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Amathematical model is developed to help analyze the benefit in contact-center performance obtained from
increasing employee (agent) retention, which is in turn obtained by increasing agent job satisfaction. The

contact-center performance may be restricted to a traditional productivity measure such as the number of calls
answered per hour, or it may include a broader measure of the quality of service, e.g., revenue earned per hour or
the number of problems successfully resolved per hour. The analysis is based on an idealized model of a contact
center in which the number of employed agents is constant over time, assuming that a new agent is immediately
hired to replace each departing agent. The agent employment periods are assumed to be independent and
identically distributed random variables with a general agent-retention probability distribution, which depends
on management policy and actions. The steady-state staff-experience distribution is obtained from the agent-
retention distribution by applying renewal theory. An increasing real-valued function specifies the average
performance as a function of agent experience. Convenient closed-form expressions for the overall performance
as a function of model elements are derived when either the agent-retention distribution or the performance
function has exponential structure. Management actions may cause the agent-retention distribution to change.
The model describes the consequences of such changes on the long-run average staff experience and the long-run
average performance.
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1. Introduction
It is widely recognized that contact-center perfor-
mance is often hampered by low employee job sat-
isfaction, as evidenced by high turnover, referred to
as churn (Cleveland and Hash 2004). There is good
reason to believe that churn can be reduced (reten-
tion can be increased) by increasing employee job
satisfaction in various ways (Batt 2000, 2002; Cordes
and Dougherty 1993; Holman 2002, 2003; Ruyter et al.
2001; Singh et al. 1994; Witt et al. 2004).
The purpose of this paper is to develop a mathe-

matical model that can provide insight into the way
increased employee retention, achieved via increased
employee job satisfaction, can improve performance.
The employees we are thinking of are customer ser-
vice representatives in contact centers, herein referred
to as agents, but the analysis applies more broadly.
For an overview of contact centers and various math-
ematical models that have been applied to them, see

Gans et al. (2003). For a different mathematical model
studying turnover, see Gans and Zhou (2002). For
stochastic analysis of various behavioral aspects of
queues, see Mandelbaum and Shimkin (2000) and
Zohar et al. (2002).
We recognize that many of the issues surround-

ing agent job satisfaction and retention are not eas-
ily quantified. Nevertheless, we aim to quantify the
performance benefits to be gained from increased
agent retention. Moreover, we propose to take a rel-
atively simple view, which allows us to focus care-
fully on a few critical issues. Our main thesis is that
actions to increase agent job satisfaction (by increasing
autonomy or compensation, reducing stress, or any
other means) can benefit contact-center performance.
Because agent job satisfaction is hard to measure, we
view it through retention, which is directly observ-
able (but subject to several possible definitions). We
thus see increased agent job satisfaction improving
performance in three steps: (i) Increased agent job
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satisfaction increases agent retention, (ii) increased
agent retention increases the staff experience, and
(iii) increased staff experience increases performance.
We focus on productivity, and on an easily mea-

surable driver—experience—by which we mean sim-
ply time in service. (Clearly, there are other aspects
of experience (Quiñones et al. 1995), but we do
not consider them.) Increasing retention means that
agents stay in service longer. When agents stay in
service longer, the contact center tends to have a
more experienced staff. We contend that an agent’s
performance, on average, should be an increasing
function of the agent’s experience. Staff experience
directly influences performance, because performance
typically improves dramatically through the initial
start-up learning period. After that initial start-up
learning period is over, we regard greater staff experi-
ence as an indication of greater agent job satisfaction,
which in turn should improve performance.
However, we recognize that, in general, the rela-

tion between turnover and performance is more
complicated. There is evidence that performance
can degrade when turnover is too low (Abelson
and Baysinger 1984, Glebbeek and Bax 2004). There
might be employee stagnation when the turnover
is extremely low. The turnover is relatively high
in many contact centers, so we assume that the
insufficient-turnover effect can be ignored. Hence,
we assume that performance is simply an increasing
function of experience (and thus a decreasing function
of turnover).
We focus on the performance impact of increased

retention. In doing so, we focus on only part of the
story. When considering the many costs of employee
turnover, it is natural to classify the costs, divid-
ing them into two types: (i) transition costs and
(ii) productivity costs. Transition costs account for the
per-agent costs of terminating the departing agent;
recruiting and training a new agent; disruption costs
associated with the change, such as the cost of hiring a
temporary employee; and the cost of managers coping
with the change, such as the cost of performing exit
interviews, the administrative costs of stopping ben-
efit deductions and performing benefit enrollments,
and so forth (Bliss 2004). It has been estimated that the
transition costs alone can be as much as 100%–200%
of an agent’s annual compensation (Bliss 2004). We

primarily focus on the productivity costs, but we
develop a mathematical model to describe the transi-
tion costs in §8. Clearly, a full analysis should include
all costs and benefits of alternative policies to improve
retention.
Our mathematical model will quantify how

increased retention does indeed increase performance.
As with all mathematical models, the value of its
detailed quantitative conclusions depends on the
appropriateness of the model assumptions and the
model inputs. However, the mere process of modeling
and analyzing can provide valuable insight.
It is common to discuss retention and churn in

terms of a single number. For example, it may be
said that the churn is 40% per year. Even though
we take a rather narrow view of retention, we intro-
duce a much more detailed model of agent retention:
We assume that an agent’s length of service is a ran-
dom variable with a general agent-retention proba-
bility distribution. A probability distribution is used
to account for individual differences among agents.
Thus we characterize retention by a probability dis-
tribution, which is a function instead of a single
number. We will also consider intermediate represen-
tations, in which the probability distribution is char-
acterized by only a few parameters. Our approach
is in the spirit of the long tradition of manpower
planning models (Bartholomew et al. 1991, Bryant
and Niehaus 1978, Grinold and Marshall 1977). How-
ever, compared with that literature, our model is rela-
tively elementary. Nevertheless, there are some novel
steps here, in particular the way we relate the agent
retention (probability) distribution to the steady-state
contact-center staff-experience distribution. In a rea-
sonable contact-center scenario, we show how the
agent-retention distribution determines the distribu-
tion of staff experience in the long run.
In practice, annual turnover is measured by divid-

ing the number of agent terminations per year by
the average staff size during the year. In the math-
ematical model, the annual turnover is the long-run
rate of new hires per year divided by the (assumed)
fixed number of agents, which is the reciprocal of
the average length of employment for the agents (the
mean of the agent-retention distribution). It is, of
course, important that these different approaches be
consistent, as we show in §8. As noted above, the
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rate of new hires will play a major role in estimating
the important transition costs. The mean of the agent-
retention distribution is a vital statistic, but we will
show that the entire agent-retention distribution plays
an important role for productivity. It is important that
it be possible to estimate the agent-retention distribu-
tion from employment records. (For more discussion,
see §7.) Our characterization of retention, even though
somewhat elaborate, can be measured. We can mea-
sure what the agent-retention distribution has been
and we can see how it changes.
We do less well in other aspects of the problem:

First, here we do not consider specific management
actions to increase agent sense of wellbeing or agent
job satisfaction. (However, in a companion paper
(Sisselman and Whitt 2004) we propose preference-
based routing for that purpose.) Moreover, here we do
not address how increased agent sense of well-being
or increased agent job satisfaction increases agent
retention, as measured by the agent-retention proba-
bility distribution. Those are important problems that
remain to be investigated. We also do not determine
how to measure agent performance. Instead, we sim-
ply assume that agent performance can, in fact, be
measured and quantified. We could use a traditional
productivity measure such as number of contacts han-
dled per day, but we favor going beyond that to con-
sider how well the agent helps the contact center
meet its business objectives. Thus we think of per-
formance depending on the revenue generated per
day or the number of service requests successfully
resolved per day. A good performance measure might
be a weighted combination of several measures, each
focusing on a different aspect of performance. We
assume that agent performance can be measured and
quantified, but we do not address how to do it. That
is a second problem that remains to be investigated.
Here is how the rest of the paper is organized: In

§§2 and 3 we introduce our mathematical model. In
§3 we introduce a probability model that allows us
to relate the agent-retention probability distribution
to the long-run distribution of staff experience. We
establish important properties of the long-run staff-
experience distribution in §§4 and 6. We introduce
tractable parametric models in §5. We discuss statis-
tical fitting of the model elements in §7. We develop
a mathematical model of the transition costs in §8.
Finally, we draw conclusions in §9.

2. The Basic Mathematical Model
We assume that agent performance can be quanti-
fied and that quantification can be related to agent
experience. In particular, we assume that there is a
performance function r mapping experience (length
of service) into average agent performance (appropri-
ately specified), using r to suggest revenue, reward,
return, rate of return, or return on investment. We
assume that the performance function is a nonde-
creasing function that approaches an asymptote (the
maximum possible performance) as t →�. Thus we
can write

r�t�≡ �R�t�� t ≥ 0� (2.1)

where R�t� → 1 as t → �. (We use ≡ to denote
equality by definition.) That makes R a probability
cumulative distribution function (cdf); R�t� is the pro-
portion of the maximum possible expected perfor-
mance, �, expected from an agent of experience t. We
call R the performance cdf associated with the perfor-
mance function r .
An example of a possible performance function is

the exponential performance function

r�t�= ��1− e−	t�� t ≥ 0� (2.2)

which has the advantage of having only two param-
eters: � and 	; see p. 36 of (Ross 2003). The exponen-
tial performance function for � = 10 and 	 = 0
2 is
depicted in Figure 1. Note that the scale parameter �
can be set arbitrarily, even if it is monetary, because
we have yet to specify the units. We have chosen
�= 10, thinking of a monetary reward rate measured
in thousands of dollars per agent per month. Simi-
larly, the parameter 	 only acquires meaning when we
specify the units. We have chosen 	= 0
2, thinking of
time being measured in months. With that parameter
value, significant progress occurs in the time scale of
1/	, which is five months.
We are interested in the overall long-run perfor-

mance achieved by the contact center. To characterize
that, we use the performance function r just defined
and a staff-experience cdf F . For x ≥ 0, F �x� repre-
sents the long-run average proportion of agents with
experience (term of employment) less than or equal
to x months. We emphasize that F �x� is intended to
be a long-run average.
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Figure 1 A Possible Performance Function, Mapping t, Which Mea-
sures Agent Experience in Months (Horizontal Axis) into the
Selected Performance, r �t�, Which Measures the Return in
Thousands of Dollars per Month (Vertical Axis)
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Note. Specifically, the exponential performance function in (2.2) is depicted
with �= 10 and �= 0�2.

At any given time t, the experience of the staff
at that time is characterized by the empirical staff-
experience cdf, denoted by Ft ; Ft�x� is the propor-
tion of agents, at time t, who have been employed
for a length of time less than or equal to x. At any
given time, we can measure the empirical cdf Ft that
describes the contact center at time t.
We can use the history of the empirical staff-

experience cdf Ft to define the desired staff-experience
cdf F : The staff-experience cdf F is the long-run aver-
age proportion of agents that has been in service for
time less than or equal to x. For any x, the (long-run)
staff-experience cdf F �x� is the long-run average over
time of the empirical staff-experience cdf Ft�x�; i.e., for
all x > 0,

F �x�≡ lim
T→�

1
T

∫ T

0
Ft�x� dt
 (2.3)

In §3, we will show that the staff-experience cdf F is
well defined by (2.3) under our model assumptions.
Moreover, unlike the empirical staff-experience cdf,
the (long-run) staff-experience cdf F will have a prob-
ability density function (pdf), i.e., there is a function f
such that

F �x�=
∫ x

0
f �u�du� x≥ 0
 (2.4)

We call f the staff-experience pdf. Unlike the empir-
ical staff-experience cdf Ft , the staff experience cdf F
and the associated staff-experience pdf f are deter-
ministic functions.
We characterize the overall staff performance, de-

noted by r, as the expected long-run average perfor-
mance, i.e., the expected performance, r , weighted by
the staff-experience pdf, f :

r≡ r�r� f �≡
∫ �

0
r�t�f �t� dt
 (2.5)

There is another equivalent way to characterize this
overall performance. Let A be a random variable with
cdf F and pdf f . We think of A as the random expe-
rience (age) of a typical agent in the long run. (We
look at the system at an arbitrary time after the sys-
tem has been operating for a long time and we pick
an agent at random; A is the length of time that the
random agent has been employed.) As before, r�t� is
the expected performance of an agent with experience
(length of employment) t. Then (2.5) is equivalent to
r= E�r�A��.
Paralleling the performance-function example

above, an example of a staff-experience cdf F and
associated staff-experience pdf f is the exponential
distribution with mean mF = 1/�, i.e., the exponential
cdf and pdf

F �t�= 1− e−�t and f �t�=�e−�t� t ≥ 0� (2.6)

which has the single parameter �. An exponen-
tial staff-experience pdf with mean 10 (� = 0
1) is
depicted in Figure 2.
If we use both the exponential performance func-

tion r in (2.2) and the exponential staff-experience
pdf f in (2.6), then we obtain a full model with three
parameters: �, 	, and �. Then we can easily compute
the overall performance and (2.5) becomes

r =
∫ �

0
r�t�f �t� dt

=
∫ �

0
��1− e−	t��e−�t dt = �	

	+�

 (2.7)

From the simple formula in (2.7), we see how per-
formance can be increased by increasing staff experi-
ence. Because the mean of the pdf f is m�f � ≡mF =
1/�, we increase staff experience when we increase
the mean mF . Formula (2.7) shows how the overall
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Figure 2 A Possible Staff-Experience Probability Density Function,
Mapping t, Which Measures Agent Experience in Months
(Horizontal Axis) into the Probability Density f �t� of Agents
with Experience t
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Note. Specifically, the exponential staff-experience pdf in (2.6) is depicted
with 	= 0�1 �mean= 10).

performance approaches the limit � as mF = 1/�
increases.
For example, the overall long-run average perfor-

mance r as a function of the mean m�f � ≡mF in the
totally exponential model is plotted in Figure 3. Note
that r≡ r�mF � is

r�mF �=
�	mF

	mF + 1

 (2.8)

For this example, �= 10 and 	= 0
2, so that r�mF �=
2mF /�0
2mF + 1�. From (2.8) or Figure 3, we see that
the overall-performance function r�mF � is increas-
ing and concave: As we increase the mean staff-
experience level mF the performance increases but the
marginal gain decreases. Greater benefit from increas-
ing the mean mF occurs when mF is lower.
It remains to relate the agent-retention pdf to the

staff-experience pdf. That is the topic of §3: In §3,
we give an explicit formula for the staff-experience
cdf F in terms of the agent-retention cdf G; see Theo-
rems 3.1 and 3.2. It turns out that the staff-experience
cdf is the renewal-process stationary-excess cdf asso-
ciated with the agent-retention cdf. In §4 we show
that that relation enables us to deduce important
properties of the staff-experience pdf f . It turns out
that, under our model assumptions, the two cdfs coin-
cide if and only if either of them is exponential. Thus,

Figure 3 The Overall Long-Run Average Performance r as a Function
of the Expected Long-Run Staff Experience (m≡m�f �≡mF ,
Measured in Months, for the Totally Exponential Model)
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Notes. The parameters are �= 10 and �= 0�2 for the performance function
as in Figure 1 and m�f �= 1/	 for the exponential staff-experience pdf f .

for the exponential staff-experience pdf in (2.6), the
agent-retention pdf must be exactly of the same form.
If the agent-retention pdf is exponential, the analysis
above applies. For example, Figure 3 is unchanged if
the mean of the staff-experience pdf f on the horizon-
tal axis is replaced by the mean of the agent-retention
pdf.
On the other hand, if the agent-retention pdf is

not exponential, then the staff-experience pdf is nei-
ther exponential nor the same as the agent-retention
pdf. Nevertheless, as we just indicated, we derive an
explicit formula for the staff-experience pdf in terms
of the agent-retention pdf, so that a corresponding
analysis can be carried out.
In §5, we introduce tractable parametric models

in which both the performance function r and the
agent-retention pdf g (and thus the staff-experience
pdf f ) are more general than exponential, and yet the
overall long-run average performance r can be repre-
sented as an explicit formula of the model parameters.
We believe that a nice compromise between simplic-
ity and flexibility is achieved when each of the two
cdfs is characterized by two parameters: the mean
and the variance. We will show how the parametric
models can be characterized in that way. Under reg-
ularity conditions, we show that the overall long-run
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average performance is an increasing function of the
mean agent-retention time, when other parameters
are appropriately held fixed.
In §6, we establish additional stochastic-comparison

properties for the agent-retention cdf G and the staff-
experience cdf F based on the relationship established
in §3. We show that if the agent-retention cdf increases
stochastically, in a sense to be made precise, then the
staff-experience cdf increases stochastically as well,
in a related way. However, we caution that the pre-
cise relationship requires careful definitions. We are
thus able to give sufficient conditions for the overall
performance to increase when the agent-retention cdf
increases stochastically in an appropriate way.

3. The Agent-Retention
Probability Model

We now connect the behavior of individual agents
to the staff-experience cdf of the entire contact cen-
ter. For that purpose, we make further assumptions.
We consider an idealized model of a contact center,
assuming that it contains a fixed number, n, of agents.
We assume that a new agent is immediately hired as
replacement whenever an agent departs.
Let Xi�k be the length of time that the kth agent

in the ith position is employed. We assume that
the agent employment periods Xi�k for 1 ≤ i ≤ n

and k≥ 1 are independent and identically distributed
(i.i.d.) random variables distributed as a random vari-
able X having a general cumulative distribution func-
tion (cdf) G—the agent-retention cdf, with probability
density function (pdf) g (the agent-retention pdf)—
and finite kth moment mk for k= 1�2�3, i.e.,

G�t�≡ P�X ≤ t�≡ ∫ t

0 g�x�dx� t ≥ 0� and

mG�k ≡ E�Xk�≡ ∫ �
0 tkg�t� dt


(3.1)

A possible agent-retention pdf g is depicted in
Figure 4. It is a gamma pdf, i.e.,

g�t�= ���t� e−�t

!� �
� t ≥ 0� (3.2)

where ! is the gamma function; see p. 37 of Ross
(2003). If  is a positive integer, then !� � = � − 1�!
A gamma distribution has two parameters: the scale
parameter � and the shape parameter  . A gamma
distribution has mean  /�, variance  /�2, and thus

squared coefficient of variation (SCV, variance divided
by the square of the mean) c2G = 1/ . The SCV is use-
ful to measure variability independent of the mean.
We can increase the mean without changing the SCV
by decreasing the scale parameter �; we can increase
the variability, as measured by the SCV c2G, without
changing the mean by decreasing both  and � by the
same amount. The particular gamma density shown in
Figure 4 has mean  /�= 10, variance  /�2 = 50, and
SCV c2G = 1/ = 0
5. With these parameter values, this
gamma distribution coincides with an Erlang E2 dis-
tribution (Asmussen 2003, Wolff 1989).
However, we caution that the gamma probability

density function in Figure 4 may not have the correct
shape. Studies have shown that the tendency to leave
tends to decrease with time (Cotton and Tuttle 1986,
Mitchell et al. 2001). Mathematically, that property can
be expressed by saying that the agent-retention distri-
bution should have a decreasing failure rate (or haz-
ard rate). If X is a random variable with cdf G and
pdf g, the failure rate of X is

	X�t�≡
g�t�

Gc�t�
� t ≥ 0� (3.3)

where Gc�t�≡ 1−G�t� is the complementary cdf (ccdf)
associated with the cdf G. Note that the hazard rate is

Figure 4 A Possible Agent-Retention Probability Density Function,
Mapping t, Which Measures Time in Months (Horizontal
Axis) into the Probability Density g�t� of an Agent Remaining
Employed for a Length of Time t
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the conditional intensity of a termination at t, given
that the current length of service is t; see Chapter 4
of Barlow and Proschan (1975), p. 406 of Ross (2003),
and §6 here, especially Definition 6.2, for more on
decreasing failure rate (DFR) distributions. The empir-
ical conclusions above mean that the failure-rate func-
tion 	X�t� should be a decreasing function of time t. A
DFR distribution necessarily has a strictly decreasing
pdf. Hence, agent-retention pdfs may look more like
the exponential pdf in Figure 2 (which has constant
failure rate) than the gamma pdf in Figure 4. (Gamma
distributions with 0<  < 1 are DFR, though.)
At any time t the current experience of the center

can be described by an n-dimensional random vec-
tor A�t�≡ �A1�t�� 
 
 
 �An�t��, where Ai�t� specifies the
length of time that the agent in the ith position has
been employed, e.g., in months. We refer to Ai�t� age
or experience of the ith agent at time t. The limiting
steady-state distribution of the stochastic process A≡
$A�t�% t ≥ 0& describes the experience of the contact-
center staff in the long run.
Suppose that we hire n new agents at time

t = 0. Then the n age processes Ai ≡ $Ai�t�% t ≥ 0&
evolve as n i.i.d. age processes, also known as back-
ward recurrence-time processes, associated with the
renewal process with interrenewal times distributed
according to the agent-retention cdf G; see §V.1 of
Asmussen (2003), Chapter 3 of Ross (1996), and Chap-
ter 7 of Ross (2003) (especially Example 7.22 on
p. 430). Thus, the stochastic process A is a Markov
process and it has a proper limiting distribution as
t → �. The same limit also holds with a large class
of alternative initial conditions. If we condition on
particular initial ages by assuming that �A1�0�� 
 
 
 �
An�0�� = �y1� 
 
 
 � yn�, then the n age processes are
again independent, but not identically distributed,
age processes associated with delayed renewal pro-
cesses, for which the same limit remains valid. See
Asmussen (2003) and Coffman et al. (1996) for addi-
tional discussion and proofs. We formalize these
established results in the following theorem. To state
the result, let ⇒ denote convergence in distribution
for random vectors, e.g., see Chapters 3 and 11 in
Whitt (2002).

Theorem 3.1. The vector-valued age stochastic pro-
cess A is a Markov process. If, in addition to the conditions

above, �A1�0�� 
 
 
 �An�0�� = �y1� 
 
 
 � yn� for some vector
�y1� 
 
 
 � yn�, then

A�t�⇒Y as t→�� (3.4)

where Y≡ �Y1� 
 
 
 �Yn� is a random vector with i.i.d. com-
ponents (marginals), each distributed as a random vari-
able Y having the classical stationary-excess distribution
(or equilibrium residual-lifetime distribution) Ge associated
with the cdf G, defined by

Ge�t�≡
1

mG�1

∫ t

0
Gc�u�du� (3.5)

where Gc�t�≡ 1−G�t� is the ccdf associated with G and
mG�1 is the mean of G; i.e., for all vectors of real numbers
�x1� 
 
 
 � xn�,

P�Y1 ≤ x1�Y2 ≤ x2� 
 
 
 �Yn ≤ xn�

=Ge�x1�Ge�x2� · · ·Ge�xn�
 (3.6)

The cdf Ge has kth moment

mGe�k
≡ E�Y k�≡

∫ �

0
tkge�t� dt =

mG�k+1
�k+ 1�mG�1

�

k≥ 1
 (3.7)

It follows from limit (3.4), the regenerative struc-
ture, and the strong law of large numbers that the
time-average of the empirical staff-experience cdf
Ft introduced in §1 converges with probability 1,
as desired in (2.3). Moreover, the limiting staff-
experience cdf F is none other than the stationary-
excess cdf Ge. To make the connection, note that

Ft�x�=
1
n

n∑
i=1

I�0�x��Ai�t��� t ≥ 0� (3.8)

where IB is the indicator function of the set B; i.e.,
IB�x�= 1 if x ∈ B, and IB�x�= 0 otherwise. We formal-
ize this important result as well.

Theorem 3.2. Under the assumptions of this section,
for all x > 0,

P

(
lim
T→�

1
T

∫ T

0
Ft�x� dt =Ge�x�

)
= 1� (3.9)

for Ft in (3.8) and Ge in (3.5).
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Thus, for our model, the staff-experience cdf F
introduced in §1 is well defined and equals Ge.
Theorem 3.2 focuses on the limiting behavior of the
time-average of the empirical staff-experience cdf Ft
for any fixed number of agents, n. We can also focus
on the limiting behavior of the steady-state empiri-
cal staff-experience cdf, as the number of agents, n,
increases. Because the number of agents in a contact
center is often large, it is interesting to consider that
limit. The steady-state empirical distribution is

Dn�x�≡
1
n

n∑
i=1

I�0�x��Yi�� x≥ 0� (3.10)

where Yi is the steady-state limit of the age of the
agent in the ith position and IB is again the indi-
cator function of the set B. The classical strong law
of large numbers (SLLN) and central limit theorem
(CLT) imply the following result. Let N�m�v� denote
a normally distributed random variable with mean m
and variance v. The SLLN uses convergence with
probability 1 (w.p.1).

Theorem 3.3. Under the conditions above, for each
x > 0,

Dn�x�→Ge�x� w
p
1 as n→� (3.11)

for Dn in (3.10) and Ge in (3.5), and
√
n�Dn�x�−Ge�x��⇒N�0�02�x��� (3.12)

where
02�x�=Ge�x��1−Ge�x��
 (3.13)

Theorem 3.2 says that the time-average of the
empirical staff-experience cdf Ft approaches F =Ge as
t → �, whereas the SLLN in (3.11) of Theorem 3.3
says that the steady-state empirical cdf Dn (after t has
already become large) approaches F = Ge as n→�.
Thus we have two different ways to justify focusing
on the staff-experience cdf F =Ge.
We can also extend Theorem 3.3 to describe uni-

formly the limiting behavior in the argument x. We
can apply the classical Glivenko-Cantelli theorem for
that purpose.

Theorem 3.4. Under the conditions above,

P

(
sup
x≥0

$�Dn�x�−Ge�x��&→ 0
)
= 1 (3.14)

for Dn in (3.10) and Ge in (3.5).

There are corresponding stochastic generalizations
paralleling the CLT in (3.12) related to the Kolmo-
gorov-Smirnov statistic; e.g., see §2.2 of Whitt (2002).
In summary, this section has presented a model

and an analysis of that model based on renewal the-
ory showing that the staff-experience cdf F associ-
ated with an agent-retention cdf G should be the
stationary-excess cdf Ge associated with the agent-
retention cdf G, which is defined in (3.5).

4. The Staff-Experience PDF
In the previous section, we saw that F = Ge. That
enables us to deduce several important properties of
the staff-experience cdf F . In particular, it enables us
to deduce that the cdf F has a monotone (nonincreas-
ing) pdf f .

Corollary 4.1. Under the assumptions of §3 (even
if G did not have a pdf ), the staff-experience cdf F has a
pdf f , i.e.,

F �t�=
∫ t

0
f �u�du� t ≥ 0� (4.1)

where

f �t�= ge�t�= �1/mG�1�G
c�t�� t ≥ 0
 (4.2)

Because the agent-retention cdf G has a pdf, the staff-
experience pdf f is a continuous and nonincreasing func-
tion. Moreover, if Gc�t�= 0 for some t, then also F c�t�= 0.
On the other hand, if Gc�t� > 0 for some t, then f �x� > 0
for all x, 0≤ x≤ t.

Corollary 4.1 implies that the staff-experience pdf
f = ge will be monotone nonincreasing, even though
the agent-retention pdf g may fail to be monotone, as
in Figure 4.
Because we have assumed that the agent-retention

cdf G has a pdf g, we can describe the derivative of
the staff-experience pdf f .

Corollary 4.2. If the agent-retention cdf G has a
pdf g, as assumed above, then the staff-experience pdf f is
differentiable. The pdf f is convex if and only if the pdf g
is nonincreasing.

5. Parametric Models
We have given a general expression for the overall
long-run average performance r≡ r�r� f � as a function
of the performance function r and the staff-experience
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pdf f in (2.5). Because we are using the model in §3,
we can replace f by ge = �1/m1�Gc. Hence, we can
rewrite formula (2.5) as

r = �
∫ �

0
R�t�f �t� dt = �

∫ �

0
R�t�ge�t� dt

= �

mG

∫ �

0
R�t�Gc�t� dt

= �

mG

[∫ �

0
Gc�t� dt−

∫ �

0
Rc�t� dt+

∫ �

0
Rc�t�G�t� dt

]

= �

mG

[
mG −mR +

∫ �

0
Rc�t�G�t� dt

]

 (5.1)

Below we will use both the final expression and the
last expression on the first line.
We have also given a closed-form expression for r

in (2.7) for the case in which both r and f (and thus g)
are both exponential functions in (2.7). In this section
we give explicit formulas for more general parametric
models. We especially want to characterize the two
cdfs R and G by two parameters, instead of one: the
mean and SCV, instead of only the mean.

5.1. Hyperexponential Performance Functions
In this subsection, we assume that the performance
cdf R is a hyperexponential cdf. A hyperexponential
(Hk) cdf is a mixture of k exponential cdfs. In partic-
ular, the Hk performance function is defined to be

r�t�= �R�t�� (5.2)

where

R�t�= 1−
k∑

i=1
pie

−	it� t ≥ 0� (5.3)

with pi > 0 and 	i > 0 for each i, and p1+ · · ·+ pk = 1.
For an Hk performance function, there are 2k + 1

parameters, one of which is the scale factor � and
one of which is determined by the sum of the prob-
abilities being equal to 1. Of course, the case k = 1
yields the simple exponential performance function
in (2.2). Because we have represented r in terms of the
cdf R, we can use probabilistic methods. For example,
a large class of cdfs (all completely monotone cdfs)
can be represented as (not necessarily finite) mixtures
of exponentials. Thus these cdfs can be approximated
arbitrarily well by Hk cdfs, and an algorithm for doing
so has been given by Feldmann and Whitt (1998).

In applications, it may be of interest to consider Hk

performance functions with k = 2, because there are
fewer parameters than for larger k, thus making it
easier to fit. Indeed, there is a long history of using H2
distributions to approximate probability distributions
that are more variable than the exponential distribu-
tion. To reduce the number of remaining parameters
from three to two it is common to let the H2 distribu-
tion have balanced means by assuming that

p1
	1

= p2
	2


 (5.4)

Provided that the SCV satisfies c2R > 1, we can specify
the parameters of the H2 distribution in terms of the
mean mR and SCV c2R; see p. 137 of Whitt (1982):

pi =
[
1±

√
�c2R − 1�/�c2R + 1�

]/
2 and

	i =
2pi
mR



(5.5)

It is not difficult to check that the H2 distribution with
the parameters in (5.5) has mean mR, SCV c2R, and
balanced means, as in (5.4). When c2R = 1, we obtain
the exponential distribution.
It is also possible to have a more general three-

parameter H2 distribution, which is fit to the first three
moments of R: mR�1, mR�2, and mR�3, provided that

mR�2 > 2m
2
R�1 and mR�3 ≥

1
5m2R�2
mR�1

2 (5.6)

see p. 136 of Whitt (1982) and p. 592 of Abate and
Whitt (1982). To obtain the third parameter, we drop
the balanced-means condition in (5.4).
We now give an explicit expression for the over-

all performance with an Hk performance function.
For that purpose, let ĥ be the Laplace transform of
the real-valued function h of a positive real variable,
defined by

ĥ�s�≡
∫ �

0
e−sxh�x�dx� (5.7)

where s is a complex variable with positive real
part. We will consider Laplace transforms with real-
variable arguments.

Theorem 5.1. For an Hk performance function, as in
(5.2)–(5.3), the overall performance is

r = �

(
1−

k∑
i=1

pi �ge�	i�

)
= �

mG

(
mG −mR +

k∑
i=1

pi �g�	i�

	i

)
�

(5.8)
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where mG ≡ mG�1 is the mean of G and mR is the mean
of R, i.e.,

mR ≡mR�1 =
k∑

i=1
�pi/	i�
 (5.9)

Proof. We combine (5.1), (5.2), and (5.3) with well-
known relationship among �ge, �G, and �g:

�G�s�≡
∫ �

0
e−sxG�x�dx= �g�s�

s
and

�ge�s�≡
∫ �

0
e−sx �1−G�x��

mG

dx= �1− �g�s��
smG


 �

(5.10)

5.2. Hyperexponential Agent-Retention
Distributions

In this subsection we let the performance cdf R be
general, but let the agent-retention cdf G be a hyper-
exponential cdf. As indicated in §3, this seems to be
consistent with empirical research, because all hyper-
exponential distributions are DFR.
In particular, paralleling (5.3), we assume that

G�t�= 1−
l∑

j=1
qje

−�j t� t ≥ 0� (5.11)

where qj > 0 and �j > 0 for each j , and q1+· · ·+ql = 1.
That implies that the associated stationary-excess

cdf Ge is also Hk. In particular,

Ge�t�= 1−
1
mG

l∑
j=1

�qj/�j�e
−�j t� t ≥ 0� (5.12)

where mG ≡mG�1 is the mean of G; here

mG =
l∑

j=1
�qj/�j�
 (5.13)

Consequently, closely paralleling §5.1, we see that
ge has exponential structure, so that we have the fol-
lowing result.

Theorem 5.2. For a hyperexponential agent-retention
cdf G, as in (5.11), the overall performance is

r= �

mG

∫ �

0
R�t�

l∑
j=1

qje
−�j t dt = �

mG

l∑
j=1

qj �R��j�� (5.14)

where �R�s� is the Laplace transform of the cdf R.

5.3. The HHRP Model
In this section, we combine the two hyperexponential
assumptions made in §§5.1 and 5.2: We assume that
both the performance cdf R and the agent-retention
cdf G are hyperexponential distributions; i.e., we
assume that (5.2), (5.3), and (5.11) all hold. We call the
resulting model the hyperexponential–hyperexponen-
tial retention–performance (HHRP) model.
From (5.8) we get

r= �

mG

(
mG −mR +

k∑
i=1

pi
	i

l∑
j=1

qj�j

�j +	i

)

 (5.15)

On the other hand, from (5.14) we get

r = �

mG

l∑
j=1

qj

k∑
i=1

pi	i

�j�	i +�j�

= �

mG

l∑
j=1

qj

�j

k∑
i=1

pi	i

�	i +�j�

 (5.16)

Algebraic manipulations show that these two repre-
sentations are equivalent.
When we use the three-parameter H2 distributions,

we obtain an overall model with seven parameters:
�, 	1, 	1, p1, �1, �2, and q1. (We know p2 = 1 − p1
and q2 = 1− q1.) When we use the two-parameter H2
fit with balanced means, based on (5.4) and (5.5), we
obtain a model with five parameters: �, mG, mR, c2G,
and c2R, where c

2 is the SCV. The H2 distributions are
always more variable than an exponential distribu-
tion, so that we have the constraint c2 ≥ 1. The H2 dis-
tribution reduces to a single exponential distribution
when c2 = 1.

5.4. The GHRP Model
In this section and the next we develop alternative
models in which one of the two hyperexponential
distributions in the HHRP model is replaced by a
gamma distribution. We are motivated to consider the
gamma distribution because it allows all possible pos-
itive SCVs; we can have 0 < c2 < 1 in addition to
c2 ≥ 1. Hence with the three distributions—gamma,
exponential, and hyperexponential—we provide dis-
tributions that can be fit to all possible positive means
and SCVs. We could do that with just the gamma
distribution, but the hyperexponential distribution is
easier to work with.
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In this section we consider a gamma agent-reten-
tion distribution, and thus obtain the gamma–hyper-
exponential retention–performance (GHRP) model. In
addition to the Hk performance function introduced
in §5.1, a gamma pdf is used for the agent-retention
pdf g. The gamma pdf is given in (3.2). The key addi-
tional fact is that the gamma pdf has a convenient
explicit Laplace transform. In particular, if g has a
gamma pdf with parameters � and  , as in (3.2), then

�g�s�=
(

�

�+ s

) 


 (5.17)

Hence, for the GHRP model,

r= �

mG

(
mG −mR +

k∑
i=1

pi�
 

	i��+	i�
 

)

 (5.18)

For the gamma agent-retention pdf g in (3.2), we
increase the mean mG ≡mG�1 =  /�, while holding the
SCV c2G = 1/ fixed, if we decrease �. It is thus natural
to look at r ≡ r�mG� as a function of the mean mG

alone, with the understanding that we increase mG by
decreasing �, while holding the shape parameter  

fixed.
We illustrate by displaying r�mG� as a function

of mG, with the shape parameter  held fixed, for
a concrete example in Figure 5: We use an H2 per-
formance function r with parameters: � = 10, mean
mR = 5
0, SCV c2R = 2
0, and balanced means, as in
(5.4); we apply (5.5) to get the H2 parameters p1, p2,
	1, 	2. We use a gamma agent-retention distribution
with SCV c2G = 1/ = 0
5, which corresponds to an
Erlang (E2) distribution. We let the mean of G, mG,
vary from 0 to 60 months, and see what happens to
the long-run average performance r�mG�; i.e., we are
plotting (5.18), and letting mG vary (by decreasing �).
We see that the overall long-run average performance
increases toward its maximum value � = 10 as mG

increases. Moreover, we see that the function r�mG� is
concave, showing that the marginal gain decreases as
mG increases.
The concrete formulas we have derived let us study

the impact of the different parameters on the over-
all long-run average performance. We illustrate by
repeating the GHRP-model example above, consid-
ering three different SCVs for the gamma agent-
retention cdf G: 0.25, 1.00, and 4.00. In Figure 6, we

Figure 5 The Overall Long-Run Average Performance r ≡ r�m� in the
GHRP Model as a Function of m ≡ mG, the Mean of the
Agent-Retention cdf G, with the Gamma Agent-Retention pdf
in (3.2) Having SCV c2

G = 0�5 (Corresponding to an Erlang
E2 Distribution) and H2 Performance Function in (5.2)–(5.3)
with k = 2, �= 10, Mean mR = 5�0, SCV c2

R = 2�0, and Bal-
anced Means, as in (5.4)
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see more rapid convergence to the maximum possible
long-run average performance (� = 10) with greater
variability (higher c2G).

5.5. The HGRP Model
In this subsection, we consider the hyperexponential–
gamma retention–performance (HGRP) model, ob-
tained by using a hyperexponential agent-retention
pdf g and a gamma performance cdf R; i.e., we now
switch the roles of the two distributions used in §5.4.
Thus, let the hyperexponential agent-retention cdfG

be as in (5.11). Now that the performance function
is gamma, let the performance cdf R have Laplace
transform

�R�s�= 1
s

(
	

	+ s

) 


 (5.19)

We thus can apply (5.14) to get the final form

r= �

mG

l∑
j=1

qj

�j

(
	

	+�j

) 


 (5.20)

6. Stochastic Comparisons
Our main goal in this section is to show that the over-
all long-run average performance r increases if the
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Figure 6 The Overall Long-Run Average Performance r ≡ r�m� in the
GHRP Model as a Function of m ≡ mG, the Mean of the
Agent-Retention cdf G, with the Gamma Agent-Retention pdf
in (3.2) for Three Different Agent-Retention pdfs: Having SCV
c2
G = 0�25, c2

G = 1�00, and c2
G = 4�00
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Note. The H2 performance function is the same as in Figure 5.

agent-retention cdf G increases stochastically in an
appropriate way. For this purpose, we review basic
stochastic-comparison concepts; see Chapter 9 of Ross
(1996) and Müller and Stoyan (2002). As in previous
sections, we are drawing on established results.
We write X1 ≤SO X2 or G1 ≤SO G2 if Xi is a real-

valued random variable with cdf Gi for i = 1�2
and the probability distribution of X1 (characterized
by G1) is stochastically less than or equal to the prob-
ability distribution of X2 (characterized by G2) in a
sense denoted by ≤SO , which remains to be defined.
We also write X1 ≥SO X2 or G1 ≥SO G2 if X2 ≤SO X1 or
G2 ≤SO G1.
To state the definitions we will use, for each i let

Gi�t�≡ P�Xi ≤ t� be the cdf of Xi; let gi be the pdf of
the cdf Gi, assumed to be well defined and positive on
the positive half line �0���; let Gc

i �t�= 1−Gi�t� be the
associated ccdf; let Gi�e be the associated stationary-
excess cdf, defined as in (3.5); let Xi� t be a random
variable with (conditional) cdf Gi� t�x�≡ P�Xi ≤ t+ x �
Xi > t� for x > 0 and t > 0; and let 	i be the hazard-
rate function (or failure-rate function), defined as in
(3.3) by

	i�t�≡
gi�t�

Gc
i �t�

� t ≥ 0� (6.1)

for all t such that Gc
i �t� > 0. We summarize the defini-

tions of several stochastic orderings in the following
definition. For some of the definitions, we state two
equivalent characterizations.
Definition 6.1. Five different notions of stochastic

order are
(ordinary) stochastic order:
(a) X1 ≤ST X2 if Gc

1�t�≤Gc
2�t� for all t;

(a′) X1 ≤ST X2 if E�f �X1�� ≤ E�f �X2�� for all nonde-
creasing real-valued f ;
increasing-convex (stochastic) order:
(b) X1 ≤IC X2 if

∫ �
x
Gc
1�t� dt ≤ ∫ �

x
Gc
2�t� dt for all

x≥ 0;
(b′) X1 ≤IC X2 if E�f �X1�� ≤ E�f �X2�� for all nonde-

creasing convex real-valued f ;
convex (stochastic) order (or variability order):
(c) X1 ≤C X2 if X1 ≤IC X2 and E�X1�= E�X2�;
(c′) X1 ≤C X2 if E�f �X1�� ≤ E�f �X2�� for all convex

real-valued f ;
hazard-rate (stochastic) order:
(d) X1 ≤H X2 if 	1�t�≥ 	1�t� for all t;
likelihood-ratio (stochastic) order:
(e) X1 ≤LR X2 if g1�t�/g1�s� ≤ g2�t�/g2�s� for all

0≤ s < t.
We now summarize established relations among

these different notions of stochastic order. We write
≤O1→≤O2 if X1 ≤O1 X2 implies that X1 ≤O2 X2. The
following represents all possible implications among
these stochastic-order relations:

≤LR →≤H →≤ST →≤IC and ≤C →≤IC� (6.2)

with the understanding that implications extend by
transitivity.
We now define properties of individual probability

distributions.
Definition 6.2. The following are definitions of

properties of the distribution of a random variable
X with cdf G, pdf g, hazard-rate function 	, and
conditional residual-lifetime cdt Gt�x� ≡ P�Xt ≤ x� ≡
P�X ≤ x+ t �X > t� for t ≥ 0:
(a) G has increasing failure rate (is IFR) if 	�t� is a

nondecreasing function of t;
(a′) G has decreasing failure rate (is DFR) if 	�t� is a

nonincreasing function of t;
(b) G has a new-better-than-used (NBU) distribution

if Gt ≤ST G for all t;
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(b′) G has a new-worse-than-used (NWU) distribu-
tion if Gt ≥ST G for all t;
(c) G has a new-better-than-used-in-expectation (NBUE)

distribution if E�Xt�≤ E�X� for all t;
(c′) G has a new-worse-than-used-in-expectation (NWUE)

distribution if E�Xt�≥ E�X� for all t.
We now summarize established relations among

these different properties. We write Prop1 → Prop2 if
X (G) has property Prop2 whenever it has property
Prop1. The following represents all possible implica-
tions among these properties:

IFR→NBU →NBUE and

DFR→NWU →NWUE�
(6.3)

with the understanding that implications extend by
transitivity.
Now we are ready to state established results about

the relation between G and Ge. The following are
conditions for stochastic comparisons between the
cdfs Ge and G:

Ge ≤ST �≥ST �G if and only if

G is NBUE (NWUE)� (6.4)

Ge≤LR �≥LR�G if and only if G is IFR (DFR)� (6.5)

G=Ge if and only if G is exponential
 (6.6)

For (6.4), see Problem 9.27 of Ross (1996).
Now we state established comparison results for

the stationary-excess cdfs G1� e and G2� e associated
with two different agent-retention cdfs G1 and G2. The
following are conditions for stochastic comparisons
between the cdfs G1� e and G2� e:

G1� e ≤LR G2� e if and only if G1 ≤H G2� (6.7)

so that we have the implications

G1 ≤LR G2 → G1 ≤H G2

→ G1� e ≤LR G2� e →G1� e ≤H G2� e
 (6.8)

For (6.7), see Problem 9.18 of Ross (1996).
If E�X1�= E�X2�, then

G1� e ≤ST G2� e if and only if G1 ≤IC G2� (6.9)

so that

if G1 ≤C G2� then G1� e ≤ST G2� e
 (6.10)

Finally, we have the following result about the way
the overall performance depends on the agent-reten-
tion cdf G.

Theorem 6.1. Suppose that the performance function r

is a nondecreasing real-valued function. If either

G1 ≤H G2 or G1 ≤C G2� (6.11)

then

r1 =
∫ �

0
r1�t�g1� e�t� dt ≤

∫ �

0
r2�t�g2� e�t� dt = r2
 (6.12)

Proof. The Conclusion (6.12) holds if and only if
G1� e ≤ST G2� e by Definition 6.1(a′). However, that is
implied by each of the conditions in (6.11) by virtue
of (6.8) and (6.10). �

Because a scalar multiple cX is exponential (Hk)
whenever X is exponential (Hk), it is natural to con-
sider the distribution of cX as a function of c. We
now give sufficient conditions for the distribution of
cX to be increasing in c in the ordering ≤H , which
implies that the overall long-run average performance
will increase when we multiply X by a constant c > 1,
by virtue of Theorem 6.1.

Theorem 6.2. Let X be a random variable with the
agent-retention cdf G. If G has a failure-rate function 	X

satisfying

	X�cx�≤ c	X�x� for all x > 0 and c > 1� (6.13)

which is implied by G being DFR, then the distribution of
cX is increasing as a function of c in the ordering ≤H , i.e.,

c1X ≤H c2X if c1 < c2
 (6.14)

Proof. To establish (6.14), it suffices to show that
	c1X

�t�≥ 	c2X
�t� for all t, but that is equivalent to

	X�t/c1�

c1
≥ 	X�t/c2�

c2
for all t� (6.15)

which we see is equivalent to (6.13) if we make the
change of variables: x= t/c1 and c= c2/c1. �

For the gamma pdf in (3.2), it is important that
the sufficient conditions in Theorem 6.1 be satisfied
when we make direct changes to the parameters in an
appropriate way. In particular, if we increase the mean
mG =  /� by either (i) decreasing �, while holding  

fixed or (ii) increasing  , while holding � fixed, then G
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increases in the ≤LR ordering, which implies that G
increases in the required ≤H ordering; e.g., see Prob-
lem 9.21 of Ross (1996). Thus, increasing the mean
m1 of G in that way for the gamma agent-retention
cdf causes the overall long-run average performance
r�m1� to increase.

7. Statistical Issues: Fitting
the Functions

In this section, we briefly discuss statistical issues
associated with fitting our proposed model to data;
we do not analyze any data here. For a recent exten-
sive statistical study of contact-center data, see Brown
et al. (2005).
Our model showing how agent retention affects

contact-center performance has three elements: the
performance function r ≡ r�t�, the agent-retention cdf
G≡G�t�, and the staff-experience cdf F ≡ F �t�. Under
our model assumptions, we have F = Ge by Theo-
rems 3.1 and 3.2, where Ge ≡ Ge�t� is the stationary-
excess cdf associated with G defined in (3.5). Hence,
under our model assumptions there are only two
model elements, to be specified r and G. However,
it may be easier to estimate F directly than to esti-
mate G. Our model and the steady-state conditions
for that model (assumed in §3) allow us to represent F
by Ge. We should recognize that those assumptions
might not be justified, but we proceed assuming that
they are.
In this section, we discuss statistical procedures to

estimate the model elements from contact-center data.
Our goal is to obtain estimators �r , �G, and �F for the
three model elements r , G, and F . We should keep
in mind that these quantities are all functions of the
length of service t, not simple numbers.
We start by considering the performance function r .

First, of course, we must specify how agent perfor-
mance is to be measured. A simple measure readily
available from the automatic call distributor (ACD) is
the number of calls handled by the agent per (work-
ing) hour. With the aid of the customer relationship
management (CRM) system and the ACD, we could
instead use a measure such as revenue generated by
the agent per hour. Thus, for each agent and each
time period (a day, say), we would obtain a data point
�y� t�, where y represents the observed performance

and t represents the length of time that the agent has
been employed. For any individual agent, say agent j ,
we can estimate agent j’s performance function rj ≡
rj �t� by fitting the function rj to the set of �y� t� pairs
for that agent. Similarly, for the entire contact center,
we can estimate the performance function r ≡ r�t� by
fitting that function to all the �y� t� pairs. Of course,
this is a statistical problem. If there were a perfect fit,
then we would have y = r�t� for all pairs �y� t� and
some function r . However we cannot nearly expect
that. Instead, we statistically fit a function r to the
data. That fitted function is our estimator �r . In the
process of doing the function fitting, we should also
measure the statistical validity of the relation.
Next we turn to the agent-retention cdf G. The obvi-

ous direct approach is to go into the employment
records and obtain the length of service for each agent
that has worked for the contact center. However, there
are difficulties. First, we do not know when to start
measuring. If we go back in time too far, then the data
might not be representative of the current conditions
of the contact center. Suppose, however, that we select
an appropriate measurement period. We would then
consider the population of all agents that started work
during that interval of time. We should recognize that
we would have statistical problems if we, instead,
focus on the agents who worked any time during
that interval (including those who started employ-
ment before the measurement interval), because there
would then be a selection bias. So suppose we focus
only on the agents that started work during the des-
ignated time period.
Then the natural estimator �G for the agent-retention

cdf G is the empirical cdf Gn ≡ Gn�t�, based on the
sample of size n: Gn�t� is the proportion of the n

sampled agents who were employed for a total time
less than or equal to time t. We might use a sta-
tistical smoothing technique to estimate the agent-
retention pdf g from the histogram gn associated with
the empirical cdf Gn. (The histogram is essentially a
probability mass function assigning mass 1/n to the
retention time of each of the n agents. The histogram
goes farther by grouping the values into subintervals.)
Unfortunately, however, there are further difficul-

ties with this direct and natural approach. In par-
ticular, we also have the problem of censored data:
We can only accurately measure the total length of
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service for those agents who already have terminated
employment. There may well be a significant num-
ber of agents in our sample (who started employ-
ment during our measurement interval) who are still
currently employed. All we know about these agents
is their current length of employment. For them,
that current length of employment underestimates
their ultimate, yet-to-be-determined, total length of
employment. On the other hand, if we remove the
agents still working from the sample, then we look
only at agents completing service in the observation
window, causing us to bias the estimate the other way,
not counting agents with longer service times. If the
number of agents currently employed is a relatively
small part of the whole sample, then this difficulty
can be considered minimal.
However, we anticipate that the number of agents

currently employed will be a relevant part of the
overall sample, so it is likely that the censored-data
problem will have to be addressed. Fortunately, there
are statistical procedures available to cope with cen-
sored data via survival analysis, and in particular the
Kaplan-Meier estimator (Lawless 2002, Tableman and
Kim 2004). See §6 of Brown et al. (2005) for appli-
cations of this analysis to analyze abandonment and
waiting in contact centers.
Given that we can indeed obtain an estimator �G to

estimate the agent-retention cdf G, e.g., by the empir-
ical retention cdf Gn, we can obtain an estimator f̂ for
the staff-experience pdf f by letting

f̂ �t�= 1
�mG

�Gc�t�� t ≥ 0� (7.1)

where �mG is an associated estimator for the mean of G
(naturally taken to be the mean of �G) and �G is the cho-
sen estimator for G. We obtain (7.1) by simply using
the chosen estimator �G and the established relation
between f and G in (4.2).
We conclude this section by proposing an alterna-

tive approach that avoids two of the difficulties above:
(i) going back in time and (ii) censored data, because
agents to be considered are still employed. To avoid
these difficulties, we suggest focusing instead on the
empirical staff-experience cdf Ft ≡ Ft�x� defined in §1:
Ft�x� is the proportion of the agents working at time
(day, say) t that have been employed for a length of
time less than or equal to x (months, say). The obvious

advantage of using the empirical cdf Ft is that it is
directly observable. It is itself a directly measurable
quantity. Moreover, it can be obtained by carefully
exploiting the employment records.
Our analysis in §3 is important because it shows

how to interpret the empirical staff-experience cdf Ft .
In particular, we now understand how to relate Ft
to the overall long-run average staff-experience cdf F
and the agent-retention cdf G. Of even greater impor-
tance, we clearly see that Ft , F , G, and the estimator �Gn

defined above are four different but related func-
tions. We would suggest estimating the desired staff-
experience cdf F by a finite time-average of Ft , i.e.,

�FT �N �x�=
1

N + 1
N∑
i=0

FiT /N �x� for all x > 0� (7.2)

where �0�T � is the selected measurement interval
with T representing the current time and 0 represent-
ing a time T units in the past, which we have decided
to divide into N + 1 evenly spaced observation times.
We believe that it may be useful to look at the

empirical cdf Ft and see how it evolves over time. We
can see the evidence of changes in turnover through
the evolution of Ft . Because Ft is a random variable, it
is natural to smooth it by taking time averages. Hence
we might look at the time average

�Fu�T �N �x�=
1

N + 1
N∑
i=0

Fu+�iT /N��x� for all x > 0� (7.3)

as a function of u. The estimator �Fu�T �N �x� estimates
the time-average of Ft over the time interval �u�u+T �

as a function of u. If the (random) cdf �Fu�T �N �x� tends
to increase stochastically, in some sense, as u increases
we see retention improvements over time, measured
in that way.
It is natural to ask if the contact center can be

regarded as being in steady state at any given obser-
vation time. One indication of that would be if there
is no systematic trend in the statistic �Fu�T �N �x� as the
measurement starting time u changes. Assuming that
the contact center can indeed be regarded as being
in steady state, the estimators �FT �N �x� in (7.2) and�Fu�T �N �x� are in fact direct estimators of the staff-
experience cdf F . Given one of these estimators, say �F ,
we can apply statistical methods to obtain an asso-
ciated estimator f̂ for the staff-experience pdf f . We
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can then apply formula (4.2) to obtain an estimator �G
for the associated agent-retention G, namely,

�G�x�= 1− f̂ �x�

f̂ �0�

 (7.4)

This procedure leads us to estimate the mean of G by
�mG = 1/f̂ �0�.

8. Transition Costs
In this section, we supplement our probability model
in §3 in order to describe the transition costs dis-
cussed in §1. As before, we assume that the number of
agents working in the contact center is fixed at n for
all time, with a new agent hired whenever a working
agent departs. As before, we assume that the agent
employment durations Xi�k are i.i.d. random variables
for 1 ≤ i ≤ n and k ≥ 1, with Xi�k representing the
length of time that the kth agent in the ith agent posi-
tion is employed. As before, we assume that Xi�k is
distributed as the random variable X with cdf G hav-
ing finite mean mG = E�X�.
Let Ni ≡ $Ni�t�% t ≥ 0& be the renewal counting pro-

cess associated with the ith position, i.e.,

Ni�t�≡max$k% Si�k ≤ t&� t ≥ 0� (8.1)

where

Si�k ≡Xi�1+ · · ·+Xi�k� 1≤ i≤ n� and k≥ 1� (8.2)

with Si�0 ≡ 0 for each i.
The total number of transitions in the time interval

�0� t� is then

N�t�≡
n∑

i=1
Ni�t�� t ≥ 0
 (8.3)

By Proposition 3.3.1 and Theorem 3.3.4 of Ross (2003),
we can describe the long-run transition rate, justifying
a claim made in the introduction.

Theorem 8.1. Under the assumptions above,

N�t�

t
→ n

E�X�
w
p
1 as t→� (8.4)

and
E�N�t��

t
→ n

E�X�
as t→�
 (8.5)

In other words, for each agent position the long-run
average transition rate is 1/E�X�.
Now we consider the costs associated with each

transition. In doing so, we do not do a detailed anal-
ysis. Instead, we simply assume that there is an addi-
tional set of i.i.d. random variables Zi�k for 1≤ i≤ n

and k ≥ 1, with Zi�k representing the random cost
associated with the kth transition at the ith agent
position. Let the random variables Zi�k be distributed
as a random variable Z with cdf H having finite
mean E�Z�.
Then the total transition cost at the ith agent posi-

tion during the time interval �0� t� is

Ci�t�=
Ni�t�∑
k=1

Zi�k� t ≥ 0� (8.6)

and the overall total transition cost during the time
interval �0� t� is

C�t�=
n∑

i=1

Ni�t�∑
k=1

Zi�k� t ≥ 0
 (8.7)

Under all the i.i.d. assumptions made above, for
each i the stochastic process Ci ≡ $Ci�t�% t ≥ 0& is a
renewal-reward process, as in §3.6 of Ross (2003). In
turn, the stochastic process, C ≡ $C�t�% t ≥ 0& is the
sum of n i.i.d. renewal-reward processes. Thus, by
Theorem 3.6.1 of Ross (2003), we have the following
result, describing the long-run average total transi-
tion cost.

Theorem 8.2. Under the assumptions above,

C�t�

t
→ nE�Z�

E�X�
w
p
1 as t→� (8.8)

and
E�C�t��

t
→ nE�Z�

E�X�
as t→�
 (8.9)

In practice (for actual finite times t), the observed
average cost C�t�/t will inevitably differ from the
long-run average nE�Z�/E�X�. Under the model
assumptions, random fluctuations about the limit can
be described by a central limit theorem. By The-
orem 7.4.1 of Whitt (2002), we obtain the follow-
ing characterization. For the statement, let N�m�02�

denote a random variable with a normal distribution
having mean m and variance 02. As in (3.4), let ⇒
denote convergence in distribution.
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Theorem 8.3. If, in addition to the assumptions above,
the variances 02X ≡ Var�X� and 02Z ≡ Var�Z� are finite,
then

C�t�−@t√
t

⇒N�0�n02� as t→�� (8.10)

where

@ ≡ nE�Z�

E�X�
and 02 ≡ 02Z

E�X�
+ E�Z�202X

E�X�3

 (8.11)

As a consequence of Theorem 8.3, we see that, for
large t, C�t� is approximately normally distributed
with mean @t and variance n02t for @ and 02 in (8.11).

9. Conclusions
In this paper, we have presented a mathematical
framework to help think about the way management
actions to increase agent job satisfaction (by increas-
ing compensation or autonomy, reducing stress, or
any other means) may increase agent retention and
enhance contact-center performance. We have devel-
oped mathematical models to describe both the tran-
sition costs of turnover (§8) and the performance
benefits of retention (§§2, 3, and 5). We believe that
the models and analysis can be useful when com-
bined with empirical analysis of contact-center data.
The models and analysis can even help guide the
empirical analysis.
Mathematical models have an automatic precision

that requires careful definition. Thus the act of mod-
eling can help us carefully define the quantities being
studied. For example, the model identifies two quan-
tities that might be confused: the length of time each
agent works (modeled by the agent-retention cdf G)
and the experience of the staff at any time (modeled
by the staff-experience cdf F ). The model also deter-
mines a precise relation between these two quantities,
under assumptions. Under the model assumptions,
we have shown how changes in the agent-retention
cdf Gwill produce corresponding changes in the staff-
experience cdf F . It is natural to next investigate if
these relationships are seen in practice.
Given that management actions may significantly

affect agent job satisfaction, with some actions acting
positively but others (e.g., pervasive monitoring) pos-
sibly acting negatively, it is desirable to investigate
how these actions actually do affect retention, staff

experience, and performance. By measuring all these
quantities over time, management can learn about the
costs and benefits of those management actions.
The modeling and analysis raise important empiri-

cal issues. For example, we see that it is natural to ask
how performance might best be quantified. Moreover,
for an appropriate quantification, our model leads us
to ask if performance can indeed be regarded as an
increasing function of experience and, if so, what the
shape is of the function. It also leads us to ask how
much performance benefits are gained by increasing
staff experience. More fundamentally, we suggest con-
sidering that actions to increase agent job satisfaction
might be cost effective. It is possible that such mea-
sures can be win-win-win actions; all the parties—
the agents, the company, and the customers—might
simultaneously benefit. If such win-win-win opportu-
nities exist, it would be desirable to find them.
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