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Abstract

This is an online supplement to the main paper, which considers an automatic overload
control for two large service systems modeled as multi-server queues, such as call centers. We
assume that the two systems are designed to operate independently, but want to help each other
respond to unexpected overloads. The proposed overload control automatically activates sharing
(sending some customers from one system to the other) once a ratio of the queue lengths in the
two systems crosses an activation threshold (with ratio and activation threshold parameters
for each direction). The paper is primarily concerned with ensuring that the system recovers
rapidly after the overload is over, either (i) because the two systems return to normal loading or
(ii) because the direction of the overload suddenly shifts in the opposite direction. To achieve
rapid recovery, we introduce lower thresholds for the queue ratios, below which one-way sharing
is released. As a basis for studying the complex dynamics, we develop a new six-dimensional
fluid approximation for a system with time-varying arrival rates, extending a previous fluid
approximation involving a stochastic averaging principle. We conduct simulations to confirm
that the new algorithm is effective for predicting the system performance and choosing effective
control parameters. The simulation and the algorithm both show that the system can experience
an inefficient nearly-periodic behavior, corresponding to an oscillating equilibrium (congestion
collapse), if the sharing is strongly inefficient and the control parameters are set inappropriately.

Keywords: service systems; overload control; congestion collapse; time-varying queues; many-

server queues; recover after overload incident; fluid models
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1 Overview

In this online supplement we expand upon the main paper. We include an extended discussion

of related literature, and our contribution to the literature, in §2. Before providing numerical

examples that show the accuracy of our fluid model, we provide in §3 the fluid model for a system

in which at least one pool is underloaded, namely, it has slack in fluid scale. Three experimental

results are shown in §4, where the fluid model, solved by our numerical algorithm, is contrasted with

simulation. See, in particular, the challenging (and unrealistic) time-varying example in §4.3, which

illustrates the robustness of our nonautonomous fluid model. In §5 we show that the fluid model can

also predict the oscillatory behavior and its resulting congestion collapse when oscillations occur

in “fluid scale” (i.e., when the oscillations occur in the fluid limit, as we prove in [29]). Finally,

in §6 we explain how to represent the FTSP Di,j as a quasi-birth and death (QBD) process when

ri,j 6= 1, i, j = 1, 2.

2 Extended Discussion of Related Literature

2.1 An Automatic Overload Control

In the main paper we study an automatic control to temporarily activate “emergency” measures

in an uncertain dynamic environment to mitigate damage from unexpected disruptions, and au-

tomatically return to normal operation when the disruptions are over. There are two important

questions: First, how and when should the control be activated? And, second, how and when

should the control be released? Such control problems arise in many contexts and have long been

studied within the discipline of control theory [18, 33]. A familiar automatic control is a thermostat,

which automatically turns on and off a heater and/or an air conditioner within a building. Since

building temperature tends to change slowly relative to human temperature tolerance, conven-

tional thermostats operate well with little concern, but special thermostats are needed for complex

environments, such as in biochemical processes [3].

Another example of an automated control occurs in a large stock market exchange, such as the

New York Stock Exchange (NYSE). To respond to the experience of dramatic fluctuations in prices,

in 1988 the NYSE instituted trading curbs called circuit breakers or collars, which stop trading for

a specified period in the event of exceptionally large price changes. With the increase of high-speed

computer trading, these controls have become even more important and interesting since then [13].

From the control-theoretic perspective, these examples illustrate that many real-world dynam-
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ical systems are switching systems [20], namely, their dynamics switch abruptly in a discontinuous

manner. Often, these switching epochs depend on discrete events, such as a sudden change in

the environment in which the system operates. In such cases, these dynamical systems are often

modeled as hybrid dynamical systems [23, 30] by coupling the continuous process, describing the

system’s dynamics, with a discrete process, whose value at any given time affects the continuous

system’s dynamics. In the stochastic setting, hybrid systems often appear (at least implicitly) when

a stochastic system is assumed to operate in a randomly-changing environment.

In this paper we consider a stochastic queueing system with changing arrival-rate and total

service-rate functions (which can be thought of as an a-priori unknown “environment”), and employ

a deterministic fluid model to approximate its evolution. To facilitate its operation and analysis, we

design a control that transforms the hybrid system into a simpler state-dependent switching system,

whose dynamics depend solely on the state of the continuous part of the system, thus eliminating

the need to consider the discrete-event process representing the exogenous environment. We then

develop an efficient algorithm to solve the approximating fluid model, and apply simulation to show

that the fluid model and the new algorithm are effective.

The specific setting we consider involves two large-scale telephone call centers (or service pools

within the same call center) that are designed to operate independently, but have the capability

(due to both network technology and agent training) to respond to calls from the other system,

even though there might be some loss in service effectiveness and efficiency in doing so. These

call centers are designed and managed to separately respond to uncertain fluctuating demand and,

with good practices, usually can do so effectively; see [1] for background. However, these call

centers may occasionally face exceptional unexpected overloads, due to sudden surges in arrivals,

extensive agent absenteeism or system malfunction (e.g., due to computer failures). It thus might be

mutually beneficial for the two systems to agree to help each other during such overload incidents.

We propose an automatic control for doing so. We are motivated by this call-center application, but

the insights and analytical methods should be useful in other service systems. Since we model the

call centers as multi-server queues, the insights and methods may also be useful for other queueing

settings.

In telecommunication systems and the Internet, the standard overload controls reduce the de-

mand through some form of admission control (rejecting some arrivals) or otherwise restricting

demand; see [4, 12, 22, 31, 35] and references therein. These controls, that reject or reduce arrivals,

are especially important when the increasing load can cause the throughput to decrease when it
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should increase. Such anomalous behavior can occur because some of the customers “go bad.”

The classic telephone example is failure during the call setup process. The customer might start

entering digits before receiving dial tone or abandon before the call is sent to the destination. As a

consequence, the vast majority of system resources may be working on requests that are no longer

active, causing the throughput to actually decrease. In response, various effective controls have

been developed [8, 19].

In contrast, here we assume that no arrivals will be directly turned away, although on their own

initiative customers may elect to abandon from queue because they become impatient. Instead,

we develop a control that automatically sends some of the arrivals to receive service from the

other service pool when appropriate conditions are met. It is natural to prefer diverting instead of

rejecting arrivals whenever some response is judged to be better than none at all, even if delayed.

Indeed, diverting instead of rejecting arrivals is the accepted policy with ambulance diversion in

response to overload in hospital emergency rooms, e.g., see [5, 7, 37] and references therein. The

results here may be useful in that context as well, but then it is necessary to consider the extra

delay for ambulances to reach alternative hospitals, which has no counterpart in networked call

centers. (We assume that the calls can be transferred instantaneously.)

2.2 Congestion Collapse

An important feature of this kind of sharing, which is captured by our model, is that the sharing may

be inefficient. A simple symmetric example that we consider in §4 of the main paper has identical

service rates for agents serving their own customers, but identical slower service rates when serving

the other customers. With such inefficiency, the whole system will necessarily operate inefficiently,

with lower throughput of both classes, if both pools are busy serving the other customers instead of

their own. Nevertheless, we find that judicious sharing with our proposed overload control can be

effective even with some degree of inefficiency, but care is needed in setting the control parameters.

A major concern with such inefficient sharing is that the system may possibly experience congestion

collapse, i.e., the system may become overloaded due to the control, even though it has sufficient

service capacity to handle all arrivals [9, 32].

Within telecommunications there is a long history of congestion collapse and its prevention in

the circuit-switched telephone network. More than 60 years ago, it was discovered that the capacity

and performance of the network could greatly be expanded by allowing alternative routing paths

[36]. If a circuit is not available on the most direct path, then the switch can search for free circuits
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on alternative paths. The difficulty is that these alternative paths may use more links and thus

more circuits. Thus, in overload situations (the classic example being Mother’s Day), the network

can reach a stable inefficient operating regime, with the system congested, but far less than maximal

throughput. This congestion collapse in the telephone network was first studied by simulation [34].

The classical remedy in such loss networks is trunk reservation control, where the last few circuits

on a link are reserved for direct traffic; see [10], §§4.3-4.5 of [17] and references therein.

Overload controls have also been considered for more general multi-class loss networks. In the

multi-class setting, it may be desirable to provide different grades of service to different classes,

including protection against overloads caused by overloads of other classes. Partial sharing controls

achieving these more general goals can be achieved exploiting upper limit bounds and guaranteed

minimum bounds [6]. Moreover, in [6] algorithms are developed to compute the performance associ-

ated with such complex controls, which greatly facilitates choosing appropriate control parameters.

For the (different) problem we consider, we also develop a performance algorithm that can be used

to set the control parameters.

Even though a call center can be regarded as a telecommunications network, our problem is quite

different from the classical loss network setting discussed above. By definition, the loss network

has no queues, so that all arrivals that cannot immediately enter service are turned away. In sharp

contrast, our system turns no arrivals away. As a consequence, our system is more “sluggish;” it

responds more slowly to changes in conditions, and presents new challenges.

For the model considered here, we show in §4 of the main paper that the two call centers can

indeed experience behavior that is best described as congestion collapse if the sharing is strongly

inefficient and an inappropriate control is used. An unstable oscillating equilibrium is predicted

by our numerical algorithm for the approximating fluid model and confirmed by simulation; see

Figures 6 and 7 in the main paper for the simulation and Figures 25 and 26 in the main paper for

the algorithm. We perform a detailed rigorous study of the challenging oscillatory behavior in a

subsequent paper [29].

However, this oscillatory phenomenon is far from obvious because the stochastic model after the

overload is over is an ergodic time-homogeneous CTMC with a steady-state limiting distribution.

The situation that we consider in this paper is similar to the nearly periodic behavior of the

G/D/s+GI queue exposed in [21]. Here, by “nearly periodic” we mean that a periodic equilibrium

exists to the fluid model, and that any oscillating fluid model will converge to that equilibrium in

an appropriate sense as time increases. (Since the exact definition of convergence to a periodic
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equilibrium is somewhat involved, we refer the interested reader to §4 in [29].) In that setting, the

actual stochastic system has a well-defined limiting steady-state distribution and yet the system

exhibits nearly periodic behavior over long time periods. When the scale is large, it turns out that

the nearly periodic transient behavior observed in simulations is well predicted by a limiting fluid

model. Unlike the stochastic model, the fluid model does not have a unique limiting steady-state.

The reason for this discrepancy is that the two iterated limits (as time gets large and as the scale,

determined by the arrival rate, gets large) done in different order are not equal.

In this paper we show the existence of the nearly periodic behavior (with inefficient sharing and

inappropriately chosen controls), tantamount to congestion collapse, with our fluid algorithm and

simulation. We provide additional mathematical support in [29] by proving that unstable oscillating

equilibria can exist for a class of these fluid models.

However, this highly undesirably behavior can be avoided with reasonably chosen controls. In

the main paper we develop a model and an algorithm for analyzing that model that can be used

to achieve the benefits of sharing while avoiding such bad behavior.

2.3 Fixed-Queue-Ratio Controls

Our overload control is a modification of the Fixed-Queue-Ratio (FQR) and more general Queue-

and-Idleness-Ratio (QIR) controls proposed for routing and scheduling in a multi-class multi-pool

call center under normal operating conditions in [14, 15, 16]. For the two-class two-pool X model

considered here, the FQR rule sends customers to the other service pool if the ratio of the queue

lengths exceeds a specified ratio. However, the theorems establishing that the FQR control is

effective in [14, 15, 16] have conditions that do not hold for our networks here, which has a cyclic

routing graph and service rates that depend on the customer class and service pool. Indeed,

Example 2 of [24] shows that the X model can experience severe congestion collapse under normal

loading if FQR is used. (The congestion collapse shown in [24] is different than the one mentioned

above, which is due to the undesired oscillatory behavior.)

Nevertheless, in [24] we showed that the FQR control can usefully be applied as an overload

control for the X model with inefficient sharing if we introduce additional activation thresholds.

The FQR control with thresholds (FQR-T) sends customers to the other service pool if the queue

ratio exceeds the activation threshold. For the X model, the FQR-T control has four parameters:

a target ratio and an activation threshold for each direction of sharing. The target ratios are

chosen to minimize the long-run average cost during the overload incident in an approximating
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stationary deterministic fluid model with a convex cost function applied to the two queues. To

prevent harmful sharing, we also imposed the condition of one-way sharing; i.e., sharing is allowed

in only one direction at any one time.

To better understand the transient behavior of the FQR-T control, in [25] we developed a

deterministic fluid model to analyze the performance. That model is challenging and interesting

because it is an ordinary differential equation (ODE) involving a stochastic averaging principle

(AP). In [26, 27, 28] we established supporting mathematical results about the FQR-T control,

including a functional weak law of large numbers (FWLLN) and functional central limit theorem

(FCLT) refinement. The previous analysis showed that the FQR-T control can rapidly respond to

and mitigate an unexpected overload, while preventing sharing under normal conditions.

2.4 Contributions

In relation to the literature discussed above, we make three contributions: First, we design an

efficient control that reacts quickly to changes in the environment, obviating the need to track the

exact conditions (arrival rates, total number of agents, when this is not exactly known, etc.) at each

time point. Second, we design a novel six-dimensional fluid model that accurately approximates

the complex system dynamics in these time-varying settings, involving a challenging SSC. Finally,

we develop an efficient algorithm to solve the fluid model.

Simulation also plays an important role in our study. First, we use simulation to show that

refinements to the FQR-T control are needed to ensure rapid recovery after the overload is over.

Second, we use simulation to demonstrate that the fluid model provides a good performance ap-

proximation. Finally, we use simulation to verify that we can indeed gain important insights into

complex system behavior from the fluid model, even for systems that are not overloaded, as in our

examples after the overload has ended.

We make three kinds of contributions: (i) control theoretic, (ii) analytic and (iii) algorithmic.

Control: Rapid Recovery After the Overload Is Over As discussed above, the system

considered here is a hybrid stochastic system in which the discrete process (“the environment”) has

unknown distribution. In particular, the instantaneous evolution of the queueing processes (the

“continuous part”) at each time point depends on the “environment” (e.g., the arrival rates). Since

we want the control to always respond quickly to changes in the environment by initiating new

sharing or by terminating ongoing sharing, as needed, there is no reason to model the environment
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as a stochastic process with known distribution.

Our purpose is thus to design a control that reacts automatically to shifts in the system’s loads

and depends only on the state of the system. To that end, our previous control FQR-T needs to

be modified in order to ensure that the system recovers rapidly after an overload is over, either

(i) because the two systems return to normal loading or (ii) because the direction of the overload

suddenly shifts in the opposite direction. To achieve rapid recovery, we propose additional release

thresholds for the shared-customers processes, below which one-way sharing is released. (We had

previously recognized that such a modification of FQR-T was needed, e.g., see paragraph 3 in §2.2

of [26] and Remark B.1 in Appendix B of [27], but we now show for the first time that the modified

control can be analyzed and can be effective.)

Analytical: A Time-Inhomogeneous Fluid Model Involving SSC As a basis for studying

such more complex dynamics, we extend our previous fluid model approximation in three ways:

(i) the new fluid model is 6-dimensional instead of 3-dimensional; (ii) the model is allowed to have

time-varying arrival rates and staffing functions; and (iii) the model switches its dynamics according

to changes in the rates (arrival or total service rates). Hence, the new fluid model is described via

a nonautonomous (time-varying) ODE with a discontinuous right-hand side. The discontinuities

in the fluid dynamics have two sources: First, unlike in our previous papers, the switching in the

environment (the loads in the queues) cause switching of the control. Second, as in our previous

work, our fluid model involves state-space collapse (SSC) during overload periods. Specifically, when

sharing takes place, the six-dimensional fluid model is essentially three-dimensional, because the

two pools are full and the queues are at their target ratio. Hence, the number of class-i customers

in pool j at any given time determines also the number of class-j customers in that pool, and that

the number of customers in queue i determines the number of customers in queue j, i 6= j.

While SSC is an appealing property for stochastic networks for various reason (see §1 in [29] for

a review), it presents significant analytical complications in the fluid approximation. In particular,

from the control perspective, SSC corresponds to the fluid model “sliding” on (i.e., is confined to)

a lower-dimensional manifold – a so-called sliding manifold – causing the aforementioned disconti-

nuity.

Algorithmic: An Efficient Algorithm to Solve for the Fluid Model Building on a previous

algorithm in [25], we design a new algorithm to numerically solve the non-autonomous ODE. It is
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significant that there is no general theory that can be applied to determine sliding motion (resulting

from SSC) of the fluid model uniquely; see, e.g., page 52 in [11]. An additional challenge here is

that the time-varying setting implies that the sliding manifold is itself time-dependent, so that it

is hard to characterize. Nevertheless, by defining the fluid model via the stochastic AP, a unique

solution to the fluid model during sliding motion can be verified, so that the numerical solution to

the ODE via our algorithm is the unique solution. In particular, the sliding motion is computed via

the AP by computing the unique stationary distribution of a certain stochastic process. (Due to

its complexity, we defer the relevant theory to §5, with a detailed explanation of the AP appearing

in §5.2.)

To summarize, the new algorithm

(1) identifies and computes the fluid dynamics at all possible regions of the six-dimensional

state space.

(2) determines that a sliding manifold is hit (there are two sliding manifolds, one for each

direction of sharing), and then determines whether sliding motion occurs or not. This depends on

the rules of FQR-ART but also on the rates in the system at any given time point and state of the

system at the hitting time.

(3) determines the sliding motion (uniquely), when it should occur.

3 Fluid Model When There is No Active Sharing

The ODE for the fluid model was developed for all cases for which both pools are full, i.e., for time

intervals I for which

Zni,j(t) + Znj,j(t) = mn
j (t), t ∈ I. (3.1)

This is the main case because systems are typically designed to operate with very little extra service

capacity (if any), and is the primary case when overloads occur. Nevertheless, the system may go

through periods in which at least one of the pools is underloaded. To make our fluid model and

algorithm more robust, so they include periods of underloads, we now briefly describe the fluid

models for this case.

Consider an interval I ⊂ [0,∞). If no sharing takes place and z1,2(t) = z2,1(t) = 0 for all t ∈ I,

then the two classes operate as two independent single-pool models (with time-varying parameters

and staffing) over that interval I, to which fluid limits are easy to establish. Specifically, assuming

without loss of generality, that I = [0, s) for some 0 < s < ∞, the fluid dynamics of both classes
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obey the ODE

q̇i(t) = (λi(t)− µi,izi,i(t)− θiqi(t))1{qi(t)≥0}

żi,i(t) =

{
ṁi(t) if qi(t) > 0,
λi(t)1{zi,i(t)≤mi(t)} − µi,izi,i(t) if qi(t) = 0.

(3.2)

In the time-invariant case, when the arrival rates and staffing functions are fixed constants, the

unique solution for a given initial condition to the ODE in (3.2) is easily seen to be

qi(t) =

(
λi − µi,imi

θi
+

(
qi(0)− λi − µi,imi

θi

)
e−θit

)
∨ 0,

zi,i(t) =

{
mi,i if qi(t) > 0,
λi
µi,i

+
(
zi,i(0)− λi

µi,i

)
e−µi,it if qi(t) = 0.

(3.3)

where a ∨ b ≡ max{a, b} and (q1(0), q2(0), z1,1(0), z2,2(0)) is a deterministic vector in [0,∞)2 ×

[0,m1]× [0,m2].

If z1,2(s0) > 0 (or z2,1(s0) > 0) for some s0 ≥ 0 and there is no active sharing over the interval

[s0, s1), then z1,2 (z2,1) is strictly decreasing over that interval. Then zi,j , i 6= j, satisfies the ODE

żi,j(t) = −µi,jzi,j(t), s0 ≤ t < s1

which is the same as the ODE for zi,j in the fluid model developed in the paper involving the AP,

with Πi,j = 0.

4 Three Numerical Examples

We now study three examples. The first two are piecewise-continuous models, whereas the third

is for a general time-varying model. In all three examples the system starts empty, so that we also

check the numerical algorithm in periods when (3.1) does not hold, as in §3.

We compare the numerical solutions to the ODE to simulations, to see how well the fluid model

approximates stochastic systems. In the first two examples we simulate three systems, each can be

considered as a component in a sequence {X̄n : n ≥ 1}. In the smallest system we take 50 agents in

each service pool, in the middle one there are 100 agents in a pool, and the largest has 400 agents in

each pool, i.e., we simulate X̄n for n = 50, 100, 400. That allows us to observe the “convergence” of

the stochastic system to the fluid approximation. We plot the fluid and simulation results together,

normalized to n = 10. (E.g., for the system with 400 agents in each pool we divide all processes by

40.)

The following parameters are used for all three simulations:
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µ1,1 = µ2,2 = 1; µ1,2 = µ2,1 = 0.8, θ1 = θ2 = 0.5. In addition, we take r1,2 = r2,1 = 1. We take

kn1,2 = kn2,1 = 0.3n; τn1,2 = τn2,1 = 0.02n, so that, for n = 50, 100, 400, we have kn1,2 = kn2,1 = 15, 30, 120

and τn1,2 = τn2,1 = 1, 2, 8, respectively.

4.1 A Single Overload Incident

The first example aims to check whether FQR-ART detects overloads automatically when they

occur and starts sharing in the right direction, and whether, once an overload incident is over,

FQR-ART avoids oscillations. In particular, over the time interval [0, 60] the arrival rates are as

follows: λn2 = n throughout that time interval. Over [0, 20) and [40, 60] the arrival rate to pool 1 is

λn1 = n. Hence, both pools are normally loaded during these two subintervals. However, during the

interval [20, 40) the arrival rate of class 1 changes to λn1 = 1.4n, so that, during [20, 40) the system

is overloaded, and pool 2 should be helping class 1.

We compare the solution to the fluid equations, solved using the algorithm, to an average of

1000 independent simulation runs for the three cases n = 50, 100, 400. The results are shown in

Figures 1-3 below. In addition Figure 4 plots q1 − r1,2q2 − k1,2. Since shortly after time 20 the

value is 0 in Figure 4, we have a strong indication that the numerical solution is correct, because

during most of the overload period, when sharing takes place, it should hold that d1,2(x(t)) = 0.

The simulation experiments indicate that the fluid model approximates well the mean behavior

of the system even for relatively small systems, e.g., when n = 50. Of course, the accuracy of

the approximation grows as n becomes larger. The simulation experiments show that FQR-ART

quickly detects the overload and the correct direction of sharing. Moreover, the control ensures

that there are no oscillations.

Another observation is that when the system is normally loaded and there is no sharing, the

fluid model, which has null queues, does not describe the queues well. In those cases there is an

increased importance to stochastic refinements for the queues. If there is only negligible sharing,

as FQR-ART ensures, then such stochastic refinements are well approximated by diffusion limits

for the Erlang A model, as in Garnett et al. (2002).

4.2 Switching Overloads

In the second example we consider an overloaded system, with pool 1 being overloaded initially, and

with the direction of overload switching after some time, making pool 2 overloaded. Specifically,

we let the arrival rates be λn1 = 1.4n and λn2 = n over [0, 20), and λn1 = n, λn2 = 1.4n on [20, 40].
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Figure 1: comparison of the fluid model
to simulations of 10Q̄n1 for n = 50, 100
and 400 with a single overload
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Figure 2: comparison of the fluid model
to simulations of 10Q̄n2 for n = 50, 100
and 400 with a single overload

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Shared Customers

Time

 

 

50
100
400
fluid

Figure 3: comparison of the fluid model
to simulations of 10Z̄n1,2 for n = 50, 100
and 400 with a single overload
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Figure 4: plot of q1− r1,2q2−k1,2 in the
single overload example

The results are plotted in Figures 5-7. Figure 8 plots q1 − r1,2q2 − k1,2 and r2,1q2 − q1 − k2,1.

Once again, the fact that the appropriate difference process equals to 0 shortly after the cor-

responding overload begins is an indication that the solution to the ODE is correct, since each

queue is calculated via the averaging principle, without forcing the relations d1,2(x(t)) = 0 and

d2,1(x(t)) = 0.

As in the figures in §4.1, it is easily seen from the figures above that the fluid model approaches

a fixed point, so long as the arrival rates are fixed. Then, once a change in the rates occurs, the

fluid goes through a new transient period until it relaxes in a new fixed point.

4.3 General Non-stationary Model with Switching Overloads

We next test our algorithm in a more challenging time-varying example. This example is unrealistic

in call-center setting, because the arrival rates and staffing functions are not likely to change so

drastically, but it demonstrates the robustness of our fluid model and of the algorithm.
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Figure 5: comparison of the fluid model
to simulations of 10Q̄n1 for n = 50, 100
and 400 with the switching overloads
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Figure 6: comparison of the fluid model
to simulations of 10Q̄n2 for n = 50, 100
and 400 with the switching overloads

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Shared Customers

Time

 

 

50
100
400
fluid

Figure 7: comparison of the fluid model
to simulations of 10Z̄n1,2 for n = 50, 100
and 400 with the switching overloads
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Figure 8: the two fluid difference pro-
cesses with the switching overloads

We assume that the arrival rate to pool 1 over the time period [0, 20) is sinusoidal. We further

assume that management anticipated the basic sinusoidal pattern of the arrival rate, but did not

anticipated the magnitude, so that pool 1 is overloaded. To specify the staffing with the sinusoidal

arrival rate, we assume that staffing follows the appropriate infinite-server approximation; see,

e.g., Equation (9) in Feldmann et al. (2008). The purpose of that staffing rule in our setting, is

to stabilize the system at a fixed point eventually, as in the examples above. In particular, for

t ∈ [0, 20), we let

λn1 (t) = 1.3n+ 0.1n sin(t) and mn
1 (t) = n+ 0.05n[sin(t)− cos(t)];

λn2 (t) = n and mn
2 (t) = n.

Then, on the time interval [20, 40] the overload switches, with pool 2 becoming overloaded and

experiencing a sinusoidal arrival rate. However, we now take fixed staffing in both service pools.

In particular, the parameters over the second overload interval [20, 40] are
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λn1 (t) = n and mn
1 (t) = n; λn2 (t) = 1.1n+ 0.1n sin(t) and mn

2 (t) = n.

Thus, we test two overload settings in this example. In the first interval, we can see whether the

fluid approximation stabilizes. Since there is sharing of class-1 customers, previous results such as

in Liu and Whitt (2012a) do not apply directly to our case. In the second interval, we expect to

see a sinusoidal behavior of the system, because the staffing in both pools is fixed. In particular,

the fluid model should not approach a fixed point after the switch at time t = 20.

We compare the fluid approximation to simulations for n = 100 and n = 400. Figures 9–12

demonstrate the effectiveness of the fluid model and the numerical algorithm. As expected, the

fluid over [0, 20) approaches a fixed point, and exhibits a sinusoidal behavior after t = 20, with the

accuracy of the fluid approximation increasing in the scale parameter n.
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Figure 9: the two fluid difference func-
tions d1,2 and d2,1 with the switching
sinusoidal overloads
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Figure 10: comparison of the fluid
model to simulations of 10Z̄n1,2 and
10Z̄n2,1 for n = 100 and 400 with the
switching sinusoidal overloads

As was mentioned above, the fluid model requires special care when the staffing functions are

decreasing; see Liu and Whitt (2012a). Figure 13 shows the actual number of agents in Pool 1

for the case n = 100 (the average of the 1000 simulations), and the staffing function mn
1 (t) given

above. Clearly, the fluid model follows the actual staffing closely. We further note that there is a

downward jump in the staffing function at time t = 20. In the fluid model, we simply eliminated the

appropriate amount of staffing from the pool, together with the fluid that was processed with that

removed capacity (this fluid in service is lost). However, in the simulation, agents are removed only

when they are done serving, so there is no jump in the actual staffing at t = 20, and no customer

in service is lost. Nevertheless, the fluid model with the jump is clearly a good approximation for

the stochastic model with no jump. This behavior is to be expected, since there are many service

completions over short time intervals in large systems.
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Figure 11: comparison of the fluid
model to simulations of 10Q̄n1 for n =
100 and 400 with the switching sinu-
soidal overloads
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Figure 12: comparison of the fluid
model to simulations of 10Q̄n2 for n =
100 and 400 with the switching sinu-
soidal overloads

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120
Pool 1

Time

 

 

fluid
sim

Figure 13: Fluid vs. simulations: Number of agents in pool 1

5 The Oscillatory Model

We now show that the fluid model can also predict the bad oscillatory behavior by comparing the

solutions to the fluid model with simulation. The system we consider is similar to that in the

main paper. In particular, the parameters are µ1,1 = µ2,2 = 1, µ1,2 = µ2,1 = 0.1, λ1 = λ2 = 98,

m1 = m2 = 100 and τi,j = 0.01 and ki,j = 10, i, j = 1, 2. We start with a system for which

θ1 = θ2 = 0, i.e., there is no abandonment, and then consider the extreme example from the main

paper with θ1 = θ2 = 0.1.

Figures 14 and 15 show the fluid solution to the system with no abandonment, while Figures

16 and 17 show one sample path from a simulation of the same system. The system is initialized

empty, i.e., both queues and service pools have no fluid at time 0.

Figures 18 and 19 show the fluid solution to the fluid ODE for the extreme example considered

in §4.1 in the main paper (with θ1 = θ2 = 0.01). For convenience, we repeat the simulation example
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Figure 14: Oscillations z1,2(t) in the
fluid model of the extreme example with
no abandonment.
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Figure 15: Oscillating growth of the
content q2(t) in the fluid model of the
extreme example with no abandonment.
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Figure 16: Oscillations of Z̄n1,2 in the
extreme symmetric example with τni,j =
1, kni,j = 10 and no abandonment.
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Figure 17: Oscillating growth of Q̄n2 in
the extreme symmetric example with
τni,j = 1, kni,j = 10 and no abandonment.

in Figures 20 and 21. Note that the initial conditions here are different than in Figures 16–21. We

now take z1,1(0) = m1 = 100 and z1,2(0) = m2 − z2,2(0) = 20. The reason is that, if the fluid

is initialized with no sharing and no queues, then its components (q1, q2, z1,2, z2,1) are fixed at

(0, 0, 0, 0), i.e., there is never any sharing, and the fluid queues are constant at zero. However, if

it is initialized at states with some sharing, then it may get stuck at an oscillatory equilibrium, as

shown in Figures 14 – 19. In particular, this is a numerical example that the fluid model may be

bi-stable, namely, have two very different stationary behaviors. To which stationary behavior the

fluid ends up converging depends on the initial condition.

This fluid bi-stability property has two immediate implications to the stochastic system. First,

once an overload incident is ending, with substantial sharing taking place, the system may start to

oscillate. The second implication is that the no-sharing equilibrium may be unstable in practice,

because stochastic noise can eventually “push” the system out of this equilibrium, and cause it to
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Figure 18: Oscillations z1,2(t) in the
fluid model of the extreme example with
abandonment.
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Figure 19: Oscillating growth of the
content q2(t) in the fluid model of the
extreme example with abandonment.
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Figure 20: Oscillations of Z̄n1,2 in the extreme
symmetric example with τni,j = 1, kni,j = 10
with abandonment.
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Figure 21: Oscillating stable behavior of
Q̄n2 in the extreme symmetric example with
τni,j = 1, kni,j = 10 with abandonment.

oscillate, as demonstrated in Figures 16 and 17. (Recall that the initial condition in this example

was an empty system. In particular, with no sharing initially.) Note also that the time scale in

Figures 14 and 15 is shorter than in Figures 18 and 19. The time scale of the second example is

longer to make it clear that the system with abandonment converges to an oscillatory equilibrium.

A rigorous treatment of the oscillating fluid model and it consequences to the stochastic system

is taken in Perry and Whitt (2014).

6 QBD Representation for the FTSP

As explained in §6.2 in [26], the FTSP Di,j(γ, ·) can be represented as a QBD for each γ ∈ Bi,j , by

ordering the states such that transitions of the FTSP above and below state 0 are gathered within

blocks. First, we assume that ri,j = j/k, j, k ∈ {1, 2, . . . }, i.e., that ri,j is a rational number, which

is clearly not a limitation from the applied or the computational points of view.
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Let L(n) denote level n, n = 0, 1, 2, . . . We assign original states φ(n) to positive integers n

according to the mapping:

φ(2nm+ i) ≡ nm+ i and φ((2n+ 1)m+ i) ≡ −nm− i+ 1, 1 ≤ i ≤ m. (6.1)

Then we order the states in levels as follows

L(0) ≡ {1, 2, 3, 4, . . .m, 0,−1,−2, . . . ,−(m− 1)},

L(1) ≡ {m+ 1,m+ 2, . . . , 2m,−m,−(m+ 1), . . . ,−(2m− 1)}, . . .

With this ordering of the states the generator-matrixQi,j ≡ Qi,j(γ) of the FTSPDi,j(γ, ·) associated

with the point γ ∈ Bi,j , can be written in the form

Qi,j ≡


B A0 0 0 . . .
A2 A1 A0 0 . . .
0 A2 A1 A0 . . .
0 0 A2 A1 . . .
...

...
...

...


where the four component submatrices B,A0, A1 and A2 are all 2m × 2m submatrices for m ≡

max {j, k}. In turn, these 2m × 2m matrices B,A0, A1 and A2 have a block-triangular form com-

posed of four m×m submatrices

B ≡
(
A+

1 Bµ
Bλ A−1

)
and Ai ≡

(
A+
i 0

0 A−i

)
for i = 0, 1, 2. (All matrices are also functions of the point γ.) A specific example is given in §6.2

in [26].

With the infinitesimal generator of the FTSP at hand, we can employ QBD theory to determine

wether Di,j(γ, ·) is ergodic, in which case it is in Ai,j , so that 0 < πi,j(γ) < 1, and it can be

computed numerically via known algorithms. In the time-varying case, we first need to determine

that γ ∈ Bi,j(t), and then that it is it is in Ai,j(t). In any case, the computation of πi,j(γ) can be

carried out numerically; see §6.4 in [26].
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