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In order to understand queueing performance given only partial information about the model, we pro-

pose determining intervals of likely performance measures given that limited information. We illustrate this

approach for the steady-state waiting time distribution in the GI/GI/K queue given the first two moments

of the interarrival-time and service-time distributions plus additional information about these underlying dis-

tributions, including support bounds, higher moments and Laplace transform values. As a theoretical basis,

we apply the theory of Tchebycheff systems to determine extremal models (yielding tight upper and lower

bounds) on the asymptotic decay rate of the steady-state waiting-time tail probability, as in the Kingman-

Lundberg bound and large deviations asymptotics. We then can use these extremal models to indicate likely

intervals of other performance measures. We illustrate by constructing such intervals of likely mean waiting

times. Without extra information, the extremal models involve two-point distributions, which yield a wide

range for the mean. Adding constraints on the third moment and a transform value produces three-point

extremal distributions, which significantly reduce the range, yielding practical levels of accuracy.
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1. Introduction

Despite many significant research contributions in queueing theory over the years, what J. F. C.

Kingman (1970) wrote fifty years ago largely remains true today:

It is a fair criticism of the theory of queues as it has been developed over the years that, even

in the simple cases for which explicit analytical solutions can be found, these solutions are too

complicated to be of practical use. It has been argued elsewhere (Kingman (1966)) that the

criticism is to be met to some degree by the analysis of situations where robust approximations

exist, such as that of “heavy traffic.” It is, however, important to know how accurately such

approximations represent the true solution, and the significance of inequalities for the various

quantities of interest thus become apparent.
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Just as Kingman (1970) did, we consider this problem for the GI/GI/K queue, which is a K-

server queue with unlimited waiting room and service in order of arrival by the first available server,

where the interarrival times and service times come from independent sequences of independent

and identically distributed (i.i.d.) random variables distributed as U and V with general cumulative

distribution functions (cdf’s) F and G. We are especially interested in exposing the performance

impact of the variability of these underlying cdf’s F and G. To describe the extent of the variability

independent of the mean, we let c2a and c2s be the squared coefficient of variation (scv, variance

divided by the square of the mean) of U and V . We start by considering the special case K = 1,

but it is significant that our approach extends directly to K > 1.

The complication is well illustrated by the formula for the mean of steady-state waiting time W

(before starting service) for K = 1,

E[W ] =
∞
∑

k=1

E[S+
k ]

k
<∞, (1)

where [x]+ ≡max{x,0}, Sk is the kth partial sum of k i.i.d. random variables distributed as X ≡

V −U and ≡ means equality by definition. And there is no analog of (1) for K > 1. Formula (1) is

reviewed in Abate et al. (1993), which is devoted to algorithms to compute E[W ] and P (W > t)

whenK = 1 for general F andG based on alternative integral representations. In general, simulation

remains an attractive method, although it applies to only one specified model, does not yield the

insight of formulas, and is a relatively time consuming numerical procedure.

A candidate simple and insightful approximation formula for E[W ] is provided by the heavy-

traffic approximation (HTA). Choose measuring units by setting E[U ] = 1, so that E[V ] = ρK,

where ρ is the traffic intensity. Then the second moments are E[U2] = c2a+1 and E[V 2] = ρ2K2(c2s+

1). In this context, the HTA for the mean with K ≥ 1 is

E[W ]≈
ρ2(c2a + c2s)

2(1− ρ)
. (2)

For K = 1, the HTA in (2) is obtained by combining the M/GI/1 Pollaczek-Khintchine exact

formula for the special case of a Poisson arrival process, where c2a = 1, with the heavy traffic limit

in Kingman (1961). The extension to K > 1 was provided by Borovkov (1965), Iglehart and Whitt

(1970a,b), Kollerstrom (1974). (We do not consider the many-server heavy-traffic scaling in

Halfin and Whitt (1981) or Gamarnik and Goldberg (2013).)

The limit shows that the approximation is asymptotically correct in the sense that

E[W ] =HTA+ o(1− ρ) as ρ ↑ 1, (3)

where o(x) is a quantity h(x) such that h(x)/x→ 0 as x→ 0.
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In this context, the problem posed by Kingman (1970) can be expressed as: How accurate is

formula (2)? In part, that question is answered for the case K = 1 by the large literature on bounds

for E[W ], given the partial specification by the parameter 4-tuple

(E[U ],E[U2],E[V ],E[V 2])≡ (1, c2a, ρ, c
2
s), (4)

starting from Kingman (1962, 1970) and continuing with Daley (1977), Daley et al. (1992),

Wolff and Wang (2003), Chen and Whitt (2018, 2019a) and the many references therein.

Unfortunately, however, this program has not yet been very successful. As shown by Table 1 in

Chen and Whitt (2018), the range of possible values of the mean E[W ] in the GI/GI/1 model

given the first two moments of U and V is quite wide, and so is of limited value. Consequently, we

would want to add a little more information. However, relatively little is known about the impact

of additional information, beyond the early results for the GI/M/1 model in Whitt (1984a,b),

Klincewicz and Whitt (1984) and queues with phase-type distributions in Johnson and Taaffe

(1991, 1993). Almost nothing is known about the case K > 1, but it is known that the range given

the first two moments of U and V is even wider; see Daley (1997) and Gupta et al. (2010).

1.1. Applying T Systems to the Asymptotic Decay Rate

In order to make progress, we propose a new approach based on the asymptotic decay rate. To do

so, we restrict attention to the light-tailed case, where the service-time cdf G has finite moments

of all orders. We then typically have

P (W > t)∼ αe−θW t as t→∞, (5)

where f(t)∼ g(t) as t→∞ means that f(t)/g(t)→ 1, e.g., see Abate and Whitt (1995). Then we

call θW the (asymptotic) decay rate. Then we have the rough approximations E[W ]≈ α/θ≈ 1/θ.

(We remark that the assumption supporting (5) does not reduce the range for the mean waiting

time, but it is essential to even have a well-defined decay rate.) The key observation is that, in

great generality, but under regularity conditions, the asymptotic decay rate θW in (5) is attained

as the unique positive real root of an equation involving the Laplace transforms of U and V , e.g,

f̂(s)≡
∫∞

0
e−st dF (t). In particular, the equation for the decay rate is

f̂(s)ĝ(−s) = 1. (6)

In this light-tailed setting, we show that the theory of Tchebycheff (T ) systems from

Karlin and Studden (1966), as used in Rolski (1972), Holtzman (1973), Eckberg (1977), Whitt

(1984a,b), Johnson and Taaffe (1991, 1993), Gupta and Osogami (2011), can be applied to deter-

mine extremal models (yielding tight upper and lower bounds) on the asymptotic decay rate θW

above.
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We start in §2 by giving background on T systems. Compared to previous papers that apply T

systems to queueing systems, we contribute in §2.3 by exposing tractable sufficient conditions for

a system of functions to be a T system in terms of Wronskians. In Lemma 2 we show that the

systems of functions that we consider satisfy these conditions. After that, it suffices to apply the

Markov-Krein theorem for T systems.

In §3 we obtain the extremal distributions for the decay rate. In §3.1, we provide technical

background on the decay rate; in §3.1.2 we show that this approach also applies to the GI/GI/K

model for K > 1. In §3.2 we obtain two-point extremal distributions given only the first two

moments of U and V and bounded intervals of support. Then in §3.3 we obtain more useful three-

point extremal distributions when we are also given the third moment and values of the Laplace

transform of U and V . Finally, in §3.4 we obtain extremal distributions in the common case when

F and G have unbounded support.

1.2. Applications to Reveal Likely Intervals for the Mean Waiting Time

In §4 we apply these extremal distributions for the decay rate to determine associated intervals

of likely values for the mean steady-state waiting time given the limited information. We do not

establish rigorous bounds for the mean waiting time in this way, but nevertheless we think that this

approach yields useful insight. Moreover, this general approach can be applied to other performance

measures besides the mean and other stochastic models.

1.2.1. Starting from one concrete model. Our proposed method is based on Theorem 6

in §3.3. We start with a concrete model determined by the pair of cdf’s (F,G). We first calculate:

(i) the decay rate θW for that model by solving for the unique positive root of the single equation

(6) involving the Laplace transforms f̂ and ĝ of F and G and (ii) four parameters from each of the

underlying cdf’s F and G: the first three moments and one argument of each Laplace transform.

We have two alternatives for each of the arguments µs of ĝ(−s) and µa of f̂(s): either ≤ θW or

≥ θW Our experiments indicate that we can set

µ≡ θW/R if µ≤ θW and µ≡RθW if µ≥ θW (7)

for suitable R, e.g., R ∈ {1,5,10,20}. We find that it is better to have µs ≤ θW ; see Theorem 6 and

§4.3.

For the concrete model, we also directly calculate the mean steady state waiting time E[W ],

but the goal is to determine a set of likely values of that mean given any model with the two-

moment parameters in (4) and the small set of additional parameters. For that purpose, we add

the additional parameters to reduce the range to a smaller interval of likely values.
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1.2.2. Fast application starting from the parameters in (4). To simplify applications

of this method starting from the basic two-moment parameters in (4), we suggest working with

standard distributions having the specified parameters in (4), as in §3 of Whitt (1982). For c2 ≥ 1,

we use the H2 (hyperexponential, mixture of two exponential) distribution with balanced means;

For c2 = 1/k, we use the Ek (Erlang) distribution. These both reduce to the exponential distribution

when c2 = 1. These distributions are fully specified by their first two moments. All examples here

are for the cases c2 ∈ {0.5,1.0,4.0}.

These H2 and Ek distributions are fully specified by their first two moments. As in §5 of Whitt

(1983), for parameter pair (1, c2), the third moments are m3 = 3c2(1 + c2) if c2 > 1 and m3 =

(2c2+1)(c2+1) if c2 < 1.

For these models, numerical values of E[W ] and θW can be found in the tables of Seelen et al.

(1985) and are easily computed by available algorithms. Alternatively we can use heavy-traffic

approximations. If we use HT approximations, then we can give a closed-form expression for all

parameters needed to determine the extremal distributions by the application of the T -system

methodology in §2.

For the mean E[W ], we can use the HT approximation in (2). For the decay rate, we can use

the associated HT approximation

θW ≈
2(1− ρ)

ρ(c2a+ c2s)
, (8)

which is obtained by combining the M/M/1 exact formula θW = (1− ρ)/ρ with the heavy-traffic

asymptotic expansion established in Abate and Whitt (1994); i.e.,

θW (ρ) =
2(1− ρ)

c2a + c2s
+C(1− ρ)2+O(1− ρ)3 as ρ ↑ 1, (9)

where C is an (explicit) function of the first three moments of the mean-1 random variables

U and V/ρ. Related asymptotics and approximations for the GI/GI/s and BMAP/GI/1 mod-

els are established in Abate et al. (1995), Choudhury and Whitt (1994) and Corollary 3 of

Glynn and Whitt (1994).

1.2.3. Determining the Extremal Models and the Interval of Mean Values. We also

use bounded intervals of support for F and G. We propose using support bounds Ma and Ms that

should have negligible impact on E[W ] in typical cases of interest; see §4.1. Given the required

parameters, as indicated in §4.2, we can either apply a nonlinear equation solver or linear pro-

gramming to solve the system of equations specified by the T -system theory to determine the two

extremal models. We then simulate these extremal models to calculate the mean E[W ] and any

other desired steady-state performance measures, for which we exploit the Minh and Sorli (1983)

algorithm as we did in Chen and Whitt (2019a). In §4.3 we indicate how we select the arguments
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for the Laplace transforms. In §4.4 we report the results of simulation experiments to test the pro-

cedure. In §5 we draw conclusions. We present additional simulation results and other supporting

material in the appendix, Chen and Whitt (2019b).

2. Tcheycheff System Foundations

To put the T system results in perspective, we start in §2.1 by reviewing the classical moment

problem. Then in §2.2 we specify the additional conditions needed to get a T system and state

the Markov-Krein theorem. In §2.3 and develop lemmas under smoothness conditions that are

convenient for establishing the T system property, including for the systems we consider.

2.1. The Classical Moment Problem

We first review the classical moment problem, as in Lasserre (2010), Smith (1995) and references

therein. Let ui, 0 ≤ i ≤ n, be n+ 1 continuous real-valued functions on the closed interval [a, b].

The expectations of these functions are assumed to be known, and are called the moments mi,

0 ≤ i ≤ n. The canonical example is ui(t) ≡ ti, 0 ≤ i ≤ n, in which case these functions yield the

usual moments. In this setting, we want to draw conclusions about the unspecified underlying

probability measure P on [a, b] such that:

mi ≡EP [ui]≡

∫ b

a

ui dP, 0≤ i≤ n. (10)

We assume that u0(t)≡ 1, a≤ t≤ b, and m0 ≡ 1, so that the measure is necessarily a probability

measure.

For the general moment problem, let Pn be the set of all probability measures P on [a, b] with n+1

moments as defined above. We assume that Pn is nonempty. let Pn,k be the subset of probability

measures in Pn that have support on at most k points in [a, b]. The following is a generalization of

a standard result in linear programming (LP), stating that the supremum (or infimum) is attained

at a basic feasible solution or an extreme point. (The notion of extreme point extends to more

general spaces; e.g., see §III.6 of Karlin and Studden (1966).)

Theorem 1. (a version of the classic moment problem, §2.1 of Smith (1995)) In addition to

the n+1 functions ui introduced above, let φ : [a, b]→R be another continuous real-valued function.

Assume that Pn is not empty. Then there exists P ∗ ∈Pn,n+1 such that

sup{

∫ b

a

φdP : P ∈Pn}= sup{

∫ b

a

φdP : P ∈Pn,n+1}=
n+1
∑

k=1

φ(tk)P
∗({tk}), (11)

where {tk : 1≤ k≤ n+1} is the support of P ∗. The same result holds for the infimum.
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.

let σ(P ) denote the cardinality of the support of P . Let P ∗
U and P ∗

L denote upper and lower

extremal distributions, yielding the supremum and infimum in (11). Theorem 1 implies that there

exist extremal distributions with σ(P ∗
U )≤ n+1 and σ(P ∗

L)≤ n+1.

In Chen and Whitt (2018) we applied Theorem 1 plus other arguments to show that the extremal

distributions of both the transient and steady-state mean in the GI/GI/1 model, given the first

two moments of U and V , are attained on three-point distributions. The T systems that we consider

next provide a way to improve that result to uniquely-determined distributions, often with smaller

support.

2.2. Tchebycheff Systems and the Markov-Krein Theorem

If we make additional assumptions about the functions ui, then we can identify concrete extremal

distributions P ∗
U and P ∗

L for (11). This refinement of Theorem 1 can be achieved by applying the the-

ory of Tchebycheff systems, commonly called T systems, as in the seminal book Karlin and Studden

(1966) and the review papers Johnson and Taaffe (1993) and Zalik (1996).

2.2.1. Upper and Lower Principle Representations. We first discuss what is possible

and what is achieved under the T system assumption. To do so, we impose a regularity condition

involving the moment space

Mn ≡{(m1, . . . ,mn)∈R
n : there existsP ∈Pn such that

∫ b

a

ui dP =mi, for all i}. (12)

If (m1, . . . ,mn) is contained in the boundary of Mn, then the probability measure is uniquely

determined. We rule out that case by assuming that (m1, . . . ,mn) is contained in the interior of

Mn. That assumption tends to be without loss of generality if we can adjust the support interval

[a, b].

To see what is possible, note that if σ(P ) = k, then P is specified by 2k parameters: the k atoms

xi in [a, b] and the k probabilities pi. Given the n+1 constraints in (10), a solution P to (11) must

have 2k ≥ n+1. When n is odd, we must have σ(P )≥ (n+ 1)/2. When n is even, we must have

σ(P )≥ n/2. The final story under the T -system assumption is different in these two cases. It is

summarized in (5) of Eckberg (1977) and on p. 342 of Gupta and Osogami (2011).

The story (the conclusions, not the proof) is relatively simple when n is even. Then, under the

regularity conditions the extremal distributions have the minimum possible number, k = n/2, of

points in the support. But that leaves one extra parameter. Then there is a one-parameter family

of distributions satisfying all the constraints. Then upper (lower) extremal distributions P ∗
U and

P ∗
L (called upper and lower principal representations in Karlin and Studden (1966)), are the ones

that attach mass to the upper (lower) endpoints a (b) of the interval [a, b]. Given that additional
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specification, the remaining number of unknowns matches the number of constraints, so that the

extremal distributions are uniquely determined.

The story is more complicated when n is odd. Now there is a unique distribution on (a, b) with

the least number of points in the support k= (n+1)/2. That distribution turns out to be the lower

extremal distribution P ∗
L. The upper extremal distribution P ∗

U has mass on both endpoints a and

b. That leaves 2k−2 unknowns, so we have 2k≥ n+3 or k≥ (n+3)/2, so that σ(P ∗
U) = σ(P ∗

L)+1.

The remaining (n− 1)/2 points inside the open interval (a, b) are then uniquely determined.

2.2.2. T Systems and the Markov-Krein Theorem. In this setting, the fundamental

result supporting the conclusions above is the Markov-Krein theorem. It says that the description

above holds under the condition that certain collections of functions constitute a T system. In

Karlin and Studden (1966), T system theory and the Markov-Krein theory are first developed for

continuous functions on a compact interval in Chapters I-III that we are considering here. The

results are then extended to unbounded intervals and discrete subsets in later chapters, but a

totally ordered set is needed. In this paper we primarily consider the basic case [a, b], but we use

it to obtain results for unbounded intervals of support in §3.4.

Definition 1. (T System) Consider the same set of n + 1 continuous real-valued functions

{ui(t) : 0≤ i≤ n} defined on [a, b] introduced in §2.1. Assume that the moment vector lies in the

interior of the moment space. This set of functions constitutes a T system if the (n+ 1)st-order

determinant of the (n+ 1)× (n+ 1) matrix formed by ui(tj), 0 ≤ i≤ n and 0 ≤ j ≤ n, is strictly

positive for all a≤ t0 < t1 < · · ·< tn ≤ b.

Equivalently, except for an appropriate choice of sign, we could instead require that every non-

trivial real linear combination
∑n

i=0 aiui(t) of the n+1 functions (called a u-polynomial; see §I.4

of Karlin and Studden (1966)) possesses at most n distinct zeros in [a, b]. (Nontrivial means that
∑n

i=0 a
2
i > 0.)

The main extremal result under this stronger condition is the Markov-Krein theorem; see The-

orem 1.1 in §III.1 of Karlin and Studden (1966) and Theorem 1 of Gupta and Osogami (2011).

Theorem 2. (Markov-Krein, §III.1 of Karlin and Studden (1966)) In the setting of Theorem 1

extended by requiring that the moment vector is in the interior of the moment space, if {u0, ..., un}

and {u0, ..., un, φ} are T systems on the interval [a, b], then the upper and lower extremal distribu-

tions P ∗
U and P ∗

L described above uniquely attain the supremum and infimum of the optimization

problem in (11).

2.3. Convenient Sufficient Conditions for Smooth Functions: Wronskians

The major challenge for applications is showing that the two sets of functions in Theorem 2 are

indeed T systems. However, it turns out that there is a very tractable sufficient condition for
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suitably smooth functions (having continuous derivatives of all relevant orders). This sufficient

condition is expressed using the Wronskian.

Definition 2. (Wronskian) Let u(j)
i (t) be the jth derivative of ui at the argument t. The Wron-

skian of the n+ 1 functions {ui(t) : 0≤ i ≤ n} is the determinant of the (n+ 1)× (n+ 1) matrix

{u
(j)
i (t) : 0≤ i, j ≤ n} of the functions and their derivatives

Wn(ui : 0≤ i≤ n)≡ det(u
(j)
i (t) : 0≤ i, j ≤ n). (13)

An example makes it clear. For s > 0, let w3 ≡w(1, t, t2,−e−st) be the Wronskian of the 3+1= 4

indicated functions of t, i.e., the determinant of the matrix (as a function of t)







1 t t2 −e−st

0 1 2t se−st

0 0 2 −s2e−st

0 0 0 s3e−st







which clearly is 2s3e−st > 0.

In order to verify the required T system properties, instead of looking at n+ 1 functions at

n+1 arguments, we look at the same functions and their first n derivatives at a single argument.

The Wronskian is intimately related to extended complete T systems or ECT systems, which is a

special case of a T system.

Definition 3. (complete T system, p. 1 of Karlin and Studden (1966)) If each (ordered) subset

{ui(t) : 0≤ i≤m} for 1≤m≤ n of the T system of n+1 functions is itself a T system, then the

T system is called a complete T system or CT system or a Markov system.

The classical CT system is the set of functions ui(t)≡ ti, 0≤ i≤ n. Then the determinant is the

Vandermonde determinant

det(ui(tj) : 0≤ i, j ≤m) =
∏

0≤i<j≤m

(tj − ti) for all 1≤m≤ n, (14)

which clearly is strictly positive for all a≤ t0 < t1 < · · ·< tm ≤ b, 1≤m≤ n.

The direct definition of an extended T system in §I.2 of Karlin and Studden (1966) is somewhat

complicated. Thus, we give an equivalent definition

Definition 4. (extended T system, §I.2 of Karlin and Studden (1966) and Theorem 1 of Zalik

(2011)) An extended T system or ET system is characterized, except for the sign, by the prop-

erty that every nontrivial real linear combination
∑n

i=0 aiui(t) of the n + 1 functions (called a

u-polynomial; see §I.4 of Karlin and Studden (1966)) possesses at most n distinct zeros in [a, b],

counting multiplicities.
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The main point is that the definition of an ET system is more restrictive than the definition

of a T system; i.e., every ET system is necessarily a T system. Completeness is defined the same

for ET systems as for T systems. Hence every ECT system is necessarily an CT system, which in

turn is necessarily a T system.

It turns out that an ECT system can be characterized completely by the Wronskian; see Defi-

nition I.2.4 on p. 6 and Theorem XI.1.1 on p. 376 of Karlin and Studden (1966), Theorem 5 and

Corollary 1 of Zalik (1996), and Theorem 29 of Johnson and Taaffe (1993).

Theorem 3. (Wronskians and ECT systems, p. 376 of Karlin and Studden (1966)) Under the

smoothness condition, the system of n+ 1 functions {ui : 0 ≤ i≤ n} is an ECT system on [a, b],

and thus necessarily a CT system, if and only if the Wronskians wk of the first k + 1 functions

and their first k derivatives are strictly positive at all of its arguments in the interval [a, b] for all

k, 0≤ k≤ n.

For smooth functions, Theorem 3 tends to be easy to apply, as illustrated by the example above.

For one function in addition to the standard moments, the following lemma applies.

Lemma 1. If ui(t) ≡ ti, 0 ≤ i ≤ n, and φ has n + 1 continuous derivatives, then

{u0(t), u1(t), . . . , un(t), φ(t)} is an ECT system if and only if the (n+1)st derivative of φ, φ(n+1)(t),

is strictly positive on [a, b].

Proof. The triangular structure of the matrix of functions and their derivatives implies that the

kth Wronskian’s take the constant value wk(t) = 1!× · · · × k!, 0≤ k ≤ n, while the last Wronskian

takes the value wn(t)φ
(n+1)(t).

In this paper we will consider only a limited class of ECT systems. All the cases we consider

will be covered by the following lemma about ECT systems.

Lemma 2. (sufficient conditions for this paper) Consider three ordered sets of continuous real-

valued functions on the interval [0,M ]: A1(m)≡ {tk : 0≤ k ≤m}, A2 ≡ {(−1)m+1e−sit : si > si+1 >

0 for all i} and A3 ≡{ezit : 0< zi < zi+1 for all i}. Let F be a finite ordered subset of A2

⋃

A3

(with the elements of A2 appearing first and the order within each set). For any m and M , 0 ≤

m<∞ and 0 <M <∞, the ordered set A1(m)
⋃

F constitutes an ECT system over [0,M ] and

thus a CT system over [0,M ].

Before giving the proof, we give an example of an ordered subset of functions in

A1(m)
⋃

F . For m = 2 and two elements from each of A2 and A3, the ordered subset is

(1, t, t2,−e−s1t,−e−s2t, ez1t, ez2t) where s1 > s2 > 0 and 0 < z1 < z2, so that −s1 < −s2 < z1 < z2.

Here m= 2, so (−1)m+1 =−1. Overall, the exponential arguments are increasing as in (3.1) on p.

9 of Karlin and Studden (1966) or Example 6 of Zalik (1996).
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Proof. These special functions have derivatives of all orders. Moreover, it is easy to evaluate the

Wronskian. The first k derivatives of tj are 0 when k≥ j. Thus the first m Wronskians are positive

constants. The order (m+1) determinant is a positive constant times (−1)m+1e−s1t > 0. Then, by

induction, all higher-order determinants among the initial functions reduce to positive constant

multiple of the determinant of a matrix of exponential functions. Finally, the the determinant of

the n×n matrix containing elements exiyj , 1≤ i, j ≤ n, is strictly positive for all −∞< x1 <x2 <

· · ·<xn <+∞ and −∞< y1 < y2 < · · ·<yn <+∞; see (3.1) in §I.3 on p. 9 of Karlin and Studden

(1966) and Example 6 of Zalik (1996).

3. Bounds for the Asymptotic Decay Rate

In this section we identify tight upper and lower bounds for the decay rate and the extremal

distributions that attain those bounds. We start in §3.1 by introducing additional definitions and

assumptions. In §3.1.1 we elaborate on the key equation (6) determining the decay rate. In §3.1.2

we show that the results also apply to the GI/GI/K model. In §3.2 we establish the two-point

extremal models given two moments and finite support for U and V . In §3.3 we establish the

three-point extremal models given three moments, a Laplace transform value and finite support

for U and V .

3.1. Theory for the Asymptotic Decay Rate

To increase the level of generality, instead of (5), we can let θW be defined by the critical exponent

in the Kingman-Lundberg bound for the GI/GI/1 queue, as in Kingman (1964) and §XIII.5 of

Asmussen (2003), defined by

θW ≡ inf {x≥ 0 : P (W > t)≤ e−xt, t≥ 0}, (15)

so that large waiting times correspond to small values of θW . Under regularity conditions, θW in

(15) coincides with the asymptotic decay rate studied in large-deviations theory, defined by

θW ≡ lim
x→∞

− logP (W >x)

x
. (16)

We assume that a strictly positive infimum exists in (15) and a strictly positive limit exists in

(16), which requires that the service-time V must have a finite moment generating function E[esV ]

for some s > 0. (We obtain θW =∞ if P (V − U ≤ 0) = 1 and thus P (W = 0) = 1.) Thus, we are

considering the light-tail case as in the discussion of exponential change of measure in Chapter

XIII in Asmussen (2003), large deviation limits in Corollary 1 in §1.2 of Glynn and Whitt (1994)

and approximations in Abate et al. (1995). More about the asymptotic decay rate can be found in

discussions of the caudal characteristic curve of queues in Neuts (1986) and effective bandwidths

in Choudhury et al. (1996), Kelly (1996), Whitt (1993) and references therein.
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Part of the appeal of this approach is that it extends directly to K > 1, as we show in §3.1.2.

Moreover, it has been observed that the approximation P (W > t|W > 0)≈ e−θW t is quite good for

K ≥ 1; see Seelen et al. (1985). Indeed, for that reason, θW is displayed in the tables there (with

different scaling, i.e., with E[V ] = 1).

3.1.1. The Key Equation Determining the Decay Rate. For our queueing application,

the key observation is that, under regularity conditions, the asymptotic decay rate θW in (5),

(15) or (16) is attained as the unique positive real root of equation (6) involving the Laplace

transforms of U and V , e.g, f̂(s)≡
∫∞

0
e−st dF (t). Equivalently, as in §XIII.1 of Asmussen (2003),

κF (s) + κG(−s) = 0, where κF (s)≡ log (f̂(s)) is the cumulant generating function. (The function

ĝ(−s)≡E[esV ] for s > 0 is the moment generating function (mgf).)

Indeed, it is well known that the distribution of W depends on V − U , which has Laplace

transform f̂(−s)ĝ(s). Moreover, Chapter II.5 of Cohen (1982) shows that the distribution of W

can be characterized by all complex roots of equations related to (6).

Given the simple structure in (6), the extremal result and alternative ones follow from the theory

of T systems, as in §2 above. To state the result, we impose some technical conditions. In contrast

to the mean E[W ], which is finite for all models given the partial moment information in (4), as

can be seen from §X.2 of Asmussen (2003), the decay rate is not well defined for all these models.

Hence, in order to establish extremal results for the decay rate in (15) given the partial moment

information in (4), we make the following assumption.

Assumption 1. (finite moment generating function) Assume that there exists s∗, 0 < s∗ ≤∞,

such that the service-time cdf G has a finite moment generating function ĝ(−s) =
∫∞

0
esx dG(x) for

all s, 0<s< s∗.

In general, we need to impose additional regularity conditions to have the limit for the decay

rate in (16) be well defined, as can be seen from Corollary 1 and Proposition 2 in Glynn and Whitt

(1994) and Theorems 2.1, 5.5 and 5.3 in Chapter XIII in Asmussen (2003). Instead of adding

additional assumptions, we allow the decay rate to be defined by (15). It coincides with (16) when

the limit exists.

We still need extra conditions for (6) to have a solution; see Example 5 in §3 and Theorem 5 in

§7 of Abate et al. (1995). However, no extra condition is needed when G has support in [0,Ms],

because then E[etV ]≤ etMs for all t > 0, so that s∗ =∞ in Assumption 1.

3.1.2. Extension to the GI/GI/K Model. As indicated in Abate et al. (1995), the asymp-

totic decay rate also is well defined for the more general GI/GI/K model. We have fixed E[U ] = 1,

If instead we had fixed E[V ] = 1, then θW (K) =KθW (1), as in (5) of Abate et al. (1995), where
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U(K) =U(1)/K to keep ρ fixed. Since we fix E[U ] = 1, we get θW (K) = θW (1). (As a sanity check,

this can easily be verified for the P (W > t|W > 0) = e−θW t in the M/M/K model; see Theorem 9.1

in §III.9 on p. 108 of Asmussen (2003).) However, we must adjust the service-time V to maintain

ρ=E[V ]/KE[U ]. Thus, we leave U independent of K, but we let V (K)=KV (1). Thus the finite

support of V (K) becomes [0, ρKMs], the pth moment of E[V (K)p] =KpE[V (1)p] and the laplace

transforms are related by ĝV (K)(s) = ĝV (1)(Ks). This implies that we can apply the extremal distri-

butions for K =1 to directly obtain the corresponding extremal distributions for K > 1: If V ∗(K)

is the extremal random variable as a function of K, then V ∗(K) =KV ∗(1).

In Abate et al. (1995), it was observed that the extension to K > 1 in (5) there was proved for

the GI/PH/K by Neuts and Takahashi (1981), but a continuity result implies that result applies

to the general GI/GI/K model.

Theorem 4. (extension of decay rate to GI/GI/K) If the decay rate θW (1) is well defined for

the GI/GI/1 model with (U,V ) having cdf ’s (F,G) where E[U ] = 1, then it is well defined in the

associated GI/GI/K model with (U,KV ) with the same cdf F and

θW (K) = θW (1) for K > 1. (17)

Proof. Fix the interarrival-time cdf F and consider a sequence of phase-type service-time {Gn :

n ≥ 1} such that Gn is phase-type for each n and Gn ⇒ G, where G is the given cdf, which

is possible because phase-type distributions are dense in the family of all distributions. By

Neuts and Takahashi (1981), (17) holds for each n, as explained above. The convergence in dis-

tribution implies the associated convergence ĝn(s)→ ĝ(s) for each s. Since the Laplace transform

ĝ(s) is continuous and strictly decreasing in the real variables s, (17) must hold in the limit as well.

We could also work from the result for the Ph/Ph/c model in Takahashi (1981) by taking such a

limit for both F and G.

Remark 1. The models GI/Ph/K and Ph/Ph/K are special because P (V − U > 0) > 0, so

that θW is always finite, but that is not the case for the GI/GI/K model. However, if we consider

such a general model with infinite decay rate, then we will get an infinite limit as we let the

phase-type distribution approach the given distribution.

3.2. Two-Point Extremal Distributions Given Two Moments and Finite Support

We first consider the classical case in which we specify two moments. Let P2(m,m2(c2+1),M) be

the set of all cdf’s with mean m, support mM and second moment m2(c2+1), where c2 is the scv

with c2+1<M <∞. (The last property ensures that the set P2(m,m2(c2+1),M) is non-empty.)

The extremal distributions for the decay rate will be the extremal distributions P ∗
U and P ∗

L for T

systems in §2.2.
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In this classical setting, the extremal distributions P ∗
U and P ∗

L are special two-point distribu-

tions.The set of two-point distributions is a one-dimensional parametric family. In particular, any

two-point distribution with mean m, scv c2 and supportmM has probability mass c2/(c2+(b−1)2)

at mb, and mass (b− 1)2/(c2+(b− 1)2) on m(1− c2/(b− 1)) for 1+ c2 ≤ b≤M .

Let subscripts a and s denote sets for the interarrival and service times, respectively. Let F0 and

Fu (G0 and Gu) be the two-point extremal interarrival-time (service-time) cdf’s corresponding to

P ∗
L and P ∗

U , respectively, in the space Pa,2(1, c
2
a+1,Ma) (Ps,2(ρ, ρ

2(c2s+1),Ms)) from §2.2.1. (Recall

our convention that E[U ] = 1 and E[V ] = ρ. Hence, the support of V is [0, ρMs].)

Consequently, F0 has probability mass c2a/(1+ c2a) at 0 and probability mass 1/(c2a+1) at m(c2a+

1), while Fu has mass c2a/(c
2
a + (Ma − 1)2) at the upper bound of the support, Ma, and mass

(Ma− 1)2/(c2a+(Ma− 1)2) on m(1− c2a/(Ma − 1)).

We are especially interested in the map

θW :Pa,2(1,1+ c2a,Ma)×Ps,2(ρ, ρ
2(1+ c2s),Ms)→R, (18)

where 0< ρ< 1 and θW (F,G) is the asymptotic decay rate of the steady-state waiting timeW (F,G)

with interarrival-time cdf F ∈ Pa,2(1,1 + c2a,Ma) and service-time cdf G ∈ Ps,2(ρ, ρ
2(1 + c2s),Ms).

We also consider case in which one cdf is specified, in which case it need not have bounded support.

Theorem 5. (two-point extremal distributions for the decay rate) Let F0, Fu,G0 and Gu be the

two-point extremal cdf ’s for the GI/GI/1 queue defined above.

(a) For any specified G ∈ Ps,2(ρ, ρ
2(c2s + 1)) satisfying Assumption 1 such that there is a root s̄

to equation (6) for the Fu/G/1 model (with service cdf G) such that 0< s̄ < s∗, where s∗ is defined

in Assumption 1,

θW (F0,G)≤ θW (F,G)≤ θW (Fu,G) (19)

for all F ∈Pa,2(1, c
2
a+1,Ma).

(b) For any specified F ∈Pa,2(1, (c
2
a+1)),

θW (F,Gu)≤ θW (F,G)≤ θW (F,G0) (20)

for all G∈Ps,2(ρ, ρ
2(c2s +1),Ms)

(c) for all F ∈Pa,2(1, c
2
a+1,Ma) and G ∈Ps,2(ρ, ρ

2(c2s +1,Ms),

θW (F0,Gu)≤ θW (F,G)≤ θW (Fu,G0). (21)
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Proof. We make extra conditions in part (a) to ensure that equation (6) has a solution s̄ strictly

less than the upper limit s∗, but no extra conditions are needed in parts (b) and (c) because then

G has bounded support, implying that s∗ =+∞.

We apply (6) to see that order for the Laplace transforms translates into order for θW , recalling

that (i) (6) is equivalent to f̂(s) = 1/ĝ(−s), (ii) Laplace transforms are continuous strictly decreas-

ing functions of a real variable argument and (ii) large waiting times are associated with smaller

θW . For part (a), we see that

f̂u(s)≤ f̂(s)≤ f̂0(s) for s > 0. (22)

From (6) and (22), we see that, for any ĝ, θW is maximized by f̂u in (22). Hence, (6) holds for all

F in Pa,2(1, c
2
a+1,Ma) if it holds for Fu.

To establish (b), we use

1/ĝu(−s)≤ 1/ĝ(−s)≤ 1/ĝ0(−s) for s > 0. (23)

From (6) and (23), we see that, for any f̂ , θW is maximized by 1/ĝ0(−s) in (23).

To justify all the inequalities, we can apply the T -system theory working with bounded support

sets, as in §2.2 and §2 of Eckberg (1977). To treat F , we apply Lemma 2 to show that {1, t, t2} and

{1, t, t2,−e−st} are T systems on [0,Ma] for any s > 0 and Ma > 0; to treat G, we apply Lemma

2 again to show that and {1, t, t2} and {1, t, t2, est} is a T -system on [0, ρMs] for any s > 0 and

Ms > 0. We obtain the extremal distributions from §2.2.1 the case n = 2 in §2.2.1 or in (5) of

Eckberg (1977).

Based on Theorem 5, the overall extremal GI/GI/1 models are thus (F0,Gu) and (Fu,G0). Our

assumption that the distributions have bounded support plays an important role. That is evident

from the following elementary proposition.

Proposition 1. (limits as the support increases) Under the assumptions of Theorem 5, for all

F ∈Pa,2(1, c
2
a+1,Ma) and G∈Ps,2(ρ, ρ

2(c2s +1),Ms),

θW (F,Gu)→ 0 as Ms →∞, (24)

while

θW (Fu,G)→ θW (F1,G) as Ma →∞, (25)

where F1 is the cdf of the unit point mass on 1, associated with the D/GI/1 model.

Remark 2. (the decay rates of other steady-state distributions.) Analogs of Theorem 5 (and

the later Theorem 6) hold for the steady-state continuous-time queue length and workload, because

there are simple relations among all these decay rates. That follows from Theorem 6, Proposition

9 and Proposition 2 of Glynn and Whitt (1994). For the workload, the decay rate is the same; for

the queue length, θQ = ĝ(−θW ).
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Remark 3. (comparison to the mean.) The extremal model (F0,Gu) in Theorem 5 yielding the

smallest decay rate coincides with the conjectured upper bound model for the mean E[W ], but the

extremal model (Fu,G0) in Theorem 5 yielding the largest decay rate does not coincide with the

lower bound for the mean; see §§5.2, 7 and EC.6 of Chen and Whitt (2018).

Remark 4. (more on the application of Theorem 5) More on the application of Theorem 5

appears in §§2-5 of the appendix Chen and Whitt (2019b).

3.3. Laplace Transform Constraints to Reduce the Range

We now add additional constraints on the cdf’s F and G. In particular, we add a third moment

and a value of the Laplace transform. With (6) in mind, we now impose constraints on the Laplace

transform f̂(s) at s= µa > 0 and on the reciprocal of the mgf, 1/ĝ(−s), at s= µs, 0<µs < s∗, for

s∗ in Assumption 1.

For the new extremal distributions, let Pa,2(1, c
2
a + 1,ma,3, µa,Ma) be the subset of F in

Pa,2(1, c
2
a + 1,Ma) having specified third moment ma,3 and Laplace transform value f̂(µa). Since

we are working with the mgf ĝ(−s) for s > 0, let Ps,2(ρ, ρ
2(c2s + 1),ms,3, µs,Ms) be the subset of

G in Ps,2(ρ, ρ
2(c2s + 1),Ms) having specified third moment ms,3 and mgf value ĝ(−µs) at µs for

0<µs < s∗. (Recall that s∗ =+∞ if G has bounded support.)

Let FL and FU (GL and GU) be the three-point extremal interarrival-time (service-time) cdf’s

corresponding to P ∗
L and P ∗

U , respectively, in the space Pa,2(1, c
2
a +1,ma,3, µa,Ma) (Ps,2(ρ, ρ

2(c2s +

1),ms,3, µs,Ms)) based on §2.2.1. (Recall our convention that E[U ] = 1 and E[V ] = ρ.) In particular,

FL (FU) is the unique element of Pa,2(1, c
2
a+1,ma,3, µa,Ma) with support on the set {0, x1, x2} (on

the set {x1, x2,Ma}) for 0< x1 < x2 <Ma, while GL (GU) is the unique element of Ps,2(ρ, ρ
2(c2s +

1),ms,3, µs,Ms) with support on the set {0, x̄1, x̄2} (on the set {x̄1, x̄2, ρMs}) for 0< x̄1 < x̄2 <ρMs.

Theorem 6. (three-point extremal distributions for the decay rate) Let FL, FU ,GL and GU be

the three-point extremal cdf ’s for the GI/GI/1 queue defined above.

(a) For any F ∈ Pa,2(1, c
2
a + 1,ma,3, µa,Ma) with µa > 0 and G ∈ Ps,2(ρ, ρ

2(c2s + 1)) satisfying

Assumption 1 such that equation (6) holds for the FL/G/1 and FU/G/1 models (with service cdf

G), the unique positive solution of (6), θW (F,G), is well defined. Moreover, if µa ≥ θW , then

θW (FU ,G)≤ θW (F,G)≤ θW (FL,G); (26)

if µa ≤ θW , then

θW (FL,G)≤ θW (F,G)≤ θW (FU ,G). (27)

(b) For any F ∈Pa,2(1, c
2
a+1) and G∈Ps,2(ρ, ρ

2(c2s+1),ms,3, µs,Ms), the unique positive solution

of (6), θW (F,G), is well defined. Moreover, if µs ≤ θW , then

θW (F,GU)≤ θW (F,G)≤ θW (F,GL); (28)
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if θW <µs <s∗, then

θW (F,GL)≤ θW (F,G)≤ θW (F,GU). (29)

(c) As a consequence, for all F ∈Pa,2(1, c
2
a +1,ma,3, µa,Ma) with µa > 0 and G ∈Ps,2(ρ, ρ

2(c2s +

1),ms,3, µs,Ms) with µs > 0, the unique positive solution of (6), θW (F,G), is well defined. Moreover,

for all (F,G) in these sets, the following four pairs of lower and upper bounds for θW (F,G) are

valid:

(i) θW (FL,GU ) ≤ θW (F,G)≤ θW (FU ,GL) if µs, µs ≤ θW

(ii) θW (FU ,GU ) ≤ θW (F,G)≤ θW (FL,GL) if µs ≤ θW ≤ µa

(iii) θW (FU ,GL) ≤ θW (F,G)≤ θW (FL,GU) if θW ≤ µs, µa, µs < s∗

(iv) θW (FL,GL) ≤ θW (F,G)≤ θW (FU ,GU ) if µa ≤ θW ≤ µs < s∗. (30)

(d) The bounds on θW get tighter as µa and µs move closer to θW (F,G). The bounds coincide

with θW when µa = θW in (a) and µs = θW in (b).

Proof. The proof is essentially the same as for Theorem 5, but now we have n= 4 for (a) and

(b) instead of n= 2 in §2.2.1 and (5) of Eckberg (1977). As before, we apply the T -system theory

from §2, but care is needed with the sign of the exponential arguments when we apply Lemma

2. To treat F , we apply Lemma 2 to show, first, that {1, t, t2, t3, e−µat} is a T system on [0,Ma]

for all µa > 0. (Recall that m = 3 now, so that (−1)m+1 = 1.) But we also need to consider the

set {1, t, t2, t3, e−µat, e−st}. For this second collection of functions, we require that −µa < −s or

µa > s > 0. If instead s > µa > 0, then the set of functions becomes a T system if we change the

order of the last two functions. But changing the order of two adjacent columns of a square matrix

causes the sign of the determinant to change. That means that the supremum and infimum get

switched.

For part (a), we see that all possible cases for F are covered by the two cases µa > s > 0 and

s > µa > 0. Hence, if the decay rate θW is well defined for the two models FL/G/1 and FU/G/1

models, it is well defined for all F with the given constraints. The we get (26) and (27) in the two

cases.

To treat G in part (b), the root θW is always well defined because G has bounded support. We

apply Lemma 2 to show, first, that {1, t, t2, t3, eµst} is a T system on [0, ρMs] for all µs > 0, but

then we also need to consider the set {1, t, t2, t3, eµst, est}. For this second collection of functions,

we require that µs < s < s∗. If instead 0 < s < µs, then the set of functions becomes a T system

if we change the order of the last two functions. But changing the order of two adjacent columns

of a square matrix causes the sign of the determinant to change. That means that the supremum
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and infimum get switched. For G, the order also gets switched when we consider 1/ĝ(−s) instead

of ĝ(−s). The stated inequalities hold by combining the conclusions above.

Finally, part (c) is obtained by combining parts (a) and (b).

Remark 5. (choice of the Laplace transform values) Part (d) of Theorem 6 has important

practical implications. It shows that, for any given model with a specified decay rate, the range of

possible decay rate values consistent with the partial information becomes smaller as the arguments

of the Laplace transforms become closer to the final decay rate.

3.4. Extending the Extremal Models to Unbounded Support

The T -system theory and the Markov-Krein theorem extend to unbounded support intervals as

shown by Karlin and Studden (1966) and as indicated in Eckberg (1977) and Gupta and Osogami

(2011). The extension is easy if the extremal distribution places no mass on the upper endpoint.

Then the same extremal distribution holds for all larger support bounds, including the unbounded

interval [0,∞).

First, in the setting of the two-point extremal distributions in Theorem 5, the extremal cdf’s F0

and G0 have support on {0, x} for appropriate x and so remain valid if we increase Ma and Ms.

(The x depends on the cdf.)

Similarly, in the setting of the three-point extremal distributions in Theorem 5, the extremal

cdf’s FL and GL have support on {0, x1, x2} for appropriate x1 and x2 and so remain valid if we

increase Ma and Ms. (Again, the points x1 and x2 depend on the cdf.)

Consequently, we need to make no adjustments for truncation provided we use the following

special case of (30):

θW (FL,GL) ≤ θW (F,G) for µa ≤ θW ≤ µs < s∗

θW (FL,GL) ≥ θW (F,G) for µs ≤ θW ≤ µa. (31)

This recipe also eliminates the need to consider multiple cases.

We state the result formally in the following corollary. To simplify, we make the following stronger

assumption.

Assumption 2. (uniformly good cdf G) In addition to Assumption 1, assume that, for the

service-time cdf G, equation (6) has a finite solution for all F ∈Pa,2(1, c
2
a+1).

Note that Assumption 2 is satisfied by the M , Hk and Ek distributions considered here and

many others, but we need to avoid pathological examples like Example 5 of Abate et al. (1995).

Corollary 1. (extension to unbounded support) Consider the setting of Theorem 6 extended

by allowing unbounded support, i.e., Ma =Ms =∞.
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(a) For any G ∈ Ps,2(ρ, ρ
2(c2s +1)) satisfying Assumption 2, the unique positive solution of (6),

θW (F,G), is well defined. Moreover, if µa ≤ θW , then

θW (FL,G)≤ θW (F,G) (32)

for all F ∈Pa,2(1, c
2
a+1,ma,3, µa).

(b) For any F ∈ Pa,2(1, c
2
a + 1) and G ∈ Ps,2(ρ, ρ

2(c2s + 1),ms,3, µs) satisfying Assumption 2, the

unique positive solution of (6), θW (F,G), is well defined. Moreover, if θW ≤ µs < s∗, then

θW (F,GL)≥ θW (F,G). (33)

for all (F,G).

(c) For all (F,G) such that Assumption 2 holds, the unique positive solution of (6), θW (F,G), is

well defined and (31) holds.

4. Application to Produce a Practical Range for the Mean

We now apply the theoretical results for the decay rate established in §3 to develop a practical way

to identify intervals of likely values for the mean steady-state waiting time given the basic moment

parameters in (4) and the additional parameters introduced in Theorems 5 and 6. This analysis

is heuristic, because we have no explicit relation between the decay rate and the mean, but the

general idea is that the mean should be decreasing in the decay rate.

We have already outlined our approach in §1.2. We elaborate here. We start in §4.1 by discussing

the support bounds used in Theorems 5 and 6. Then in §4.2 we indicate how we can obtain the

extremal models with three-point distributions derived in Theorem 6. In §4.4 we report numerical

results of our application of this method to the GI/GI/1 queue. Finally, in §4.5 we report numerical

results for the GI/GI/2 queue.

4.1. Choosing the Support Bounds Ma and Ms

Before considering the support bounds, we emphasize that the range of possible values for the mean

E[W ] in the GI/GI/1 model given only the first two moments of U and V tends to be remarkably

wide. That is shown in Tables 1-2 and EC4-EC5 in Chen and Whitt (2018). The relative errors

tend to increase in c2a but decrease in ρ and c2s; see §2 of Chen and Whitt (2019b).

As indicated in §1.2.3, we use the support bounds Ma and Ms to give a good indication of the

likely set of possible values given only the moments. Hence, starting from a specific model or data

with unbounded U and V , we suggest choosing the support bounds Ma and Ms so that

P (U >MaE[U ]) =P (U >Ma) = P (V >MsE[V ]) =P (V > ρMs) = ǫ (34)

for a suitably small ǫ such as 0.001; see §3 of Chen and Whitt (2019b) for more discussion.
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For our numerical experiments, as indicated in §1.2.2, we use the M , Ek and H2 distributions,

which are determined by their first two moments., For M , c2 = 1; for Ek, c
2 = 1/k < 1; for H2

distributions, c2 ≥ 1. We suggest using a simple exponential approximation based on the asymptotic

decay rates of these distributions, which are well defined. Thus, we choose Ms so that

ǫ=P (V/E[V ]>Ms)≈ e−θV Ms , (35)

where θV is the asymptotic decay rate of V .

For M , the decay rate of V is θV = 1/ρ; for Ek, the scv is 1/k, while the decay rate of V is

θV = k/ρ, so we let θV (ρ, c
2
s) = 1/ρc2s for c2s ≥ 0.01, and θ(ρ, c2s) = 100/ρ for c2s ≤ 0.01 to avoid the

deterministic case with c2s = 0. Our examples use c2s =0.5, for which θV (ρ) = 2/ρ. In the case of H2

with balanced means, by (37) in Whitt (1982), the asymptotic decay rate of V/E[V ] is

θV (1, c
2
s) = 1−

√

(c2s − 1)/(c2s +1). (36)

Our examples use c2s = 4.0, for which we use θV (ρ, c
2
s) = (1−

√

3/5)/ρ= 0.2254/ρ.

We now see how the extremal UB model F0/Gu/1 and LB model Fu/G0/1 for the decay rate

from Theorem 5 apply to the mean E[W ] with K = 1 when we introduce the support bounds Ma

and Ms following the prescription above. Table 1 show results for five cases: (ca, c
2
s) = (1.0,1.0),

(4.0,4.0), (0.5,0.5), (4.0,0.5), (0.5,4.0). (We show more results for other traffic intensities in §4 of

Chen and Whitt (2019b).) We show two candidate support bounds for each case, based on ǫ= 0.01

and 0.001 in (34). For comparison, Table 1 shows the heavy-traffic approximation (HTA) and the

tight UB and LB given only the moments as well as the values of the mean with the support

bounds.

Table 1 shows that the range decreases as the traffic intensity increases and as the support

bounds decrease. For ρ= 0.7, the tight UB is not too far above the HTA approximation, but the

tight LB tends to be far below. The mean for the Fu/G0/1 model with Ma is significantly larger

than the tight LB, but still the final range is very large, except for the one case (c2a, c
2
s) = (0.5,4.0).

Note that the relative error is only about 5% for ρ= 0.7 in that good case; see Chen and Whitt

(2018, 2019a) for additional details.

To obtain these estimates of E[W ] and later ones, we use simulation. We implement standard

Monte-Carlo simulation to estimate the sample mean of the steady-state waiting time with a run

length (number of arrivals) N = 5× 108 and 20 independent replications for the model Fu/G0/1,

but it helps to use an efficiency-improvement algorithm for the F0/Gu/1 model with the atom at the

upper support bound, as discussed in Chen and Whitt (2019a). We implement the Minh and Sorli

(1983) simulation algorithm with total simulation length T = 1× 107 and 20 independent replica-

tions for the model F0/Gu/1. We can construct 95% confidence interval by using statistical t−test.
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Table 1 Comparing bounds for E[W ] using Fu/G0/1 (UB) and F0/Gu/1 (LB) with (Ma,Ms) from §4.1

c2a = c2s =1

ρ Tight LB Ma =9 Ma =7 HTA (2) Ms = 7 Ms =9 Tight UB

0.50 0.000 0.122 0.162 0.500 0.810 0.821 0.846
0.70 0.467 0.970 1.130 1.633 2.025 2.036 2.071
0.90 3.600 7.265 7.596 8.100 8.564 8.579 8.620

c2a = c2s =4

Ma = 39.9 Ma = 31.1 Ms = 31.1 Ms = 39.9

0.50 0.750 1.013 1.097 2.000 3.419 3.430 3.470
0.70 2.917 4.303 4.748 6.533 8.384 8.394 8.441
0.90 15.750 28.924 30.239 32.400 34.658 34.671 34.721

c2a = 0.5, c2s = 4

Ma = 4.5 Ma = 3.5 Ms = 31.1 Ms = 39.9

0.50 0.750 0.957 0.988 1.125 1.263 1.270 1.289
0.70 2.917 3.464 3.494 3.675 3.841 3.851 3.875
0.90 15.750 17.973 17.993 18.225 18.408 18.427 18.470

c2a = 4, c2s = 0.5

Ma = 39.9 Ma = 31.1 Ms = 3.5 Ms = 4.5

0.50 0.000 0.000 0.000 1.125 2.556 2.559 2.595
0.70 0.058 0.342 0.450 3.675 5.524 5.533 5.583
0.90 1.575 9.075 11.988 18.225 20.469 20.486 20.546

c2a =0.5, c2s =0.5

Ma = 4.5 Ma = 3.5 Ms = 3.5 Ms = 4.5

0.50 0.000 0.000 0.000 0.250 0.377 0.388 0.414
0.70 0.058 0.410 0.530 0.817 0.966 0.982 1.017
0.90 1.575 3.613 3.771 4.050 4.207 4.229 4.295

The worst-case confidence interval length for Monte-Carlo simulation achieves 10−3 level which

happens at the highest ρ, while the worst-case confidence interval length for the Minh and Sorli

(1983) simulation is around 10−4 level. (See Chen and Whitt (2019a) for more discussion.)

In §4.2 of Chen and Whitt (2019b) we show that we could also start from the HT approximations

in (2) and (8) instead of the exact models based on E2 and H2 distributions, Table 6 there compares

the exact values of θW and E[W ] to these heavy-traffic approximations.

4.2. Determining the Extremal Models from Theorem 6

We now investigate how we can apply Theorem 6 to obtain a better indication of typical values

of the mean E[W ]. For specified parameters, it suffices to solve the equations characterizing the

extremal models and calculate E[W ] for those extremal models.

First, we can solve the system of equations provided by the T -system theory by using a non-

linear equation solver (we used MATLAB). Second, A convenient way to calculate the extremal

distributions approximately (to any desired accuracy) is to assume finite support and apply linear

programming to minimize (or maximize) the Laplace transform given the constraints. We can let

the support be {kMa/n : 0≤ k≤ n}, so that the only variables are the probabilities pk assigned to

the points xk ≡ kMa/n. As in Theorem 1, there will necessarily be five-point extremal distributions

given the four constraints using this approach. The solution converges to the three-point solution

for the original support set [0,Ma] as n→∞. Moreover, we can see that the optimal solution does

not depend on the argument of the Laplace transform provided that the sign of µ− θW does not

change. See §6.1 of Chen and Whitt (2019b) for numerical examples.
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4.3. Choosing the Laplace Transform Arguments

From Theorem 6 and Corollary 1, we see that we have five candidate ways to set the positive

arguments of the Laplace transform f̂(s) and the mgf ĝ(−s): the four cases with bounded support

in (30) and the single composite version with unbounded support in (31). Both of these have

advantages and disadvantages. First, the finite support bounds in (30) require truncation, so we

either must calculate new parameters for the truncated model with bounded support or use the

parameters of the original distributions with unbounded support without altering them. In addition,

we must choose among the four alternatives in (30).

The alternative with unbounded support in (31) is appealing because it requires no truncation

and we need not choose among four cases. On the other hand, it uses different parameter specifi-

cations for the minimum and maximum, which can distort the results, leading to anomalies such

as the lower bound for the mean exceeding the upper bound.

We performed extensive experiments to test these alternatives and deduced that it is better

to use the finite support bounds in (30) even though they require truncation, provided that the

support bounds are chosen to have negligible impact, as in §4.1. In particular, we found that the

parameters were not significantly altered by the truncation. For example, for the E2/H2/1 model

with ρ= 0.7, the second and third moments of V with truncation were s2 = 2.44, s3 = 20.19 and

s2 =2.45,20.58 without truncation.) Hence, our procedure for the mean E[W ] uses the parameters

taken directly from the base model with unbounded support or the heavy-traffic approximations,

but then applies the results in (30) with the constructed support bounds.

It still remains to select one of the four alternatives in (30). From our experiments, we conclude

that a good robust approximation is obtained by doing all four cases, and using the minimum of the

four lower bounds for E[W ] for the final lower bound, and the maximum of the four upper bounds

for E[W ] as the final upper bound. However, that requires more computational effort. Hence, we

also propose a way to select one of the four alternatives.

We first observe that FL (FU) in (30) of Theorem 6 is the natural analog of F0 (Fu) from Theorem

5, having 0 (Ma) as one of the mass points. Thus, case (i) in (30) is the natural choice. Nevertheless,

we examine all four cases for the models we consider. To start, Table 2 below shows results for all

four cases associated with the M/M/1 model with ρ= 0.7 and three possible values of R in (7).

In the implementation, we do not allow µs > s∗. Thus, if we are considering one of the cases with

µs ≥ θW , then we first check to see if RθW > s∗ for our largest value of R, which we take to be

R=20. If it is, then we create alternative values of µs in the interval (θW , s∗). In particular, we use

µs ≡ θW +

(

R

25

)

(s∗ − θW ), 1≤ k≤ 4, (37)

so that the values of R remain in {5,10,15,20}, but all values are within the interval (θW , s∗).
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From the analytical formulas θW = (1−ρ)/ρ= 0.4286 and E[W ] = ρ2/(1−ρ) = 1.63, we see that

θW (E[W ]) is strictly decreasing (increasing) in ρ. Of course, we are considering a large collection

of models with c2a = c2s = 1, not simply M/M/1, but it is our reference case from which we extract

parameters.

Table 2 Bounds for θW (exact) and E[W ] (approximate) for ρ= 0.7 and c2a = c2s = 1 based on M/M/1

(For reference, exact values for M/M/1 are θW = (1− ρ)/ρ=0.4286 and E[W ] = ρ2/(1− ρ) = 1.63.)

case θW E[W ] case θW E[W ]
(30) R=5 10 20 R= 5 10 20 (30) R= 5 10 20 R= 5 10 20
(i) 0.426 0.425 0.425 1.67 1.67 1.68 (ii) 0.421 0.418 0.415 1.59 1.62 1.68

0.432 0.432 0.439 1.65 1.65 1.56 0.434 0.437 0.446 1.53 1.56 1.61
(iii) 0.422 0.417 0.409 1.71 1.72 1.71 (iv) 0.426 0.424 0.418 1.61 1.60 1.57

0.434 0.436 0.436 1.65 1.63 1.62 0.431 0.432 0.429 1.60 1.61 1.63

Consistent, with Theorem 6, Table 2 shows that the decay rate associated with the UB (LB) for

E[W ] is decreasing (increasing) in R in each case, while the reverse order tends to hold for E[W ]

too. There are minor exceptions in cases (iii) and (iv), because we get the decay rates from the

original M/M/1 model.

From Table 2, we obtain the composite bounds for E[W ] based on all four cases. With R= 20,

the composite bounds are

min
1≤i≤4

{E[WLB,i(R= 20)]}=1.56<E[W ] = 1.63< 1.71= max
1≤i≤4

{E[WUB,i(R= 20)]}. (38)

Notice that the interval [1.56,1.71] in (38) is not too different from the intervals [1.56,1.68] in case

(i) with µs, µa < θW and [1.61,1.68] in case (ii) with µs < θW < µa. On the other hand, the LB

1.62 for E[W ] in case (iii) is too large, while the UB 1.57 for E[W ] in case (iv) is too small. Thus,

we tentatively conclude that it is better to have µs ≤ θW . For this case, the choice of µs seems to

be more important than µa. We tentatively conclude that the cases (i) and (ii) in (30) are both

consistently effective for the M/M/1 base model, while the other alternatives are not.

4.4. Numerical Experiments for the Non-Exponential Base Models

We now extend the study to the four models with c2a, c
2
s ∈ {0.5,4.0} based on the H2 and E2

distributions. Table 3 shows the approximate upper bounds (top ) and lower bounds (bottom) for

E[W ] with ρ= 0.7 and c2a, c
2
s ∈ {0.5,4.0} based on the E2 and H2 models in each of the four cases

in (30) of Theorem 6 for three values in R in (7). The cases are labeled at the left by the base

model. (The exact values of E[W ] for H2/H2/1, H2/E2/1, E2/H2/1 and E2/E2/1 are 6.61, 3.37,

3.56 and 0.725, respectively.)

Table 3 reinforces the conclusions about Table 2 for the case c2a = c2s = 1 based on the M/M/1

model. Table 3 shows that the UB exceeds the LB for all models and all values of R in case (i) with
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Table 3 Approximate upper and lower bounds for E[W ] for ρ= 0.7 and c2a, c
2

s ∈ {0.5,4.0} based on the E2 and

H2 models in each of the four cases in (30) of Theorem 6 for three values in R in (7) (The exact values of E[W ]

for H2/H2/1, H2/E2/1, E2/H2/1 and E2/E2/1 are 6.61, 3.37, 3.56 and 0.725.)

(i) (ii) (iii) (iv)
model R= 5 10 20 R=5 10 20 R= 5 10 20 R= 5 10 20
H2/H2 6.93 6.94 6.73 6.28 6.19 7.20 6.93 7.08 7.20 6.72 6.72 6.66

6.53 6.52 6.12 6.49 6.44 6.41 6.70 6.56 6.47 6.26 6.25 6.21
H2/E2 3.57 3.61 3.63 3.92 4.19 4.33 3.57 3.60 3.63 3.57 3.60 3.63

3.06 3.08 3.06 2.95 2.82 2.69 3.06 3.08 3.06 3.06 3.08 3.06
E2/H2 3.62 3.68 3.68 3.53 3.54 3.56 3.51 3.51 3.52 3.52 3.52 3.49

3.52 3.55 3.51 2.95 2.82 2.69 3.59 3.59 3.57 3.53 3.53 3.53
E2/E2 0.738 0.738 0.729 0.721 0.719 0.734 0.766 0.767 0.762 0.701 0.689 0.673

0.737 0.733 0.704 0.642 0.625 0.642 0.730 0.730 0.721 0.736 0.738 0.753

µa, µa ≤ θW , while this good property holds for case (ii) except for the case c2a = c2s = 4.0 based on

the H2/H2/1 model, but it holds there as well for R=20. In contrast, cases (iii) and (iv) perform

significantly worse. In case (iii) the LB exceeds the UB for the case c2a = 0.5, c2s = 4.0 based on the

E2/H2/1 model. In case (iv) the LB exceeds the UB for the case c2a = 0.5, c2s = 4.0 based on the

E2/H2/1 model.

Table 17 in Chen and Whitt (2019b) displays the corresponding rates obtained in deriving the

extremal distributions used for the mean E[W ] in Table 3. That table confirms Theorem 6, just

like Table 2. (Again there are minor discrepancies because we get the decay rates from the original

models.)

We offer two possible explanations for the better performance of cases (i) and (ii) in (30) of

Theorem 6. First, since large waiting times tend to be caused by large service times and short

interarrival times (leading to clumps of arrivals), we should pin down E[W ] most effectively from

parameters with case (ii) with µs < θW <µa as in (7). A second consideration is the nature of the

distribution itself. Given an Ek distribution that has a pdf h with h(0) = 0, large values of µ are

not likely to help much. In contrast, a more variable H2 distribution could be helped by additional

specification wherever it appears. Thus, cases (iii) and (iv) with c2a = 0.5 involving an E2 arrival

process are likely to not perform well, as we have seen.

4.5. Examples for Multi-Server Queues

Table 4 confirms that the procedure extends directly to GI/GI/K queues with K > 1.
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Table 4 The improved UB and LB for E[W ] in GI/GI/2 for

(c2a, c
2

s)∈ {(1,1), (4.0,4.0), (4.0,0.5), (0.5,4,0), (0.5, 0.5)}, ρ∈ {0.5,0.7,0.9} and R ∈ {5,10,20}

ρ= 0.5 c2a = c2s = 1 ρ= 0.7 c2a = c2s = 1 ρ= 0.9 c2a = c2s = 1
R 5 10 20 R 5 10 20 R 5 10 20
UB 0.353 0.405 0.427 UB 1.34 1.39 1.41 UB 7.69 7.69 7.71
LB 0.290 0.262 0.251 LB 1.30 1.31 1.33 LB 7.67 7.62 7.61

ρ= 0.5 c2a = c2s =0.5 ρ= 0.7 c2a = c2s =0.5 ρ= 0.9 c2a = c2s =0.5
R 5 10 20 R 5 10 20 R 5 10 20
UB 0.129 0.152 0.162 UB 0.590 0.606 0.608 UB 3.68 3.70 3.66
LB 0.092 0.087 0.086 LB 0.531 0.522 0.534 LB 3.64 3.66 3.64

ρ= 0.5 c2a = c2s = 4 ρ= 0.7 c2a = c2s = 4 ρ= 0.9 c2a = c2s = 4
R 5 10 20 R 5 10 20 R 5 10 20
UB 1.34 1.44 1.68 UB 5.29 5.37 5.76 UB 30.6 30.4 31.6
LB 1.30 1.27 1.21 LB 5.58 5.54 5.49 LB 30.9 30.7 30.8

ρ= 0.5 c2a =4, c2s = 0.5 ρ= 0.7 c2a =4, c2s = 0.5 ρ= 0.9 c2a =4, c2s = 0.5
R 5 10 20 R 5 10 20 R 5 10 20
UB 1.33 1.49 1.59 UB 3.64 3.78 4.02 UB 17.9 17.9 18.1
LB 0.356 0.286 0.230 LB 2.65 2.56 2.43 LB 17.5 17.5 17.6

ρ= 0.5 c2a =0.5, c2s = 4 ρ= 0.7 c2a =0.5, c2s = 4 ρ= 0.9 c2a =0.5, c2s = 4
R 5 10 20 R 5 10 20 R 5 10 20
UB 0.540 0.548 0.556 UB 2.56 2.56 2.58 UB 16.6 16.6 17.0
LB 0.588 0.591 0.593 LB 2.73 2.74 2.72 LB 16.7 16.7 16.4

Indeed, we can apply the result for K = 1 to derive the decay rate. To apply the results for

K =1 to K > 1, we use the same extremal interarrival-time distribution, but multiply the extremal

service-time random variable by K. We then can apply simulation to estimate E[W ] just as before.

Table 4 shows the approximate upper and lower bounds for E[W ] obtained by this

method for ρ ∈ {0.5,0.7,0.9} and the five pairs of variability parameters (c2a, c
2
s) ∈

{(1,1), (4.0,4.0), (4.0,0.5), (0.5,4,0), (0.5,0.5)} in case (ii) of (30) in Theorem 6 for R ∈ {5,10,20}.

To illustrate for larger K, Table 5 shows set-valued approximations for E[W ] in the M/M/10

and E2/E2/10 models for ρ∈ {0.7,0.9}.

Table 5 The set-valued approximations of E[W ] in M/M/10 (upper) and E2/E2/10 (lower) using case (ii) of

(30) for ρ= 0.7 (left) and ρ= 0.9 (right)

ρ= 0.7 θW E[W ] ρ=0.9 θW E[W ]
R= 5 10 20 R= 5 10 20 R= 5 10 20 R=5 10 20
0.421 0.418 0.415 0.520 0.523 0.539 0.111 0.111 0.110 5.97 6.05 6.07
0.434 0.437 0.446 0.524 0.520 0.469 0.111 0.111 0.111 6.01 5.94 5.94

ρ= 0.7 θW E[W ] ρ=0.9 θW E[W ]
R= 5 10 20 R= 5 10 20 R= 5 10 20 R=5 10 20
0.842 0.833 0.825 0.176 0.177 0.179 0.222 0.221 0.221 2.76 2.71 2.74
0.880 0.889 0.893 0.162 0.162 0.161 0.222 0.223 0.223 2.73 2.74 2.73
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From readily available algorithms for M/M/10, we see that the exact values of E[W ] for ρ=0.7

and 0.9 are 0.519 and 6.03, respectively, which fall right in the middle of the interval [LB,UB] in

each case. In contrast, the HTA in (2) are 1.633 and 8.10, which seriously overestimates the mean

for K = 10. However, it is well known that the HTA, which tends to be good for K = 1, typically

overestimates the mean for K > 1; e.g., see Whitt (2004) and references therein.

5. Conclusions

In this paper we investigated how additional support bounds Ma and Ms and other constraints on

an interarrival time U with cdf F and a service times V with cdf G in the GI/GI/1 queue can

help understand the quality of simple approximations for steady-state performance measures given

partial information provided by the first two moments of U and V as specified by the parameter

four-tuple (1, c2a, ρ, c
2
s) in (4). The idea is to obtain an interval of likely values for performance

measures given the partial information.

As a theoretical basis, we applied the theory of Tchebycheff systems to determine extremal

models (yielding tight upper and lower bounds) for the asymptotic decay rate of the steady-

state waiting-time tail probability, as in (5), (15) or (16). We reviewed the T system theory in

§2 and exposed a relatively simple way to show that a system of functions is a T system in

terms of Wronskians in §2.3. Lemma 2 verifies that the systems of functions we consider is a T

system. Theorems 5 and 6 establish new tight upper and lower bounds for the decay rate in the

GI/GI/1 queue and identify the extremal distributions. §3.1.2 shows that these results extend to

the GI/GI/K queue. Moreover, the extremal distributions for K > 1 are simple modifications of

the extremal distributions for K = 1.

In §4 we showed that we can apply the theoretical results for the decay rate established in §3

to develop a practical way to identify intervals of likely values for the mean steady-state waiting

time E[W ] given the basic moment parameters in (4) and the additional parameters introduced in

Theorems 5 and 6, namely, support bounds, the third moments and values of the Laplace transform.

We conducted extensive numerical experiments to study our proposed approach. We found that

the proposed method based on cases (i) and (ii) in (30) of Theorem 6 is consistently effective for

a range of base GI/GI/K models. This performance is illustrated in §§4.3-4.5. For example, with

these bounds, Table 3 shows that the maximum error of the midpoint of each interval in case (i)

is less than 10% for all four models.

We emphasize that this good performance in our estimates of E[W ] depends critically on the

extra parameters introduced in Theorem 6. With only the parameters in (4), the range is usually

very wide, as shown in §2 of Chen and Whitt (2019b). However, the good performance can be

expected if the actual model is near one of the base models using E2 and H2 cdf’s that were used
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to generate the new parameters. Moreover, that remains true using the HTA for the decay rate in

(8) and the third moments constructed from the base model in §1.2.2.

Overall, we contributed to a better understanding of simple queueing approximations such as

(2) in typical GI/GI/K cases. (At the end of §3.1.2 we noted that (2) tends to be quite good for

K =1, but seriously overestimates the true value for K = 10.) More generally, we presented a case

for general set-valued performance approximations, given partial information about the model. We

showed that with appropriate partial information it is possible to give a better idea of the range

of likely values. A highlight is the unified application to K > 1 as well as K = 1.

There are many directions for future research. First, it remains to expose the precise relation

between E[W ] and θW . Second, it remains to explore the approximation for other performance

measures such as the tail probability P (W > t). We expect even better results for large t, but then

worse results for t= 0; see Abate et al. (1995). Third, there is opportunity for improved rare-event

simulation for the extremal queues with K > 1 paralleling Minh and Sorli (1983) used for K =1 in

Chen and Whitt (2019a); see Minh (1989) for some. Finally, we think that there is great potential

for applying this approach to other stochastic models.
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