is 1 and that
the arrival rate is p. The remaining two parameters «
and B of the T'; /Ts/1 queue are the shape parameters
of the interarrival-time and service-time distribution,
Since the squared coefficient of variation {(SCV, vari-
ance divided by the square of the mean) is the reciprocal
of the shape parameter, it suffices to specify the SCVs
¢? and c? of the interarrival-time and service-time dis-
tnbutlons

We checked our algorithm against known results by
considering the By /T'/1 and T'/E; /1 special cases.
These are special cases of the PH/G/1 and GI/PH/1
queues, for which algorithms were developed by
Choudhury, Lucantoni and Whitt [12], exploiting re-
sults for the M/G/1 and GI/M/1 paradigms in Neuts
{2),[3] and Lucantoni {9]. For example, the new algo-
rithm here agrees for the Ez/T'1/2/1 queue, which is
considered in Choudhury and Whitt {45, Example 7.3].
We also compared our numerical results with numeri-
cal results in Chaudhry, Agarwal and Templeton [46].
Also, we found good agreement with results for the
E10/E;j00/1 queue in Chaudhry, Agarwal and Temple-
ton [46, Table 10, p. 141].

Some other algorithms for E; /En /1 queues get
more difficult as & and m increase. Hence, we per-
formed calculations for Ex /Ex/1 models with large
k.

Example3.l. E;/E;/1Queues. Wedid calculations
forthe Ey /E, /1 quevefork = 10,k = 100,k = 1000

and k = 16, 000. In this case the transform equation in
(13) for the asymptotic decay rate n becomes

(k f n)k (k +knlp)k =4

from which we easily obtain
7= k(1= p) (20)

Since E} is approaching a deterministic distribution
as k increases, to avoid having negligible probabilities
we let p = pk increase with k. In parncu]ar we let
/. = 1 — k=" With this choice, n = n, = 1 for
all k. Also Wy, lhc steady-state waiting time in model
k, converges to an exponential random variable with
mean 1 as k — oo, as can be seen by applying the
heavy-traffic argument of Kingman [38] using (3).

Numerical values of same tail probabilities and cu-
mulants are given for E; /E, /1 queues for these cases
in Table 1. The exponential limit is displayed as well
under the heading k = oo. None of these presented any
numerical difficulties.

Interestingly, from Table 1, we see that for these
cases W is quite well approximated by a mixture of

an atom at 0 with probability 1/vk = «/T— p and an
exponential with mean 1 with probability 1 — 1/+/k.
Example 3.2. Constant sum of SCVs, low variabil-

ity. A simple approximation for the mean steady-state
waiting time in a GI/G/1 queue, for which EV = 1, is

(19)

p(c3 +c2)
B, (21)

In order to see the impact of unusual variability (e. g.,
departure from the M assumpuon) itis mlerestmg to
see how the queue behaves as ¢ and ¢? change with
¢ + c? held fixed. chce, we conmder two cases: very
low vanabllny, where c + ¢? = 0.20, and very high
variability, where ¢2 +¢? = 100. TablesZandS display
numerical results for these two cases.

For the low variability case, we think of the
FEio/Ey0/1 (or I'10/T10/1) system as our ref-
erence system. We consider four other systems:
I‘(1[ 05)/Tq17.18)/1, Tarasy/Tasoesy/l Taroen/

(1/ 19)/1 and P(l/ 19)/ (1/. 01%/1 The last two cases
are relatively extreme within this class. They clearly
cotrespond approximately to D/Es /1 and Eg/D/1.

We use traffic intensity p = 0.8 to have non-
negligible values, but not to be too much in heavy
traffic. As p — 1, we know that the distribution is
asympitotically exponential with the mean in (21). Con-
sistent with the heavy traffic approximation, we see
from Table 2 that the congestion measures in this low
vanablhty casc do not differ much as we change ¢2
with c2 4 ¢2 fixed at 0.2. From Table 2, we also see
that P(W > 0) and EW decrease with a, consistent
with lower congestion, but the higher tail probabilities
P(W > k), the higher cumulants ck(W) and the recip-
rocal of the asymptotic decay rate, 77", increase with
o, indicating higher congestion. This may be consid-
ered consistent with intuition: higher « corresponds to

EW =
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Table 1. Tail probabilities and cumulants of the steady-statc waiting time in the Ex / B4 /1 mode! with traffic intensity p = 1 — k=1,
as a funclion of k. The case k = co is an exponential with mean 1.

Congestion k
Measure 10 100 1,000 10,000 (ve]

P(W > 0) 0.7102575 0.9035808 0.9687712 0.9900406 1.0000000
PW>1) 0.2780070 0.3385844 0.3584117 0.3648607 0.3678794
P(W > 3) 0.0376169 0.0458224 0.0485057 - 0.0493785 0.0497871
P(W > 5) 0.0050905 10.0062014 0.0065645 0.0066825 0.0067379
P(W >T7) 0.0006890 0.0008393 0.0008884 0.0009044 0.0009119
a(W) 0.7484185 0.9195281 0.9741762 0.9917852 01=1
c2(W) 0.9491038 0.9951389 0.9995064 0.9999502 =1
c3(W) 1.982543 1.995377 1.9999854 19999996 20=2
ca{W) 5.892213 5.999948 5.999999 6.000000 3t=8
cs(W) 23.995566 23.999995 24.000000 24.000000 41 = 24
cs(W) 119.997754 120.000000 120.000000 119.999993 b1=120

Table 2. A comparison of congestion measures in I'a/Tg/1 syslems with ¢ + A =at+f =02andp =08, in .

Example 3.2.
Congestion Atrrival Shape Parameter o

Measure 100 20 10 6273 55/19
P(W > 0) 0.415705 0.441981 0.473862 0.504464 0.527908
P(W >1) 0.072132 0.073721 0.074997 0.075428 0.075371
P(W > 2) 0.011153 0.010741 0.010140 0.009466 0.008888
P(W > 3) 0.001718 0.001563 0.001372 0.001188 0.001048
P(W > 4) 0.0002646 0.0002280 0.0001857 0.0001490 0.0001235
P(W > 6) 0.00000628 0.00000482 0.00000343 0.00000234 0.00000170
EW = c1(W) 0.23995 0.25108 0.26441 0.27707 0.28672
Var(W) = ca(W) 0.20663 0.20591 0.20359 0.19979 0.19576
ca(W) 0.26583 0.25215 0.23413 0.21551 0.20050
cs(W) 0.46167 0.41869 0.36780 0.32082 0.28638
cs(W) 1.02193 0.89075 0.74614 0.62221 0.53694
es(W) 2.77197 2.33208 1.87271 1.5004 1.25558
n 1.87070 1.92710 2.00000 2.07566 2.13826

a more variable service time, which we expect to make
big delays more likely, while lower a corresponds to
more variable interarrival times, which we expect to
make the probability of having to wait higher.

Exmple 3.3, Constant sum of SCVs, high variabil-
ity. Now we consider the high variability case. For the
high variability case, we think of I'(3750)/T'(1/50)/1
as the reference system. We consider four
other systems: I'(1720)/T(1780)/1: T(1780)/T(1720)/ 1,
r(ll_l)/r(llgg_g)/l and 1"(1/99_9)/?(1/_1)/1. The last
two cases are relatively extreme cases within this
class. They clearly correspond approximately to
E10/T(1/100)/1 and T'(1100)/ Exo/1. They are inter-
esting because one distribution has very high variability
while the other distribution has very low variability.
Since the variability is so high, we use traffic in-
tensity p = 0.1 to obtain moderate values. Since p
is very small and the variability is very high, we ex-

pect that the congestion measures will vary much more -
than in the low-variability case, and this is demon-
strated by Table 3. For example, the probability of de-
lay P(W > 0) ranges from 0.085 to 0.965. These cases
are rather pathological and would be stressfuj for the
algerithm without an adaptive choice of the subinter-
vals for the numerical integration. However, with the
adaptive choice of integration subintervals, these cases
present no serious difficulty. The error estimates on the
final distribution calculations were good, all being of
order 10~10,

4. Long-Tail Service-Time Distribu-
tions

Pollaczek’s integral representations in (3), (5} and (6)

. depend on an analyticity condition that is satisfied
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Table 3. A comparison of congestion measures in ' /T'g/1 systems with ¢2 + ¢3 = o™ 4 =" = 100 and p = 0.1 in

Example 3.3.
Congestion Arrival Shape Parameter &

Measure 10 1/20 1/50 1/80 1/99.9
P(W > 0) 0.08531 0.48056 0.80578 0.92975 0.96520
P(W > 10) 0.0675547 0.1878556 0.3425028 0.5197019 0.6834263
P(W > 60) 0.0288572 0.0648011 0.1042504 0.1257971 0.1124270
P(W > 110) 0.0142312 0.0285493 0.0384538 0.0323026 0.0184948
P(W > 160) 0.0074056 0.0134382 0.0148557 0.0083312 0.0030425
EW =c (W) 5.142 x 10° 1.199 x 10! 1920 x 101 | 2460 x 10 | 2716 x 10!
Var(W) = c2(W) 7.278 x 10° 1.280 x 103 1450 x 10® [ 1151 x 10% | 7.673 x 103
cs(W) 1.704 x 10° 2.396 x 10° 1.902x 10° | 9289 x 10* | 4.252 x 10%
.co(W) 5.622 x 107 6.409 x 107 3542x 107 | 1.071x 107 | 3534 x 10°
es (W) 2402x 10%° | 2230% 10| 8533x10° | 1613x10° | 3.911x 10®
n 0.01000 0.01242 0.01800 0.02709 0.03609

when the interarrival-time and service-time distribu-
tions have finite moment generating functions in a
neig‘t}borhood of the origin; i. ., when Ee’Y < co and
Fe?Y < oo forsome s > 0. However, as noted in Pol-
laczek [23, p. 40] and Cohen [26, p. 310], it is possible
to treat the general case by representing a general dis-
tribution as a limit of a sequence of distributions each
of which satisfies this analyticity condition. It is known
that the associated sequence of steady-state waiting-
time distributions will converge to a proper limit pro-
vided that the distributions and their means converge to
propet limits; see Asmussen [25, p. 194]. (The moment
condition is actually on (V = U)* = max{V -V, 0}.)

In fact, the long-tail interarrival-time distributions
actually present no difficuity. It suffices to have ¢(z)
in (2) analytic in the strip 0 < Re (2) < & for some
é > 0. However, the service-time distribution poses a
real problem.

Hence, if H¢(z) is the given service-time com-
plementary cdf with Laplace transform " ¢(s) and

mean m = H(0), then it suffices to find an approxi-
mating sequence of service-time complementary cdf’s
{{I,‘{(::) : n > 1} with associated Laplace transforms
{HE(s) : n > 1} and means {m, = H5{0): n > 1}
such that HE(s) — H¢(s) as n — oo for all s. Then
HEi(z) — H*(z) as n - co for all z that are conti-
nuity points of the limiting complementary cdf H ¢ and
Mn — M asn — 0.

A natura] way to obtain a sequence of approximat-
ing service-time distributions with finite moment gen-
erating functions in some neighborhood of the origin
when this condition is not satisfied originally is to sim-
ply truncate the given service-time distribution, as in
Cohen [26, p. 310). For examplg, we can choose a se-
quence of truncation points {, : n > 1} and let

. He(z) ~ Hé(1n);
Hn(2)={0' (E)Zf-n( )

In this scheme we move the mass in the interval [t,,, oo)

<z <ty

(22)

to the origin. Alternatively, we could move the mass in
the interval [t,, 00) to the point ¢y,

For our purposes, a difficulty with truncation is that it
does not seem so easy to cajculate the modified Laplace
transform HZ(s) given the original transform H¢(s).
An easier procedure is to introduce exponential damp-
ing in the Laplace-Stieltjes transform with respect to
H, as in Abate and Whitt [4, pp. 15, 29]. In particular,
for any o > 0 let the a-damped compiementary cdf be

(=~}
Hi(z)= '/ e"*'dH(1), z>0. (23)
T

Since we want a proper probability distribution, we
put mass 1 — HZ(0) at 0. If the original service-time
distribution has mean 1 and we want the new service-
time distribution also 1o have mean 1, then we also
divide the random variable V,, with cdf H, by the
new mean Mg, i. e., we let the complimentary cdf be
Hi(mgaz).

The direct approximation in (23} makes the service-
time distribution stochastically smaller than the origi-
nal service-time distribution, which in turn makes the
new steady-state waiting-time distribution stochasti-
cally smaller than the original one, see Stoyan [47],
which may be helpful for interpretation. However,
keeping the same mean seems to give substantially bet-
ter numbers. Here we keep the mean fixed atl.

From (23), it is easy to see that, if k(s) is the origi-
nal Laplace-Stieltjes transform of H, then the Laplace-
Stieltjes transform of Ha{ma2z) with mean 1 is

Rals) = e+ (8/ma)) + 1 - A(e),

where

(24)

ma = —hy(0) = -H(a).  (25)
As in (10), the Laplace transform HZ(s) of H (mqaz)
for H:(z) in (21) is

(26)
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for hq(s) in (22). Hence, given h(s), we can readily
calculate HE(s) for any a > 0.

However, this approach is not trivial to implement,
because it often requires a very small a before Hq(2)
is a satisfactory approximation for H(z), and a small
o means a small 7in (13). Indeed, 0 <7< 5, = a.In
turn, a small 7 means a relatively difficult computation,
because the contour at —7/2 is near the singularity at
0. However, this can be handled by being careful with
the numerical integration. Indeed, our algorithm em-
ploying an adaptive choice of integration siubintervals
was developed to handle this case. (We found that the
algorithm works well in other cases too.)

Exampled.l. AnM/G/1 queue. To illustrate how this
damping approach works, we consider an M/G/1 queue
with service-time density

h(z) = 273(1— (1 +2z +22%)e%®), 2> 0. (27)

This distribution has first two moments m3 = 1 and
™y = oo, s0 that there is a proper steady-state waiting-
time distribution which has infinite mean; see As-
mussen [25, pp. 181-184]. It is easy to see that our
service-time distribution has complementary cdf

He(z) = (22%)7}(1-(1+22)e™ %), =z >0, (28)

and Laplace transform

2

h(s)=1-s+ % In(1+(2/s)).  (29)

We use the M/G/1 queue 1o make it easier to compare
our numerical results with other known results. First,
since the Laplace transform Ee—*%W is available from
the Pollaczek-Khintchine (transform) formula for the
M/G/1 queue, we can also directly apply the numeri-
cal inversion algorithms in Abate and Whitt [4] to this
example. Moreover, we can determine the asymptotic
behavior of the steady-state waiting-time complemen-
tary cdf P(W > z), as we show in Abate, Choudhury
and Whitt [48]. In particular, the first two terms are
given by

P
POV > 20 5 5 ™
P

x (1+ Ty e(2e) - 1]) as z — oo,

(30)

where f(z) ~ g(z) means that f(z)/g(z) — 1;e.
2., see Borovkav [49, Section 22] and Willekens and
Teugels {50] for related resuits,

In Table 4 we display numerical results for this
M/G/1 example in the case p = 0.8. We display nu-
merical results for the tail probabilities P(W > ) for
five valuesof z: 2 = 4,z = 20,z = 100, z = 500 and
z = 2500. We display the exact results (no damping,
a = 0) obtained by the algorithm EULER in Abate and
Whitt [4] and both the one-term and two-term asymp-
totic approximations based on (28). We also display the
appreximations obtained from five values of the damp-
ing parameter a: @ = 1072, & = 1073, & = 107,
a = 107% and & = 10~2. The numerical resuits based

on the new algorithm here and EULER agreed to the
stated precision in all cases except @ = 10~%. For
@ '= 1078 both numerical results are given, from
which we see that the agreement is excellent.

From Table 4, we see that the damping parameter
needs to be smaller and smaller as z increases in order
for the calculations based on the approximating cdf
H; 10 be accurate. However, the calculation gets more
difficult as & increases and a decreases. For the smaller
« values reported, it was important to carefully choose

“the subintervals for the Romberg integration so that

the integrand does not fluctuate too greatly within the
subinterval. This was done by the automatic procedure
described in Section 2.1,

In this example we are able to obtain a good calcula-
tion for all z because the asymptotics apply before the
computation gets difficult. The relative percent error for
the one-term (two-term) approximations at £ = 100,
z = 500 and ¢ = 2, 500 are, respectively, 19%, 5.2%
and 1.4% (5.6%, 0.8% and 0.1%).

5. Using the Cumulants to Get the De-
cay Rate

We have suggested solving the transform eq. (13) in
order to get the decay rate n and thus the location of the
contour, —1/2. However, 7 can also be estimated from
higher cumulants using the cumulant contour integral
(5). In particular, ¢; /(§ — 1)! ~ 777 as j —+ o0, 50 that
Jejfeipr =+ nas g — oo.
Proposition. Let X be a nonnegative random vari-
able. If P(X > z) ~ ae™" as ¢ — oo for positive
constants o and 7, then ¢; = ¢;(X) ~ (5 = 1)!/7 as
Jj— oo,
Proof. Letp; = EX7. Under the exponential asymp-
totics condition, p; ~ ajln™7 as j — oo by Theorem 1
of Choudhury and Lucantoni [%1. Therefore, the radius
of convergence of M{z) = 3 .;_, 2’ /5! is n and by
the fina! value theorem for generating functions,
M(z) = (1~ 207 )" My(z), (31)
where M) (z) isanalyticatand My(z) — aasz — 7.
It follows that log M (z) also has radius of convergence
n, butlog M (z) = 372, €27 /1 Hence,

ez
log M(z) = 2’—|=
j=0 I
= —log(l - zn~*) + log M1 (z) =
=" oo

Il
g
Ry AN
+
Ng
3

where the second term is the Taylor series expansion
of log My (z) about z = 0, so that

€5 1
= = Tt myy,

Tl izl

(32)
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Table 4. A comparisen of approximations for tail probabilities P(W > z) with exact values in the M/G/1 model with p = 0.8 and

the long-tail service-time distribution in Example 4.1.

F4

Cases 4 20 100 500 2500
a=0
(exact) 0.4653 0.1558 0.02473 0.004221 0.000811
a=10"32 0.4539 0.1175 0.0036 0.000002 0.000000
a=10"3 0.4631 0.1474 0.0017 0.00096 0.000006
a=10"*% 0.4650 0.1544 0.02315 0.0032 0.00032
o =10-¢ 0.4653 0.1557 0.02469 0.004193 0.000788
=108
(Euler) 0.4653 0.1558 0.02473 0.004221 0.000810
a=10""°
(Pollaczek) 0.4653 0.1558 0.02473 0.004224 0.000815
asymptotics
1 term 0.50 0.10 0.020 0.0040 0.00080
2 terms 1.04 0.1538 0.0234 0.004189 0.000810

However, M;(z) has a radius of convergence 51 > 7,
which implies that jp my; — 0 as § — oo, so that
c;j /it~ 1/i7 as § — co. ]

As a consequence of the Proposition, we can esti-
mate 5 by je; /¢j 41 for j suitably large. By looking at
successive § we can see if convergence is taking place.
If we do not estimate 5 by finding the root to (13),
then we can start by guessing an apptopriate place for
the contour. If the computed # is consistent with this
choice, then we can be confident that we have estimated
7 correctly.

From the Proposition, we see that if P(W > z) ~
«e™ "% as ¢ — oo, we can estimate n from the cumu-
lants ¢; (W). However, we also see that the asymptotic
behavior of the cumulants is independent of the asymp-
totic constant o. If we are interested in «, then we can
apply (3) together with the algorithm in Choudhury
and Lucantoni [8] to directly compute the moments
and estimate « as well as . We have implemented this
algorithm and found that it works well. We are inter-
ested in the asymptotic parameters « and 7 because we
have found that the one-term asymptotic e 7% is often
a remarkably good approximation for P(W > z); see
Abate, Choudhury and Whitt [10],[11].

6. Conclusions

In this paper we have shown that it is not difficult to
compute the steady-state waiting-time distribution and
its cumulants from Pollaczek’s [24],[29] formulas (3),
(5) and (6). When the contour is near singularities,

some care is needed in the numerical integration, but
overall it is not difficult. For the tail probabilities, we
use numerical transform inversion together with nu-
merical integration of Pollaczek’s contour integral (3).
For the probability of having to wait before beginning
service and the cumulants, we only need to integrate
the contour integrals (5) and (6). It is significant that
these procedures do not require that the interarrival-
time or service-time transform be rational, Moreover,
as shown in Section 4, with appropriate modifications,
these procedures apply to long-tail distributions that
violate Pollaczek’s analyticity condition. Overall, our
experience indicates that queueing transforms are very
useful for extracting numerical results.
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