
Submitted to Operations Research
manuscript (Please, provide the mansucript number!)

Wait-Time Predictors for Customer Service Systems
With Time-Varying Demand and Capacity

Rouba Ibrahim, Ward Whitt
Department of Industrial Engineering and Operations Research, Columbia University, New York, NY 10027-6699

{rei2101, ww2040}@columbia.edu

We develop new improved real-time delay predictors for many-server service systems with a time-varying

arrival rate, a time-varying number of servers and customer abandonment. We develop four new predictors,

two of which exploit an established deterministic fluid approximation for a many-server queueing model

with those features. These delay predictors may be used to make delay announcements. We use computer

simulation to show that the proposed predictors outperform previous predictors.
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1. Introduction

We investigate alternative ways to predict, in real time, the delay (before entering service) of

an arriving customer in a service system such as a hospital emergency department (ED) or a

customer contact center. We model such a service system by a queueing model with a time-varying

arrival rate, a time-varying number of servers, and customer abandonment. Our main contribution

is to propose new real-time delay predictors that effectively cope with the time variation and

abandonment, which are often observed in practice; e.g., see Brown et al. (2005).

1.1. Motivating Application

We envision our delay predictions being used to make delay announcements to arriving customers.

Delay announcements can be especially helpful with emergency services, such as in a hospital ED.

A recent study by Press Ganey (2009), an Indiana-based consulting company specializing in health-

care services, found that the average patient waiting time in hospital ED’s in the United States is
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about four hours. Making real-time delay announcements is important with such long waits.

Lengthy waits in hospital ED’s are common, due to different factors including: (i) a lack of

capacity, which translates into patients having to wait until hospital beds become available, and

(ii) unpredictable surges in demand, such as those that emerge from disasters or local epidemics.

Due to those lengthy waits, some patients may opt to “leave without being seen” (LWBS) by a

doctor. Updating patients on their status (e.g., via delay announcements), would make their long

waits in the ED more bearable, and could deter them from abandoning the ED before treatment.

Delay announcements can also be helpful with other less critical services. For example, they can

be especially helpful when queues are invisible to customers, such as in call centers; see Aksin et al.

(2007) for background on call centers. Call center operations are typically regulated by service-level

agreements (SLA) which specify target performance levels (such as wait-time level and proportion

of abandoning customers). Nevertheless, in service-oriented (non-revenue-generating) call centers,

such as those providing technical support services to incoming callers, customer wait times can

sometimes be long, even when SLA performance levels are met on average. Indeed, a recent study by

Vocalabs (2010), a Minnesota-based consulting company specializing in customer-service surveys,

found that customer dissatisfaction with lengthy waits in customer call centers remains a major

concern for leading companies such as Apple, Dell, and HP. Making real-time delay announcements

is an inexpensive way of increasing customer satisfaction.

1.2. Alternative Delay Predictors

Alternative delay predictors differ in the type and amount of information that their implementation

requires. (Delay predictors may also be called delay estimators, as we have done in previous papers,

but predictors seems more appropriate, because the predictor is trying to predict a future delay,

not to estimate a model parameter.) In broad terms, we consider two families of delay predictors:

(i) delay-history-based predictors, and (ii) queue-length-based predictors. Delay-history-based pre-

dictors exploit information about recent customer delay history in the system. Queue-length-based

predictors exploit knowledge of the queue length (number of waiting customers) seen upon arrival.
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Delay-history-based predictors are appealing because they rely solely on information about recent

customer delay history and thus need not assume knowledge of system parameters. A standard

delay-history-based predictor is the elapsed waiting time of the customer at the head of the line

(HOL), assuming that there is at least one customer waiting at the new arrival epoch. That is,

θHOL(t,w)≡w, where w is the elapsed delay of the HOL customer at the time of a new arrival, t.

Queue-length-based predictors exploit system-state information including the queue length seen

upon arrival. Additionally, they exploit information about various system parameters such as the

arrival rate, the abandonment rate, and the number of servers. In general, queue-length-based

predictors are more accurate than delay-history-based predictors because they exploit additional

information about the state of the system at the time of prediction.

We quantify the accuracy of a delay predictor by the mean-squared error (MSE), which is defined

as the expected value of the square of the difference between delay prediction and corresponding

actual delay; see (2). The mean delay, conditional on some state information, minimizes the MSE.

Thus, the most accurate predictor, under the MSE criterion, is the unbiased predictor announcing

the conditional mean. Unfortunately, it is usually difficult to determine the conditional mean

exactly. We, therefore, rely on approximations. Here, we exploit deterministic fluid approximations

for many-server queues with time-varying arrivals and a time-varying number of servers, drawing

upon recent work by Liu and Whitt (2010). It is also difficult to determine the MSE of a delay

predictor. Therefore, we rely throughout on computer simulation to quantify the accuracy of the

alternative delay predictors.

1.3. Previous Research

In previous work, Ibrahim and Whitt (2009a, b, 2010), we systematically studied the accuracy of

various delay predictors in several many-server queueing models. The queueing models considered

are controlled environments which mimic real-life customer service systems.

We started with the GI/M/s model, and extended to GI/GI/s (non-exponential service times)

and GI/GI/s + GI (abandonment with non-exponential patience distributions). We showed that
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standard queue-length-based predictors, which are commonly used in practice, may perform poorly.

We proposed new, more accurate, queue-length-based predictors that effectively cope with non-

exponential service and abandonment-time distributions, which are often observed in practice; see

Brown et al. (2005).

Our most promising predictor, QLa, draws on the approximations in Whitt (2005): it approxi-

mates the GI/GI/s+GI model by the corresponding GI/M/s+M(n) model, with state-dependent

Markovian abandonment rates; see §3. Since QLa assumes a stationary arrival process and a con-

stant number of servers, it may perform poorly with time-varying arrivals and a time-varying

number of servers, as we will show. Therefore, there is a need to go beyond QLa.

We then considered the M(t)/GI/s + GI model with time-varying arrival rates and a constant

number of servers. We focused on the HOL delay predictor. We showed that HOL may perform

poorly with time-varying arrival rates. When arrival rates vary significantly over time, customer

delays may vary systematically as well, which leads to a systematically biased HOL predictor. We

proposed refined delay-history-based predictors by analyzing the distribution of customer delay in

the system, and showed that those new predictors perform far better than HOL. Our most promis-

ing predictor is another approximation-based predictor, HOLa. The HOLa predictor is similar to

QLa; see §3. However, unlike QLa, HOLa exploits the HOL delay and does not assume knowledge of

the queue length seen upon arrival. The HOLa predictor has superior performance with a constant

number of servers, but we will show that it too may perform poorly when the number of servers

varies significantly over time. Therefore, there is a need to go beyond HOLa.

1.4. Main Contributions

In this paper, we consider the M(t)/M/s(t) + GI model, which we describe in §2. Since direct

analysis of customer delay is complicated in this model, we propose two different approaches: (i)

in §3, we propose modified versions of QLa and HOLa to account for a time-varying number of

servers, and (ii) in §5, we exploit deterministic fluid approximations for many-server queues with

time-varying arrivals and a time-varying number of servers, drawing upon recent work by Liu
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and Whitt (2010). (The fluid model has also been extended to general service and abandonment-

time distributions with time-dependent parameters, and to networks of queues. We leave such

substantially more complicated scenarios to future work.) We propose new queue-length-based and

delay-history-based predictors. Extensive simulation results, of which we show a sample in §6 and

the e-companion, show that those new predictors have a superior performance in the M(t)/M/s(t)+

GI model.

In Figure 1, we demonstrate potential problems with HOLa and QLa. In particular, we consider

the M(t)/M/s(t)+M model with a sinusoidal arrival-rate intensity function, λ(t), and a sinusoidal

number of servers, s(t), where there are periods of overloading leading to significant delays. We

assume that λ(t) and s(t) have a period equal to 4 times the mean service time; see §6.1. (Without

loss of generality, we measure time in units of mean service time.) With daily (24 hour) arrival-rate

cycles, this assumption is equivalent to having a mean service time E[S] = 6 hours. We let the

relative amplitude, αa, for λ(t) be equal to 0.5. (The ratio of the peak arrival rate to the average

arrival rate is 1 + αa.) We let the relative amplitude, αs, for s(t) be equal to 0.3; see Figure 1.

The HOLa and QLa predictors assume that the number of servers seen upon arrival is con-

stant throughout the waiting time of the arriving customer, and equal to the average number of

servers in the system. (In practice, one might use an estimate of, say, the daily average number

of servers.) In the second (third) subplot of Figure 1, we plot simulation estimates of the average

differences between HOLa (QLa) delay predictions and actual delays observed in the system, as a

function of time (dashed curves). These simulation estimates are based on averaging 100 indepen-

dent simulation replications. It is apparent that both HOLa and QLa are systematically biased in

the M(t)/M/s(t)+M model.

Here, we propose a refined HOL-based predictor, HOLr, and a refined queue-length-based predic-

tor, QLr. Figure 1 nicely illustrates the improvement in performance resulting from our proposed

refinements: We plot simulation estimates of the average differences between HOLr (QLr) delay

predictions and actual delays observed in the system, as a function of time (solid curves).
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Figure 1 Bias of standard and refined delay predictors in the M(t)/M/s(t)+M model with sinusoidal arrival rates

(for model in §6.1). The differences between delay predictions and actual (potential) delays observed

are based on averaging 100 independent simulation replications.

1.5. Literature Review

The literature on delay announcements is large and growing. In broad terms, there are three main

areas of research. The first area studies the effect of delay announcements on system dynamics;

e.g., see Whitt (1999b), Armony and Maglaras (2004), Guo and Zipkin (2007), Armony et al.

(2009), Allon et al. (2010a, b), and references therein. The second area studies alternative ways of

estimating customer delay in service systems; e.g., see Whitt (1999a), Nakibly (2002), Jouini et al.

(2007), and Ibrahim and Whitt (2009a, b, 2010). The third area studies customer psychology in

waiting situations; e.g., see Munichor and Rafaeli (2007) and references therein. This paper falls

in the second main area of research.
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1.6. Organization of the Paper

The rest of this paper is organized as follows: In §2, we describe our general framework. In §3, we

briefly describe the QLa and HOLa predictors, considered in §1, and propose modified predictors,

QLm
a and HOLm

a , that cope with a time-varying number of servers. In §4, we review a deterministic

fluid model, developed in Liu and Whitt (2010), for multiserver queues with time-varying arrival

rates and customer abandonment. In §5, we use these fluid approximations to develop new, refined,

delay predictors. In §6, we present simulation results showing that these new predictors are effec-

tive in the M(t)/M/s(t) + GI model. We make concluding remarks in §7. We present additional

simulation results (including general service-time distributions) in the e-companion.

2. The Framework

In this section, we describe the M(t)/M/s(t) + GI queueing model and then the performance

measures that we use to quantify the performance of the alternative delay predictors.

2.1. The Queueing Model

We consider the M(t)/M/s(t)+GI queueing model, which has a nonhomogeneous Poisson arrival

process with an arrival-rate function λ≡ {λ(u) :−∞< u <∞}. Service times, Sn, are independent

and identically distributed (i.i.d.) exponential random variables with mean E[S] = µ−1 (we omit

the subscript when the specific index is not important). Abandonment times, Tn, are i.i.d. with

a general distribution and mean E[T ] = ν−1. The arrival, service, and abandonment processes are

assumed to be independent. Customers are served according to the first-come-first-served (FCFS)

service discipline. The number of servers varies over time according to the staffing function: s≡

{s(u) :−∞< u <∞}.

We adopt this model, although we recognize its shortcomings. In particular, we assume that

λ(t) and s(t) are both deterministic functions of time, even though they are often not known with

certainty in practice. For example, Jongbloed and Koole (2001) propose a doubly stochastic arrival

process where the arrival rate is assumed to be a random variable. Such generalizations greatly
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complicate the analysis, however, and are left to future research. The results of this paper provide

useful background for similar studies in even more complicated settings.

2.2. Performance measures

2.2.1. Average Squared Error (ASE). In our simulation experiments, we quantify the

accuracy of a delay predictor by computing the average squared error (ASE), defined by:

ASE ≡ 1
k

k∑
i=1

(pi− ai)2 , (1)

where pi is the delay prediction for customer i, ai > 0 is the potential waiting time of delayed

customer i, and k is the number of customers in our sample. A customer’s potential waiting time is

the delay he would experience if he had infinite patience (his patience is quantified by his abandon

time). For example, the potential waiting time of a delayed customer who finds n other customers

waiting ahead in queue upon arrival, is the amount of time needed to have n + 1 consecutive

departures from the system.

In our simulation experiments, we measure ai for both served and abandoning customers. For

abandoning customers, we compute the delay experienced, had the customer not abandoned, by

keeping him “virtually” in queue until he would have begun service. Such a customer does not affect

the waiting time of any other customer in queue. As discussed in Ibrahim and Whitt (2009a,b,

2010), the ASE should approximate the expected MSE for a stationary system in steady state with

a constant arrival rate, but the situation is more complicated with time-varying arrivals. We regard

ASE as directly meaningful, but now we indicate how it relates to the MSE.

2.2.2. Weighted Mean Squared Error (WMSE). Let WQL(t, n) represent a random vari-

able with the conditional distribution of the potential delay of an arriving customer, given that

this customer must wait before starting service, and given that the number of customers seen in

line at the time of his arrival, t, is equal to n. Let θQL(t, n) be some given single-number delay
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estimate which is based on n and t. Then, the MSE of the corresponding delay predictor is given

by:

MSE(θQL(t, n))≡E[(WQL(t, n)− θQL(t,n))2] , (2)

which is a function of t and n. In order to get the overall MSE of the predictor at time t, we average

with respect to the unconditional distribution of the number of customers Q(t) = n, seen in queue

at time t, i.e.,

MSE(t)≡E[MSE(θQL(t,Q(t)))] . (3)

Finally, to obtain an average “per-customer” perspective, we consider a weighted MSE (WMSE),

defined by

WMSE ≡
∫ T

0
λ(t)MSE(t)dt∫ T

0
λ(t)dt

. (4)

Our ASE is an estimate of the WMSE; for supporting theory see the appendix of Massey and

Whitt (1994).

3. Modified Delay Predictors: QLm
a and HOLm

a

Figure 1 shows that QLa and HOLa may be systematically biased when the number of servers, s(t),

varies significantly over time. In this section, we propose modified predictors, QLm
a and HOLm

a ,

which account for a time-varying number of servers. For completeness, we begin by reviewing QLa

and HOLa. Simulation results, described in §6, show that QLm
a and HOLm

a are more accurate than

QLa and HOLa, particularly when the mean service time, E[S], is small.

3.1. The QLa and HOLa Predictors

Let WQL(t, n) denote the potential waiting time of a new arrival at time t, such that the queue

length at t, excluding the new arrival, is equal to n. We have the representation:

WQL(t, n)≡
n∑

i=0

Yi , (5)

where Yn−i is the time between the ith and (i+1)st departure epochs.
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For QLa, we draw on the approximations in Whitt (2005). That is, we approximate the M/M/s+

GI model by the M/M/s+M(n) model, with state-dependent Markovian abandonment rates. We

begin by describing the Markovian approximation for abandonments, as in §3 of Whitt (2005). We

assume that a customer who is jth from the end of the queue has an exponential abandonment

time with rate ψj, where ψj is given by

ψj ≡ h(j/λ), 1≤ j ≤ k ; (6)

k is the current queue length, λ is the arrival rate, and h is the abandonment-time hazard-rate

function, defined as h(t)≡ f(t)/(1−F (t)), for t≥ 0 , where f is the corresponding density function

(assumed to exist).

Here is how (6) is derived: If we knew that a given customer had been waiting for time t, then

the rate of abandonment for that customer, at that time, would be h(t). We, therefore, need to

estimate the elapsed waiting time of that customer, given the available state information. Assuming

that abandonments are relatively rare compared to service completions, it is reasonable to act as

if there have been j arrival events since our customer arrived. With a stationary arrival process, a

simple rough estimate for the time between successive arrival events is the reciprocal of the arrival

rate, 1/λ. Therefore, the elapsed waiting time of our customer is approximated by j/λ, and the

corresponding abandonment rate by (6).

With time-varying arrival rates, we replace λ by λ̂, where λ̂ is defined as the average arrival rate

over some recent time interval. For example, assuming that we know w, the elapsed delay of the

customer at the HOL at the time of estimation, then we could define λ̂ as the average arrival rate

over the interval [t−w, t], i.e., λ̂≡ (1/w)
∫ t

t−w
λ(s)ds. Alternatively, if we do not have information

about the recent history of delays in the system, and know only the queue length n, then we could,

for example, replace w by ŵ≡ (n+1)/sµ and compute λ̂≡ (1/ŵ)
∫ t

t−ŵ
λ(s)ds.

For the M(t)/M/s+M(n) model, we need to make further approximations in order to describe

WQL(t, n): We assume that successive departure events are either service completions, or abandon-

ments from the head of the line. We also assume that an estimate of the time between successive
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departures is 1/λ̂. Under our first assumption, after each departure, all customers remain in line

except the customer at the head of the line. The elapsed waiting time of customers remaining

in line increases, under our second assumption, by 1/λ̂. Then, Yi has an exponential distribution

with rate sµ + δn − δn−i, where δk =
∑k

j=1 ψj =
∑k

j=1 h(j/λ̂), k ≥ 1, and δ0 ≡ 0. That is the case

because Yi is the minimum of s exponential random variables with rate µ (corresponding to the

remaining service times of customers in service), and i exponential random variables with rates ψl,

n− i + 1≤ l≤ n (corresponding to the abandonment times of the customers waiting in line). The

QLa delay prediction given to a customer who finds n customers in queue upon arrival is

θQLa(n) =
n∑

i=0

1
sµ+ δn− δn−i

; (7)

that is, θQLa(n) approximates the mean of the potential waiting time, E[WQL(t, n)]. With a time-

varying number of servers, we replace s in (7) by s̄, defined as the average number of servers in the

system. In practice, we would use the daily average number of servers in the system, instead of s̄.

Unlike QLa, HOLa does not assume knowledge of the queue length seen upon arrival. We proceed

in two steps: (i) we use the observed HOL delay, w, to estimate the queue length seen upon arrival,

and (ii) we use this queue-length estimate to implement a new delay predictor, paralleling (7).

For step (i), let Nw(t) be the number of arrivals in the interval [t−w, t] who do not abandon.

That is, Nw(t)+1 is the number of customers seen in queue upon arrival at time t, given that the

observed HOL delay at t is equal to w. It is significant that Nw has the structure of the number in

system in a M(t)/GI/∞ infinite-server system, starting out empty in the infinite past, with arrival

rate λ(u) identical to the original arrival rate in [t−w, t] (and equal to 0 otherwise). The individual

service-time distribution is identical to the abandonment-time distribution in our original system.

Thus, Nw(t) has a Poisson distribution with mean

m(t,w)≡E[Nw(t)] =
∫ t

t−w

λ(s)(1−F (t− s))ds , (8)

where F is the abandonment-time cdf.



Ibrahim and Whitt: Delay Prediction with Time-Varying Servers
12 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

For step (ii), we use m(t,w)+1 as an estimate of the queue length seen upon arrival, at time t.

Paralleling (7), the HOLa delay estimate given to a customer such that the observed HOL delay,

at his time of arrival, t, is equal to w, is given by:

θHOLa(t,w)≡
m(t,w)+1∑

i=0

1
sµ+ δn− δn−i

, (9)

for m(t,w) in (8). If we actually know the queue length, then we can replace m(t,w) by Q(t), i.e.,

we can use QLa. With a time-varying number of servers, we replace s in (9) by s̄.

3.2. Modified Predictors: QLm
a and HOLm

a

Now, we propose modified predictors, QLm
a and HOLm

a , that effectively cope with a time-varying

number of servers. In particular, we propose adjusting (7) as follows: We replace s by s(ti) where

ti denotes the estimated next departure epoch when there are i remaining customers in line ahead

of the new arrival, and tn+1 ≡ t. Here is how we define the QLm
a delay prediction:

θQLm
a

(t, n) =
n∑

i=0

1
s(ti+1)µ+ δn− δn−i

, (10)

where

ti = ti+1 +
1

s(ti+1)µ+ δn− δn−i

for 0≤ i≤ n , (11)

and tn+1 = t. For HOLm
a , we proceed similarly. In particular, we use

θHOLm
a

(t,w)≡
m(t,w)+1∑

i=0

1
s(ti+1)µ+ δn− δn−i

, (12)

where ti is given by (11) and tn+1 = t.

It is important that QLm
a and HOLm

a reduce to QLa and HOLa, respectively, with a constant

number of servers. Hence, the new predictors are consistent with prior ones, which were shown to

be remarkably accurate in simpler models. In §5, we take a different approach and propose new

delay predictors based on fluid approximations, which we now review.
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4. The Fluid Model with Time-Varying Arrivals

In this section, we review fluid approximations for the M(t)/M/s(t) + GI queueing model, devel-

oped by Liu and Whitt (2010). It is convenient to approximate queueing models with fluid models,

because performance measures in fluid models are deterministic and mostly continuous in time,

which greatly simplifies the analysis.

Let Q(t, x) denote the quantity of fluid in queue (but not in service), at time t, that has been

in queue for time less than or equal to x time units. Similarly, let B(t, x) denote the quantity of

fluid in service, at time t, that has been in service for time less than or equal to x time units. We

assume that functions Q and B are integrable with densities q and b, i.e.,

Q(t, x) =
∫ x

0

q(t, y)dy and B(t, x) =
∫ x

0

b(t, y)dy ,

where we define q(t, x) (b(t, x)) as the rate at which quanta of fluid that has been in queue (service)

for exactly x time units, is created at time t. Let Qf(t) ≡ Q(t,∞) be the total fluid content in

queue at time t, and let Bf(t)≡B(t,∞) be the total fluid content in service at time t. We require

that (Bf(t)− s(t))Qf(t) = 0 for all t, i.e., Qf (t) is positive only if all servers are busy at t. Under

the FCFS service discipline, we can define a boundary waiting time at time t, w(t), such that

q(t, x) = 0 for all x > w(t):

w(t) = inf{x > 0 : q(t, y) = 0 for all y > x} . (13)

In other words, w(t) is the waiting time experienced by quanta of fluid that enter service at time t

(and have arrived to the system at time t−w(t)). We assume that the system alternates between

intervals of overload (Qf(t) > 0,Bf(t) = s(t), and w(t) > 0) and underload (Qf(t) = 0,Bf(t) < s(t),

and w(t) = 0). For simplicity, we assume that the system is initially empty. We also assume that

there is no fluid in queue at the beginning of every overload phase. For the more general case,

accounting for non-zero initial queue content, see §5 of Liu and Whitt (2010).

Let F̄ denote the complementary cumulative distribution function (ccdf) of the abandon-time
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distribution; i.e., F̄ (x) = 1 − F (x). Let Ḡ denote the ccdf of the service-time distribution. The

dynamics of the fluid model are defined in terms of (q, b, F̄ , Ḡ,w) as follows:

q(t+u,x+u) = q(t, x)
F̄ (x+u)

F̄ (x)
,0≤ x≤w(t) , and, (14)

b(t+u,x +u) = b(t, x)
Ḡ(x+u)

Ḡ(x)
. (15)

The queue length in the fluid model, at time t, is therefore given by

Qf(t) =
∫ w(t)

0

q(t, y)dy =
∫ w(t)

0

λ(t−x)F̄ (x)dx , (16)

where we use (14) to write q(t, x) = q(t−x,0)F̄ (x) = λ(t−x)F̄ (x).

Let v(t) denote the potential waiting time in the fluid model at time t. That is, v(t) is the waiting

time of infinitely patient quanta of fluid arriving to the system at t. Recalling that the waiting

time of fluid entering service at t is equal to w(t), it follows that this fluid must have arrived to

the system w(t) time units ago, and that

v(t−w(t)) = w(t) . (17)

Therefore, for a given feasible boundary waiting time process, {w(t) : t≥ 0}, we can determine the

associated potential waiting time process, {v(t) : t≥ 0}, using (17).

Liu and Whitt (2010) show that, under some regulatory conditions, if Qf(t) > 0, then w(t) must

satisfy the following ordinary differential equation (ODE):

w′(t) = 1− b(t,0)
q(t,w(t))

, (18)

for some initial boundary waiting time; see Theorem 5.3 of Liu and Whitt (2010). With exponential

service times, b(t,0) = s(t)µ + s′(t) whenever Qf(t) > 0, where s′(t) denotes the derivative of s(t)

with respect to t. Note that this implies the following feasibility condition on s(t) when all servers

are busy (i.e., during an overload phase):

s(t)µ+ s′(t)≥ 0 for all t . (19)
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This feasibility condition is possible because there is no randomness in the fluid model. For the

stochastic system, there would always be some probability of infeasibility. To that end, Liu and

Whitt (2010), §6.2, develop an algorithm to detect the time of first violation of this condition and

construct the minimal feasible staffing function greater than the initial infeasible staffing function.

Using (14), we can write that q(t,w(t)) = λ(t − w(t))F̄ (w(t)). As a result, with exponential

service times,

w′(t) = 1− s(t)µ+ s′(t)
λ(t−w(t))F̄ (w(t))

. (20)

Note that (20) is only valid for t such that Qf (t) > 0 (i.e., during an overload phase). During

underload phases, quanta of fluid is served immediately upon arrival, without having to wait in

queue, i.e., w(t) = 0. Using the dynamics of the fluid model in (14) and (15), together with (20),

we can determine w(t) for all t, with exponential service times.

We now specify how to compute w(t) by describing fluid dynamics in underload and overload

phases. Assume that t0 is the beginning of an underload phase, and let Bf (t0) be the fluid content

in service at time t0. (We assume that Qf(t0) = 0.) Let t1 denote the first time epoch after t0 at

which Qf(t) > 0. That, the system switches to an overload period at time t1. For all t∈ [t0, t1], the

fluid content in service is given by

Bf(t) = Bf (t0)e−µ(t−t0) +
∫ t

t0

λ(t−x)e−µxdx . (21)

The first term in (21) is the remaining quantity of fluid, in service, that had already been in service

at time t0. The second term is the remaining fluid in service, at time t, that entered service in the

interval (t0, t1]. We define t1 as follows: t1 = inf{t > 0 : Bf(t)≥ s(t)}, for Bf (t) in (21). Note that

w(t) = 0 for all t ∈ (t0, t1]. Let t2 denote the first time epoch after t1 at which Qf(t) = 0. That

is, [t1, t2] is an overload phase. For all t ∈ (t1, t2], we compute w(t) by solving (20). We define t2

as follows: t2 = inf{t > t1 : w(0) = 0. At time t2 a new underload period begins and we proceed as

above to calculate w(t). As such, we obtain w(t) for all values of t. Using w(t), we obtain v(t) via

(17), and Qf(t) via (16), for all t.
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Liu and Whitt (2010) also treat the case of non-exponential service times. The analysis is much

more complicated in that case, however. The main difficulty lies in determining the service content

density, b(t, x), which no longer solely depends on the number of servers, s(t). Indeed, b(t, x) is

obtained, with general service times, by solving a complicated fixed point equation; see Theorem

5.1 of Liu and Whitt (2010), and equation (22) in that paper.

Next, we use fluid approximations for w(t), v(t), and Qf(t), to develop new fluid-based delay

predictors for the M(t)/M/s(t) + GI model, which effectively cope with time-varying arrivals, a

time-varying number of servers, and customer abandonment.

5. New Fluid-Based Delay Predictors for the M(t)/M/s(t)+GI Model

In this section, we propose new delay predictors for the M(t)/M/s(t) + GI model by making use

of the approximating fluid model described in the previous section.

5.1. The No-Information-Fluid-Based (NIF) Delay Predictor

We first propose a simple delay predictor that does not require any information about the system,

beyond the model. A natural candidate no-information (NI) delay predictor is the mean potential

waiting time in the system, at time t. Since we do not have a convenient form for the mean, we use

the fluid model of §4 to develop a simple approximation. Let the no-information-fluid-based (NIF)

delay prediction given to a delayed customer joining the queue, at time t0, be

θNIF (t0)≡ v(t0) , (22)

where v(t0) is the fluid approximation for the potential waiting time, at t0. To compute v(t0), we use

(17) and proceed as described in §4. The NIF predictor is appealing because of its simplicity and

its ease of implementation. It serves as a useful reference point, because any predictor exploiting

additional real-time information about the system should do at least as well as NIF.

5.2. The Refined-Queue-Length-Based (QLr) Delay Predictor

We now propose a predictor based on the queue length seen upon arrival to the system. Let QLr

refer to this refined-queue-length-based predictor. The derivation of QLr is based on that of the
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simple queue-length-based predictor, QLs, which was considered in Ibrahim and Whitt (2009b).

For a system having s(t) agents at time t, each of whom on average completes one service request in

µ−1 time units, we may predict that a customer, who finds n customers in queue upon arrival, will

be able to begin service in (n+1)/s(t)µ minutes. Let QLs refer to this simple queue-length-based

predictor, commonly used in practice. Let the predictor, as a function of n, be

θQLs(t, n) =
n+1
s(t)µ

. (23)

In Ibrahim and Whitt (2009b), we show that QLs is the most effective predictor, under the MSE

criterion, in the GI/M/s model, but that it is not an effective predictor when there is customer

abandonment in the system.

Recognizing the simple form of the QLs predictor in (23), and its lack of predictive power with

customer abandonment, we propose a simple refinement of QLs, QLr, which makes use of the fluid

model in §4. Consider a customer who arrives to the system at time t, and who must wait before

starting service. In the fluid approximation, the associated queue length, Qf(t), seen upon arrival

at time t, is given by (16). As a result, QLs,f predicts the delay of a customer arriving to the system

at time t, in the fluid model, as the deterministic quantity

θQLs,f
(Qf(t)) =

Qf(t)+ 1
s(t)µ

.

The fluid approximation for the potential waiting time, v(t), is given by (17). For QLr, we propose

computing the ratio

β(t) = v(t)/((Qf (t)+ 1)/s(t)µ) = v(t)s(t)µ/(Qf(t)+ 1) , (24)

and using it to refine the QLs predictor. That is, the new delay prediction given to a customer

arriving to the system at time t, and finding n customers in queue upon arrival, is the following

function of n and t:

θQLr(t, n)≡ β(t)× θQLs(t, n) = v(t)× n+1
Qf(t)+ 1

, (25)
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for β(t) in (24). It is significant that θQLr only depends on the number of servers, s(t), through v(t)

and Qf(t). Indeed, the queue length is directly observable in the system, but the potential waiting

time requires estimation, which is very difficult in the M(t)/GI/s(t) + GI model. The advantage

of using the fluid model is that it provides a way of approximating the potential waiting time.

5.3. The Refined HOL (HOLr) Delay Predictor

We now propose a refinement of the HOL delay predictor. The HOL delay estimate, θHOL(t,w),

given to a new arrival at time t, such that the elapsed waiting time of the customer at the head-

of-the-line is equal to w, is well approximated by the fluid boundary waiting time w(t) in (13).

The potential waiting time of that same arrival is approximately equal to v(t) (which is the fluid

approximation of the potential waiting time at t). Thus, we propose computing the ratio v(t)/w(t)

(after solving numerically for v(t) and w(t)), and using it to refine the HOL predictor. Let HOLr

denote this refined HOL delay predictor. The delay prediction, as a function of w and the time of

arrival t, is defined as

θHOLr(t,w)≡ v(t)
w(t)

× θHOL(t,w) =
v(t)
w(t)

×w . (26)

The QLr and HOLr predictors reduce to the GI/GI/s + GI model, considered in Ibrahim and

Whitt (2009b), so that we have “version consistency”, as with QLm
a and HOLm

a .

6. Simulation Experiments for the M(t)/M/s(t)+GI Model

In this section, we describe simulation results quantifying the performance of all candidate delay

predictors in the M(t)/M/s(t) + GI queueing model. Our methods apply to general time-varying

functions. To illustrate, we consider sinusoidal functions which are similar to what is observed with

daily cycles.

In this section, we consider exponential service and abandonment times (i.e., the M(t)/M/s(t)+

M model). We consider non-exponential service and abandonment-time distributions in the e-

companion. We first vary the number of servers (from tens to hundreds) while holding all other

system parameters fixed; see Figures 2 and 3. We then vary the frequency of the arrival process

(from slow variation to fast) while holding all other system parameters fixed; see Table 2.
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Relative Frequency Mean Service Time
γa E[S]

0.0220 5 minutes
0.0436 10 minutes
0.131 30 minutes
0.262 1 hour
1.57 6 hours
3.14 12 hours

Table 1 The relative frequency, γ, as a function of the mean service time, E[S], for a daily (24 hour) cycle.

6.1. Description of the Experiments

We consider a sinusoidal arrival-rate intensity function given by

λ(u)≡ λ̄+ λ̄αa sin(γau), −∞< u <∞ , (27)

where λ̄ is the average arrival rate, αa is the amplitude, and γa is the frequency. As pointed out

by Eick et al. (1993), the parameters of λ(u) in (27) should be interpreted relative to the mean

service time, E[S]. Without loss of generality, we measure time in units of mean service time.

Then, we speak of γa as the relative frequency. Small (large) values of γa correspond to slow (fast)

time-variability in the arrival process, relative to the service times. Table 1 displays values of the

relative frequency as a function of E[S], assuming a daily (24 hour) cycle. We could also choose

shorter cycles. For example, assuming an 8 hour cycle (typical number of hours in a workday),

E[S] in Table 1 should be divided by 3 (e.g., for γa = 0.131, E[S] = 10 minutes).

We consider a sinusoidal number of servers, s(t). Specifically, we assume that

s(t) = s̄+ s̄αs sin(γst) , (28)

where s̄ is the average number of servers. As in (27), γs is the frequency and αs is the amplitude.

In this section, we let αa = 0.5 and αs = 0.3. That is, we assume that λ(t) fluctuates more

extremely than s(t). We let the abandonment rate, ν, be equal to 1. That is, the mean time to

abandon is assumed to be equal to E[S], which seems reasonable. We define the traffic intensity

ρ≡ λ̄/s̄µ, and let ρ = 1.2.

We assume that γa = γs. It is important to emphasize that we do not seek, in this paper, to

determine appropriate staffing levels in response to time-varying arrival rates. Indeed, the problem
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of setting appropriate staffing levels to achieve a time-stable performance (i.e., to stabilize the

system’s performance measures) is reasonably well understood; e.g., see Eick et al. (1993), Feldman

et al. (2008), and references therein. In particular, proper staffing, when it can be done, will make

s(t) “out-of-phase” with λ(t), i.e., γa 6= γs. We deliberately violate this restriction because we are

interested, here, in the less ideal case where the service provider has limited ability to respond to

unexpected demand fluctuations. In that setting, (i) customers may experience significant delays

which motivates the need for making delay announcements, and (ii) we can study the time-varying

performance of the system (as opposed to a time-stable performance with appropriate staffing).

In addition to the ASE, we quantify the performance of a delay predictor by computing the root

relative average squared error (RRASE), defined by

RRASE ≡
√

ASE

(1/k)
∑k

i=1 pi

, (29)

using the same notation as in (1). The denominator in (29) is the average potential waiting time of

customers who must wait. The RRASE is useful because it measures the effectiveness of an predictor

relative to the average potential waiting time, given that the customer must wait. Simulation

results, which we discuss next, are based on 10 independent replications of length a few months

each (depending on the model), assuming a 24 hour cycle; for a more detailed description of our

simulation experiments see §EC.2.

6.2. Simulation Results

6.2.1. From Small to Large Systems. We study the performance of the candidate delay

predictors in the M(t)/M/s(t)+M model with γa = γs = 1.57. This relative frequency corresponds

to E[S] = 6 hours with a 24 hour cycle and to E[S] = 2 hours with an 8 hour cycle; see Table 1.

We consider this relatively large value of E[S] to describe the experience of waiting patients in

hospital ED’s where treatment times are typically long (hours or even days in some cases). We

study the impact of changing E[S] in §6.2.2. We study the performance of our predictors as a

function of s̄. In particular, we let s̄ range from 10 to 1000. Hence, our results are applicable to a
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wide range of real-life systems, ranging from small to very large. The difference between the upper

and lower bounds of s(t) in (28) is equal to 2αss̄. Therefore, with αs = 0.3 (fixed), a large value

of s̄ corresponds to more extreme fluctuations in s(t). For example, with s̄ = 10, s(t) fluctuates

between 7 and 13, whereas with s̄ = 1000, s(t) fluctuates between 700 and 1300.

In this section, we present plots of s̄× ASE (the average number of servers times the ASE) of

the candidate predictors as a function of s̄; see Figures 2 and 3. We do not show, here, separate

results for QLa and HOLa. Indeed, those two delay predictors perform nearly the same as QLm
a

and HOLm
a in this case (but not in all cases; see §6.2.2). We present corresponding tables with

estimates (for all predictors) of the 95% confidence intervals in the e-companion; see Table EC.3.

Overview of performance as a function of s̄. From §4 of Ibrahim and Whitt (2009a), and §5

of Ibrahim and Whitt (2009b), we have theoretical results that provide useful perspective for the

more complicated models we consider here. For example, we anticipate that the ASE should be

inversely proportional to the number of servers, and that the ratio ASE(HOL)/ASE(QLs) should

be approximately equal to (1+ c2
a), where c2

a is the squared coefficient of variation (SCV, variance

divided by the square of the mean) of the interarrival-time distribution. (This relation was shown

to hold especially in large systems.) Similar relations are shown to hold here too, provided that we

use the refined, fluid-based, predictors.

Figures 2 and 3 show that, for fluid-based predictors, s̄× ASE is roughly constant, particularly

for large s̄. This means that the ASE of fluid-based predictors is inversely proportional to s̄, and

thus converges to 0 in large systems. For example, ASE(QLr) ranges from about 0.1 for s̄ = 10 to

about 7×10−4 for s̄ = 1000. That is, fluid-based predictors are asymptotically correct. Additionally,

the ratio ASE(HOLr)/ASE(QLr) is roughly equal to a constant (equal to 1.3), particularly for

large s̄. Figures 2 and 3 also show that the ASE of other predictors (i.e., QLm
a and HOLm

a ) are

independent of s̄. In particular, s̄× ASE, for those predictors, is roughly linear as a function of

s̄. (That is especially true for large s̄.) Consequently, the ASE of those predictors should roughly

equal a (non-zero) constant for large systems. For example, Table EC.3 shows that ASE(QLm
a ) and

ASE(HOLm
a ) are both roughly constant (equal to 0.02) for large s̄.
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Additionally, Figures 2 and 3 show that the ASE’s of all delay predictors decrease as s̄ increases.

For example, the ASE of QLr decreases by a factor of 150 in going from s̄ = 10 to s̄ = 1000. (That

is not surprising since the fluid model is a remarkably accurate approximation of large systems.)

Moreover, the RRASE’s of all predictors decrease as well. That is, all predictors are relatively more

accurate in large systems. For example, the RRASE of QLm
a decreases from roughly 64% for s̄ = 10

to roughly 46% for s̄ = 1000. (Note that QLm
a is not a very accurate predictor in this model, even

when the number of servers is large.) Although all predictors perform better in large systems, the

corresponding ASE’s decrease at different rates. Indeed, Figure 2 and 3 clearly show the superiority

of fluid-based predictors (i.e., QLr, HOLr, and NIF) for moderate to large values of s̄, although all

predictors perform nearly the same for very small s̄ (e.g., s̄ = 10).
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Figure 2 ASE of the alternative predictors in the M(t)/M/s(t)+M model for λ(t) in (27) and s(t) in (28), and

a small average number of servers, s̄. We let γa = γs = 1.57 which corresponds to E[S] = 6 hours with

a 24 hour arrival-rate cycle.
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A closer look at the ASE’s. For small values of s̄, Figure 2 shows that there is no advantage in

using fluid-based predictors over QLm
a and HOLm

a . Indeed, QLm
a is the most accurate predictor for

s̄ < 15. However, although QLm
a is more accurate than fluid-based predictors for small systems, the

difference in performance is not great. For one example, ASE(QLm
a )/ASE(QLr) is roughly equal

to 0.9 for s̄ = 10. For another example, ASE(QLm
a )/ASE(NIF) is roughly equal to 0.6 for s̄ = 10.

Simulation experiments with an even smaller number of servers suggest that all predictors perform

poorly when the number of servers is too small. For example, with s̄ = 5 (and all other parameters

unchanged), the most accurate delay predictor is QLm
a , but RRASE(QLm

a ) is roughly equal to 87%.

Figures 2 and 3 show that QLr and HOLr are more accurate than the rest of the predictors for

s̄ > 30 (with QLr being the most accurate predictor). For example, the RRASE of QLr decreases
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Figure 3 ASE of the alternative predictors in the M(t)/M/s(t)+M model for λ(t) in (27) and s(t) in (28), and

a large average number of servers, s̄. We let γa = γs = 1.57 which corresponds to E[S] = 6 hours with

a 24 hour arrival-rate cycle.
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ASE of the predictors in the M(t)/M/s(t)+ M model as a function of E[S]
E[S] QLr HOLr NIF Qlma HOLm

a QLa HOLa

5 min. 2.82 ×10−3 4.49 ×10−3 8.89× 10−3 2.20× 10−3 3.56× 10−3 5.05× 10−3 6.38× 10−3

±2.5× 10−4 ±4.4× 10−4 ±2.7× 10−4 ±1.9× 10−4 ±1.7× 10−4 ±2.1× 10−4 ±2.1× 10−4

30 min. 2.71 ×10−3 4.14× 10−3 9.03× 10−3 2.06× 10−3 3.53× 10−3 4.54× 10−3 6.04× 10−3

±8.1× 10−5 ±1.2× 10−4 ±3.3× 10−4 ±4.2× 10−5 ±7.4× 10−5 ±3.5× 10−5 ±6.6× 10−5

1 hr. 2.82 ×10−3 4.44 ×10−3 9.49 ×10−3 2.42 ×10−3 4.00 ×10−3 4.79 ×10−3 6.33 ×10−3

±5.2× 10−5 ±8.1× 10−5 ±3.0× 10−4 ±6.0× 10−5 ±8.6× 10−5 ±8.1× 10−5 ±9.5× 10−5

2 hrs. 3.49 ×10−3 5.38 ×10−3 1.04 ×10−2 4.06 ×10−3 5.85 ×10−3 6.32 ×10−3 8.04 ×10−3

±8.0× 10−5 1.2× 10−4 3.4× 10−4 ±1.3× 10−4 ±2.0× 10−4 ±1.6× 10−4 ±2.0× 10−4

6 hrs. 7.25× 10−3 9.40× 10−3 1.57× 10−2 2.44× 10−2 2.66× 10−2 2.99× 10−2 3.21× 10−2

±2.2× 10−4 ±2.1× 10−4 ±5.6× 10−4 ±4.4× 10−4 ±5.5× 10−4 ±4.6× 10−4 ±5.6× 10−4

Table 2 Performance of the alternative predictors, as a function of E[S], in the M(t)/M/s(t)+ M model with

λ(t) in (27), s(t) in (28), and s̄ = 100. Estimates of the ASE are shown together with the half width of the 95%

confidence interval.

from roughly 67% for s̄ = 10 to roughly 8% for s̄ = 1000. The NIF predictor is competitive for

s̄≥ 50. Indeed, the RRASE of NIF ranges from about 84% for s̄ = 10 to about 12% for s̄ = 1000.

For large s̄, QLm
a and HOLm

a perform nearly the same. For example, ASE(HOLm
a )/ASE(QLm

a ) is

roughly equal to 1 for s̄ = 1000. They are both significantly outperformed by fluid-based predictors.

Indeed, ASE(QLm
a )/ASE(QLr) ranges from about 0.9 for s̄ = 10 to about 27 for s̄ = 1000. Also,

ASE(QLm
a )/ASE(NIF) ranges from about 0.6 for s̄ = 10 to about 11 for s̄ = 1000.

Although NIF performs remarkably well in this model, other fluid-based predictors, which exploit

some information about current system state, perform better, particularly for large s̄. For exam-

ple, ASE(HOLr)/ASE(NIF) ranges from about 1.5 for s̄ = 10 to about 2.5 for s̄ = 1000. Also,

ASE(QLr)/ASE(NIF) ranges from about 1.3 for s̄ = 10 to about 1.8 for s̄ = 1000. These ratios are

even greater for smaller values of E[S]; see §6.2.2.

6.2.2. From Small to Large Frequencies. We now study the performance of the candidate

delay predictors in the M(t)/M/s(t) + M model for alternative values of the arrival-process fre-

quency, γa. In particular, we consider values of γa = γs ranging from 0.022 (E[S] = 5 minutes with

a 24 hour cycle) to 1.57 (E[S] = 6 hours with a 24 hour cycle); see Table 1. In the following, we
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will measure E[S] with respect to a 24 hour cycle. It is important to consider alternative values of

E[S] to show that our delay predictors are accurate in different practical settings. We let λ(t) and

s(t) be as in (27) and (28), respectively, and let s̄ = 100. We leave all other parameters unchanged.

Overview of performance as a function of E[S]. With small E[S], the system behaves at every

time t like a stationary system with arrival rate λ(t). Intuitively, for small E[S], the number of

both arrivals and departures during any given interval of time becomes so large that the system

approaches steady-state behavior during that interval. Therefore, we expect that delay predictors

which use λ(t) and s(t) corresponding to each point in time, such as QLm
a and HOLm

a (see (10)

and (12)), will be accurate for small E[S].

Table 2 shows that QLa and HOLa are the least accurate predictors in this model, for all values

of E[S]. In contrast, their modified versions, QLm
a and HOLm

a , are much more accurate, especially

for small E[S], as expected. For example, ASE(QLa)/ASE(QLm
a ) is roughly equal to 2.3 for E[S] =

5 minutes. Also, ASE(HOLa)/ASE(HOLm
a ) is roughly equal to 1.8 for E[S] = 5 minutes. This

shows the need to go beyond existing delay predictors, such as QLa and HOLa. The difference in

performance decreases as E[S] increases, however. For example, ASE(QLa)/ASE(QLm
a ) is roughly

equal to 1.2, and ASE(HOLa)/ASE(HOLm
a ) is roughly equal to 1.1, for E[S] = 6 hours.

In general, all predictors are more accurate for small E[S]. For example, RRASE(HOLr) ranges

from about 25% for E[S] = 5 minutes to about 29% for E[S] = 6 hours. Also, RRASE(HOLm
a )

ranges from about 22% for E[S] = 5 minutes to about 49% for E[S] = 6 hours. Table 2 shows that

although fluid-based predictors perform nearly the same as the remaining predictors for small E[S]

(e.g., 5 minutes), they perform much better for large E[S] (e.g., 6 hours).

A closer look at the ASE’s. The QLm
a predictor is the most accurate predictor for small E[S],

slightly outperforming QLr (which is the second most accurate predictor in that case). Indeed,

Table 2 shows that ASE(QLr)/ASE(QLm
a ) is roughly equal to 1.3 for E[S] = 5 minutes. The HOLm

a

predictor is less accurate than QLm
a , particularly for small E[S]. Indeed, ASE(HOLm

a )/ASE(QLm
a )

ranges from about 1.6 for E[S] = 5 minutes to about 1.1 for E[S] = 6 hours. That is to be expected

since QLm
a exploits additional information about the queue length seen upon arrival, unlike HOLm

a .
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For E[S] ≥ 2 hours, however, QLr is more accurate than QLm
a (and all remaining predictors);

e.g., ASE(QLr)/ASE(QLm
a ) is roughly equal to 0.85 for E[S] = 6 hours. In larger systems, QLr is

more accurate than QLm
a for even smaller E[S]. For example, with s̄ = 1000, ASE(QLm

a ) is slightly

larger than ASE(QLr) for E[S] = 30 minutes, and ASE(QLm
a )/ASE(QLr) is roughly equal to 4.2

for E[S] = 2 hours.

The QLm
a and HOLm

a predictors both make systematic errors which cause their ASE’s to increase

dramatically with E[S]. They are, therefore, significantly less accurate than fluid-based predic-

tors for large E[S]. For example, RRASE(QLa) ranges from about 27% for E[S] = 5 minutes

to about 52% for E[S] = 6 hours, whereas RRASE(QLr) ranges from about 20% for E[S] = 5

minutes to about 25% for E[S] = 6 hours. Also, RRASE(HOLm
a ) ranges from about 22% for

E[S] = 5 minutes to about 49% for E[S] = 6 hours, whereas RRASE(HOLr) ranges from about

25% for E[S] = 5 minutes to about 29% for E[S] = 6 hours. Additionally, Table 2 shows that

ASE(QLm
a )/ASE(QLr) ranges from roughly 0.8 for E[S] = 5 minutes to roughly 3.4 for E[S] = 6

hours, and ASE(HOLm
a )/ASE(HOLr) ranges from about 0.8 for E[S] = 5 minutes to about 2.9 for

E[S] = 6 hours. Fluid-based perform even better with a larger number of servers; e.g., see §6.2.1.

Finally, we now compare the performance of NIF to that of other fluid-based predic-

tors. Table 2 shows that NIF remains less accurate than QLr and HOLr. For example,

ASE(NIF)/ASE(QLr) ranges from about 3.1 for E[S] = 5 minutes to about 2.1 for E[S] = 6 hours.

Also, ASE(HOLr)/ASE(NIF) ranges from about 2 for E[S] = 5 minutes to about 1.7 for E[S] = 6

hours. The NIF predictor is the least accurate predictor for E[S]≤ 2 hours, yet it performs better

as E[S] increases. Indeed, it is more accurate than QLm
a and HOLm

a for large enough E[S]. For

example, ASE(QLm
a )/ASE(NIF) ranges from about 0.25 for E[S] = 5 minutes to about 1.6 for

E[S] = 6 hours.

6.2.3. Results for Non-Exponential Distributions. In the e-companion, we consider the

M(t)/M/s(t) + GI model with H2 (hyperexponential with balanced means and SCV equal to 4),

and E10 (Erlang, sum of 10 exponentials) abandonment-time distributions. Simulation results for
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those models are consistent with those described in this section. In particular, fluid-based predictors

are more accurate than other predictors, for long enough E[S] and large enough s̄, and the difference

in performance can be remarkable. For example, in the M(t)/M/s(t) + E10 model with E[S] = 6

hours and s̄ = 1000, ASE(QLm
a /ASE(QLr) is roughly equal to 18.

We also study the performance of all delay predictors with both non-exponential service and

abandonment-time distributions, i.e., we consider the M(t)/GI/s(t) + GI model (we implement

the alternative predictors by approximating the service-time distribution by an exponential with

the same mean); see §EC.4. We consider H2, E10, and D (deterministic) service-time distributions.

We find that the performance of the alternative predictors depends largely on the service-time

distribution beyond its mean. With H2 service times, fluid-based-predictors remain more accurate

than QLm
a and HOLm

a . In Ibrahim and Whitt (2009b), we treated the case of deterministic service

times, and found that QLa is not reliable in the GI/D/s+ GI model; e.g., see §6.4 of that paper.

Nevertheless, QLa remained effective with minimal variability in the service-time distribution, e.g.,

with E10 service times. Here, we find that fluid-based predictors are ineffective with both D and

E10 service times. In contrast, we find that QLm
a and HOLm

a remain effective with deterministic (or

nearly deterministic) service times, and that they are considerably more accurate than fluid-based

predictors in that case.

7. Conclusions

In this paper, we proposed alternative real-time delay predictors for nonstationary many-server

queueing systems and showed that they are effective in the M(t)/M/s(t) + GI queueing model

with time-varying arrival rates and a time-varying number of servers.

Figure 1 showed that existing delay predictors that do not take account of time-varying arrival

rate and staffing, such as QLa and HOLa, can be systematically biased in the M(t)/M/s(t) + GI

model. Therefore, in §3, we proposed the modified predictors, QLm
a and HOLm

a . Then, in §5, we

exploited a fluid approximation for the M(t)/M/s(t)+GI model developed in Liu and Whitt (2010)

to obtain the new fluid-based delay predictors, QLr, HOLr, and NIF. All new delay predictors
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proposed in this paper reduce to prior ones which were shown to be remarkably accurate in simpler

models. Throughout, we used simulation to study the performance of the candidate delay predictors

in several practical settings. We considered alternative values of (i) the number of servers in the

system, and (ii) the mean service time, E[S].

QLr is consistently more accurate than both HOLr and NIF. In terms of efficiency (low ASE),

fluid-based predictors are ordered by QLr < HOLr < NIF. Consistent with prior theoretical results

in Ibrahim and Whitt (2009a, b), simulation showed that ASE(HOLr)/ASE(QLr) is roughly equal

to a constant between 1 and 2; e.g., see Figures 2 and 3. Although NIF is relatively accurate,

particularly in large systems, it performs worse than both QLr and HOLr because it does not

exploit any information about the current system state at the time of prediction.

Fluid-based predictors outperform QLm
a and HOLm

a in large systems with large E[S]. Figure 3

showed that QLr, HOLr, and NIF are asymptotically correct in the M(t)/M/s(t)+M model, with

a large E[S], unlike QLm
a and HOLm

a ; i.e., the ASE of fluid-based predictors is inversely proportional

to the number of servers. Moreover, Figure 2 showed that fluid-based predictors remain more

accurate than QLm
a and HOLm

a even when the number of servers is not too large, provided that

E[S] is large enough (e.g., s̄ = 30 and E[S] = 6 hours).

QLm
a and HOLm

a outperform fluid-based predictors in small systems with small E[S]. Simulation

showed that QLm
a is the most accurate predictor for small E[S], particularly when the number

of servers is small (e.g., E[S] = 5 minutes and s̄ = 10). Table 2 showed that QLm
a remains the

most accurate predictor even when the system is relatively large (e.g., E[S] = 5 minutes and

s̄ = 100). However, Table 2 also showed that the accuracy of QLm
a and HOLm

a decreases steadily

as E[S] increases. Indeed, both RRASE(QLm
a ) and RRASE(HOLm

a ) increase with increasing E[S].

Although fluid-based predictors perform worse for large E[S] as well, their RRASE’s increase much

slower than RRASE(QLm
a ) and RRASE(HOLm

a ).

In some cases, there is not too much difference in performance between the delay predictors.

Figure 2 showed that QLm
a is only slightly more accurate than QLr in small systems with large

E[S]; e.g., s̄ = 10 and E[S] = 6 hours. The same conclusion also holds in large systems with small
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E[S]. For example, QLm
a is also only slightly more accurate than QLr for s̄ = 1000 and E[S] = 5

minutes. In those cases, all delay predictors proposed are relatively accurate.
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ec2 e-companion to Ibrahim and Whitt: Delay Prediction with Time-Varying Servers

E-Companion

EC.1. Introduction

We present additional material in this e-companion. In §EC.2, we provide a more detailed descrip-

tion of our simulation experiments, complementing §6.1. In §EC.3, we describe simulation results for

the M(t)/M/s(t) + GI model with non-exponential abandonment-time distributions. In addition,

there we present simulation results for the M(t)/M/s(t)+M model, previously discussed in §6.2.1,

in Table EC.3. In §EC.4, we describe simulation results for the M(t)/GI/s(t) + GI model with

both non-exponential service and abandonment-time distributions. In §EC.5, we propose a simple

modified QLa-based delay predictor, QLsm
a , and study its performance in the M(t)/M/s(t) + M

model. In §EC.6, we present related tables and figures.

EC.2. Detailed Description of the Simulation Experiments

In this work, we rely on computer simulation to study the performance of the alternative delay

predictors. Simulation is ideally suited for that study because direct analysis of the M(t)/M/s(t)+

GI model is prohibitively difficult. We quantify the performance of a delay predictor by the WMSE

(see (2)-(4)), which we estimate, via simulation, by the ASE.

In a given simulation run, we compute the ASE as in (1). However, the ASE, without any

additional information, is not sufficient because we have no way of assessing how close it is to the

WMSE in (4). The usual way to assess the accuracy of an estimator (here, the ASE) is to construct

a confidence interval in addition to a point estimate. In our simulation study, we use the method

of independent replications to construct a confidence interval for the WMSE.

In order to use the method of independent replications, we need to conduct a preliminary study

to determine: (i) the required length for each simulation run, and (ii) the number of independent

simulation replications required. It is important that each simulation run be long enough to reach

dynamic steady state which occurs, with time-varying arrivals, if the system has been operating

for a long period of time; see Heyman and Whitt (1984). Otherwise, the ASE estimator would

be biased (i.e., its expected value would not coincide with the WMSE in (4)). We use ASE point
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estimates from the independent simulation replications to construct a confidence interval for the

WMSE. We need to choose a number of simulation replications that is large enough to ensure that

our confidence interval is relatively precise. We define the relative precision of a confidence interval

as the ratio of its half width to the magnitude of the point estimator.

We could potentially encounter estimation error caused by the classical problem of the initial

transient, i.e., when the system is not started in dynamic steady state. A possible solution is to

delete an initial segment of the data, i.e., to have a warmup period which we later discard. Here,

we do not discard an initial warmup period and investigate, instead, how long our simulation run

needs to be so that the effect of the initial transient becomes negligible. In particular, we use a

sequential approach to determine the requirement for (i). Here is how we proceed. We choose an

initial run length, T1. For example, for the M(t)/M/s(t)+M model treated in §6.2.1, we start with

T1 = 50 (which corresponds, in that context, to roughly 12 days). We run the simulation until time

T1 is reached and return the corresponding value of the ASE estimator, denoted by ˆASE1. Next,

we increment the length of the simulation run and let it be equal to T2 = T1 + δ, where δ is some

increment that we choose. (Usually, we choose δ = 50.) We run another simulation (with the same

initial seed) until time T2 is reached, and return a new value for the ASE estimator, denoted by

ˆASE2. We compare ˆASE1 and ˆASE2. If the relative difference between those two point estimates

is less than 5% then we stop, and decide that length T2 is sufficient. Otherwise, we proceed by

incrementing the run length further, and letting it be equal to T3 = T2 + δ. As before, we return

the corresponding value of the ASE estimator, ˆASE3, and compare it to ˆASE2. In general, the

required run length depends on model parameters. For example, we determined that the required

run length for simulating the M(t)/M/s(t) + M model, treated in §6.2.1, is equal to 600 (which

corresponds, in that context, to 150 days).

We also use a sequential approach to determine the number of simulation replications needed

to ensure that the confidence interval is relatively precise. Here is how we proceed. Let T denote

the (sufficient) run length determined by the procedure in (i). We start by making n0 independent

replications, each of length T . We typically start with n0 = 5 independent replications. We use
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the ASE point estimates resulting from those n0 replications to construct a confidence interval for

the WMSE in (4). If the relative precision of the resulting confidence interval is larger than 10%

(which is our chosen threshold), then we run an additional replication and repeat the previous step.

Otherwise, we stop and decide that the current number of simulation replications is enough. In

general, the number of simulation replications required depends on model parameters. For example,

we determined that 10 independent simulation replications are enough to generate confidence

intervals that have a relative precision of less than 10% for the M(t)/M/s(t) + M model treated

in §6.2.1.

EC.3. Additional Simulation Results for the M(t)/M/s(t)+GI Model

In this section, we study the performance of the alternative delay predictors with a general (non-

exponential) abandonment-time distribution and an exponential service-time distribution. In par-

ticular, we consider the M(t)/M/s(t) + GI model for λ(t) in (27) and s(t) in (28). We let γs = γa

= 1.57, which corresponds to E[S] = 6 hours with a 24 hour cycle. We let αa = 0.5 and αs = 0.3.

We vary the average number of servers, s̄, from 10 to 1000. To consider both higher and lower

variability relative to the exponential distribution considered previously, we consider H2 (hyper-

exponential with balanced means and SCV equal to 4), and E10 (Erlang, sum of 10 exponentials)

abandonment-time distributions. In Tables EC.1 and EC.2, we present point estimates of the ASE

and half width of the 95% confidence intervals for the M(t)/M/s(t)+H2 and M(t)/M/s(t)+E10

models, respectively, as a function of s̄. Additionally, in Figures EC.1-EC.4, we plot s̄× ASE (aver-

age number of servers times the ASE) for the alternative delay predictors in those two models.

EC.3.1. Results for the M(t)/M/s(t)+H2 Model.

EC.3.1.1. Less reliable predictions in small systems. Simulation results with H2 aban-

donment times are generally consistent with those obtained with M abandonment times; see §6.

However, with H2 abandonment, all predictors are slightly less accurate when the number of servers

is small. For one example, in the M(t)/M/s(t)+H2 model, RRASE(QLm
a ) is roughly equal to 72%

(63% with M abandonment) for s̄ = 10. For another example, in the M(t)/M/s(t) + H2 model,
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RRASE(QLr) is roughly equal to 74% (67% with M abandonment) for s̄ = 10; see Tables EC.1

and EC.3. In large systems, all predictors perform nearly the same in both models.

EC.3.1.2. Superiority of fluid-based predictors. As in Figure 2, Figure EC.1 shows that

fluid-based predictors are competitive with H2 abandonment, even when the number of servers is

not too large. For example, Table EC.1 shows that ASE(QLm
a )/ASE(QLr) is roughly equal to 1.2

for s̄ = 20. (That is consistent with M abandonment; see Table EC.3.) Consistent with Figure 3,

Figure EC.1 shows that s̄× ASE for fluid-based predictors is roughly equal to a constant for s̄≥ 50.

In contrast, s̄× ASE for QLm
a and HOLm

a increases roughly linearly with s̄.

As with M abandonment, the accuracy of fluid-based predictors greatly improves as the number

of servers increases. The QLr predictor is the most accurate predictor for s̄≥ 20, and RRASE(QLr)

ranges from about 74% (67% with M abandonment) for s̄ = 10 to less than 9% (8% with M

abandonment) for s̄ = 1000. The difference in performance between QLr and QLm
a can be, as with M

abandonment, remarkable; e.g., Table EC.1 shows that ASE(QLm
a )/ASE(QLr) ranges from about

0.9 for s̄ = 20 (same as with M abandonment) to about 22 for s̄ = 1000 (26 with M abandonment).

The HOLr predictor is relatively accurate as well: RRASE(HOLr) ranges from about 83% for s̄ = 10

to about 11% for s̄ = 1000.

EC.3.1.3. Comparison of QLr and HOLr. Interestingly, the difference in performance

between HOLr and QLr is roughly independent of the number of servers, for large systems. That

is consistent with simulation results for the M(t)/M/s(t) + M model, and with prior theoretical

results in Ibrahim and Whitt (2009a ,b). Indeed, Table EC.1 shows that ASE(HOLr)/ASE(QLr)

is roughly equal to 1.4, particularly for large s̄. That is slightly larger than with M abandonment,

where the ratio ASE(HOLr)/ASE(QLr) is roughly equal to 1.3 for large s̄; see Table EC.3.

EC.3.2. Results for the M(t)/M/s(t)+E10 Model.

EC.3.2.1. More reliable predictions in small systems. Simulation results with E10 aban-

donment times are consistent with those obtained with M or H2 abandonment, so we will be brief.
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With E10 abandonment, Table EC.2 shows that all predictors are relatively more accurate than

with M or H2 abandonment, particularly when the number of servers is small (s̄≤ 20). For exam-

ple, RRASE(QLm
a ) is roughly equal to 47% for s̄ = 10 (as opposed to 72% with H2 abandonment,

and 63% with M abandonment). Similarly, RRASE(QLr) is roughly equal to 52% for s̄ = 10 (as

opposed to 74% with H2 abandonment, and 67% with M abandonment). Consistent with §6 and

§EC.3.1, Table EC.2 shows that all predictors are more accurate in large systems. Fluid-based

predictors are particularly accurate in that case.

EC.3.2.2. Superiority of fluid-based predictors. As with M or H2 abandonment times,

there is no advantage in using the fluid-based predictors over the modified predictors when the

number of servers is small. Indeed, QLm
a is the most accurate predictor for small s̄. For example,

Table EC.2 shows that ASE(QLm
a )/ASE(QLr) is roughly equal to 0.8 for s̄ = 10. As the system size

increases, fluid-based predictors gain in accuracy, compared to the remaining predictors. Figure

EC.3 shows that QLr and HOLr are more accurate than the remaining predictors for s̄≥ 40. Also,

consistent with Figures 3 and EC.2, Figure EC.4 shows that QLr and HOLr are asymptotically

correct, unlike QLm
a and HOLm

a . Finally, as with M or H2 abandonment times, the QLr predictor

is the most accurate predictor for s̄≥ 30. For example, ASE(QLm
a )/ASE(QLr) ranges from about

1.2 (1.5 with M abandonment) for s̄ = 20 to about 17 (26 with M abandonment) for s̄ = 1000; see

Tables EC.2 and EC.3.

EC.3.2.3. Comparison of QLr and HOLr. The difference in performance between

QLr and HOLr decreases as the system size increases. Indeed, Table EC.2 shows that

ASE(HOLr)/ASE(QLr) ranges from roughly 1.3 for s̄ = 10 (consistent with both M and H2 aban-

donment) to roughly 1.1 for s̄ = 1000 (as opposed to 1.3 with M abandonment and 1.4 with H2

abandonment). That is, the difference in performance between QLr and HOLr is less significant

with E10 abandonment than with M or H2 abandonment. We will see in §EC.4 that QLr is even less

accurate than HOLr in the M(t)/E10/s(t) + E10 model, with both E10 service and abandonment

times.
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EC.4. Simulation Results for the M(t)/GI/s(t)+GI Model

In this section, we describe simulation results for the M(t)/GI/s(t) + GI model. Our objective is

to study the performance of the alternative delay predictors with both non-exponential service and

abandonment-time distributions. We consider λ(t) in (27) and s(t) in (28). We let γs = γa = 1.57,

which corresponds to E[S] = 6 hours with a 24 hour cycle. We let αa = 0.5 and αs = 0.3. We vary

the average number of servers, s̄, from 10 to 1000.

To consider both higher and lower variability relative to the exponential distribution considered

previously, we consider H2 and E10 service and abandonment-time distributions. In Tables EC.4-

EC.7, we present point estimates of the ASE and half width of the 95% confidence intervals

in the M(t)/H2/s(t) + H2, M(t)/E10/s(t) + H2, M(t)/H2/s(t) + E10, and M(t)/E10/s(t) + E10

models, respectively, as a function of s̄. We also consider the case of D service times and present

simulation results for the M(t)/D/s(t) + H2 and M(t)/D/s(t) + E10 models in Tables EC.8 and

EC.9, respectively. However, we do not discuss these results separately, because they are largely

consistent with those corresponding to E10 service times. The fluid model proposed in Lui and

Whitt (2010) extends to non-exponential service times. Therefore, there remains the possibility to

develop new fluid-based predictors based on the more general, and significantly more complicated,

fluid model. We leave such extensions to future research. Here, we implement all predictors by

approximating the service-time distribution by an exponential distribution with the same mean

service time, E[S].

EC.4.1. H2 Service Times

EC.4.1.1. Less reliable predictions. The H2 distribution with SCV equal to 4 has higher

variability relative to the M distribution. Tables EC.4 and EC.6 (compared with Tables EC.1

and EC.2, respectively) show that this extra variability makes all delay predictors relatively less

accurate. For one example, in the M(t)/H2/s(t)+H2 model, RRASE(QLr) ranges from about 94%

(74% with M service times) for s̄ = 10 to about 23% (9% with M service times) for s̄ = 1000; see

Tables EC.1 and EC.4. For another example, in the M(t)/H2/s(t) + E10 model, RRASE(QLm
a )
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ranges from about 94% (72% with M service times) for s̄ = 10 to about 53% (41% with M service

times) for s̄ = 1000; see Tables EC.2 and EC.6. Similar results also hold for the remaining predictors.

EC.4.1.2. Superiority of fluid-based predictors. Figures 3, EC.2, and EC.4 showed that

fluid-based predictors are asymptotically correct with M service times. With the incorrect fluid

model, we no longer anticipate that the fluid-based predictors are asymptotically correct with

H2 service times. Indeed, Tables EC.4 and EC.6 show that the ASE’s of fluid-based predictors

are not inversely proportional to s̄ in the M(t)/H2/s(t) + H2 and M(t)/H2/s(t) + E10 models,

respectively. Nevertheless, fluid-based predictors remain more accurate than both QLm
a and HOLm

a

in those models, particularly for large s̄. For one example, in the M(t)/H2/s(t) + H2 model,

ASE(HOLm
a )/ASE(HOLr) ranges from about 1 (0.9 with M service times) for s̄ = 10 to about

5 (16 with M service times) for s̄ = 1000; see Tables EC.1 and EC.4. For another example, in

the M(t)/H2/s(t) + E10 model, ASE(QLm
a )/ASE(QLr) ranges from about 1.2 (0.8 with M ser-

vice times) for s̄ = 10 to about 2.5 (18 with M service times) for s̄ = 1000; see Tables EC.2 and

EC.6. That is, the difference in performance between fluid-based and modified predictors remains

significant with H2 service times, but it is considerably less than with M service times.

EC.4.1.3. Comparison of QLr and HOLr. The QLr predictor is generally the most accu-

rate predictor with M service times. In the M(t)/M/s(t) + H2 model, Table EC.1 showed that

QLr outperforms the remaining predictors for s̄ ≥ 20. In the M(t)/M/s(t) + E10 model, Table

EC.2 showed that QLr outperforms the remaining predictors for s̄ ≥ 30. The second most accu-

rate predictor in both models is HOLr. With H2 service times, QLr and HOLr remain the most

accurate predictors, but they have nearly identical performance for large s̄. For one example, in

the M(t)/H2/s(t)+H2 model, ASE(HOLr)/ASE(QLr) is roughly equal to 1.1 (1.4 with M service

times) for s̄ = 1000; see Tables EC.1 and EC.4. For another example, in the M(t)/H2/s(t) + E10

model, ASE(HOLr)/ASE(QLr) is roughly equal to 0.9 (1.0 with M service times) for s̄ = 1000; see

Tables EC.2 and EC.6.
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EC.4.2. E10 Service Times

EC.4.2.1. More/less reliable predictions. The E10 distribution is less variable than the M

distribution. Tables EC.5 and EC.7 (compared with Tables EC.1 and EC.2, respectively) show that

this lower variability makes QLm
a and HOLm

a relatively more accurate and fluid-based predictors

relatively less accurate, particularly for large s̄. For one example, in the M(t)/E10/s(t)+H2 model,

RRASE(HOLm
a ) ranges from about 67% (80% with M service times) for s̄ = 10 to about 22%

(42% with M service times) for s̄ = 1000; see Tables EC.1 and EC.5. For another example, in the

M(t)/E10/s(t)+E10 model, RRASE(QLr) ranges from about 43% (52% with M service times) for

s̄ = 10 to about 26% (7% with M service times) for s̄ = 1000; see Tables EC.2 and EC.7.

EC.4.2.2. Inferiority of fluid-based predictors. With E10 service times, Tables EC.5 and

EC.7 show that fluid-based predictors are not competitive with E10 service times, and are con-

sistently less accurate than both QLm
a and HOLm

a (particularly for large s̄). For example, in the

M(t)/E10/s(t) + H2 model, ASE(QLr)/ASE(QLm
a ) ranges from roughly 1.5 (1.0 with M service

times) for s̄ = 10 to roughly 1.8 (0.05 with M service times!) for s̄ = 1000; see Tables EC.1 and

EC.5. Similarly, in the M(t)/E10/s(t)+E10 model, ASE(QLr)/ASE(QLm
a ) ranges from roughly 1.6

(1.2 with M service times) for s̄ = 10 to roughly 2.4 (0.05 with M service times!) for s̄ = 1000.

EC.4.2.3. Comparison of QLr and HOLr. With E10 service times, Tables EC.5 and

EC.7 show that QLr performs slightly worse than HOLr, for large s̄. For one example, in the

M(t)/E10/s(t) + H2 model, ASE(QLr)/ASE(HOLr) ranges from about 0.7 (0.8 with M service

times) for s̄ = 10 to about 1.2 (0.7 with M service times) for s̄ = 1000; see Table EC.1 and EC.5. For

another example, in the M(t)/E10/s(t) + E10 model, ASE(QLr)/ASE(HOLr) ranges from about

0.7 (0.8 with M service times) for s̄ = 10 to about 1.1 (0.9 with M service times) for s̄ = 1000; see

Tables EC.2 and EC.7.

EC.4.2.4. Performance of NIF. It is worthwhile mentioning that in the M(t)/E10/s(t) +

E10 model, both QLr and HOLr are less accurate than NIF for s̄ ≥ 500; see Table EC.7. That

may seem counterintuitive, at first glance, because both QLr and HOLr exploit information about
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current system state at the time of prediction, unlike NIF. However, these results should not be

too surprising: All fluid-based predictors here are based on the incorrect fluid model, assuming an

exponential service-time distribution. Therefore, they all make consistent prediction error. Indeed,

QLm
a performs considerably better than all fluid-based predictors in the M(t)/E10/s(t)+E10 model:

Table EC.7 shows that ASE(NIF)/ASE(QLm
a ) is roughly equal to 2 for s̄ = 1000.

EC.5. A Simple Modified QLa Predictor: QLsm
a

In this section, we propose a simple modified QLa predictor, QLsm
a . We define the QLsm

a delay

prediction as follows: We replace s in (7) by s(t), the number of servers seen in the system upon

arrival at time t. That is, we let

θQLsm
a

=
n∑

i=0

1
s(t)µ+ δn− δn−i

, (EC.1)

using the same notation as in (7); see §3.1. The QLsm
a predictor is appealing because it is easier

to implement than QLm
a , defined in (10), and should be relatively accurate when the number of

servers does not change too rapidly over time.

In this section, we compare the performance of QLsm
a , QLa, and QLm

a in the M(t)/M/s(t) + M

model. We consider λ(t) in (27) and s(t) in (28). We let αa = 0.5 and αs = 0.3. We let the average

number of servers, s̄, range from 10 to 1000. In Figures EC.5 and EC.6, we plot the ASE of QLsm
a ,

QLa, and QLm
a , as a function of s̄, in the M(t)/M/s(t) + M model with γa = γs = 0.022, which

corresponds to E[S] = 5 minutes with a 24 hour cycle. In Figures EC.7 and EC.8, we plot the ASE

of QLsm
a , QLa, and QLm

a , as a function of s̄, in the M(t)/M/s(t) + M model with γa = γs = 1.57,

which corresponds to E[S] = 6 hours with a 24 hour cycle.

EC.5.1. Performance of QLsm
a , QLa, and QLm

a with Short Service Times

For small E[S], as explained in §6.2.2, the number of both arrivals and departures during any given

interval of time becomes so large that the system approaches steady-state behavior during that

interval. Therefore, we expect that delay predictors which use λ(t) and s(t) corresponding to each

point in time, such as QLsm
a , will be accurate for small E[S]. Figures EC.5 and EC.6 confirm that
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QLsm
a performs nearly as well as QLm

a in that case (indeed, the two ASE curves roughly coincide).

The ratio ASE(QLsm
a )/ASE(QLm

a ) is approximately equal to 1.0 for all values of s̄ considered. That

is, with small E[S], there is no advantage in using QLm
a over QLsm

a .

The difference in performance between QLa and QLsm
a (or, alternatively, QLm

a ) is not too great

for small s̄: Figure EC.5 shows that ASE(QLa)/ASE(QLsm
a ) is roughly equal to 1.1 for s̄ = 10.

However, as the number of servers increases, the difference in performance between those two

predictors becomes significant: Figure EC.6 shows that ASE(QLa)/ASE(QLsm
a ) is roughly equal

to 16 for s̄ = 1000.

EC.5.2. Performance of QLsm
a , QLa, and QLm

a with Long Service Times

With large E[S], the number of servers varies significantly over time. Therefore, we anticipate that

QLsm
a will be less effective than QLm

a , since it assumes that the number of servers is constant over

the waiting time of the arriving customer (and equal to the number of servers seen upon arrival).

Figures EC.7 and EC.8 confirm this, but show that the difference in performance between QLsm
a and

QLm
a is not too great. For one example, Figure EC.7 shows that ASE(QLm

a )/ASE(QLsm
a ) is roughly

equal to 1.1 for s̄ = 10. For another example, Figure EC.8 shows that ASE(QLm
a )/ASE(QLsm

a ) is

roughly equal to 1.3 for s̄ = 1000.

The QLsm
a predictor is only slightly more effective than QLa with a large E[S]. Indeed, Figures

EC.7 and EC.8 show that ASE(QLa)/ASE(QLsm
a ) is less than 1.02 for all values of s̄ considered.

That is, with large E[S], simulation shows that there is no considerable advantage in using QLm
a or

QLsm
a over QLa. Recall from §6 that fluid-based predictors are remarkably accurate in that case,

and that they significantly outperform both QLa and QLm
a .

EC.6. Simulation Results: Tables and Figures
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Figure EC.1 s̄× ASE of the alternative predictors in the M(t)/M/s(t) + H2 model for λ(t) in (27) and s(t) in

(28), and a small average number of servers, s̄. We let γa = γs = 1.57 which corresponds to E[S] =

6 hours with a 24 hour arrival-rate cycle.
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Figure EC.2 s̄× ASE of the alternative predictors in the M(t)/M/s(t) + H2 model for λ(t) in (27) and s(t) in

(28), and a large average number of servers, s̄. We let γa = γs = 1.57 which corresponds to E[S] =

6 hours with a 24 hour arrival-rate cycle.
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Figure EC.3 s̄× ASE of the alternative predictors in the M(t)/M/s(t)+ E10 model for λ(t) in (27) and s(t) in

(28), and a small average number of servers, s̄. We let γa = γs = 1.57 which corresponds to E[S] =

6 hours with a 24 hour arrival-rate cycle.
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Figure EC.4 s̄× ASE of the alternative predictors in the M(t)/M/s(t)+ E10 model for λ(t) in (27) and s(t) in

(28), and a large average number of servers, s̄. We let γa = γs = 1.57 which corresponds to E[S] =

6 hours with a 24 hour arrival-rate cycle.
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Figure EC.5 ASE of QLa, QLsm
a , and QLm

a in the M(t)/M/s(t) + M model for λ(t) in (27) and s(t) in (28),

and a small average number of servers, s̄. We let γa = γs = 0.022 which corresponds to E[S] = 5

minutes with a 24 hour arrival-rate cycle.
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Figure EC.6 ASE of QLa, QLsm
a , and QLm

a in the M(t)/M/s(t) + M model for λ(t) in (27) and s(t) in (28),

and a large average number of servers, s̄. We let γa = γs = 0.022 which corresponds to E[S] = 5

minutes with a 24 hour arrival-rate cycle.
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Figure EC.7 ASE of QLa, QLsm
a , and QLm

a in the M(t)/M/s(t)+M model for λ(t) in (27) and s(t) in (28), and

a small average number of servers, s̄. We let γa = γs = 1.57 which corresponds to E[S] = 6 hours

with a 24 hour arrival-rate cycle.
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Figure EC.8 ASE of QLa, QLsm
a , and QLm

a in the M(t)/M/s(t)+M model for λ(t) in (27) and s(t) in (28), and

a large average number of servers, s̄. We let γa = γs = 1.57 which corresponds to E[S] = 6 hours

with a 24 hour arrival-rate cycle.
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ASE of the predictors in the M(t)/M/s(t)+ H2 model as a function of s̄

s̄ QLr HOLr NIF Qlma HOLm
a QLa HOLa

10 8.78× 10−2 1.12× 10−1 1.26× 10−1 8.00× 10−2 1.00× 10−1 1.14× 10−1 1.34× 10−1

±3.2× 10−3 ±3.2× 10−3 ±5.1× 10−3 ±4.9× 10−3 ±4.3× 10−3 ±3.9× 10−3 ±5.2× 10−3

20 3.66× 10−2 4.83× 10−2 5.79× 10−2 4.41× 10−2 5.45× 10−2 5.89× 10−2 6.99× 10−2

±1.2× 10−3 ±2.0× 10−3 ±3.1× 10−3 ±2.1× 10−3 ±2.7× 10−3 ±1.9× 10−3 ±2.9× 10−3

30 2.29× 10−2 3.05× 10−2 3.85× 10−2 3.28× 10−2 3.93× 10−2 4.27× 10−2 4.95× 10−2

±9.3× 10−4 ±1.2× 10−3 ±1.4× 10−3 ±1.5× 10−3 ±1.5× 10−3 ±1.3× 10−3 ±1.7× 10−3

50 1.32× 10−2 1.79× 10−2 2.43× 10−2 2.53× 10−2 2.95× 10−2 3.24× 10−2 3.68× 10−2

±5.3× 10−4 ±4.6× 10−4 ±1.3× 10−3 ±1.0× 10−3 ±1.0× 10−3 ±8.9× 10−4 ±1.1× 10−3

70 9.14× 10−3 1.23× 10−2 1.73× 10−2 2.09× 10−2 2.40× 10−2 2.69× 10−2 3.02× 10−2

±3.3× 10−4 ±3.3× 10−4 ±7.2× 10−4 ±7.4× 10−4 ±6.3× 10−4 ±6.4× 10−4 ±7.2× 10−4

100 6.15× 10−3 8.49× 10−3 1.24× 10−2 1.83× 10−2 2.03× 10−2 2.34× 10−2 2.54× 10−2

±2.0× 10−4 ±4.0× 10−4 ±6.2× 10−4 ±7.0× 10−4 ±8.1× 10−4 ±6.6× 10−4 ±8.2× 10−4

300 2.05× 10−3 2.80× 10−3 4.42× 10−3 1.44× 10−2 1.51× 10−2 1.84× 10−2 1.90× 10−2

±5.4× 10−5 ±5.4× 10−5 ±1.9× 10−4 ±2.9× 10−4 ±2.4× 10−4 ±2.3× 10−4 ±3.1× 10−4

500 1.25× 10−3 1.73× 10−3 2.63× 10−3 1.36× 10−2 1.41× 10−2 1.74× 10−2 1.78× 10−2

±3.2× 10−5 ±4.7× 10−5 ±1.1× 10−4 ±2.0× 10−4 ±2.4× 10−4 ±1.8× 10−4 ±2.6× 10−4

700 8.70× 10−4 1.21× 10−3 1.84× 10−3 1.32× 10−2 1.34× 10−2 1.68× 10−2 1.70× 10−2

±4.0× 10−5 ±4.9× 10−5 ±9.0× 10−5 ±2.3× 10−4 ±2.5× 10−4 ±2.3× 10−4 ±2.5× 10−4

1000 6.02× 10−4 8.31× 10−4 1.31× 10−3 1.29× 10−2 1.30× 10−2 1.64× 10−2 1.65× 10−2

±2.1× 10−5 ±1.5× 10−5 ±5.3× 10−5 ±1.7× 10−4 ±1.6× 10−4 ±1.3× 10−4 ±2.0× 10−4

Table EC.1 Performance of the alternative predictors, as a function of s̄, in the M(t)/M/s(t)+ H2 model with

λ(t) in (27), s(t) in (28), and γa = γs = 1.57 (corresponding to E[S] = 6 hours with a 24 hour cycle). Estimates of

the ASE are shown together with the half width of the 95% confidence interval.
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ASE of the predictors in the M(t)/M/s(t)+ E10 model as a function of s̄

s̄ QLr HOLr NIF Qlma HOLm
a QLa HOLa

10 1.06× 10−1 1.38× 10−1 1.48× 10−1 9.38× 10−2 1.06× 10−1 1.19× 10−1 1.28× 10−1

±5.7× 10−3 ±6.0× 10−3 ±6.3× 10−3 ±3.1× 10−3 ±3.2× 10−3 ±3.9× 10−3 ±4.3× 10−3

20 5.71× 10−2 6.99× 10−2 8.85× 10−2 5.79× 10−2 6.40× 10−2 6.81× 10−2 7.34× 10−2

±3.4× 10−3 ±3.9× 10−3 ±4.7× 10−3 ±2.7× 10−3 ±2.9× 10−3 ±2.5× 10−3 ±2.7× 10−3

30 3.76× 10−2 4.65× 10−2 6.17× 10−2 4.31× 10−2 4.77× 10−2 4.95× 10−2 5.33× 10−2

±1.5× 10−3 ±2.3× 10−3 ±2.0× 10−3 ±1.8× 10−3 ±1.7× 10−3 ±1.7× 10−3 ±1.7× 10−3

50 2.32× 10−2 2.73× 10−2 4.04× 10−2 3.50× 10−2 3.74× 10−2 3.93× 10−2 4.14× 10−2

±1.6× 10−3 ±1.4× 10−3 ±2.6× 10−3 ±8.9× 10−4 ±9.6× 10−4 ±8.6× 10−4 ±9.6× 10−4

70 1.80× 10−2 2.00× 10−2 3.18× 10−2 3.04× 10−2 3.21× 10−2 3.39× 10−2 3.51× 10−2

±7.6× 10−4 ±8.0× 10−4 ±1.1× 10−3 ±8.8× 10−4 ±9.1× 10−4 ±7.4× 10−4 ±8.4× 10−4

100 1.29× 10−2 1.41× 10−2 2.35× 10−2 2.89× 10−2 3.00× 10−2 3.14× 10−2 3.22× 10−2

±5.0× 10−4 ±3.8× 10−4 ±1.3× 10−3 ±5.0× 10−4 ±6.5× 10−4 ±4.9× 10−4 ±5.1× 10−4

300 4.64× 10−3 4.91× 10−3 8.81× 10−3 2.41× 10−2 2.42× 10−2 2.56× 10−2 2.57× 10−2

±2.3× 10−4 ±2.4× 10−4 ±3.9× 10−4 ±2.1× 10−4 ±2.7× 10−4 ±2.3× 10−4 ±2.4× 10−4

500 2.78× 10−3 2.93× 10−3 5.14× 10−3 2.33× 10−2 2.32× 10−2 2.45× 10−2 2.44× 10−2

±1.0× 10−4 ±1.2× 10−4 ±2.3× 10−4 ±1.5× 10−4 ±1.1× 10−4 ±1.8× 10−4 ±1.2× 10−4

700 1.95× 10−3 2.00× 10−3 3.46× 10−3 2.30× 10−2 2.30× 10−2 2.42× 10−2 2.41× 10−2

±6.5× 10−5 ±7.8× 10−5 ±2.1× 10−4 ±2.4× 10−4 ±3.0× 10−4 ±2.5× 10−4 ±2.9× 10−4

1000 1.34× 10−3 1.44× 10−3 2.48× 10−3 2.26× 10−2 2.24× 10−2 2.38× 10−2 2.36× 10−2

±6.0× 10−5 ±6.1× 10−5 ±1.0× 10−4 ±1.5× 10−4 ±2.1× 10−4 ±1.3× 10−4 ±1.7× 10−4

Table EC.2 Performance of the alternative predictors, as a function of s̄, in the M(t)/M/s(t)+E10 model with

λ(t) in (27), s(t) in (28), and γa = γs = 1.57 (corresponding to E[S] = 6 hours with a 24 hour cycle). Estimates of

the ASE are shown together with the half width of the 95% confidence interval.



ec22 e-companion to Ibrahim and Whitt: Delay Prediction with Time-Varying Servers

ASE of the predictors in the M(t)/M/s(t)+ M model as a function of s̄

s̄ QLr HOLr NIF Qlma HOLm
a QLa HOLa

10 1.07× 10−1 1.30× 10−1 1.68× 10−1 9.60× 10−2 1.24× 10−1 1.01× 10−1 1.28× 10−1

±5.4× 10−3 ±5.9× 10−3 ±8.9× 10−3 ±4.3× 10−3 ±6.3× 10−3 ±4.1× 10−3 ±6.0× 10−3

30 2.75× 10−2 3.49× 10−2 5.13× 10−2 4.10× 10−2 5.01× 10−2 4.63× 10−2 5.51× 10−2

±1.6× 10−3 ±1.3× 10−3 ±2.6× 10−3 ±1.9× 10−3 ±2.3× 10−3 ±2.0× 10−3 ±2.5× 10−3

50 1.55× 10−2 1.97× 10−2 3.19× 10−2 3.20× 10−2 3.72× 10−2 3.72× 10−2 4.23× 10−2

±5.5× 10−4 ±7.7× 10−4 ±9.2× 10−4 ±1.4× 10−3 ±1.9× 10−3 ±1.6× 10−3 ±2.0× 10−3

70 1.08× 10−2 1.39× 10−2 2.30× 10−2 2.82× 10−2 3.17× 10−2 3.36× 10−2 3.69× 10−2

±2.5× 10−4 ±5.3× 10−4 ±8.6× 10−4 ±8.0× 10−4 ±1.1× 10−3 ±9.0× 10−4 ±1.1× 10−3

100 7.16× 10−3 9.27× 10−3 1.57× 10−2 2.46× 10−2 2.68× 10−2 3.00× 10−2 3.22× 10−2

±2.0× 10−4 ±1.6× 10−4 ±5.2× 10−4 ±3.8× 10−4 ±4.4× 10−4 ±4.4× 10−4 ±5.0× 10−4

300 2.50× 10−3 3.21× 10−3 5.63× 10−3 2.13× 10−2 2.19× 10−2 2.70× 10−2 2.75× 10−2

±5.6× 10−5 ±9.7× 10−5 ±2.1× 10−4 ±4.1× 10−4 ±4.1× 10−4 ±4.4× 10−4 ±4.5× 10−4

500 1.48× 10−3 1.91× 10−3 3.44× 10−3 2.03× 10−2 2.08× 10−2 2.61× 10−2 2.65× 10−2

±3.6× 10−5 ±6.5× 10−5 ±1.1× 10−4 ±2.1× 10−4 ±2.5× 10−4 ±2.1× 10−4 ±2.4× 10−4

700 1.04× 10−3 1.38× 10−3 2.48× 10−3 1.99× 10−2 2.01× 10−2 2.57× 10−2 2.58× 10−2

±2.1× 10−5 ±1.9× 10−5 ±6.5× 10−5 ±1.5× 10−4 ±2.2× 10−4 ±1.7× 10−4 ±2.4× 10−4

1000 7.30× 10−4 9.79× 10−4 1.77× 10−3 1.95× 10−2 1.96× 10−2 2.53× 10−2 2.53× 10−2

±2.0× 10−5 ±2.0× 10−5 ±6.2× 10−5 ±2.1× 10−4 ±2.8× 10−4 ±2.3× 10−4 ±2.9× 10−4

Table EC.3 Performance of the alternative predictors, as a function of s̄, in the M(t)/M/s(t)+ M model with

λ(t) in (27), s(t) in (28), and γa = γs = 1.57 (corresponding to E[S] = 6 hours with a 24 hour cycle). Estimates of

the ASE are shown together with the half width of the 95% confidence interval.



e-companion to Ibrahim and Whitt: Delay Prediction with Time-Varying Servers ec23

ASE of the predictors in the M(t)/H2/s(t)+ H2 model as a function of s̄

s̄ QLr HOLr NIF Qlma HOLm
a QLa HOLa

10 2.07× 10−1 2.34× 10−1 2.86× 10−1 2.01× 10−1 2.23× 10−1 2.55× 10−1 2.76× 10−1

±3.4× 10−2 ±3.0× 10−2 ±5.0× 10−2 ±4.0× 10−2 ±3.4× 10−2 ±3.4× 10−2 ±4.0× 10−2

20 7.05× 10−2 8.39× 10−2 1.10× 10−1 8.88× 10−2 1.02× 10−1 1.11× 10−1 1.25× 10−1

±1.6× 10−2 ±1.5× 10−2 ±2.9× 10−2 ±2.1× 10−2 ±2.2× 10−2 ±1.9× 10−2 ±2.4× 10−2

30 3.91× 10−2 4.84× 10−2 6.85× 10−2 5.94× 10−2 6.75× 10−2 7.53× 10−2 8.41× 10−2

±7.1× 10−3 ±7.7× 10−3 ±1.1× 10−2 ±1.3× 10−2 ±1.2× 10−2 ±1.1× 10−2 ±1.4× 10−2

50 2.49× 10−2 3.11× 10−2 4.56× 10−2 4.49× 10−2 4.96× 10−2 5.63× 10−2 6.09× 10−2

±4.0× 10−3 ±4.7× 10−3 ±7.0× 10−3 ±7.1× 10−3 ±7.1× 10−3 ±6.5× 10−3 ±7.7× 10−3

70 1.89× 10−2 2.15× 10−2 3.39× 10−2 3.79× 10−2 4.01× 10−2 4.79× 10−2 5.01× 10−2

±3.5× 10−3 ±3.7× 10−3 ±4.9× 10−3 ±7.3× 10−3 ±6.7× 10−3 ±6.5× 10−3 ±7.5× 10−3

100 1.25× 10−2 1.55× 10−2 2.51× 10−2 3.10× 10−2 3.32× 10−2 3.99× 10−2 4.20× 10−2

±1.1× 10−3 ±1.3× 10−3 ±2.0× 10−3 ±3.0× 10−3 ±2.8× 10−3 ±2.7× 10−3 ±3.1× 10−3

300 6.75× 10−3 7.80× 10−3 1.49× 10−2 2.55× 10−2 2.59× 10−2 3.31× 10−2 3.34× 10−2

±4.9× 10−4 ±5.3× 10−4 ±8.8× 10−4 ±1.5× 10−3 ±1.4× 10−3 ±1.3× 10−3 ±1.5× 10−3

500 5.31× 10−3 5.77× 10−3 1.12× 10−2 2.32× 10−2 2.31× 10−2 3.04× 10−2 3.02× 10−2

±4.4× 10−4 ±3.8× 10−4 ±5.6× 10−4 ±1.4× 10−3 ±1.2× 10−3 ±1.3× 10−3 ±1.4× 10−3

700 4.67× 10−3 5.18× 10−3 1.04× 10−2 2.26× 10−2 2.25× 10−2 2.97× 10−2 2.95× 10−2

±1.9× 10−4 ±2.3× 10−4 ±4.2× 10−4 ±9.3× 10−4 ±7.6× 10−4 ±8.2× 10−4 ±8.7× 10−4

1000 4.11× 10−3 4.52× 10−3 9.16× 10−3 2.20× 10−2 2.19× 10−2 2.90× 10−2 2.87× 10−2

±2.0× 10−4 ±1.5× 10−4 ±2.8× 10−4 ±7.9× 10−4 ±6.8× 10−4 ±6.7× 10−4 ±7.8× 10−4

Table EC.4 Performance of the alternative predictors, as a function of s̄, in the M(t)/H2/s(t)+H2 model with

λ(t) in (27), s(t) in (28), and γa = γs = 1.57 (corresponding to E[S] = 6 hours with a 24 hour cycle). Estimates of

the ASE are shown together with the half width of the 95% confidence interval.



ec24 e-companion to Ibrahim and Whitt: Delay Prediction with Time-Varying Servers

ASE of the predictors in the M(t)/E10/s(t)+ H2 model as a function of s̄

s̄ QLr HOLr NIF Qlma HOLm
a QLa HOLa

10 4.95× 10−2 6.86× 10−2 6.92× 10−2 3.17× 10−2 4.80× 10−2 4.82× 10−2 6.39× 10−2

±2.4× 10−3 ±2.5× 10−3 ±3.6× 10−3 ±1.8× 10−3 ±1.7× 10−3 ±1.3× 10−3 ±2.4× 10−3

20 2.26× 10−2 2.83× 10−2 3.41× 10−2 1.34× 10−2 2.07× 10−2 1.90× 10−2 2.66× 10−2

±7.8× 10−4 ±1.1× 10−3 ±1.2× 10−3 ±5.6× 10−4 ±8.7× 10−4 ±4.9× 10−4 ±9.5× 10−4

30 1.56× 10−2 1.87× 10−2 2.58× 10−2 9.19× 10−3 1.42× 10−2 1.27× 10−2 1.80× 10−2

±3.3× 10−4 ±3.0× 10−4 ±6.6× 10−4 ±3.0× 10−4 ±3.3× 10−4 ±2.3× 10−4 ±4.3× 10−4

50 1.05× 10−2 1.16× 10−2 1.99× 10−2 6.09× 10−3 8.96× 10−3 8.41× 10−3 1.13× 10−2

±2.8× 10−4 ±2.2× 10−4 ±5.8× 10−4 ±2.1× 10−4 ±2.6× 10−4 ±1.7× 10−4 ±3.2× 10−4

70 8.45× 10−3 8.89× 10−3 1.62× 10−2 5.01× 10−3 7.23× 10−3 6.88× 10−3 9.13× 10−3

±2.0× 10−4 ±1.7× 10−4 ±4.0× 10−4 ±1.1× 10−4 ±1.7× 10−4 ±6.7× 10−5 ±2.3× 10−4

100 6.91× 10−3 6.95× 10−3 1.46× 10−2 3.95× 10−3 5.42× 10−3 5.48× 10−3 6.94× 10−3

±1.9× 10−4 ±2.2× 10−4 ±3.7× 10−4 ±1.1× 10−4 ±1.6× 10−4 ±1.1× 10−4 ±1.7× 10−4

300 4.48× 10−3 4.05× 10−3 1.17× 10−2 2.60× 10−3 3.07× 10−3 3.71× 10−3 4.15× 10−3

±8.6× 10−5 ±6.5× 10−5 ±9.7× 10−5 ±4.0× 10−5 ±6.2× 10−5 ±3.1× 10−5 ±8.4× 10−5

500 4.06× 10−3 3.42× 10−3 1.10× 10−2 2.27× 10−3 2.55× 10−3 3.29× 10−3 3.56× 10−3

±2.5× 10−5 ±4.6× 10−5 ±6.2× 10−5 ±4.5× 10−5 ±4.6× 10−5 ±3.0× 10−5 ±6.0× 10−5

700 3.84× 10−3 3.21× 10−3 1.08× 10−2 2.17× 10−3 2.36× 10−3 3.15× 10−3 3.34× 10−3

±4.7× 10−5 ±3.9× 10−5 ±9.5× 10−5 ±1.8× 10−5 ±2.5× 10−5 ±1.3× 10−5 ±3.0× 10−5

1000 3.72× 10−3 2.99× 10−3 1.05× 10−2 2.09× 10−3 2.23× 10−3 3.05× 10−3 3.18× 10−3

±3.9× 10−5 ±2.8× 10−5 ±7.4× 10−5 ±2.5× 10−5 ±3.7× 10−5 ±2.7× 10−5 ±3.2× 10−5

Table EC.5 Performance of the alternative predictors, as a function of s̄, in the M(t)/E10/s(t)+ H2 model

with λ(t) in (27), s(t) in (28), and γa = γs = 1.57 (corresponding to E[S] = 6 hours with a 24 hour cycle). Estimates

of the ASE are shown together with the half width of the 95% confidence interval.



e-companion to Ibrahim and Whitt: Delay Prediction with Time-Varying Servers ec25

ASE of the predictors in the M(t)/H2/s(t)+ E10 model as a function of s̄

s̄ QLr HOLr NIF Qlma HOLm
a QLa HOLa

10 1.17× 10−1 1.58× 10−1 2.31× 10−1 1.35× 10−1 1.35× 10−1 1.70× 10−1 1.76× 10−1

±2.1× 10−2 ±2.5× 10−2 ±4.2× 10−2 ±3.6× 10−2 ±2.8× 10−2 ±4.2× 10−2 ±3.8× 10−2

20 7.84× 10−2 8.73× 10−2 1.52× 10−1 1.04× 10−1 9.80× 10−2 1.24× 10−1 1.22× 10−1

±1.3× 10−2 ±1.1× 10−2 ±2.2× 10−2 ±1.8× 10−2 ±1.5× 10−2 ±2.0× 10−2 ±1.8× 10−2

30 4.98× 10−2 5.76× 10−2 1.06× 10−1 7.09× 10−2 7.04× 10−2 8.75× 10−2 8.80× 10−2

±9.8× 10−3 ±9.9× 10−3 ±2.0× 10−2 ±1.8× 10−2 ±1.5× 10−2 ±1.8× 10−2 ±1.5× 10−2

50 3.02× 10−2 3.44× 10−2 6.77× 10−2 4.74× 10−2 4.99× 10−2 5.93× 10−2 6.19× 10−2

±5.4× 10−3 ±6.9× 10−3 ±1.5× 10−2 ±7.2× 10−3 ±8.1× 10−3 ±7.2× 10−3 ±8.0× 10−3

70 2.61× 10−2 2.82× 10−2 5.94× 10−2 4.22× 10−2 4.27× 10−2 5.38× 10−2 5.42× 10−2

±1.8× 10−3 ±2.1× 10−3 ±8.8× 10−3 ±4.2× 10−3 ±3.8× 10−3 ±5.0× 10−3 ±4.8× 10−3

100 2.14× 10−2 2.25× 10−2 4.90× 10−2 4.24× 10−2 4.19× 10−2 5.38× 10−2 5.33× 10−2

±3.2× 10−3 ±3.0× 10−3 ±6.1× 10−3 ±5.1× 10−3 ±5.1× 10−3 ±5.2× 10−3 ±5.3× 10−3

300 1.30× 10−2 1.33× 10−2 3.13× 10−2 3.25× 10−2 3.27× 10−2 4.20× 10−2 4.20× 10−2

±2.1× 10−3 ±1.8× 10−3 ±3.8× 10−3 ±1.5× 10−3 ±1.8× 10−3 ±1.5× 10−3 ±1.7× 10−3

500 1.32× 10−2 1.26× 10−2 3.14× 10−2 3.12× 10−2 3.10× 10−2 4.00× 10−2 3.96× 10−2

±1.4× 10−3 ±1.2× 10−3 ±3.9× 10−3 ±9.2× 10−4 ±1.3× 10−3 ±9.8× 10−4 ±1.2× 10−3

700 1.37× 10−2 1.24× 10−2 2.87× 10−2 3.10× 10−2 3.01× 10−2 3.94× 10−2 3.84× 10−2

±1.1× 10−3 ±7.6× 10−4 ±2.8× 10−3 ±1.5× 10−3 ±1.3× 10−3 ±1.6× 10−3 ±1.3× 10−3

1000 1.23× 10−2 1.14× 10−2 2.47× 10−2 3.14× 10−2 3.08× 10−2 4.02× 10−2 3.94× 10−2

±9.5× 10−4 ±8.7× 10−4 ±2.1× 10−3 ±1.1× 10−3 ±1.2× 10−3 ±1.1× 10−3 ±1.3× 10−3

Table EC.6 Performance of the alternative predictors, as a function of s̄, in the M(t)/H2/s(t)+ E10 model

with λ(t) in (27), s(t) in (28), and γa = γs = 1.57 (corresponding to E[S] = 6 hours with a 24 hour cycle). Estimates

of the ASE are shown together with the half width of the 95% confidence interval.



ec26 e-companion to Ibrahim and Whitt: Delay Prediction with Time-Varying Servers

ASE of the predictors in the M(t)/E10/s(t)+ E10 model as a function of s̄

s̄ QLr HOLr NIF Qlma HOLm
a QLa HOLa

10 7.19× 10−2 1.10× 10−1 1.13× 10−1 4.36× 10−2 6.86× 10−2 5.73× 10−2 6.91× 10−2

±1.2× 10−2 ±1.1× 10−2 ±1.5× 10−2 ±2.6× 10−3 ±4.3× 10−3 ±4.5× 10−3 ±4.4× 10−3

20 6.60× 10−2 6.62× 10−2 7.88× 10−2 2.75× 10−2 3.45× 10−2 3.36× 10−2 3.75× 10−2

±9.7× 10−3 ±6.7× 10−3 ±7.8× 10−3 ±2.3× 10−3 ±1.6× 10−3 ±3.0× 10−3 ±3.1× 10−3

30 4.33× 10−2 4.61× 10−2 5.01× 10−2 1.93× 10−2 2.52× 10−2 2.42× 10−2 2.79× 10−2

±6.9× 10−3 ±4.4× 10−3 ±4.5× 10−3 ±1.7× 10−3 ±1.7× 10−3 ±2.5× 10−3 ±2.8× 10−3

50 3.60× 10−2 3.44× 10−2 3.60× 10−2 1.56× 10−2 1.87× 10−2 1.79× 10−2 2.02× 10−2

±5.1× 10−3 ±2.5× 10−3 ±4.3× 10−3 ±4.8× 10−4 ±7.8× 10−4 ±1.1× 10−3 ±1.2× 10−3

70 3.46× 10−2 3.26× 10−2 3.67× 10−2 1.44× 10−2 1.67× 10−2 1.56× 10−2 1.71× 10−2

±5.0× 10−3 ±4.5× 10−3 ±5.5× 10−3 ±5.7× 10−4 ±6.2× 10−4 ±9.1× 10−4 ±1.1× 10−3

100 3.00× 10−2 2.90× 10−2 2.90× 10−2 1.29× 10−2 1.41× 10−2 1.40× 10−2 1.49× 10−2

±2.6× 10−3 ±2.4× 10−3 ±2.5× 10−3 ±5.5× 10−4 ±6.2× 10−4 ±5.7× 10−4 ±4.7× 10−4

300 2.54× 10−2 2.26× 10−2 2.16× 10−2 1.01× 10−2 1.05× 10−2 1.12× 10−2 1.15× 10−2

±2.02× 10−3 ±1.3× 10−3 ±1.6× 10−3 ±2.8× 10−4 ±4.8× 10−4 ±2.5× 10−4 ±3.1× 10−4

500 2.19× 10−2 2.08× 10−2 1.86× 10−2 9.65× 10−3 9.81× 10−3 1.01× 10−2 1.03× 10−2

±1.5× 10−3 ±1.5× 10−3 ±1.5× 10−3 ±1.7× 10−4 ±3.3× 10−4 ±2.6× 10−4 ±2.3× 10−4

700 2.23× 10−2 2.10× 10−2 1.89× 10−2 9.42× 10−3 9.56× 10−3 9.90× 10−3 1.00× 10−2

±8.9× 10−4 ±7.6× 10−4 ±7.2× 10−4 ±1.4× 10−4 ±1.5× 10−4 ±1.9× 10−4 ±2.2× 10−4

1000 2.24× 10−2 2.09× 10−2 1.91× 10−2 9.27× 10−3 9.36× 10−3 9.91× 10−3 1.01× 10−2

±1.1× 10−3 ±8.5× 10−4 ±1.0× 10−3 ±1.4× 10−4 ±2.9× 10−4 ±1.4× 10−4 ±2.2× 10−4

Table EC.7 Performance of the alternative predictors, as a function of s̄, in the M(t)/E10/s(t)+ E10 model

with λ(t) in (27), s(t) in (28), and γa = γs = 1.57 (corresponding to E[S] = 6 hours with a 24 hour cycle). Estimates

of the ASE are shown together with the half width of the 95% confidence interval.



e-companion to Ibrahim and Whitt: Delay Prediction with Time-Varying Servers ec27

ASE of the predictors in the M(t)/D/s(t)+ H2 model as a function of s̄

s̄ QLr HOLr NIF Qlma HOLm
a QLa HOLa

10 4.80× 10−2 6.38× 10−2 6.58× 10−2 2.73× 10−2 4.23× 10−2 4.19× 10−2 5.61× 10−2

±1.4× 10−3 ±2.1× 10−3 ±3.0× 10−3 ±1.9× 10−3 ±1.7× 10−3 ±1.6× 10−3 ±2.1× 10−3

20 2.22× 10−2 2.78× 10−2 3.29× 10−2 1.19× 10−2 1.90× 10−2 1.69× 10−2 2.41× 10−2

±7.9× 10−4 pm8.6× 10−4 ±4.7× 10−4 ±5.0× 10−4 ±5.1× 10−4 ±3.9× 10−4 ±6.6× 10−4

30 1.60× 10−2 1.86× 10−2 2.56× 10−2 8.29× 10−3 1.29× 10−2 1.15× 10−2 1.62× 10−2

±4.3× 10−4 ±4.9× 10−4 ±5.1× 10−4 ±3.6× 10−4 ±4.4× 10−4 ±2.9× 10−4 ±5.1× 10−4

50 1.16× 10−2 1.23× 10−2 2.04× 10−2 5.74× 10−3 8.44× 10−3 7.69× 10−3 1.04× 10−2

±5.0× 10−4 ±5.1× 10−4 ±4.2× 10−4 ±1.9× 10−4 ±2.7× 10−4 ±1.9× 10−4 ±2.7× 10−4

70 1.01× 10−2 1.00× 10−2 1.80× 10−2 4.76× 10−3 6.74× 10−3 6.37× 10−3 8.35× 10−3

±3.1× 10−4 ±3.3× 10−4 ±4.0× 10−4 ±1.6× 10−4 ±2.1× 10−4 ±1.3× 10−4 ±2.5× 10−4

100 8.64× 10−3 8.12× 10−3 1.66× 10−2 3.88× 10−3 5.30× 10−3 5.23× 10−3 6.63× 10−3

±2.8× 10−4 ±1.7× 10−4 ±3.0× 10−4 ±1.2× 10−4 ±1.7× 10−4 ±1.1× 10−4 ±1.8× 10−4

300 6.73× 10−3 5.86× 10−3 1.43× 10−2 2.70× 10−3 3.18× 10−3 3.64× 10−3 4.11× 10−3

±8.1× 10−5 ±7.2× 10−5 ±8.1× 10−5 ±4.4× 10−5 ±4.0× 10−5 ±4.1× 10−5 ±4.5× 10−5

500 6.25× 10−3 5.18× 10−3 1.36× 10−2 2.41× 10−3 2.67× 10−3 3.29× 10−3 3.56× 10−3

±6.0× 10−5 ±6.7× 10−5 ±1.0× 10−4 ±3.9× 10−5 ±6.5× 10−5 ±4.2× 10−5 ±6.3× 10−5

700 6.11× 10−3 5.06× 10−3 1.35× 10−2 2.33× 10−3 2.53× 10−3 3.18× 10−3 3.36× 10−3

±1.0× 10−4 ±5.6× 10−5 ±1.1× 10−4 ±3.1× 10−5 ±4.0× 10−5 ±2.7× 10−5 ±4.8× 10−5

1000 5.96× 10−3 4.83× 10−3 1.34× 10−2 2.20× 10−3 2.32× 10−3 3.02× 10−3 3.13× 10−3

±5.8× 10−5 ±5.3× 10−5 ±9.1× 10−5 ±2.9× 10−5 ±4.6× 10−5 ±3.4× 10−5 ±3.3× 10−5

Table EC.8 Performance of the alternative predictors, as a function of s̄, in the M(t)/D/s(t)+ H2 model with

λ(t) in (27), s(t) in (28), and γa = γs = 1.57 (corresponding to E[S] = 6 hours with a 24 hour cycle). Estimates of

the ASE are shown together with the half width of the 95% confidence interval.



ec28 e-companion to Ibrahim and Whitt: Delay Prediction with Time-Varying Servers

ASE of the predictors in the M(t)/D/s(t)+ E10 model as a function of s̄

s̄ QLr HOLr NIF Qlma HOLm
a QLa HOLa

10 8.72× 10−2 1.09× 10−1 1.15× 10−1 4.30× 10−2 6.20× 10−2 5.95× 10−2 6.64× 10−2

±2.1× 10−2 ±1.3× 10−2 ±1.2× 10−2 ±4.0× 10−3 ±4.9× 10−3 ±6.9× 10−3 ±4.2× 10−3

20 6.00× 10−2 6.31× 10−2 7.09× 10−2 2.42× 10−2 3.28× 10−2 3.09× 10−2 3.57× 10−2

±1.1× 10−2 ±5.3× 10−3 ±7.3× 10−3 ±3.5× 10−3 ±2.7× 10−3 ±4.0× 10−3 ±4.0× 10−3

30 5.49× 10−2 5.16× 10−2 5.68× 10−2 2.02× 10−2 2.63× 10−2 2.40× 10−2 2.73× 10−2

±7.3× 10−3 ±7.9× 10−3 ±7.3× 10−3 ±2.5× 10−3 ±2.3× 10−3 ±3.0× 10−3 ±2.8× 10−3

50 3.84× 10−2 3.84× 10−2 4.03× 10−2 1.64× 10−2 1.94× 10−2 1.93× 10−2 2.15× 10−2

±4.2× 10−3 ±2.7× 10−3 ±3.4× 10−3 ±2.2× 10−3 ±2.1× 10−3 ±2.9× 10−3 ±2.9× 10−3

70 3.82× 10−2 3.69× 10−2 3.68× 10−2 1.56× 10−2 1.73× 10−2 1.87× 10−2 1.98× 10−2

±5.5× 10−3 ±4.1× 10−3 ±4.6× 10−3 ±2.1× 10−3 ±2.2× 10−3 ±2.5× 10−3 ±2.7× 10−3

100 3.69× 10−2 3.70× 10−2 3.56× 10−2 1.53× 10−2 1.65× 10−2 1.79× 10−2 1.86× 10−2

±4.4× 10−3 ±2.6× 10−3 ±2.7× 10−3 ±2.0× 10−3 ±2.2× 10−3 ±2.5× 10−3 ±2.6× 10−3

300 3.21× 10−2 3.07× 10−2 2.68× 10−2 1.32× 10−2 1.36× 10−2 1.49× 10−2 1.52× 10−2

±2.1× 10−3 ±2.6× 10−3 ±2.5× 10−3 ±1.2× 10−3 ±1.2× 10−3 ±1.4× 10−3 ±1.5× 10−3

500 3.14× 10−2 2.98× 10−2 2.54× 10−2 1.32× 10−2 1.34× 10−2 1.52× 10−2 1.53× 10−2

±2.3× 10−3 ±1.4× 10−3 ±1.4× 10−3 ±1.0× 10−3 ±1.1× 10−3 ±1.2× 10−3 ±1.1× 10−3

700 3.15× 10−2 3.00× 10−2 2.51× 10−2 1.33× 10−2 1.33× 10−2 1.51× 10−2 1.52× 10−2

±1.6× 10−3 ±1.4× 10−3 ±1.4× 10−3 ±1.1× 10−3 ±1.1× 10−3 ±1.2× 10−3 ±1.3× 10−3

1000 3.03× 10−2 2.85× 10−2 2.39× 10−2 1.29× 10−2 1.29× 10−2 1.46× 10−2 1.46× 10−2

±1.2× 10−3 ±1.1× 10−3 ±1.1× 10−3 ±8.8× 10−4 ±8.8× 10−4 ±1.2× 10−3 ±1.2× 10−3

Table EC.9 Performance of the alternative predictors, as a function of s̄, in the M(t)/D/s(t)+E10 model with

λ(t) in (27), s(t) in (28), and γa = γs = 1.57 (corresponding to E[S] = 6 hours with a 24 hour cycle). Estimates of

the ASE are shown together with the half width of the 95% confidence interval.
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