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Abstract: We derive probabilistic generalizations of the fundamental theorem of calculus and Taylor’s theorem, obtained by making 

the argument interval random. The remainder terms are expressed in terms of iterates of the familiar stationary-excess or 

equilibrium residual-lifetime distribution from the theory of stochastic point processes. The probabilistic generalization of Taylor’s 

theorem can be applied to approximate the mean number of busy servers at any time in an M, /G/m queueing system. 
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1. The result 

We present probabilistic generalizations of the 
fundamental theorem of calculus and Taylor’s 
theorem, obtained by making the argument inter- 
val random. For this purpose, let X be a nonneg- 
ative random variable with finite mean E[X] and 
let X, be a nonnegative random variable with 
distribution 

P(X, <x) = 
Jrd;p(X>~) dy 

E[X] 7 x20, 

which has k th moment 

(1) 

E[ Xe”] = kj-fx’-‘P(X, ax) dx 

mykf’(X>y) dy = 

/ 0 E[Xl 
E[ Xk+‘] 

= 
(k+ l)E[X] ’ (2) 
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The distribution of X, is called the statio- 
nary-excess (stationary forward recurrence-time 
or equilibrium residual-lifetime) distribution in 
the context of stochastic point process models; 
see Daley and Vere-Jones (1988, pp. 53, 71). For 
example, if the intervals between successive bus 
arrivals at a bus stop are independent and identi- 
cally distributed (i.i.d.1 according to X, then in 
the long run the time that a person arriving at the 
bus stop (independent of the arrival process) must 
wait for the next bus is distributed according to 
X,; see Wolff (1989, pp. 55, 65). 

It is evident from (1) that we can regard the 
stationary-excess distribution as the image of a 
stationary-excess operator on the space of proba- 
bility distributions on the interval [O, ml; if E[X] 
= m, then P(X, = CQ) = 1. We will be interested 
in successive iterates of this operator. For this 
purpose, let Xi’“) = (Xe(n-“>e for y1 > 1 and Xi’) 
=X for nonnegative random variables X. For 
other occurrences of iterates of the stationary- 
excess operator, see Harkness and Shantaram 
(19691, Shantaram and Harkness (19721, van Beek 
and Braat (1973), Whitt (19851, Abate and Whitt 
(1988) and Eick, Massey and Whitt (1992). 
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To state our probabilistic generalization of 
Taylor’s theorem, let f be a real-valued function 
of a real variable. Moreover, let f’“) denote the 
nth derivative of f with f(O) =f. 

Theorem. For any n > 1, suppose that f is n-times 
differentiable and f (n) is Riemann integrable on the 
interval [t, t +x1 for each x > 0. Zf E[X”] < ~0 
and E[ I f (k)(t + XLk) I 1 < 00, 0 Q 
E[If(t+X)Il<~and 

n-1 fCk’(t) 
E[f(t+X)l = c Wkl~ 

k=O 

+E[ f’“‘(t +XL”‘)] 

k G n, then 

E[ X”] 

n! . 

Remarks. (1) Note that for X deterministic the 
theorem above expresses the fundamental theo- 
rem of calculus for n = 1 and a variant of Taylor’s 
theorem for n Q 1; see Rudin (1964, pp. 95, 115). 
If P(X = x) = 1, then X, has a uniform distribu- 
tion on [O, xl, i.e., P[X, G t] = t/x, 0 G t Gx. 

(2) The distribution of X, coincides with the 
distribution of X when E[X] < m if and only if 
X has an exponential distribution; see Corollary 
3.3 and Section 5 of Whitt (1985). 

(3) In the first condition of the theorem, it 
actually suffices for f ck) to be absolutely continu- 
ous with respect to Lebesgue measure for 0 G k 
G n - 1, in which case f (n-1) is differentiable 
almost everywhere and equal to the indefinite 
integral of f @); see Royden (1968, pp. 104-107). 

(4) Extensions of Dynkin’s formula for Markov 
stochastic processes in Athreya and Kurtz (1973) 
and references cited there are similar in spirit to 
our theorem. 

2. The proof 

Before proving the theorem, we give expression 
for all moments of the iterated stationary-excess 
variables. Let (n), = n(n - 1) * . . (n - k + 1). 

Lemma. For n < 1 and k Q 1, ifE[X”I < *, then 

+(@)“I = n!EIX”+kl 
(n + k),E[X”] ’ 

Proof. Use (2) plus induction on n and k. 0 

Proof of the theorem. We apply mathematical 
induction. To treat the case n = 1, we apply the 
standard fundamental theorem of the calculus, 
p.115 of Rudin (1964), and Fubini’s theorem (with 
the moment conditions) to get 

E[f(t +X) -f(t)] 

=E ixfC1)(t+u) du 
[ 1 
/&,,,1”‘( t + u) du 1 

=lo,r(X>u)f(‘)(t+u) du 

=E[f”‘(t+X,)]E[X]. (3) 

To carry out the induction, we will apply the 
result just established for n = 1 with a new func- 
tion. For this purpose, for n > 1, define the re- 
mainder term 

n-l f’k’(q 
R,f(t, x) =f(t+x) - c xkI 

k=O 
(4) 

and let 

R,f(t, x) =f(t +x). 

Since 

n-1 

kvoE[ X;‘“‘] = 7 

by the lemma, to prove our theorem, we need to 
show that 

n-1 

E[R,(t, X)] =E[f’“‘(t+X,‘“‘)]k~oEIX:k’], 

(5) 

which we have done for n = 1. Now note that 
R, f has the following properties 

;R,f(t, x) =Rn_lf(l)(t, x) 

and (6) 
R,f(t, 0) = 0. 

52 



Volume 16, Number 1 STATISTICS&PROBABILITY LETTERS 4 January 1993 

Hence, we can apply (6) and the established 
result for II = 1 to the new function f *(t + x) = 
R,f(t, x>, thinking of t as fixed, to get 

E[R,f(t, X)1 =E ;R”f(r, X,) E[Xl 
[ 1 

=E[R,_,f”‘(t, X,)]E[X]. 

(7) 

By induction on ~1, we obtain (5) from (7). Of 
course, we must verify the moment conditions in 
these last two steps, but this is easily done. By (4) 

and (61, 

n-1 IfCk’(t) I 
IR,f(t, x)jdf(t+x)l+ c lxlk k, 7 

k=O 

and 

I(;)*Rnf(t> x) 1 

(8) 

<lf’k’(t+X)I+ c 
n-k-1 Ixlklf(kyt)l) (9) 

k=O k! 

so that the assumed moment conditions together 
with the Lemma imply that 

EIIRLk’f(t, X;“‘)I] <m (10) 

for 0 < k G n and E[X~k)] < w for k G n - 1. q 

3. An application: Nonstationary queues 

Our interest in this problem arose from consider- 
ing the M,/G/cc queueing model, which has 
infinitely many servers, a nonhomogeneous Pois- 
son arrival process with deterministic time-de- 
pendent arrival-rate function A, and i.i.d. service 
times that are independent of the arrival process; 
see Eick et al. (1992). For appropriate initial 
conditions, the number of busy servers at time t 
has a Poisson distribution with mean 

m(t) = E /I A(u) du 
t-x 1 (11) 

when X is a random variable with the service-time 
distribution. This becomes a special case of our 
situation here by setting 

f(t+x) =/II,“(u) du, x>O. (12) 

From (11) and (121, our theorem here with n = 1 
yields 

m(t) =E[W-X,)]E[Xl, (13) 

as in Theorem 1.1 of Eick et al. (1992). 
Our theorem also yields information about 

uniform acceleration approximations for the 
M,/G/m queue. These approximations are ob- 
tained from a given queueing system by construct- 
ing a family of queueing systems indexed by 8 
with E JO. The system indexed by B has the same 
arrival-rate function as the original system except 
that it is divided by e, which increases or acceler- 
ates the rate as F JO. Similarly, the service time is 
scaled by E, which accelerates the service rate. 
This technique was applied to the analysis of the 
M,/M,/l queue by Massey (1981, 1985), where 
an asymptotic expansion for its transition proba- 
bilities, mean queue length and variance of queue 
length was obtained. For the M,/G/w queue, 
the accelerated mean queue length can be writ- 
ten in closed form as 

mF(t) = iE[/’ A(s) ds . 
t-e.7 1 (14) 

Consequently, we can apply our probabilistic gen- 
eralization of Taylor’s theorem to get an expan- 
sion in E, with an exact expression for the re- 
mainder term, as we did in Eick et al. (1992). If A 
is an (n + l)-times differentiable function, then 
m”(t) = m:(t) + r,“(t), where 

A(j)(t) 
m:(t) = i (-E)‘(~+ l)jEIX'+ll (15) 

j=O 

and 

r,“(t) = ( -E)n+l 
.[A@+‘)(, -EX,(“+~))] 

(n+2)! 

x E[Xn+*]. (16) 

As a special case, the zero-th order term in the 
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uniform acceleration expansion, is usually re- 
ferred to as the pointwise stationary approxima- 
tion; e.g., see Green and Kolesar (1991) and 
Whitt (1991). Moreover, we have an exact expres- 
sion for the error induced by this approximation 
(for the original, unaccelerated system, or E = 11, 

Im(t) -h(t)E[X]I = $E[A(‘)(t -X,)]E[X2]. 

(17) 

Moreover, all of these results extend to nonsta- 
tionary networks of infinite server queues, see 
Theorem 5.4 of Massey and Whitt (1992). 

These various approximations for the time-de- 
pendent mean m(t) are not so important as di- 
rect approximations, because m(t) is quite readily 
calculated exactly using (13). We are interested in 
the approximations primarily to gain insight into 
corresponding approximations when there are 
only finitely many servers; then no explicit 
closed-formulas are available. 
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