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Abstract

A multi-class deterministic fluid model is proposed to describe and improve the performance of a customer contact cen-
ter with skill-based routing. The fluid model can be regarded as an approximation for a stochastic queueing system with
multiple customer classes and multiple server groups, with customer abandonment and non-exponential service-time and
time-to-abandon distributions. The fluid model is attractive to provide a rough analysis of large systems, with high arrival rate
and many servers. Even though the fluid model evolves deterministically, the service-time distributions and time-to-abandon
distributions beyond their means play a critical role. The fluid model can be used for staffing, routing and system design,
because it is possible to formulate tractable optimization problems.
� 2005 Elsevier GmbH. All rights reserved.
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1. Introduction

It is a pleasure to contribute to this special issue in honor
of Paul Kuehn on his 65th birthday. The time our paths first
crossed 28 years ago was a turning point in my research ca-
reer. Even though I had received a doctorate in engineering,
I had not yet developed the perspective of an engineer. I was
doing academic research, writing research papers motivated
by research papers. Being vaguely aware that something was
missing, I left academia in 1977 and joined Bell Labs, the
research branch of AT&T, and began to see engineering in
action. There were many impressive people at Bell Labs,
and among them, Paul stood out. Paul was the epitome of
an engineer: His talks evoked organization, clarity and tech-
nical depth.

In those early Bell Labs days, my research was primar-
ily aimed at developing new methods for approximately an-
alyzing complex non-Markovian multi-class queueing net-
works, which serve as models of communication networks,
computer systems and manufacturing facilities. That effort
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led to a software package called The Queueing Network An-
alyzer (QNA) [1–3], and it led to related theory and applica-
tions [4–10]. As acknowledged in [2], there were important
precedents; notable among them was Kuehn [11].

In 2002, I left AT&T and joined the IEOR Department of
Columbia University. My main research focus has shifted
from communication networks to service systems, specifi-
cally to customer contact centers. A contact center is a col-
lection of resources providing an interface between a ser-
vice provider and its customers. The classical contact center
is a telephone call center, containing service representatives
(agents) who talk to customers over the telephone. In modern
call centers, agents are supported by elaborate information-
and-communication-technology equipment, such as an in-
teractive voice response unit, an automatic call distributor
(ACD), a personal computer and assorted databases. The op-
erational efficiency has been improved through voice over IP.

With the rapid growth of e-commerce, contact is often
made via e-mail or the Internet instead of by telephone.
There often are many types of service requests, requiring
different service skills, such as knowledge of different lan-
guages or technical information, and the agents differ in
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their ability to respond to these requests. The ACD is able
to route calls to different agents through skill-based routing
(SBR), but there remains an opportunity for better design
and control, including routing and staffing. Since contact
centers play a vital role throughout the service sector, and
since the service sector is a growing part of the economy,
there is great potential for new technological contributions
in this area. For background on contact centers, see [12].

Even though contact centers are quite different from the
Internet and web server farms, many of the same mod-
elling techniques used to analyze the performance of com-
puter systems and communication networks apply. Indeed,
to a large extent, modern contact centers can be regarded as
special kinds of computer systems and communication net-
works. But differences in detail lead to different modelling
approaches. Clearly, there is a difference in time scale be-
tween the transmission time of a data packet and the dura-
tion of a service contact: in a contact center the relevant time
scale is minutes or seconds, corresponding to the duration of
a service contact or the waiting time before service can be-
gin. In many ways, a contact center is more like a classical
circuit-switched telephone network, because the items to be
processed are again calls and it is natural for the queues to
have multiple servers (the agents). That connection suggests
considering stochastic network models such as in [13–15],
but the network structure plays less of a role here (e.g. each
customer needs only a single server) and delay in providing
service is an important consideration.

In this paper we propose a new model to study and im-
prove the design and performance of customer contact cen-
ters. It is a multi-class deterministic fluid model, which arises
as the limit of a multi-class many-server queueing system as
both the arrival rate and the number of servers increase. The
fluid model is appealing in contrast to fluid models associ-
ated with single-server queues and networks of such queues,
e.g. see Section 5.3.1 of [10], because the performance de-
scriptions depend on important model probability distribu-
tions beyond their means. The reason these distributions be-
yond their means play a critical role is that the state of the
fluid model does not just consist of the numbers of customers
of each class in queue and in service at each service group
at each time, but in addition contains the length of time each
customer has been in queue or in service. The system state
is given an important extra time dimension, which we are
not accustomed to seeing in fluid models. (What we do here
should be contrasted with the customary state in Marko-
vian many-server queueing models [13,16–18]. Precedents
for adding time to the state exist in the analysis of non-
Markovian many-server queues, e.g. [19,20].) In detail, the
multi-class fluid model introduced here is quite different
from QNA in [2], but it is similar in spirit. We introduce
an approximation that greatly reduces the complexity, and
yet still captures important system dynamics. In both cases,
there is an attempt to treat non-Markovian models and to
capture the impact of probability distributions beyond their
means.

The multi-class fluid model introduced here extends a
corresponding single-class fluid model introduced in Whitt
[21]. That single-class fluid model already has had some
applications: to study the impact of uncertain model param-
eters [22], to study the impact on aggregate system perfor-
mance of delay announcements [23], and to study outsourc-
ing strategies [24]. Alternative fluid models to develop new
approaches to contact centers have been proposed by Bas-
samboo, Harrison and Zeevi [25–27].

Here we start in Section 2 by specifying a reference SBR
queueing model. Next in Section 3 we introduce the pro-
posed fluid model, concentrating on describing the equilib-
rium or steady-state behavior. In Section 4 we consider opti-
mization problems for system design, which specify staffing
and partially specify routing. In Section 5 we discuss is-
sues arising in the implementation of fluid-model results in
actual contact centers, in particular, accounting for stochas-
tic fluctuations and producing associated routing strategies
in the actual contact center. Finally, in Section 6 we draw
conclusions.

2. An SBR queueing model

In this section we define a multi-class queueing model
of an SBR contact center, which we denote by (G/GI +
GI)m/sn. This queueing model helps put the fluid model we
introduce in the next section in perspective, because we can
view the fluid model as an approximation of it.

In the queueing model there are m customer classes and n
service groups, with sj servers in service group j, 1�j �n,
and thus a total of s = s1 + · · · + sn servers. The individ-
ual customer classes and service groups are homogeneous:
Customers from each customer class are assumed to have
common characteristics, and servers in each server group
are assumed to have common characteristics. (The priority
skill matrix in [28] is one way to relax that requirement.)
The servers have skills, specifying which customer classes
they can serve. For example, service group 3 might be able
to serve customer classes 1 and 4. There is a queue asso-
ciated with each customer class, where arriving customers
of that class wait if they do not enter service immediately
upon arrival. There also is a queue for each service group,
where idle servers of that service group wait if they are not
assigned to serve waiting customers immediately upon ser-
vice completion. These various queues might be virtual. For
examples of queueing models of contact centers, see [12,28]
and references therein.

The system is operated by making decisions at two tran-
sition epochs: (1) at the epochs of customer arrivals, and (2)
at the epochs of service completions. First, upon each arrival
of a class-i customer, we consider whether we should assign
that customer to an idle server in one of the service groups
that can serve class i, if one is available, or we put the cus-
tomer in the class-i queue to wait. Second, upon each ser-
vice completion by a server from server group j, we consider
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whether we should assign that server to one of the waiting
customers in the customer classes that server can serve or
we put the server in the queue of idle class-j servers. We as-
sume that some non-preemptive, non-anticipating policy is
used to assign customers to idle servers, defined to address
both those two decisions. For both queues – of waiting cus-
tomers and idle servers – we must have some queue disci-
pline for deciding which is to be assigned next. One natural
candidate is first-in first-out (FIFO), but others are possible.
For example, we might assign the server that has the largest
proportion of idle time during the last half hour.

Now we define the stochastic model elements. Customer
class i has arrivals according to a general stationary point
process Ai ≡ {Ai(t) : t �0} with arrival-rate �i ; that is, we
assume that Ai(t)/t → �i > 0 as t → ∞ with probability
one (w.p.1). It is natural to assume that the arrival processes
are mutually independent Poisson processes, but we do not
require it.

Each class-i customer who is required to wait before start-
ing service balks (leaves immediately upon arrival) with
probability �i , and elects to wait with probability 1 − �i ,
independently of the current state and history. Each class-
i customer that cannot enter service immediately and does
not balk may subsequently abandon (leave after joining the
queue, before starting service). Successive times to aban-
don of class-i customers are independent and identically dis-
tributed (i.i.d.) random variables with a cumulative distribu-
tion function (cdf) Fi . That is natural with invisible queues
(when waiting customers cannot see the state of the system,
as is typical for contact centers without delay announce-
ments).

We assume that customers do not abandon after they start
service. The service times of class-i customers may depend
on the service group where they are served. Successive ser-
vice times of class-i customers by servers from service group
j are i.i.d. random variables with a cdf Gi,j . We assume that
the balking decisions, the times to abandon and the service
times are all mutually independent random variables, inde-
pendent of the system history. (We assume that balking and
abandonment do not influence future arrivals.)

Let Ti be a generic time to abandon for a class-i customer,
and let Si,j be a generic service time of a class-i customer
served by a server from service group-j. Then our assump-
tions above imply that Fi(t) ≡ P(Ti � t) and Gi,j (t) ≡
P(Si,j � t) for t �0. We assume that these random variables
have finite means: ma,i ≡ E[Ti] and ms,i,j ≡ E[Si,j ].

As advertised at the outset, an important goal is to capture
the impact of probability distributions beyond their means.
It is significant that we do not assume that the service-
time cdf’s Gi,j and the time-to-abandon cdf’s Fi are expo-
nential. Statistical analysis of telephone-holding-time data
has shown that the probability distributions of both service
times and times to abandon often are not nearly exponential
[29,30].

In running the SBR contact center, there are two decisions
to make: staffing and routing. The staffing is the choice of

the numbers sj , for 1�j �n, while the routing specifies the
assignment of servers to customers. There also is a larger de-
sign question, specifying the customer classes to be served,
perhaps including the arrival rates �i , and the service groups
to provide the service, perhaps including the service-time
cdf’s Gi,j . Our approximate fluid model in the next section
is intended to focus on the higher-level issues such as de-
sign, as opposed to determining the optimal routing strategy
for each individual service interaction (call).

3. An approximating fluid model

In this section we introduce a fluid model approximating
the (G/GI + GI)m/sn SBR queueing model from the last
section. The fluid model arises by scaling up the arrival
rates and the numbers of servers, while holding the balking
probabilities �i , time-to-abandon cdf’s Fi and service-time
cdf’s Gi,j fixed, but we do not establish any limits here.

We can do the scaling by introducing a family of models
indexed by a scaling parameter �, and then let � → ∞. We
let the arrival rates and number of servers be functions of �,
and then let

�i (�)

�
→ �i and

sj (�)

�
→ sj as � → ∞. (1)

We then scale the customer number-in-service and queue-
length processes by dividing by �, converting individual cus-
tomers into “atoms of fluid” in the limit. Thus �i (�) ≈ ��i is
the arrival rate of customers in the queueing model �, but �i

becomes the arrival rate of class-i fluid in the limit after scal-
ing. Similarly, sj (�) ≈ �sj is the number of class-j servers
in queueing system �, while sj is the class-j fluid service
capacity in the limiting fluid model obtained after scaling.

For the single-class (m= 1), single-service-group (n= 1)

case (where routing is not an issue), the fluid model has been
shown to be asymptotically correct in the regime (1) in [21].
(So far, the asymptotic correctness has only been verified
for the Markovian M/M/s + M special case [18,31] and a
discrete-time analog of the general Gt(n)/GI/s + GI fluid
model, allowing both time-dependent and state-dependent
arrivals [21], but since the time increments can be arbitrar-
ily short, that discrete-time setting suffices for practical pur-
poses.) The steady-state behavior of the single-class fluid
model has been shown to yield accurate approximations
for the corresponding queueing systems with 100 servers
in overloaded scenarios through comparisons with exact
numerical results obtained from numerical algorithms and
simulations [21,31,32]. At the same time, the fluid model
provides great simplification that makes it possible to in-
vestigate other more complicated questions. For additional
discussion of fluid models, see [17,27,33–35].

A major complication arising when we go from the single-
class fluid model in [21] to the multi-class fluid model here is
the routing. However, recent work indicates that it is possible
to treat the routing in a relatively “broad-stroke” way; e.g.
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see [28]. With that in mind, we treat the routing in a very
elementary way. That leaves open the question of how best
to do the routing in practice. In Section 5 we discuss how that
might be done, but that remains to be more fully explored.

Here is how we handle routing (assign class-i fluid to
class-j service groups) in the fluid model: At the outset, we
allocate a proportion ri,j of all class-i fluid to service group
j. Thus,

∑n
j=1 ri,j = 1 for all i. Mathematically, these pro-

portions can be regarded as probabilities, but we are not ex-
plicitly assuming that Markovian routing is being employed.
We regard these proportions ri,j as decision variables, to be
specified. They may be limited by the available skills of the
servers in the service groups.

Thus, our fluid model is characterized by the parameter
six-tuple (�, �, F, r, G, s), where � ≡ (�1, . . . , �m) and � ≡
(�1, . . . , �m) are m-tuples of numbers, F ≡ (F1, . . . , Fm)

is an m-tuple of cdf’s, r ≡ (ri,j : 1� i�m, 1�j �n) is an
m × n matrix of numbers, G ≡ (Gi,j : 1� i�m, 1�j �n)

is an m×n matrix of cdf’s, and s ≡ (s1, . . . , sn) is an n-tuple
of positive integers. The matrix r can be regarded as the
transition matrix of a discrete-time Markov chain, because
the rows are probability vectors. The way the parameters
simplify going from the queueing model to the fluid model
provides insight. Note that the arrival processes Ai enter in
only through their rates �i , but the full cdf’s Fi and Gi,j

remain relevant in the description of the fluid model.
We now describe how the fluid model evolves over time.

Class-i fluid arrives at rate �i and, a priori, we know that a
proportion ri,j of it will be served at service group j, so we
can think of the queue for class i partitioned into n parts,
depending upon the ultimate destination. For some classes i,
the class-i fluid can enter service immediately upon arrival,
but for other i the fluid must wait in queue. Of the class-i
fluid that has to wait before starting service, a proportion
Fi(t) abandons by time t after it arrives if it has not started
service by that time. It will turn out that all class-i fluid that
is served will enter service at a fixed deterministic time wi .

The fluid model can describe the evolution of perfor-
mance (flow through the system, queue lengths and times
spent) over time as a function of the initial conditions
(and the model elements), as discussed for the single-class,
single-service-group case in [21]. Indeed, a discrete-time
analog of the fluid model is introduced in Section 6 of
[21], which makes it possible to numerically calculate the
time-dependent performance of a fluid model with time-
dependent and state-dependent arrivals, as a function of the
initial conditions. However, here we will only consider the
stationary fluid model in steady state. We intend to discuss
the time-dependent fluid model elsewhere.

We start by describing the offered loads (requested ser-
vice times), noting that the amount of work depends on
the routing, since the required service time depends on the
routing. However, we now take the routing as specified by
the proportions ri,j . The (i, j) – offered load is the arrival
rate times the mean service time, i.e. Li,j = �i ri,jms,i,j .
The (i, j) offered load represents the type-j service capac-

ity needed to serve class-i customers, provided that we can
ignore stochastic fluctuations, which is precisely what the
fluid model does.

The model behavior is much more interesting if some
classes are not served immediately. Then balking and aban-
donment play an important role. We now partition the set
C of customer classes into two subsets: I and C − I. The
customers in classes I get served immediately upon arrival,
while the customers in the remaining classes will have to
wait before starting service. We can explore the different
partitions separately. We now assume that one specific par-
tition has been selected, with C − I non-empty. That will
have implications on what happens for the (i, j) pairs and
for the system as a whole.

Let S ≡ {1, 2, . . . , n} be the set of all server groups and
let Si be the set of server groups that are allowed to serve
customers of class i, 1� i�m. Let C ≡ {1, 2, . . . , m} be
the set of all customer classes and let Cj be the customer
classes that can be served by server group j, 1�j �n. We
require that i ∈ Cj if and only if j ∈ Si .

We assume that all the customers in classes belonging to
I can be served immediately, while the remainder cannot.
That leads to two different sets of constraints

∑
i∈I∩Cj

�i ri,jms,i,j = sj,I < sj , (2)

∑
i∈(C−I)∩Cj

�i ri,j (1 − �i )ms,i,j > s′
j ≡ sj − sj,I (3)

for all j, where sj,I is defined in (2). In (3) we have as-
sumed that the offered load after balking exceeds the avail-
able capacity, after deleting the committed capacity for those
classes to be served immediately. We thus allow balking and
abandonment for classes i in C−I to reduce the load faced
by the servers, enabling the servers to meet the require-
ments. We are thus thinking of our overall SBR contact cen-
ter as a queueing system with customer balking and aban-
donment operating in the so-called efficiency-driven (ED)
heavy-traffic regime [21,31,34,36,37].

We also assume for each waiting class i (in C−I) that all
class-i fluid that is served enters service at a fixed positive
time wi . We regard these waiting times as decision variables,
along with the routing proportions ri,j and the capacities sj ,
but these waiting times wi must satisfy equations, just as for
the one-dimensional fluid model in [21], namely,

∑
i∈(C−I)∩Cj

Li,j (1 − �i )F
c
i (wi) = s′

j (4)

for all j, 1�j �n, where s′
j is the reduced service-group-j

capacity defined in (3) and F c
i (t) ≡ 1−Fi(t) is the comple-

mentary cdf (ccdf) associated with the cdf Fi . Eq. (4) says
that the total reduced offered load at each server group after
balking and abandonment should coincide with the available
capacity there.
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The steady-state behavior of the fluid model is deter-
mined by the systems of equations in (2) and (4), where
the variables sj , ri,j and wi are allowed to vary. Here is
what happens for class-i fluid that must wait before begin-
ning service: A proportion �i of all arriving class-i fluid
balks. All class-i fluid that is served waits precisely wi be-
fore entering service. A proportion ri,j of all class-i input
is allocated to server group j. Let P(Ai) be the proportion
of class-i fluid that abandons; let P(Si) be the proportion
of class-i fluid that is served; and let P(Si,j ) be the pro-
portion of all class-i fluid that is served by service group j.
Then P(Ai) = (1 − �i )Fi(wi), P(Si) = (1 − �i )F

c
i (wi) and

P(Si,j ) = P(Si)ri,j .
The density of class-i fluid that has been waiting for time

t is

qi(t) = �i (1 − �i )F
c
i (t), 0� t �wi , (5)

with qi(t)=0 for all t > wi . The queue content for class i is

Qi = �i (1 − �i )

∫ wi

0
F c

i (t) dt . (6)

Even though these queue-content descriptions are de-
terministic functions, the time-to-abandon cdf’s Fi play a
prominent role in the description. Under assumption (3),
the abandonment cdf’s determine the final steady-state per-
formance via the critical system of equations (4), and they
influence the queue content via (6).

The service-time cdf’s Gi,j enter in so far only via their
means ms,i,j . In steady state, the servers are all always
busy. Class-i fluid is processed from service group j at rate
1/ms,i,j . Class-i fluid enters and leaves service group j at
a total rate of P(Si,j )/ms,i,j . The entire system is kept in
steady state by having the class-i arrival rate �i balanced by
the class-i balking, abandonment and service rates – �i�i ,
�iP (Ai) and �iP (Si), respectively: �i = �i�i + �iP (Ai) +
�iP (Si).

We can also describe the density of the fluid that is in
service. For classes i ∈ (C−I)∩Cj , the density of class-i
fluid that has been in service at service group j for time t,
and thus has been in the system for time wi + t is

bi,j (t) = �i (1 − �i )F
c
i (wi)ri,jG

c
i,j (t), t �0. (7)

For classes i ∈ I ∩ Cj , the density of class-i fluid that
has been in service at service group j (and thus also in the
system) for time t is bi,j (t) = �i ri,jG

c
i,j (t), t �0. The total

fluid content that has been in the service at service group j
for time t is bj (t) = ∑

i∈Cj
bi,j (t), t �0.

While the density of fluid content is deterministic, we in-
terpret the experience of individual customers or “atoms of
fluid” as stochastic, regarding these as i.i.d. (The strong law
of large numbers is acting behind the scenes to convert the
individual independent actions into an overall system deter-
ministic behavior.) For i ∈ C − I, each “class-i customer”
abandons before time t with probability Fi(t), provided that
0 < t < wi . With probability F c

i (t), the customer remains in

the system after time t. However, any customer that has not
abandoned by time wi enters service at that time. Thus, as
stated above, the waiting time (before entering service) is
precisely wi for all class-i customers that do enter service.
The expected or average waiting time for all class-i fluid is

E[Wi] = P(Si)wi + (1 − �i )

∫ wi

0
x dFi(x) = Qi

�i

(8)

as shown in [21]. (The last relation can be viewed as a
consequence of Little’s law, L=�W ). The mean E[Wi] is of
course less than or equal to the waiting time wi of the class-
i fluid that is served. We regard Wi as a random variable
because we interpret the experience of individual customers
(atoms of fluid) is random.

4. Costs and benefits

We first consider the special case in which all customers
are served immediately upon arrival. Then afterwards we
consider the more interesting remaining cases.

4.1. The case of no waiting

When all customers are served immediately upon arrival,
we can serve all fluid without any congestion if the number
of servers in each service group exactly matches the offered
load at that service group, i.e. if

∑m
i=1 Li,j = sj for all j,

1�j �n.
In this case, there is no balking or abandonment, so the

balking probabilities �i and the abandonment cdf’s Fi play
no role. In this context, we can use the fluid model to design
the system, i.e. to choose the numbers of servers sj and the
scheduled routing ri,j in order to meet specified demand,
specified in terms of the arrival rates �i and the mean ser-
vice times ms,i,j . To do so, we formulate an optimization
problem.

Let vi,j (x) be the rate value is accrued from serving a
quantity x of class-i fluid by service group j and let cj (y) be
the cost rate of providing a quantity y of capacity for service
group j. The optimization problem is to maximize the net
reward rate R ≡ R(r, s), where

R(r, s) ≡
m∑

i=1

n∑
j=1

vi,j (�i ri,j ) −
n∑

j=1

cj (sj ) (9)

over all allowed ri,j and sj , subject to the constraints that

∑
i∈Cj

�i ri,jms,i,j = sj for all j ,

∑
j∈Si

ri,j = 1,
∑

j∈S−Si

ri,j = 0 for all i, (10)

where sj �0 and ri,j �0 for all i and j.
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If the functions vi,j and cj appearing in the objective
function (9) are linear, then the optimization is a linear pro-
gram, but we think it may be important to consider nonlin-
ear rewards and costs. By introducing a sequence of linear
approximations for the nonlinear objective function, it may
be possible to develop an effective iterative optimization
algorithm.

For the many applications with few customer classes and
few service groups, it may be possible to essentially eval-
uate the performance of all cases, by performing a search,
by performing evaluations over successive finite grids. For
example, with two classes and two service groups, we
have four proportions ri,j to define, but r1,1 = 1 − r1,2 and
r2,2 = 1 − r2,1. We thus can let r1,2 = j1/k and r2,1 = j2/k,
and consider alternative vectors (j1, j2), with 0�ji �k,
i = 1, 2.

4.2. Some classes are not served immediately

The model behavior is much more interesting if some
classes are not served immediately. Then balking and aban-
donment play an important role. In the fluid model specified
above there are four sets of decision variables: The fluid
steady-state depends on (1) the partition of the set C of cus-
tomer classes into the subset I that will be served immedi-
ately and the complementC−I that will have to wait, (2) the
service-group capacities sj , (3) the routing proportions ri,j
and (4) the waiting times wi for each class i ∈ C−I. These
decision variables are collectively required to satisfy the sys-
tems of equations in (2) and (4). (We also require condition
(3) to ensure that all service groups in C−I operate in the
overloaded regime.) But there typically are many immediate-
service subsets I and sets of these variables sj , ri,j and wi

that will yield a valid steady-state for the fluid model. To dis-
criminate between them, we can impose costs and benefits,
similar to those in (9). We consider how we might do that in
this section.

Suppose that a reward rate (positive value) v(i, j, t) is
earned per unit of fluid per unit time for serving class-i
fluid by service group j after these customers have waited
time t. This reward is presumably decreasing in the wait-
ing time t. Suppose that a cost rate cb(i) is incurred per
unit of fluid per unit of time for having class-i fluid balk.
(Under assumption (3), that cannot be controlled.) Suppose
that a cost rate ca(i, t) is incurred per unit of fluid per unit
time for having class-i fluid abandon after having waited
time t. This cost is presumably increasing in the time t.
Suppose that there is a holding cost rate ch(i, x) incurred
per unit time for having x units of class-i fluid waiting
in queue. This cost rate is presumably increasing in the
level x.

Then the total reward rate per unit time, as a func-
tion of the decision variables I, s ≡ (sj ), r ≡ (ri,j ) and

w ≡ (wi : i ∈ C − I) is

R ≡ R(I, s, r, w) =
∑
i∈I

⎛
⎝�i

∑
j∈Si

ri,j v(i, j, 0)

⎞
⎠

+
∑

i∈C−I

⎛
⎝�i (1 − �i )F

c
i (wi)

∑
j∈Si

ri,j v(i, j, wi)

− �i�ic
b
i − �i (1 − �i )

∫ wi

0
ca(i, t) dFi(t)

−ch(i, Qi)

⎞
⎠ , (11)

where Qi is given in (6). Given values of the decision vari-
ables I, r ≡ (ri,j ), s ≡ (sj ) and w ≡ (wi), we can calcu-
late the total reward and its components. It is also natural to
consider the optimization problem

maximize R(I, r, w, s) (12)

over the decision variables I, r ≡ (ri,j ), s ≡ (sj ) and w ≡
(wi), subject to the constraints

∑
i∈I∩Cj

�i ri,jms,i,j ≡ sj,I < sj ,

∑
i∈(C−I)∩Cj

Li,j (1 − �i )F
c
i (wi) = s′

j ≡ sj − sj,I ,

∑
j∈Si

ri,j = 1,
∑

j∈S−Si

ri,j = 0 (13)

with sj �0 and ri,j �0 for all i and j, assuming condition
(3). The first two constraints in (13) are just (2) and (4).

5. Implementation

We briefly discuss two issues in relating the fluid model
to actual service systems: (1) coping with stochastic fluctu-
ations, and (2) routing consistent with the fluid model.

5.1. Stochastic fluctuations

Since the fluid model ignores all uncertainty and stochas-
tic fluctuations, it is natural to consider some adjustments to
take account of the stochastic fluctuations. That might not
be necessary, because balking and abandonment should act
to prevent overload. But as a means to address stochastic
fluctuations directly, we suggest augmenting the staffing by
a square-root safety factor [28,34,36,38,39].

Given that we have found the desired staffing vector s =
(s1, . . . , sn), we let the total staff be s̃ ≡ s+�

√
s, where s ≡

s1 + · · · + sn and � is a quality-of-service (QoS) parameter,
with higher � yielding higher quality of service. Then, as in
Eqs. (5.1) and (5.2) of [28], we allocate the spare capacity to
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the service groups proportionally according to their square
roots; i.e. we let

s̃j = sj + x
√

sj , 1�j �n, (14)

where

x = s̃ − s∑n
j=1

√
sj

= �
√

s∑n
j=1

√
sj

. (15)

The QoS parameter � can be chosen assuming the load in
entire system has a normal distribution with mean and vari-
ance s.

5.2. Routing

The fluid model is consistent with many different rout-
ing schemes, but the performance of the approximation may
well depend upon the method used. For example, the rout-
ing could be Markovian with routing probabilities coincid-
ing with the proportions ri,j . That Markovian routing is evi-
dently asymptotically correct in the heavy-traffic regime (1),
but it might not perform so well in practice. One natural im-
provement is to perform a form of generalized round robin,
that deterministically allocated class-i customers to class-j
service groups in the right proportions. Such a generalized
round-robin scheme eliminates the randomness associated
with Markovian routing. But neither of these two routing
schemes responds flexibly to the actual state of the system.

As an alternative routing scheme that responds flexibly
to the system state, we propose a dynamic priority scheme
based on a tracking index. Let r̂i,j (t) be the proportion of
class-i customers that have been routed to service group j
during the last time interval of length t (among those that
have been routed to some service group during that time).
We can then construct a dynamic priority index, such as

pi,j (t) ≡ ri,j

r̂i,j (t)
. (16)

With the dynamic priority index in (16), a new arriving
class-i customer at some time would select a free server from
among the eligible service groups with free servers, with the
service group chosen being the one having the highest pri-
ority index pi,j (t) at that arrival instant (among all eligible
service groups). A server from service group j who becomes
free at some time would select a customer to serve from one
of the customer-class queues, with the customer class cho-
sen being the one having the highest priority index pi,j (t) at
that arrival instant (among all eligible customer classes). The
idea, of course, is that the dynamic priority scheme should
assign customers to servers in a way that will produce the
desired proportions in the long run, but at the same time,
avoid unnecessary server idleness when there are customers
requiring service. That is, with the dynamic priority scheme,
we hope to ensure that we obtain the available economies
of scale from sharing among service groups.

We have only illustrated one way in which a routing policy
can be generated from the proportions chosen in the fluid

model. It remains to examine alternative routing schemes, to
see if they are roughly consistent with the fluid model and
if they perform desirably.

6. Conclusions

We have introduced a multi-class deterministic fluid
model of an SBR contact center having m customer classes
and n service groups, which can be used to study prob-
lems of design and control. An important realistic feature
is the use of balking and abandonment to ensure stable
model behavior, where the net input is balanced by the net
output. Another important realistic feature is the use of non-
exponential service-time and time-to-abandon distributions.
The key to successfully treating the resulting complex non-
Markovian model is to: first, consider an idealized view of
a large system (with high arrival rate and many servers),
which is formalized by the asymptotic regime (1) and, sec-
ond, to augment the system state by including the time in
service and the time in queue.

In this short space we have only been able to present
a framework that can be used for further analysis, but we
believe that there is much that can be done within that
framework. Moreover, within that framework, we have
only described the steady-state behavior of a stationary
fluid model. As indicated in [21], the framework can also
be used to describe time-dependent behavior, of both a
non-stationary model (having time-dependent input) and
a stationary model with different initial conditions. Fur-
ther work on time-dependent behavior and supporting
stochastic-process limits is in progress.
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