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Abstract

Motivated by our interest in a periodic version of Little’s law in discrete time, we present
a general framework for stationary marked point processes in discrete time. It is built on a
sequence {(tj , kj) : j ∈ Z} of times tj ∈ Z and marks kj ∈ K, with batch arrivals (e.g., tj =
tj+1) allowed. We start with a careful analysis of the sample paths. We show a topological
equivalence between three different representations for a marked point process in discrete
time. Then we develop discrete analogs of the familiar stationary stochastic constructs
in continuous time: time-stationary and point-stationary random marked point processes,
Palm distributions, inversion formulas and Campbell’s theorem with an application to the
derivation of a periodic-stationary Little’s Law. Along the way we provide examples to
illustrate interesting features of the discrete-time theory.
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1 Introduction

This paper was motivated by [23], which established a periodic Little’s Law (PLL) for a discrete-
time periodic queueing model with batches. There is a substantial literature on discrete-time
queues, largely motivated by communication and computer systems, as can be seen from the
papers [9] and [7] and the recent book [6], but the PLL in discrete time was motivated by data
analysis of a hospital emergency department in [22].

In [23] a sample-path version of PLL was first presented, and then was used (almost surely)
to prove a periodic stationary version (Theorem 3 in [23]). We suspected that such a proof could
be provided directly using stationary marked point process theory, but we did not immediately
see an appropriate framework. We then decided to carefully put together such a framework
that lends itself naturally to queueing and related applications; that is what is presented here.
Our framework allows us, in particular, to give a direct proof of PLL in a periodic stationary
setting using Palm distributions (Proposition 4.5), but we go beyond that initial goal.

We should hasten to say that marked point process theory is very well developed in continuous-
time; e.g., see [10],[2], [20], [4] and [13], but it is not well developed in discrete time, let alone
with batch arrivals allowed. We want the points {tj : j ∈ Z} in time, tj ∈ Z, to be allowed to
satisfy

· · · ≤ t−2 ≤ t−1 ≤ 0 ≤ t0 ≤ t1 ≤ t2 ≤ · · · , (1)

thus allowing batches, as opposed to the simple case

· · · < t−2 < t−1 < 0 ≤ t0 < t1 < t2 < · · · (2)

Even in continuous-time, many books on the subject state early on that they are assuming
throughout that all point processes considered are simple. (An exception is [4]; they allow
batches and even devote a chapter to it in the context of queueing models). Of course one can
model a batch arrival process as a simple one in which the times at which the batches arrive
forms a simple point process, and the batch size and labeling is placed in a mark (that is what is
done in Chapter 7 devoted to batches in [4] for some queueing models); but this has a variety of
disadvantages, including non-topological equivalence with the sequence approach above. Other
approaches for batches have been developed (see in particular [15] and [16] where batch arrival
processes are expressed as the superposition of a finite or countably infinite number of simple
point processes and the Rate Conservation Law is used) but we did not find them as accessible
or intuitive as we thought a framework should be. And of course in the literature there are
scattered papers using batches in special queueing models and using special methods in their
analysis (see for example [12], [21] and various examples in the books [27] (Pages 68, 267, 281,
and 400 (Problem 8-5)), and [4] Chapter 7.

In spirit, our approach in the present paper for random marked point processes follows that
in [20], in which stationary distributions are viewed as Cesàro averages; but here we deal with
discrete time and allow batches. (See Remark 3.1 for further elaboration.)

One of the advantages in discrete time is that a point process can be defined by a sequence
{xn : n ∈ Z} where xn ∈ N denotes the number of points at time n; since both Z and N are
discrete hence endowed with the discrete topology, all subsets of Z and N are Borel measurable.
In continuous-time, the analogue is treating a point process as a counting measure N(A) =
the number of points that fall in A for bounded Borel sets A ⊂ R; one must deal with more
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complicated measure-theoretic details if they take that route. For a marked point process
{(tj , kj)} with mark space K this measure is defined on Borel sets B ⊂ R × K, where N(B)
denotes the number of pairs (tj , kj) that fall in B. This measure approach then uses vague
convergence of measures for its topology. The main advantage of the measure approach is
that it easily generalizes to allow the time line R for point location to be replaced by general
(non-ordered) spaces.

The measure approach in continuous-time is what most books use (exceptions include [4]
and [20]): a random point process is defined as a random counting measure. In continuous
time, with batches allowed, the measure approach and sequence approach are not topologically
equivalent (they are if no batches are allowed; see for example Theorem D.3, Page 185 in [20]).

One of the results we prove (Proposition 2.2) is that in discrete time we can obtain a
topological equivalence between {xn} and {tj}, hence allowing us to freely move back and forth
at leisure between the two representations, and with marks included.

The layout of our paper is as follows: In Section 2, we introduce the canonical space of
marked point processes (e.g., non-random case), and in particular show that it forms a Polish
space (e.g., a separable topological space that can be endowed with a complete metric). We give
two other representations (inter-arrival time, counting sequence), and show a homeomorphism
between all three. We also introduce point and time shift operators to prepare for the remaining
chapters in which we work with random marked point processes utilizing ergodic theory. We
include a summary of notation in Section 2.8 to help the reader. In Section 3, we introduce time
and point random stationary marked point processes, introduce the Palm distribution and give
inversion formulas between the time and point stationary versions. Several examples are given
to gain intuition. In Section 4, we prove a Campbell’s Theorem, and a Periodic Campbell’s
Theorem; applications are given to Little’s Law and Periodic Little’s Law. Finally, in Section 5
we briefly discuss the notion of Palm distributions in the non-ergodic case.

2 Point processes in discrete time

With Z = {· · · − 2,−1, 0, 1, 2, · · · } denoting the integers, a discrete-time point process (pp) is

a sequence of points ψ
def
= {tj} = {tj : j ∈ Z} with the points in time tj ∈ Z satisfying the

following two conditions:

C1:
tj → +∞ and t−j → −∞ as j →∞. (3)

C2: The points are non-decreasing and their labeling satisfies

· · · ≤ t−2 ≤ t−1 ≤ 0 ≤ t0 ≤ t1 ≤ t2 ≤ · · · (4)

with the proviso that t0 = 0 if t−1 = 0.

The space of all point processes ψ is denoted by M ⊂ ZZ =
∏∞
j=−∞ Z; a subspace of the

product space. We endow Z with the discrete topology (e.g., all subsets of Z are open sets),

and ZZ with the product topology and associated Borel σ− algebra B
(
ZZ
)

. (M is not a closed

subset of ZZ.) B(M) =M∩B
(
ZZ
)

are the Borel sets of M.
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Conditions C1 and C2 above ensure that there are an infinite number of points lying in
both the positive time axis and the negative time axis, but that only a finite number of them
can fall in any given time n ∈ Z, and hence in any given bounded subset of time A ⊂ Z. C2

also ensures that batches are allowed, tj = tj+1, that is, one or more points can occur at any
given time n but also ensures that the labeling of points at time n = 0 rules out such examples
as t−2 = t−1 = 0 < t0 = 1: If there is a batch at the origin, then it must include the point t0.

Because of the product topology assumed, convergence of a sequence of pps, ψm = {tm,j} ∈
M, m ≥ 1, to a pp ψ = {tj} ∈ M, as m→∞, is thus equivalent to each coordinate converging;
limm→∞ tm,j = tj for each j ∈ Z. Because Z is discrete, however, this is equivalent to: For each
j ∈ Z, there exists an m = mj ≥ 1 such that tm,j = tj , m ≥ mj .

2.1 Marked point processes

A marked point process (mpp) is a sequence of pairs, {(tj , kj) : j ∈ Z}, where {tj} ∈ M is
a point process and {kj} ∈ KZ, where K is called the mark space and is assumed a complete
separable metric space (CSMS) with corresponding Borel σ− algebra B(K): Associated with
each arrival point tj ∈ Z is a mark kj ∈ K.

We denote the space of all mpps by

MK =M×KZ, (5)

a product space. Noting that a pp is a special case of a mpp when K is a set of one point {k},
we will still use w.l.o.g. the notation ψ ∈MK to denote an mpp.

Typical examples for a mark space are K = Rd, or K = N, but one can even allow K = RZ,
so as to accommodate an entire infinite sequence as a mark. In many examples, the mark is
a way of adding in some further information about the point it represents. A simple example
in a queueing model context : tj denotes the time of arrival of the jth customer and kj = sj
denotes the service time of the customer, or kj = wj denotes the sojourn time of the customer,
or the pair kj = (sj , wj).

Remark 2.1 Since both M and KZ are separable, the Borel σ− algebra B(MK) is equal to
the product of the individual Borel σ− algebras, B(M)× B(KZ).

Remark 2.2 We are using a two-sided framework meaning that we allow an infinite past
{tj : j ≤ 0} in time as well as an infinite future {tj : j ≥ 0} in time. A one-sided framework
refers to the infinite future case only, and it can be considered on its own if need be.

2.2 Polish space framework

In this section, we provide a deeper analysis of the spaceM of point processes by showing that
it is a Polish space, e.g., it is metrizable as a complete separable metric space (CSMS) for some
metric. We then obtain as a Corollary (Corollary 2.1) that the space of all marked point pro-
cesses MK is thus Polish. This then allows one to apply standard weak convergence/tightness
results/techniques to random marked point processes when needed, such as use of Prohorov’s
Theorem (see for example Section 11.6 , Theorem 11.6.1, p. 387 in [26] in the general context
of stochastic processes.)
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First observe that Z in the discrete topology (e.g., all subsets are open) is a CSMS, metrizable
with the standard Euclidean metric it inherits as a subspace of R, |i − j|, i ∈ Z, j ∈ Z. (It
is a closed subset of R, and its subspace topology is precisely the discrete topology.) Now ZZ

is a closed subset of the CSMS RZ , hence is a CSMS. That RZ is a CSMS: see for example,
Example 3, Page 265 in [17]. (More generally, the countable product of Polish spaces is Polish
in the product topology.)

For example, for ZZ, one could replace |i − j| by d(i, j)
def
= min{|i − j|, 1}, its bounded

equivalent, and then use the metric

D(ψ1, ψ2) = sup
j∈Z

d(t1,j , t2,j)

1 + |j|
.

Another well-known equivalent metric is based on,

D(ψ1, ψ2) =

∞∑
j=1

|t1,j − t2,j |
1 + |t1,j − t2,j |

2−j ,

while before hand bijectively mapping Z to {1, 2, 3, . . .} to re-index. Both these metrics generate
the product topology and make ZZ complete.

We are now ready for

Proposition 2.1 The space of point processes M⊂ ZZ is a Polish space. (In particular, it is
a Borel measurable subset of ZZ.)

Proof : That M is a separable metric space follows since it is a subspace of a CSMS; the same
metric can be used so that it is a metric space (and in general, a subspace of a separable metric
space is separable). But under this metricM is not complete sinceM is not a closed subset of
ZZ. Thus it suffices to prove that the subset M is a Gδ subset of ZZ, that is, it is of the form

M = ∩∞i=1Bi, (6)

where each Bi ⊂ ZZ is an open set.
To this end define, for i ≥ 1, subsets Bi ⊂ ZZ as those sequences {tj} ∈ ZZ satisfying

1. t−1 < 0 if t0 > 0.

2.
t−i ≤ · · · ≤ t−1 ≤ 0 ≤ t0 ≤ ti ≤ · · · ≤ ti.

3. There exists a j > i and a j′ < −i such that tj > ti and t−j′ < t−i.

From Conditions C1 and C2 defining M it is immediate that

M = ∩∞i=1Bi.

We will now show that each Bi can be expressed as

Bi = B+
i ∩B

−
i ,

where both B+
i and B−i are open sets, hence (finite intersection of open sets is always open)

confirming (6) thus completing the proof.
For each subset Bi defined above (i ≥ 1) we let B+

i be the union (indexed by j ≥ 1) over
all subsets S+

i,j ⊂ ZZ of the form
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1. t−1 < 0 if t0 > 0.

2.
t−i ≤ · · · ≤ t−1 ≤ 0 ≤ t0 ≤ ti ≤ · · · ≤ ti.

3. ti+j > ti.

Each such subset S+
i,j ⊂ ZZ is open because it is a finite dimensional subset (all finite dimensional

subsets are open; discrete topology consequence). Hence being the union of open sets, B+
i is

open. Similarly B−i is the union over all open sets S−i,j , which are defined similarly to S+
i,j except

with 3. replaced by t−i−j < t−i.

In general, the finite or countable product of Polish spaces is Polish (in the product topol-
ogy), and hence since the mark space K is assumed a CSMS, KZ is Polish. From Proposition 2.1,
M is Polish and hence the product of the two, M×KZ, is Polish too:

Corollary 2.1 The space of all marked point processes

MK =M×KZ

is a Polish space in the product topology.

2.3 Random marked point processes Ψ

In the case of a random mpp, that is, when the points tj and marks kj are random variables
we will denote it by upper case letters

Ψ = {(Tj ,Kj)}. (7)

A rmpp Ψ has sample paths in MK . We will denote the distribution of such a Ψ by P (Ψ ∈ ·)
defined on all Borel sets E ∈ B(MK); P (Ψ ∈MK) = 1.

2.4 The interarrival-time representation φ for a marked point process

Interarrival times u = {uj} = {uj : j ∈ Z} of a pp ψ ∈M are defined by uj
def
= tj+1− tj , j ∈ Z,

and thus

tj = t0 + u0 + · · ·+ uj−1, j ≥ 1, t−j = t0 − (u−1 + · · ·+ u−j+1), j ≥ 1. (8)

The equality uj = 0 means that both tj and tj+1 occur at the same time (e.g., occur in the
same batch).

We call φ = φ(ψ)
def
= {t0,u} the interarrival-time representation of a pp ψ ∈M.

As a consequence of (8), ψ and φ uniquely determine one another.
Such φ form a subspace N ⊂ N × NZ; the product space. Given any element {t0,u}} ∈

N×NZ, the only restrictions on it so as to uniquely define a pp ψ ∈M using (8) is that t0 = 0
if t0 − u−1 = 0, and

∞∑
j=0

uj =∞,
∞∑
j=1

u−j =∞.
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That is what defines the subspace N . We thus have a bijection mapping between M and N ;
ψ 7→ φ. This bijection immediately extends to marked point processes, ψ ∈MK , by adjoining in

the marks {kj} ∈ KZ yielding the product space NK = N ×KZ; then φ = φ(ψ)
def
= {t0, (u,k)} ∈

NK = N ×KZ.
For random marked point processes Ψ, we will denote the interarrival-time representation

by Φ = {T0, (U,K)}.

2.5 The counting measure and counting sequence x = {xn} for a point process

Given a pp ψ ∈M, if A ⊂ Z is a bounded subset, then we let

c(A)
def
=
∑
j∈Z

I{tj ∈ A}

denote the total number of points that fall in A; in particular we let xn
def
= c({n}), denote the

number of points that fall in time slot n ∈ Z,

xn =
∑
j∈Z

I{tj = n}, n ∈ Z. (9)

Thus c(·) defines a measure on the subsets of Z called the counting measure of ψ, and the

sequence x
def
= {xn} = {xn : n ∈ Z} ∈ NZ is called the counting sequence of ψ. The space of

all such counting sequences of pps ψ ∈ M is denoted by X ⊂ NZ, a proper subspace of the
product space.

Let c(n)
def
= x0 + . . . + xn, n ≥ 0, denote the cumulative number of points from time 0

up to and including time n; {c(n) : n ≥ 0} is called the forward counting process. In our
framework, c(0) = c({0}) = x0 > 0 is possible; the number of points at the origin can be
non-zero. Moreover,

∞∑
n=0

xn =∞,
∞∑
n=0

x−n =∞, (10)

since tj → +∞ and t−j → −∞ as j →∞ as required from C2.
When xn > 0 we say that a batch occurred at time n. When xn ∈ {0, 1}, n ∈ Z, we say

that the point process is simple; at most one arrival can occur at any time n.
We extend our counting measure c(A) for a A ⊂ Z to include the marks of a marked point

process so as to be a measure on B(Z×K) via

c(B) =
∑
j∈Z

I{(tj , kj) ∈ B}, B ∈ B(Z×K).

The measure c(B) counts the number of pairs (tj , kj) that fall in the set B ∈ B(Z × K). For
Borel sets of the form B = A×K where A ⊂ Z and K ∈ B(K),

c(A×K) =
∑
tj∈A

I{kj ∈ K},

the number of points in A that have marks falling in K. Then c(A) = c(A × K) (K = K (the
entire mark space)) then gives back the counting measure as before of just the {tj}.

For a random mpp Ψ, we denote the counting measure by C(·), and the counting sequence
by X = {Xn}.
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2.6 A counting sequence representation (x, ̂0) for point processes

A sequence x ∈ S appears at first sight to be an equivalent way of defining a point process,
in the sense that there should be a bijection between the two representations x = {xn} and
ψ = {tj}. When x0 = 0 this is true because from (4) the points themselves are then uniquely
labeled

· · · ≤ t−2 ≤ t−1 < 0 < t0 ≤ t1 ≤ t2 ≤ · · · (11)

t0 > 0 is the first positive point, and t−1 < 0 is the first negative point; all else then follows.
But when x0 > 0 the points are not uniquely labeled. For example if x0 = 2, we could have
t−1 < 0 = t0 = t1 < t2 or t−2 < t−1 = 0 = t0 < t1. Both possibilities satisfy (4). So whereas
the mapping ψ 7−→ x is unique, the inverse mapping is not.

The only problem we have to address then is how to keep track of the labeling of the points
in x0 when it is a batch, x0 > 0, to ensure a unique mapping x 7−→ ψ.

Once that labeling is secure, the remaining points from {xn : n 6= 0} are uniquely labeled
by (4). Note that if x0 > 0 then in particular t0 = 0 (recall condition C2). If x0 = 1, then we
are done, since then t−1 < 0 = t0 < t1 and all else follows from (4). So let us consider x0 > 1.

We can write x0 = ı0+0, where ı0 denotes the number of points in the batch, if any, labeled
≤ −1, and 0 − 1 denotes the number of points in the batch, if any, labeled ≥ 1. For example
if x0 = 3 and the 3 points are labeled t−1 = t0 = t1 = 0, then ı0 = 1 and 0 = 2. If the 3 points
are labeled t−2 = t−1 = t0 = 0, then ı0 = 2 and 0 = 1. Finally, if the 3 points are labeled
t0 = t1 = t2, then ı0 = 0 and 0 = 3. In general, 0 ≥ 1 and ı0 ≥ 0. When x0 > 0, we view 0
as the number of points in front of and including t0 in the batch, and ı0, the number of points
behind t0 in the batch. The idea is to imagine the batch as a bus with labeled seats. If ı0 = b and
0 = a then the x0 = b+a points are labeled t−b = t−b+1 = · · · = 0 = t0 = t1 = · · · = ta−1. The
reader will notice the similarity of 0 and ı0 to the forwards and backwards recurrence time in
(say) renewal theory; but here they do not represent time, they represent batch sizes/positions.

As our general solution to the labeling problem, we thus introduce

̂0
def
=

{
0 if x0 > 0 ,

0 if x0 = 0,
(12)

Then we can consider a point process ψ ∈ M to be uniquely defined by (x, ̂0). For example,
if x0 = 2 and 0 = 2, then t−1 < 0 = t0 = t1 < t2 (e.g., ı0 = 0), whereas if x0 = 2 and 0 = 1,
then t−2 < t−1 = 0 = t0 < t1 (e.g., ı0 = 1). We denote by S ⊂ X × N ⊂ NZ × N the subspace
of all (x, ̂0) constructed from mpps ψ ∈M.

For a random point process Ψ, we use the notation (X, Ĵ0) = ({Xn}, Ĵ0), J0, I0 and so on
for the counting sequence representation.

Remark 2.3 An important special case of (x, ̂0) ∈ S is when ̂0 = x0. This is the case when
if x0 = a > 0, then the points in the batch at time 0 are labeled 0 = t0, . . . , ta−1; t0 is the first
point in the batch, and t−1 < 0.

2.7 Extending the counting sequence representation to include marks

We now turn to extending the counting sequence representation to include marks, and obtain
the subspace SK of such marked representations.
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We extend our (x, ̂0) = ({xn}, ̂0) ∈ S representation from Section 2.6 to ((x,k), ̂0) =
({(xn, kn)}, ̂0) ∈ SK by letting kn = (k1(n), . . . , kxn(n)) denote the list of associated marks of
the xn points (when xn > 0). The labeling of the marks is automatically determined: if, for
example x0 = b+ a > 0 with 0 = a and ı0 = x0 − 0 = b, then the b+ a marks are attached to
t−b, . . . , t0 . . . , ta−1 via k−b = k1(0), . . . ka−1 = ka+b(0).

To make kn mathematically rigorous, we introduce a ‘graveyard state’ ∆ /∈ K, to adjoin
with the mark space K; K = K ∪ {∆}. Letting dK denote the standard bounded metric of K
under its metric d (e.g., dK(x, y) = min{d(x, y), 1}, x, y ∈ K), then we extend the metric to K
via dK(x, y) = dK(x, y), x, y ∈ K, dK(x,∆) = 1, x ∈ K, dK(∆,∆) = 0. Then it is immediate
that K is a CSMS.

We then re-define kn
def
= (k1(n), . . . , kxn(n),∆,∆, . . .) ∈ KN+

, an infinite sequence in the

product space
∏∞
i=1K,under the product topology, where we define kn = ∆

def
= (∆,∆, . . .) ∈

KN+
, if xn = 0.

Thus our space of all marked counting sequence representations, ((x,k), ̂0) = ({(xn, kn)}, ̂0),
of mpps ψ ∈MK is a subspace

SK ⊂ (N×KN+
)Z × N.

In its counting sequence representation, a random marked point process is denoted by
({(X,K)}, Ĵ0) = ({(Xn,Kn)}, Ĵ0).

2.8 Summary of notation

• M: the space of all point processes ψ = {tj} = {tj : j ∈ Z}. MK =M×KZ: the space
of all marked point processes ψ = {(tj , kj)} with mark space K. (Section 2.1)

• N : the space of all point processes in the interarrival-time representation φ = {t0,u} =
{t0, {uj}} = {t0, {uj : j ∈ Z}}, uj = tj+1− tj , j ∈ Z. NK is the space of all marked point
processes in the interarrival-time representation; φ = {t0, (u,k)}. (Section 2.4)

• S: the space of all point processes in the counting sequence representation (x, ̂0), where
x = {xn} = {xn : n ∈ Z} ∈ X is the counting sequence; xn = c({n}) = the number of
points that fall in the time-slot n ∈ Z. c(·) is the counting measure of a pp; {c(n) : n ≥ 0}
is the forward time counting process, c(n) = x0 + · · ·+ xn.

SK is the space of all marked point processes in the counting sequence representation;
((x,k), ̂0) = ({(xn, kn)}, ̂0). (Sections 2.6 and 2.7)

• Random marked point process (rmpp) notation: Ψ = {(Tj ,Kj)}, Φ = {T0, (U,K)} =
{T0, {(Uj ,Kj)}}, (X, Ĵ0) = ({Xn}, Ĵ0), C(·).

• B(T ); Borel σ− algebra of a topological space T .

• P (Ψ ∈ ·), P (Φ ∈ ·), P (({(X,K)}, Ĵ0) ∈ ·) corresponding distributions of a rmpp, on
B(MK), B(NK), B(SK) respectively.
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2.9 Topological equivalence of the three representations

Given that we have bijective mappings between MK and NK and MK and SK , and we al-
ready have shown that under the product topology, MK is a Polish space (Corollary 2.1), we
can immediately conclude that NK and SK are Polish spaces too under the induced mapping
topologies; all three are topologically equivalent.

This simply follows from the basic fact that if X, τ is a topological space and f : X −→ Y is

a bijective mapping onto a space Y , then Y, f(τ) is a topological space with topology f(τ)
def
=

{f(A) : A ∈ τ}. Moreover, if X, τ is Polish under a metric dX , then Y, f(τ) is Polish under the

metric dY (y1, y2)
def
= dX(f−1(y1), f

−1(y2)). Summarizing:

Proposition 2.2 All three representations for a marked point process, ψ = {(tj , kj)} ∈ MK , φ =
{t0, {(uj , kj) : j ∈ Z}} ∈ NK , ({(xn, kn)}, Ĵ0) ∈ SK are topologically equivalent; MK , NK and
SK are homeomorphic Polish spaces.

This allows us to conveniently work with any one of the three representations.

2.10 Shift mappings: the point and time shift operators

A point process can be shifted in several ways. One way is to shift to a specific point ti and
relabel that point as t0 = 0 at time n = 0 (the present). All points labeled behind ti become
the past, and all points labeled in front of ti become the future: Given a ψ ∈M, for each i ∈ Z,
we have a mapping

θi :M 7−→M, (13)

θiψ
def
= {ti+j − ti : j ∈ Z}, with the points denoted by {tj(i) : j ∈ Z}.

For any ψ, θiψ always has a point at the origin, in particular t0(i) = 0.
Note that θi+1 = θ1 ◦ θi, i ≥ 1, so {θi : i ≥ 1} is determined by just

θ
def
= θ1, the point-shift operator. (14)

Note that if t0 = 0, then θ0ψ = ψ, otherwise it moves t0 to the origin.
For θiψ, all points in the same batch as ti are relabeled as should be. For example if i = 3

and t2 = t3 = t4 = 6 (batch of size 3 at time n = 6), we have t−1(3) = 0 = t0(3) = t1(3);
the batch has been repositioned to time n = 0. If there is a batch at time n = 0, for example
t−2 = t−1 = t0 = t1, a batch of size 4, then for i = 1, t−3(1) = t−2(1) = t−1(1) = t0(1) = 0;
each batch position get shifted back by 1.

This point shift mapping translates immediately to a shift for the interevent-time represen-
tation φ ∈ N in the same way

θi : N 7−→ N ,

θiφ
def
= {0, {uj+i : j ∈ Z}} = {0, {uj(i) : j ∈ Z}} is precisely the interevent-time representation

for θiψ. For this reason, we use the same notation θ = θ1 for the point-shift operator in both
representations.

A second type of shift is with respect to time. Given a (x, ̂0) ∈ S, for each time m ∈ Z, we
have a mapping

ζm : S 7−→ S, (15)
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ζm({xn}, ̂0)
def
= ({xm+n}, xm) = ({xn(m)}, x0(m)). ζm moves xm to be the number of points

at time n = 0 and shifts the other xn into the past and future appropriately. It also forces
t−1 < 0: If x0(m) = xm > 0, then it’s points (now moved to occur at time n = 0) are labeled
t0 . . . tx0−1.

As with point shifting, ζm+1 = ζ1 ◦ ζm, m ≥ 1, hence {ζm : m ≥ 1} is determined by

ζ
def
= ζ1, the time-shift operator. (16)

The two operators θ and ζ are fundamental in our use of ergodic theory when we are dealing
with random point processes.

Remark 2.4 When a point process is simple, then only the time shift mapping is needed, since
then θi = ζti ; shifting to time n = ti is equivalent to shifting to the ith point.

The shift mappings θi and ζm extend immediately to when we have marks; for i ∈ Z,

θiψ = {(ti+j − ti, ki+j) : j ∈ Z} (17)

θiφ = {0, {(ui+j , ki+j : j ∈ Z)}. (18)

For m ∈ Z,

ζm({(xn, kn : n ∈ Z)}, Ĵ0) = ({(xm+n, km+n : n ∈ Z)}, xm). (19)

We retain the notation for the point and time shift operators, θ = θ1, ζ = ζ1.

3 Stationary ergodic framework: time and point stationarity

Here we focus on random marked point processes under time and point stationarity and ergod-
icity, and then introduce the Palm distribution, and prove inversion formulas. For a background
on using ergodic theory in the context of stochastic processes, and point processes the reader
is referred to [14], [8], [5], and [20].

Definition 3.1 A random marked point process Ψ is called time-stationary if its counting se-
quence representation ({(Xn,Kn)}, Ĵ0) satisfies Ĵ0 = X0 and {(Xn,Kn) : n ∈ Z} is a stationary
sequence. Equivalently, using the time-shift mappings:

ζm({(Xn,Kn)}, Ĵ0) = ({(Xm+n,Km+n)}, Xm)

has the same distribution as ({(Xn,Kn)}, Ĵ0) for all m ∈ Z. It is called time-stationary and
ergodic if the sequence {(Xn,Kn)} is also ergodic (with respect to the time-shift operator: ζ =
ζ1).

We will denote a time-stationary marked point process by Ψ∗ = {(T ∗j ,K∗j )}, or {(X∗n,K
∗
n)}, or

Φ = {T ∗0 , {U∗j }}. (Since under time-stationarity, Ĵ∗0 = X∗0 , we express the counting sequence

representation simply as {(X∗n,K
∗
n)}.)

The arrival rate of the point process is given by λ = E(C∗(1)) = E(X∗0 ) because of the
following (generalization of the Elementary Renewal Theorem):

11



Proposition 3.1 If Ψ∗ is time-stationary and ergodic, then

lim
n→∞

C∗(n)

n
= λ

def
= E(X∗0 ), wp1. (20)

and
lim
n→∞

n

T ∗n
= λ, wp1. (21)

Proof : C∗(n) =
∑n

i=0X
∗
i , n ≥ 1, so (20) is a direct application of the strong law of large

numbers for stationary ergodic sequences derived from Birkoff’s ergodic theorem applied to the
stationary ergodic sequence {X∗n}. Deriving (21): Observe that

C∗(T ∗n − 1) ≤ n ≤ C∗(T ∗n)

because C∗(T ∗n) includes all the points in the batch of T ∗n , not just those in the batch that
are labeled ≤ n, and C∗(T ∗n − 1) does not contain any points from the batch containing T ∗n .
Dividing by T ∗n and using (20) on both the upper and lower bound yields the result since T ∗n is
a subsequence of n as T ∗n →∞ and n→∞ wp1.

Definition 3.2 A marked point process Ψ is called point-stationary if θiΨ = {(Ti+j−Ti,Ki+j) :
j ∈ Z} has the same distribution as Ψ for all i ∈ Z. This means that if we relabel point Ti
as the origin, while retaining its mark Ki, the resulting point process has the same distribution
regardless of what i we choose. Ψ is called point-stationary and ergodic if the sequence is also
ergodic (with respect to the point-shift operator: θ = θ1).

Proposition 3.2 A marked point process is point-stationary if and only if P (T0 = 1) and the
interarrival time/mark sequence {(Un,Kn) : n ∈ Z} is stationary. A marked point process is
point-stationary and ergodic if and only if P (T0 = 1) and the interarrival time/mark sequence
{(Un,Kn) : n ∈ Z} is stationary and ergodic. (Recall that the same shift operator θ = θ1 is used
for both representations.)

Proof : Because of the relationship (8) between interarrival times and points, the first result is
immediate. The ergodicity equivalence is easily seen as follows: Ergodicity of Ψ is equivalent
to

lim
n→∞

1

n

n∑
i=1

f(θiΨ) = E(f(Ψ)), wp1, (22)

for all non-negative measurable functions f on MK .
Ergodicity of Φ is equivalent to

lim
n→∞

1

n

n∑
i=1

g(θiΦ) = E(g(Φ)), wp1, (23)

for all non-negative measurable functions g on NK .
But there is a one-to-one correspondence between non-negative measurable functions on

NK and non-negative measurable functions on MK : if g = g(φ) is a non-negative measurable
function on NK , then since the mapping φ = φ(ψ) is a homeomorphism (recall Proposition 2.2),

12



we have that g(θiφ) = g(φ(θiψ)) = f(θiψ), where f(ψ) = (g◦φ)(ψ) is a non-negative measurable
function onMK . The equivalence goes the other way in the same manner. Thus (22) and (23)
are equivalent.

Definition 3.3 Given a random marked point process ψ, define (when it exists) a distribution
P (ψ0 ∈ ·) via

P (Ψ0 ∈ ·) = lim
m→∞

1

m

m∑
i=1

P (θiΨ ∈ ·), (24)

by which we mean that the convergence holds for all Borel sets B ∈ B(MK), and defines a
probability distribution on B(MK).

Theorem 3.1 Given a time-stationary and ergodic marked point process Ψ∗, with 0 < λ =
E(X∗0 ) < ∞ (the arrival rate), the distribution given in (24) exists, it is called the Palm
distribution of Ψ∗, and is also given by

P (Ψ0 ∈ ·) = lim
m→∞

1

m

m∑
i=1

I{θiΨ∗ ∈ ·}, w.p.1, (25)

and has representation

P (Ψ0 ∈ ·) = λ−1E
[X∗0−1∑
i=0

I{θiΨ∗ ∈ ·}
]
, (26)

where
∑X∗0−1

i=0 is defined to be 0 if X∗0 = 0. A marked point process Ψ0 distributed as the Palm
distribution is point-stationary, and is called a Palm version of Ψ∗. It satisfies P (T 0

0 = 0) =
1, and the interarrival time/mark sequence {(U0

n,K
0
n) : n ∈ Z} is a stationary and ergodic

sequence.

Proof : Taking expected values in (25) yields (24) by the bounded convergence theorem, so we
will prove that (25) leads to (26). We will prove that by justifying re-writing the limit in (25)
using the counting process {C∗(n)} in lieu of m,

P (Ψ0 ∈ ·) = lim
n→∞

1

C∗(n)

C∗(n)−1∑
i=0

I{θiΨ∗ ∈ ·} = lim
n→∞

( n

C∗(n)

) 1

n

C∗(n)−1∑
i=0

I{θiΨ∗ ∈ ·}. (27)

From Proposition 3.1 and its proof we have

(T ∗m − 1

m

) 1

T ∗m − 1

C∗(T ∗m−1)∑
i=0

I{θiΨ∗ ∈ ·} ≤
1

m

m∑
i=0

I{θiΨ∗ ∈ ·} ≤
(T ∗m
m

) 1

T ∗m

C∗(T ∗m)∑
i=0

I{θiΨ∗ ∈ ·},

(28)

and limn→∞
n

C∗(n) = λ−1, and limm→∞
T ∗m
m = λ−1 , wp1. Thus we see that it suffices to prove

that wp1,

lim
n→∞

1

n

C∗(n)−1∑
i=0

I{θiΨ∗ ∈ ·} = E
[X∗0−1∑
i=0

I{θiΨ∗ ∈ ·}
]
, (29)
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because if (29) does hold then it must hold along any subsequence of n → ∞ including the
subsequence Tm as m → ∞; that is what we then can use in (28) (both the upper and lower
bounds must have the same limit). We now establish (29).

Recall that C∗(n) = X∗0 + · · ·+X∗n, so that

C∗(n)−1∑
i=0

I{θiΨ∗ ∈ ·} =
n∑
i=0

Yj ,

where

Y0 =

X∗0−1∑
i=0

I{θiΨ∗ ∈ ·},

and

Yj =

X∗0+···+X∗j−1∑
i=X∗0+···+X∗j−1

I{θiΨ∗ ∈ ·}, j ≥ 1.

But {Yj : j ≥ 0} forms a stationary ergodic sequence (see for example [20] Proposition 2.12 on
Page 44 ), and so from Birkhoff’s ergodic Theorem

lim
n→∞

1

n

n∑
i=0

Yj = E(Y0), wp1;

(29) is established. (That the right-hand-side of (26) defines a probability distribution is easily
verified; the monotone convergence theorem handles countably infinite additivity.) That Ψ0

must be point-stationary (e.g., θΨ0 has the same distribution as Ψ0) follows since P (θ1Ψ
0 ∈ ·)

is equivalent to replacing Ψ∗ by θ1Ψ
∗ before taking the limit in (24) which would become

P (θ1Ψ
0 ∈ ·) = lim

m→∞

1

m

m∑
i=0

P (θ1+iΨ
∗ ∈ ·),

which of course has the same limit since the difference is asymptotically negligible to (24) in
the limit.

Ergodicity is proved as follows: Suppose that B ∈ B(MK) is an invariant event; e.g.,
θ−1B = B, hence θ−1i B = B, i ≥ 1. Then from (25), we have

P (Ψ0 ∈ B) = lim
m→∞

1

m

m∑
i=1

I{θiΨ∗ ∈ B} = I{Ψ∗ ∈ B}, w.p.1, (30)

which implies that P (Ψ0 ∈ B) ∈ {0, 1}; ergodicity.

Because
∑X∗0−1

i=0 is defined to be 0 if X∗0 = 0, we can re-write (26) as

P (Ψ0 ∈ ·) = λ−1E
[X∗0−1∑
i=0

I{θiΨ∗ ∈ · ; X∗0 > 0}
]
. (31)
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When Ψ∗ is simple, X∗0 ∈ {0, 1}, and thus {X∗0 > 0} = {X∗0 = 1} = {T ∗0 = 1}. Therefore
λ = E(X∗0 ) = P (X∗0 > 0) = P (T ∗0 = 0) and the summation inside (31) reduces to

I{θ0Ψ∗ ∈ · ; T ∗0 = 0} = I{Ψ∗ ∈ · ; T ∗0 = 0}.

Hence (31) collapses into

λ−1P (Ψ∗ ∈ · ; T ∗0 = 0) = λ−1P (Ψ∗ ∈ · | T ∗0 = 0)P (T ∗0 = 0) = P (Ψ∗ ∈ · | T ∗0 = 0).

Summarizing:

Corollary 3.1 If a time-stationary ergodic marked point process Ψ∗ is simple, then

P (Ψ0 ∈ ·) = P (Ψ∗ ∈ · | T ∗0 = 0);

i.e., the Palm distribution is the conditional distribution of Ψ∗ given there is a point at the
origin.

More generally (simple or not), let B∗0
def
= (X∗0 | X∗0 > 0), denoting a true (time-stationary)

batch size in liu of X∗0 .

P (B∗0 = k) =
P (X∗0 = k)

P (X∗0 > 0)
, k ≥ 1. (32)

E(B∗0) =
E(X∗0 )

P (X∗0 > 0)
=

λ

P (X∗0 > 0)
. (33)

The following then is immediate from Theorem 3.1:

Corollary 3.2 For a time-stationary ergodic point process Ψ∗

P (Ψ0 ∈ ·) = {E(B∗0)}−1E
[B∗0−1∑
i=0

I{θiΨ∗ ∈ · }
]
. (34)

The above generalization of Corollary 3.1 says that to obtain the Palm distribution when there
are batches, you first condition on there being a batch at the origin (e.g., X∗0 > 0) and then
average over all X∗0 shifts θiΨ

∗, 0 ≤ i ≤ X∗0 − 1.
Theorem 3.1 generalizes in a standard way to non-negative functions:

Proposition 3.3 For any non-negative measurable function f ,

E(f(Ψ0)) = lim
m→∞

1

m

m∑
i=1

f(θiΨ
∗), w.p.1, (35)

and has representation

E(f(Ψ0)) = λ−1E
[X∗0−1∑
i=0

f(θiΨ
∗)
]

= {E(B∗0)}−1E
[B∗0−1∑
i=0

f(θiΨ
∗)
]
. (36)
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Proof : Replacing I{θiΨ∗ ∈ ·} by f(θiΨ
∗) in the proof of Theorem 3.1 yields

lim
m→∞

1

m

m∑
i=1

f(θiΨ
∗) = λ−1E

[X∗0−1∑
i=0

f(θiΨ
∗)
]
, wp1.

It thus suffices to show that

λ−1E
[X∗0−1∑
i=0

f(θiΨ
∗)
]

= E(f(Ψ0)).

To this end, we already know it holds true for indicator functions I{θiΨ∗ ∈ ·} from (26); hence
it also holds true for simple functions. Now we approximate a non-negative measurable function
f by a monotone increasing sequence of simple functions and complete the result by use of the
monotone convergence theorem.

As an immediate consequence of Proposition 3.3, with the function f(ψ) = U0, we get wp1,

E(U0
0 ) = lim

n→∞

1

n

n−1∑
j=0

U∗j = lim
n→∞

T ∗n
n

= λ−1,

where we are using Proposition 3.1 for the last equality.
We include this and more in the following:

Proposition 3.4 The Palm version Ψ0 of a stationary ergodic marked point process Ψ∗ with
λ = E(X∗0 ) satisfies

1

E(U0
0 )

= λ (37)

lim
n→∞

T 0
n

n
= E(U0

0 ) = λ−1, wp1. (38)

lim
n→∞

C0(n)

n
= λ, wp1. (39)

Proof : We already proved the first assertion. Because {U0
j } is stationary and ergodic, and

T 0
n =

∑n−1
j=0 U

0
j , n ≥ 1, the second assertion follows directly by the strong law of large numbers

for stationary and ergodic sequences via Birkoff’s ergodic theorem, with the = λ−1 part coming
from the first assertion.

The third assertion is based on the following inequality

T 0
C0(n)−1 ≤ n ≤ T

0
C0(n),

which implies that
T 0
C0(n)−1

C0(n)
≤ n

C0(n)
≤
T 0
C0(n)

C0(n)
.

Letting n → ∞ while using our second assertion then yields that both the upper and lower
bounds converge wp1 to λ−1 completing the result.
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We now move on to deriving the probability distribution of X0
0 = I00 + J0

0 which we know
satisfies P (X0

0 > 0) = 1 since by definition of the Palm distribution P (T 0
0 = 0) = 1; there is a

batch at the origin. Recalling that B∗0 = (X∗0 | X∗0 > 0) in (32) denotes a time-stationary batch
size, the distribution of X0

0 is the distribution of the batch size containing a randomly chosen
point (over all points). As might be suspected, it has the stationary spread distribution of B0

0

due to the inspection paradox (applied to batches) that a randomly chosen point is more likely
to fall in a larger than usual batch because larger batches cover more points;

P (X0
0 = k) = lim

n→∞

1

n

n∑
j=0

I{Tj is in a batch of size k}, k ≥ 1.

Proposition 3.5 The Palm version Ψ0 of a stationary ergodic marked point process Ψ∗ satisfies

P (X0
0 = k) =

kP (B∗0 = k)

E(B∗0)
, k ≥ 1.

P (J0
0 = k) =

P (B∗0 ≥ k)

E(B∗0)
, k ≥ 1.

P (I00 = l, J0
0 = k) =

P (B∗0 = l + k)

E(B∗0)
, l ≥ 0, k ≥ 1.

Proof : We use Proposition 3.3, with the functions f1(Ψ) = I{X0 = k}, f2(Ψ) = I{J0 = k}
and f3(Ψ) = I{I0 = l, J0 = k}. In these cases, we use

E(f(Ψ0)) = {E(B∗0)}−1E
[B∗0−1∑
i=0

f(θiΨ
∗)
]
.

Noting that f1(θiΨ
∗) = I{B∗0 = k}, 0 ≤ i ≤ B∗0 − 1 (shifting within a batch keeps the same

batch),

E(f1(Ψ
0)) = {E(B∗0)}−1E

[B∗0−1∑
j=0

I{B∗0 = k}
]

= {E(B∗0)}−1E
[k−1∑
i=0

I{B∗0 = k}
]

= {E(B∗0)}−1kP (B∗0 = k).

For dealing with f3, let g(Ψ∗) = (I∗0 , J
∗
0 ). The labeling of the points of B∗0 is t0, . . . , B

∗
0 − 1,

so g(θiΨ
∗) = (i, B∗0 − i), 0 ≤ i ≤ B∗0 − 1. Thus the equality f3(θiΨ

∗) = 1 can only hold for at
most one value of i and does so if and only if B∗0 = l + k (in which case it happens for i = l).
Thus

E(f3(Ψ
0)) = {E(B∗0)}−1E

[B∗0−1∑
i=0

I{(i, B∗0 − i) = (l, k)}
]

= {E(B∗0)}−1E[I{B∗0 = l + k}]
= {E(B∗0)}−1P (B∗0 = l + k).
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Similarly, for f2, the equality f2(θiΨ
∗) = I{B∗0 − i = k} = 1 can only hold for at most one

value of i within 0 ≤ i ≤ B∗0 − 1, and does so if and only if B∗0 ≥ k. Thus

E(f2(Ψ
0)) = {E(B∗0)}−1E

[B∗0−1∑
i=0

I{B∗0 − i = k}
]

= {E(B∗0)}−1E[I{B∗0 ≥ k}]
= {E(B∗0)}−1P (B∗0 ≥ k).

Next we present a useful more general re-write of (26). For any time subset A ⊂ Z, let
|A| =

∑
n∈Z I{n ∈ A}; the analog of the Lebesgue measure in continuous time.

Proposition 3.6 For any 0 < |A| <∞,

P (Ψ0 ∈ ·) =
E
[∑

T ∗j ∈A
I{θjΨ∗ ∈ ·}

]
λ|A|

, i.e., (40)

The Palm distribution is the expected value over all the point-shifts of points in any
A (0 < |A| <∞) of Ψ∗ divided by the expected number of points in A.

Proof : Because 0 < λ = E(X∗0 ) <∞, note that (26) can be re-written as

P (ψ0 ∈ ·) =
E
[∑

T ∗j ∈{0}
I{θjΨ∗ ∈ ·}

]
E(X∗0 )

. (41)

Since {X∗n} is a stationary sequence, however, we can for any n ∈ Z also re-write the above
as

P (ψ0 ∈ ·) =
E
[∑

T ∗j ∈{n}
I{θjΨ∗ ∈ ·}

]
E(X∗n)

. (42)

For any 0 < |A| <∞, we have that C∗(A) =
∑

n∈AX
∗
n and hence E(C∗(A)) = λ|A|. Thus (40)

follows from (42).
We can use (40) to derive

Proposition 3.7 Given a time-stationary and ergodic marked point process Ψ∗,

E(C∗(A×K)) = λ|A|P (K0
0 ∈ K), (43)

for all bounded A ⊂ Z, and measurable K ⊂ K.

Proof : From (40) and Proposition 3.3 using f(ψ) = I{k0 ∈ K) we have

P (K0
0 ∈ K) =

E
[∑

T ∗j ∈A
I{K∗j ∈ K}

]
λ|A|

=
E(C∗(A×K))

λ|A|
; (44)

(43) follows.
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Remark 3.1 We use Cesàro convergence (as in (24)) because the convergence holds by Birkoff’s
ergodic theorem without any further conditions, even if only stationarity without ergodicity
holds. Sample-path averages converge with probability one, as well. Moreover, Birkoff’s ergodic
Theorem ensures that the Cesàro convergence holds for all measurable sets and from this it
follows, in fact, that the convergence holds uniformly over all measurable sets and hence yields
Cesàro total variation convergence and even shift-coupling (see Corollary 2.2, Theorem 2.2 and
Corollary 2.3 on Pages 31-34 in [20].) In other words in our framework and with our objectives
in the present paper, Cesàro convergence is the most natural one. On the other hand, if one
wants to consider the much more general situation of the convergence in distribution of a
sequence rmpps Ψn to a rmpp Ψ, as n→∞, other modes of convergence might be desired and
be more useful, such as weak convergence, and would be analogous to the weak convergence of
stochastic processes as in [26]. It is in that more general setting that notions of tightness and
compactness play a fundamental role, and the Polish space condition is fundamental. In general,
weak convergence and even stronger modes of convergence such as total variation convergence
require much stricter conditions on the process even if the process is iid or regenerative (e.g.,
conditions such as non-lattice, aperiodic, spread-out, etc.), see Chapter VII in [1] for some
examples.

Remark 3.2 While {X∗n} forms a stationary sequence (by definition), the same is not generally
so for {X0

n}. Recall, for example that P (X0
0 > 0) = 1, while the same need not be so for the

other X0
n, n 6= 0.

3.1 Examples of stationary marked point processes

We will illustrate examples of Ψ∗ and Ψ0 by representing {X∗n : n ∈ Z} as

{X∗n} = {. . . , X∗−2, X∗−1, X∗0 , X∗1 , X∗2 . . .},

and {X0
n} as

{X0
n} = {. . . , X0

−2, X
0
−1, X

0
0 , X

0
1 , X

0
2 . . .}.

We will give examples when there are no marks involved. Unlike continuous time, Ψ∗ can
have points at the origin and this can allow for some interesting examples. Recall that since
Ĵ∗0 = X∗0 by definition of time-stationarity, Ψ∗ is completely determined by {X∗n}. But in
general, Ψ0 is not completely determined by {X0

n} because P (X0
0 > 0) = 1 and X0

0 gets split
into X0

0 = I00 + J0
0 . So we additionally need to determine J0

0 .

1. Deterministic case (a). Here we consider at first the case when {X∗n} = {. . . , 1, 1, 1, . . .}.
Then it is immediate that Ψ∗ = Ψ0 because

{X0
n} = {. . . , 1, 1, 1, . . .}

as well, and J∗0 = J0
0 = 1. This, it turns out, is the only example that can exist in which

both the time and point stationary versions are identical. To see this, we know that since
always P (X0

0 > 0) = 1, it would have to hold too that P (X∗0 > 0) = 1. But if X∗0 > 0,
then its points are always labeled t0, . . . , tX∗0−1, but when X0

0 > 0 it splits X0 into I0 and
J0 with the I0 points having negative labels and the J0 points have labels ≥ 0. Whenever
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P (X0
0 ≥ 2) > 0, it follows that P (I00 = 1, J0

0 = X0
0 − 1) > 0, hence ruling out the

condition P (J0
0 = X0

0 ) = 1 as would be required since Ĵ∗0 = X∗0 by definition. Our next
example illustrates this difference with yet another deterministic case.

2. Deterministic case (b). Here we consider the case

{X∗n} = {. . . , 2, 2, 2, . . .}.

It is immediate that
{X0

n} = {X∗n} = {. . . , 2, 2, 2, . . .}

because no matter what shift θiΨ
∗ we use, the batch size covering any point is still of

size 2. But Ψ0 is not the same as Ψ∗: half of the shifts θiΨ
∗ split the batch of size 2

at the origin into T ∗0 (i) = T1(i) = 0 and half split it into T ∗−1(i) = T0(i) = 0. We have
P (J0

0 = 1) = P (J0
0 = 2) = 1/2. So while Ψ∗ is deterministic, Ψ0 is not.

3. iid case:
{X∗n} = {. . . , X∗−2, X∗−1, X∗0 , X∗1 , X∗2 . . .},

where {X∗n : n ∈ Z} is any iid sequence of non-negative rvs with 0 < E(X∗0 ) <∞. Then

{X0
n} = {. . . , X∗−2, X∗−1, X0

0 , X
∗
1 , X

∗
2 . . .},

whereX0
0 and J0

0 , independent of the iid {X0
n : n 6= 0}, are distributed as in Proposition 3.5

by jointly constructing a copy of (I00 , J
0
0 ) and using X0

0 = I00 + J0
0 .

4. Bernoulli(p) iid case: Here we consider a simple point process (e.g., only at most one
arrival in any given time slot) that is a very special but important example in applications
of the above Example 3 iid case because it serves as the discrete-time analog of a Poisson
process. We take {X∗n} as iid with a Bernoulli(p) distribution, 0 < p < 1. λ = p = E(X∗0 ).
Since {X∗n} is iid and the point process is simple, we can use Corollary 3.1 which instructs
us to place a point at the origin (P (X0

0 = 1) = 1) to get {X0
n}; P (T 0

0 = 0) = 1:

{X0
n} = {. . . , X∗−2, X∗−1, 1, X∗1 , X∗2 . . .},

and of course J0
0 = X0

0 = 1. Notice that P (T ∗0 = 0) = P (X∗0 = 1) = p.

The interarrival times {U0
n} are iid with a geometric distribution with success probability

p.

5. Markov chain case:

We start with an irreducible positive recurrent discrete-time discrete state space Markov
chain {Xn : n ≥ 0} on the non-negative integers, and transition matrix P = (Pi,j) and
stationary distribution π = {πj : j ≥ 0}. We assume that 0 < Eπ(X0) < ∞; π has finite
and non-zero mean. By starting off the chain with X0 distributed as π, we can obtain a
1-sided stationary version {X∗n : n ≥ 0}. At this point we have two ways to obtain a 2-
sided version: One is to use Kolmogorov’s extension theorem which assures the existence
of such an extension for any 1-sided stationary sequence. The other is to recall that since
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the chain is positive recurrent with stationary distribution π, we can explicitly give the
transition matrix for its time reversal as

P
(r)
i,j = P (X∗−1 = j | X∗0 = i) =

πj
πi
Pi,j , i, j ≥ 0.

Thus starting with {X∗n : n ≥ 0}, and using X∗0 , we then can continue backwards in time

to construct {X∗n : n < 0} by using P (r) = (P
(r)
i,j ). This yields

{X∗n} = {. . . , X∗−2, X∗−1, X∗0 , X∗1 , X∗2 . . .}.

Then

{X0
n} = {. . . , X0

−2, X
0
−1, X

0
0 , X

0
1 , X

0
2 . . .},

where X0
0 and J0

0 are distributed jointly as in Proposition 3.5, {X0
n : n ≥ 0} is constructed

sequentially using P = (Pi,j), and {X0
n : n < 0} uses P (r) = (P

(r)
i,j ), both sides starting

with X0
0 .

6. Cyclic deterministic example: Starting with {Xn} = {. . . , 1, 0, 2, 1, 0, 2, 1, 0, 2, . . .}, we
have cycles of the form {1, 0, 2} repeating forever. This is actually a very special case of a
Markov chain; P1,0 = P0,2 = P2,1 = 1, but its analysis here yields nice intuition. The time
stationary version is a 1/3 mixture: P (X∗0 = i) = 1/3, i ∈ {1, 0, 2} which then determines
the entire sequence. The idea is that 1/3 of all time begins with an Xn of size 1, 2, or 3
within a cycle.

{X∗n} =


{. . . , 1, 0, 2, 1 = X∗0 , 0, 2, 1, 0, 2, . . .} wp 1/3 ,

{. . . , 0, 2, 1, 0 = X∗0 , 2, 1, 0, 2, . . .} wp 1/3,

{. . . , 2, 1, 0, 2 = X∗0 , 1, 0, 2, . . .} wp 1/3.

Note that λ = (1/3)(1 + 0 + 2) = 1.

To determine {X0
n}, we first need only consider lining up the Xn > 0 (the batches) to

obtain {. . . , 1, 2, 1, 2, . . .} and randomly select a point over all batches. 2/3 of the points
sit in an Xn = 2 and 1/3 sit in an Xn = 1. Thus we obtain

{X0
n} =

{
{. . . , 2, 1, 0, 2 = X0

0 , 1, 0, 2, . . .} wp 2/3

{. . . , 1, 0, 2, 1 = X0
0 , 0, 2, 1, 0, 2, . . .} wp 1/3 .

Given the 2/3 case, P ((I00 , J
0
0 ) = (0, 2) = 1/2, P ((I00 , J

0
0 ) = (1, 1) = 1/2, while given the

1/3 case P ((I00 , J
0
0 ) = (0, 1) = 1. Thus Ψ0 is completely determined by the 1/3 mixture

of P (X0
0 = 2, J0

0 = 2) = P (X0
0 = 2, J0

0 = 1) = 1/3, P (X0
0 = 1, J0

0 = 1) = 1/3.

This illustrates that for a cyclic deterministic point process, Ψ0 is completely determined
by the pair (X0

0 , J
0
0 ).

7. Regenerative process case: Suppose that {Xn} is a positive recurrent regenerative process.
Example 6 above is a very special case of this, and so is Example 5 (a Markov chain regen-
erates each time it visits a given fixed state i.) We allow general iid cycles of non-negative
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random variables, C0 = {{X0, X1, . . . , Xτ1−1}, τ1}, C1 = {{Xτ1 , Xτ1+1, . . . , Xτ1+τ2−1}, τ2}
and so on, where {τm : m ≥ 1} forms a discrete-time renewal process with 0 < E(τ1) <∞.
We attach another iid such sequence identically distributed of cycles from time past,
{Cm : m ≤ −1}, yielding iid cycles {Cm : m ∈ Z} and hence our two sided {Xn}. From
the Renewal Reward Theorem, the arrival rate is given by

λ = lim
n→∞

1

n

n∑
m=1

Xm =
E
[∑τ1−1

m=0 Xm

]
E(τ1)

, wp1,

and we assume that 0 < λ <∞.

A time-stationary version {X∗n} is given by standard regenerative process theory in which
the initial cycle C∗0 is a delayed cycle different in distribution from the original C0. It
contains some Xn with n ≤ 0 and some Xn with n > 0. It is a cycle that covers a
randomly selected Xn way out in the future which is then labeled as X∗0 . From the
inspection paradox applied to the cycle lengths, the cycle length τ∗0 of C∗0 has the spread
distribution of τ1:

P (τ∗0 = k) =
kP (τ1 = k)

E(τ1)
, k ≥ 1.

Regenerative processes X = {Xn : n ∈ Z} are ergodic with respect to the shift-operator
θ = θ1,

θmX = {Xm+n : n ∈ Z} = {Xn(m) : n ∈ Z}, m ∈ Z.
Letting C0(m) = C0(θmX) denote the initial cycle of θmX, the cycle containing X0(m),
we have

P (C∗0 ∈ ·) = lim
n→∞

1

n

n∑
m=1

I{C0(m) ∈ ·} =
E
[∑τ1−1

m=0 I{C0(m) ∈ ·}
]

E(τ1)
, wp1.

Thus starting with the iid cycles {Cm : m ∈ Z}, and independently replacing C0 with a
copy of C∗0 yields time-stationary {X∗n}, i.e.,

{X∗n} = {· · · C−2, C−1, C∗0 , C1, C2 · · · }.

Similarly, to obtain {X0
n}, we need to derive the appropriate initial delay cycle C00 , inde-

pendent of the iid others, {Cm : m 6= 0}, to obtain the desired

{X0
n} = {· · · C−2, C−1, C00 , C1, C2 · · · }.

Thus C00 represents a cycle that covers a randomly selected point tj way out in the future.

3.2 Palm inversion

Recalling the time-shift operator ζ, from (15), one can retrieve back time-stationary ergodic
Ψ∗ from point-stationary ergodic Ψ0 via time averaging (versus point averaging). Because the
interarrival times {U0

j } form a stationary ergodic sequence, the inversion just says that the
time-average is the expected value over a “cycle”( interarrival time) divided by an expected
cycle length E(U0

0 ) = λ−1, just as in the famous renewal reward theorem in the iid case.

22



Theorem 3.2 (Palm inversion formula)

P (Ψ∗ ∈ ·) = lim
n→∞

1

n

n∑
m=1

P (ζmΨ0 ∈ ·) = λE
[U0

0−1∑
m=0

I{ζmΨ0 ∈ ·}I{U0
0 ≥ 1}

]
. (45)

P (Ψ∗ ∈ ·) = lim
n→∞

1

n

n∑
m=1

I{ζmΨ0 ∈ ·}, wp1. (46)

Proof : We use the counting sequence representation (X0
n,K

0
n) for Ψ0. (Since ζm maps Ĵ0

0 to
X0
m for all m, by definition, we need not include it; there are no labeling issues of the points

once Ψ0 is shifted in time by ζm.) As used in the proof of Proposition 3.4 we have the inequality

T 0
C0(n)−1 ≤ n ≤ T

0
C0(n),

which yields

1

n

T 0
C0(n)−1∑
m=0

I{ζmΨ0 ∈ ·} ≤ 1

n

n∑
m=0

I{ζmΨ0 ∈ ·} ≤ 1

n

T 0
C0(n)∑
m=0

I{ζmΨ0 ∈ ·}. (47)

We will now show that the right-hand-side of (47) (hence the left-hand side too) converges wp1
to the right-hand side of (45). For then this proves that the right-hand-side of (46) converges to
the right-hand-side of (47); taking expected values then in (46) using the bounded convergence
theorem then finishes the result.

To this end, recalling that T 0
n =

∑n−1
i=0 U

0
i , n ≥ 1, we can rewrite a sum over time as a sum

over stationary ergodic “cycle lengths” U0
i :

T 0
n−1∑
m=0

I{ζmΨ0 ∈ ·} =

n−1∑
i=0

Yi,

where

Yi =

T 0
i+1−1∑
m=T 0

i

I{ζmΨ0 ∈ ·}I{U0
i ≥ 1}, i ≥ 0.

Since Ψ0 is point-stationary and ergodic with respect to the point-shifts θi, i ≥ 1, the
{Yi : i ≥ 0} form a stationary ergodic sequence.

Thus from Birkoff’s ergodic theorem,

lim
n→∞

1

n

T 0
n−1∑
m=0

I{ζmΨ0 ∈ ·} = lim
n→∞

1

n

n−1∑
i=0

Yi (48)

= E(Y0) (49)

= E
[U0

0−1∑
m=0

I{ζnΨ0 ∈ ·}I{U0
0 ≥ 1}

]
, wp1. (50)
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The limit in (48) must hold over any subsequence of T 0
n such as TC0(n), that is, we can replace

n by C0(n); that is what we now use on the right-hand-side of (47):

lim
n→∞

1

n

T 0
C0(n)∑
m=0

I{ζmΨ0 ∈ ·} = lim
n→∞

(C0(n)

n

) 1

C0(n)

T 0
C0(n)∑
m=0

I{ζmΨ0 ∈ ·} (51)

= λE
[U0

0−1∑
m=0

I{ζnΨ0 ∈ ·}I{U0
0 ≥ 1}

]
, wp1, (52)

where we use the fact that C0(n)
n → λ , wp1, from Proposition 3.4.

Remark 3.3 The U0
0 in the Palm inversion formula in Proposition 45 is taken from Ψ0, not

from ζ0Ψ
0 : we are crucially using the fact that for Ψ0, the interarrival time sequence {U0

n} forms
a stationary ergodic sequence; the interarrival times are no longer stationary for ζ0Ψ

0. (They
remain stationary under the point shifts, θiΨ

0, not the time shifts ζmΨ0.) We are breaking up
time into stationary ergodic cycles of time via T 0

n =
∑n−1

i=0 U
0
i , n ≥ 1.

3.2.1 Applications of the Palm inversion formula

Here we give several examples illustrating how the Palm inversion formula works. We re-visit
examples from Section 3.1.

1. We consider the cyclic deterministic Example 6 in Section 3.1, with cycles {1, 0, 2}. We
have

{X0
n} =

{
{. . . , 2, 1, 0, 2 = X0

0 , 1, 0, 2, . . .} wp 2/3

{. . . , 1, 0, 2, 1 = X0
0 , 0, 2, 1, 0, 2, . . .} wp 1/3 .

We will show how the inversion formula yields P (X∗0 = 1) = P (X∗0 = 0) = P (X∗0 = 2) =
1/3, hence giving us {X∗n}.
Since λ = E(X∗0 ) = 1 we must compute for i ∈ {0, 1, 2},

P (X∗0 = i) = E
[U0

0−1∑
m=0

I{X0
m = i}I{U0

0 ≥ 1}
]
. (53)

Recalling that P (X0
0 = 2, J0

0 = 2) = P (X0
0 = 2, J0

0 = 1) = 1/3, P (X0
0 = 1, J0

0 = 1) =
P (X0

0 = 1) = 1/3, we see that {U0
0 ≥ 1} can happen only in two (disjoint) ways:

(a) {X0
0 = 2, J0

0 = 1} = {X0
0 = 2, U0

0 = T 0
1 = 1}, in which case U0

0 − 1 = 0 and thus
only m = 0 is counted in (53) yielding

P (X∗0 = i) = P (X0
0 = i,X0

0 = 2, J0
0 = 1),

or
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(b) {X0
0 = 1, J0

0 = 1} = {X0
0 = 1, U0

0 = T 0
1 = 2} in which case U0

0 − 1 = 1 and thus
m = 0 and m = 1 are counted in (53) yielding

P (X∗0 = i) = P (X0
0 = i,X0

0 = 1, J0
0 = 1) + P (X0

1 = i,X0
0 = 1, J0

0 = 1).

For i = 2, only (a) above yields a non-zero probability, P (X∗0 = 2) = P (X0
0 = 2, J0

0 =
1) = 1/3. For i = 1, or i = 0, only (b) above yields a non-zero probability each using only
one of the sum, P (X∗0 = 0) = P (X0

1 = 0, X0
0 = 1, J0

0 = 1) = P (X0
0 = 1) = 1/3

P (X∗0 = 1) = P (X0
0 = 1, X0

0 = 1, J0
0 = 1) = P (X0

0 = 1) = 1/3

2. Our second example: the iid case, Example 3 in Section 3.1.

{X∗n} = {. . . , X∗−2, X∗−1, X∗0 , X∗1 , X∗2 . . .},

where {X∗n : n ∈ Z} is any iid sequence of non-negative rvs with 0 < E(X∗0 ) <∞. Then

{X0
n} = {. . . , X∗−2, X∗−1, X0

0 , X
∗
1 , X

∗
2 . . .},

whereX0
0 and J0

0 , independent of the iid {X0
n : n 6= 0}, are distributed as in Proposition 3.5

by jointly constructing a copy of (I00 , J
0
0 ) and using X0

0 = I00 + J0
0 .

Recalling B∗0
def
= (X∗0 | X∗0 > 0), denoting a true (time-stationary) batch size,

P (B∗0 = i) =
P (X∗0 = i)

P (X∗0 > 0)
, i ≥ 1, (54)

and

E(B∗0) =
E(X∗0 )

P (X∗0 > 0)
=

λ

P (X∗0 > 0)
. (55)

we deduce that

P (X∗0 = i) =
λP (B∗0 = i)

E(B∗0)
, i ≥ 1. (56)

We will prove that the Palm inversion formula yields (56) for i ≥ 1 and yields P (X∗0 =
0) = P (X∗0 = 0) too, thus showing how the Palm inversion formula indeed retrieves Ψ∗

from Ψ0.

We will use the Palm inversion formula via

P (X∗0 = i) = λE
[U0

0−1∑
m=0

I{X0
m = i}I{U0

0 ≥ 1}
]

= λ
∞∑
l=1

E
[ l−1∑
m=0

I{X0
m = i}I{U0

0 = l}
]
.

(57)

As seen in our previous example, {U0
0 ≥ 1} = {J0

0 = 1}; the interarrival time U0
0 = T 0

1

is positive only if T 0
0 = 0 is the last point in the batch X0

0 at the origin. Note that if
U0
0 = l ≥ 2, then X0

m = 0, 1 ≤ m ≤ l − 1. Thus for l ≥ 1 and any i ≥ 1,

[ l−1∑
m=0

I{X0
m = i}I{U0

0 = l}
]

= I{X0
0 = i, U0

0 = l},
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which implies from (57) that

λE
[U0

0−1∑
m=0

I{X0
m = i}I{U0

0 ≥ 1}
]

= λ

∞∑
l=1

P (X0
0 = i, U0

0 = l). (58)

Note that for l ≥ 2, i ≥ 1,

{X0
0 = i, U0

0 = l} = {(I00 = i− 1, J0
0 = 1), X0

1 = 0, . . . , X0
l−1 = 0, X0

l > 0}.

For l = 1, i ≥ 1,

{X0
0 = i, U0

0 = 1} = {(I00 = i− 1, J0
0 = 1, X0

1 > 0}.

Thus by the iid {X0
n : n ≥ 1} all distributed as X∗0 , and, independently, the biased X0

0 ,
we have

P (X0
0 = i, U0

0 = l) =
P (B∗0 = i)

E(B∗0)
P (X∗0 = 0)l−1P (X∗0 > 0), l ≥ 1, i ≥ 1,

where we are using from Proposition 3.5,

P (I00 = l, J0
0 = k) =

P (B∗0 = l + k)

E(B∗0)
, l ≥ 0, k ≥ 1.

Thus from (58) we have

P (X∗0 = i) =
λP (B∗0 = i)

E(B∗0)
, i ≥ 1,

which indeed is correct from (56) above.

For i = 0, we again use (57) and simply observe that since P (X0
0 = 0) = 0 and P (X0

m =
0) = P (X∗0 = 0), m ≥ 1, and X0

m is independent of U0
0 = T 0

1 , m ≥ 1, we have

P (X0
m = 0, U0

0 = l) = P (X∗0 = 0)P (U0
0 = l), l ≥ 1, m ≥ 1

and hence (57) reduces to (m = 0 can’t be counted since P (X0
0 = 0) = 0, so l = 0 takes

care of that)

P (X∗0 = 0) = λP (X∗0 = 0)

∞∑
l=0

lP (U0
0 = l)

= λP (X∗0 = 0)E(U0
0 )

= P (X∗0 = 0),

where we are using the fact that E(U0
0 ) = λ−1 from Proposition 3.4.
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3. Markov chain Example 5 in Section 3.1.

We will need the transition matrix P = (Pi,j), i, j ≥ 0, and follow along in the spirit of
our previous example, replacing step by step independence with step by step conditional
independence (e.g., Markov property). For i ≥ 1, and l = 1

P (X0
0 = i, U0

0 = 1) =
P (B∗0 = i)

E(B∗0)
(1− Pi,0).

For i ≥ 1, and l ≥ 2

P (X0
0 = i, U0

0 = l) =
P (B∗0 = i)

E(B∗0)
Pi,0P

l−2
0,0 (1− P0,0).

∞∑
l=2

P l−20,0 (1− P0,0) = 1.

Thus the final answer summed up from l = 1 to ∞ is:

P (B∗0 = i)

E(B∗0)
(1− Pi,0) +

P (B∗0 = i)

E(B∗0)
Pi,0 =

P (B∗0 = i)

E(B∗0)
.

Thus multiplying by λ gets us back to P (X∗0 = i) just as for the iid case via the use of
(56).

For the P (X∗0 = 0) computation, we will join in {X0
0 = i} for i ≥ 1 and then sum up

over i ≥ 1 at the end. Recalling that the X∗0 has the stationary distribution satisfying
π = πP , we have that

πi =
λP (B∗0 = i)

E(B∗0)
, i ≥ 1.

We now want to retrieve π0 = P (X∗0 = 0). For any 1 ≤ m ≤ l − 1, and i ≥ 1, l ≥ 2,

P (X0
m = 0, X0

0 = i, U0
0 = l) = P (X0

0 = i, U0
0 = l) =

P (B∗0 = i)

E(B∗0)
Pi,0P

l−2
0,0 (1− P0,0).

Thus summing up to l − 1 yields

P (B∗0 = i)

E(B∗0)
Pi,0(l − 1)P l−20,0 (1− P0,0).

Summing up (l−1)P l−20,0 (1−P0,0) over l then yields the mean of the geometric distribution,

(1− P0,0)
−1. Thus, the Palm inversion formula yields

P (X∗0 = 0, X0
0 = i) = λ

P (B∗0 = i)

E(B∗0)
Pi,0(1− P0,0)

−1 = πiPi,0(1− P0,0)
−1, i ≥ 1. (59)

But, from π = πP , we have

π0 =
∞∑
i=0

πiPi,0,
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and hence
∞∑
i=1

πiPi,0 = π0 − π0P0,0 = π0(1− P0,0).

Thus summing up (59) over i ≥ 1 yields P (X∗0 = 0) = π0 as was to be shown.

4 Campbell’s Theorem

Campbell’s Theorem extends rather obvious relations for product sets to arbitrary sets using
the monotone class theorem in measure/integration theory. Applications to queueing theory
such as Little’s Law become direct applications. We cover that here, starting with the most
general form, and then moving on to cover cases when the marked point process is endowed
with some form of stationarity.

For any non-negative measurable function f = f(n, k), f : Z×K −→ R+, and any marked
point process ψ, define

ψ(f) =
∞∑

j=−∞
f(tj , kj).

Proposition 4.1 (Campbell’s Theorem, general case) If Ψ is a random marked point
process, then for any non-negative measurable function f = f(n, k),

E(Ψ(f)) =

∫
Z×K

f(b)v(db),

where v is the intensity measure, v(B) = E(C(B)), B ∈ B(Z×K).

Proof : Let B ∈ B(Z×K), and let f(n, k) = I{(n, k) ∈ B}. Then Ψ(f) = C(B), and

E(C(B)) = v(B) =

∫
B
v(db) =

∫
Z×K

f(b)v(db).

So the result holds for simple functions of the form f(n, k) =
∑l

i=1 aiI{(n, k) ∈ Bi}, where
the Bi are disjoint Borel sets, and the ai ≥ 0. Then from standard integration theory we can
construct a monotone increasing sequence fm of such simple functions such that fm → f point
wise as m→∞ and use the monotone convergence theorem.

When the marked point process is time-stationary, we get a much stronger result:

Proposition 4.2 (Campbell’s Theorem, stationary case) If Ψ∗ is a time-stationary and
ergodic marked point process, then for any non-negative measurable function f = f(n, k),

E(Ψ∗(f)) = λE
[ ∞∑
n=−∞

f(n,K0
0 )
]

= λ
∞∑

n=−∞
E(f(n,K0

0 )).

Proof : That the last equality holds is standard since f is assumed non-negative, so Fubini’s
theorem (in the special form of Tonelli’s Theorem) can be used. So we need to prove the first
equality. For any indicator function of the form f(n, k) = I{n ∈ A, k ∈ K}, with |A| <∞ we
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have E(Ψ∗(f)) = E(C∗(A×K)) = λ|A|P (K0
0 ∈ K) from Proposition 3.7. Also, it is immediate

that for an f of this kind

λE
[ ∞∑
n=−∞

f(n,K0
0 )
]

= λE(
∑
n∈A

I{K0
0 ∈ K}) = λ|A|P (K0

0 ∈ K).

So the result holds for such indicator functions. Thus it is immediate that the result will hold
more generally for simple functions of the form f(n, k) =

∑l
i=1 aifi(n, k) where fi(n, k) =

I{n ∈ Ai, k ∈ Ki}, the ai ≥ 0 are constants, and the l pairs (Ai,Ki) are disjoint. Then, we
can approximate a general f (such as f(n, k) = I{(n, k) ∈ B}, B ∈ B(Z × K)) point-wise by
a monotone increasing sequence of such non-negative simple functions fm → f as m→∞ and
use the monotone convergence theorem.

A classic example utilizing Campbell’s Theorem is a proof of Little’s Law (l = λw) in a
stationary ergodic setting. In this case Ψ∗ = {(T ∗j ,W ∗j )}, where T ∗j is the jth customer’s arrival

time into a queueing system and W ∗j ∈ R+ (the jth mark) denotes their sojourn time (total
time spent in the system), and we are assuming the existence of such a time-stationary version.
The Palm version Ψ0 = {(T 0

j ,W
0
j )} represents stationarity from the view of arriving customers.

It is important to understand that the existence of stationary versions depend highly on the
queueing model in question, and proving the existence of such stationarity is not trivial in
general. A time-stationary version of L(n) = the number of customers in the system at time
n ∈ Z is given by

L∗(n) =
∑
T ∗j ≤n

I{W ∗j > n− T ∗j }, n ∈ Z.

Since it is time-stationary, we can and will focus on L∗(0),

L∗(0) =
∑
T ∗j ≤0

I{W ∗j > |T ∗j |}, n ∈ Z.

In continuous time, and under the assumption of non-batches, this kind of proof using
a Campbell’s Theorem can be found in Franken et al [10]. Also see [2] and [20], for various
continuous-time queueing applications of stationary marked point process theory. Perhaps what
is new below is that we are allowing batches and are in discrete time:

Proposition 4.3 (Little’s Law) Suppose for a queueing system that there exists a time-
stationary ergodic version Ψ∗ = {(T ∗j ,W ∗j ) : j ∈ Z}. (We are assuming as always that

0 < λ = E(X∗0 ) <∞.) If E(W 0
0 ) <∞, then E(L∗(0)) <∞ and E(L∗(0)) = λE(W 0

0 ).

Proof : Defining Borel set B = {(n,w) ∈ Z× R+ : n ≤ 0, w > |n|}, and
f(n,w) = I{(n,w) ∈ B}, we see that L∗(0) = Ψ∗(f). Applying Campbell’s theorem yields

E(L∗(0)) = λ
∑
n≤0

P (W 0
0 > |n|) = λ

∞∑
n=0

P (W 0
0 > n) = λE(W 0

0 ).

We now move on to a form of Campbell’s Theorem that is in between the above two cases:
the case of a periodic stationary marked point process. Here is the setup: A marked point
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process {(Xn,Kn)} : n ∈ Z} has the property that for a fixed integer d ≥ 2 (the period),

Ψ∗l
def
= {(Xmd+l,Kmd+l) : m ∈ Z} forms a time-stationary marked point process for each

0 ≤ l ≤ d− 1. Cm
def
= {(Xmd+l,Kmd+l) : 0 ≤ l ≤ d− 1}, m ∈ Z, is called the mth cycle and it is

assumed that {Cm : m ∈ Z} forms a stationary and ergodic sequence. In particular, each cycle
has the same distribution as the initial one C0 = {(Xl,Kl) : 0 ≤ l ≤ d− 1}.

The marked point process will be referred to as a periodic stationary ergodic marked point
process. (If d = 1 we are back to a time-stationary and ergodic point process.)

We let Ψ0
l denote a Palm version of Ψ∗l and to simplify notation, we let P 0

l and E0
l denote

the distribution and expected value under the distribution of Ψ0
l . We define λl = E(Xl), and

we assume that 0 < λl <∞, 0 ≤ l ≤ d− 1. Because of the periodicity, λn = E(Xn) = λl, and

P 0
n

def
= P 0

l , if n ∈ {md+ l : m ∈ Z}, 0 ≤ l ≤ d− 1.

Proposition 4.4 (Campbell’s Theorem, periodic stationary case) If Ψ is a periodic sta-
tionary ergodic marked point process with period d, then for any non-negative measurable func-
tion f = f(n, k),

E(Ψ(f)) =
∞∑

n=−∞
λnE

0
n(f(n,K0)).

Proof : Recall from Proposition 3.7 and from the proof of Campbell’s Theorem, the stationary
case, that for each 0 ≤ l ≤ d − 1, E(Ψ∗l (f)) = λl|A|P 0

l (K0 ∈ K), for any f of the form
f(n, k) = I{n ∈ A, k ∈ K}, with |A| <∞. For any subset A ⊆ Z, let Al = A ∩ {md+ l : m ∈
Z}, 0 ≤ l ≤ d− 1. The Al are disjoint and A = ∪d−1l=0Al.

For any A ⊆ Z and any measurable K ⊆ K it thus follows that for f of the kind f(n, k) =
I{n ∈ A, k ∈ K}, with |A| <∞,

E(Ψ(f)) =

d−1∑
l=0

λl|Al|P 0
l (K0 ∈ K) =

∞∑
n=−∞

λnE
0
n(f(n,K0)).

The proof is then completed by moving on to simple functions and the monotone convergence
theorem as in the proof of Campbell’s Theorem, the stationary case.

As an application of Proposition 4.4, we now will directly derive the stochastic discrete-
time Periodic Little’s Law (PLL) of Whitt and Zhang in [23], Theorem 3. They first derive a
sample-path PLL (Theorem 1), and then give a stochastic version (Theorem 3) by using the
sample-path version (almost surely). In continuous-time, there is a general stochastic version
of a PLL for the case when the arrival process is simple (no batches) and has a periodic rate,
such as Theorem 4 in [23], which utilizes methods from [19] which dealt with special models
with iid service times and a periodic non-stationary Poisson arrival process; Palm distributions
are used.

As our primitive, we start with a periodic stationary marked point process {(Xn,Kn)} :
n ∈ Z}, with period d, in which the Kn are a list of the sojourn times {Wj} of the Xn customer
arrivals at time n.

Using the Palm distribution P 0
l , P 0

l (W0 ∈ ·), denotes the stationary distribution for sojourn
time over all customers who arrive in a time slot l. (Under P 0

l , W0 is the sojourn time of a
randomly chosen customer from a batch in a time slot l.)
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If d = 1, then it would simply be the stationary distribution of sojourn time over all
customers, and we could use Proposition 4.3. But we want to handle the case when d ≥ 2.

The quantity λ(c)
def
=
∑d−1

l=0 λs is the total arrival rate per cycle. We assume for each
l that P 0

l (W0 ∈ ·) defines a proper distribution and has finite and non-zero first moment,

0 < E0
l (W0) < ∞. (This also ensures that E0(W0)

def
=
∑d−1

l=0
λl
λc
E0
l (W0) < ∞; it is the average

sojourn time over all customers.)
For each 0 ≤ l ≤ d− 1 the total number of customers in the system at time l is given by

Ll =
l∑

j=−∞
I{Tj ≤ l, Wj > l − Tj} = Ψ(fl),

where fl(n,w) = I{n ≤ l, w > l − n}, n ∈ Z.

Proposition 4.5 (Periodic Little’s Law) Assuming a periodic stationary (and ergodic) marked
point process for the queueing model, it holds for each 0 ≤ l ≤ d− 1 that

E(Ll) =
l∑

n=−∞
λnP

0
n(W0 > l − n) <∞.

Proof : Direct application of Proposition 4.4 as in the proof of Proposition 4.3 using the function
fl(n,w) = I{n ≤ l, w > l−n}, n ∈ Z. Finiteness follows since for any n ∈ Z, there are bounds
λn ≤ λ(c) and P 0

n(W0 > l − n) ≤M(|n|) =
∑d−1

l=0 P
0
l (W0 > |n|). But

0∑
n=−∞

M(|n|) =
d−1∑
l=0

E0
l (W0) <∞,

because we assumed that E0
l (W0) <∞ for all 0 ≤ l ≤ d− 1.

Remark 4.1 Inherent in our queueing applications (Little’s Law, Periodic Little’s Law) is the
assumption that within any time slot, arrivals that occur are counted before any departures
occur, and that the number of customers in the system is counted after the arrivals but before
the departures. This is due to the discrete-time framework here; in continuous-time, the set
of times at which an arrival and departure both occur simultaneously forms a set of Lebesgue
measure 0 hence has no effect on such results.

Remark 4.2 Analogous to what we did above for l = λw, one can also derive a stationary
version of H = λG and a periodic stationary version of H = λG in discrete time. In fact
H = λG can be considered equivalent to Campbell’s Theorem; in continuous time, see for
example Page 155 in [20], and [25].

5 Non-ergodicity

If a stationary marked point process Ψ∗ is not ergodic, then issues arise: The distribution
defined by

P (Ψ0 ∈ ·) = lim
m→∞

1

m

m∑
j=0

P (θjΨ
∗ ∈ ·), (60)
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still exists, is point-stationary and of course still has the natural (in applications) nice
interpretation as “the distribution as seen by a randomly chosen point way out in
the future”, an empirical average over what all arrivals see, but it is no longer the same as

Q(·) def
= λ−1E

[X∗0−1∑
j=0

I{θjΨ∗ ∈ ·}
]
, (61)

which also exists, and is point-stationary, where λ
def
= E(X∗0 ) = {EQ(U0)}−1. It is this distri-

bution Q, in the literature, that is called the Palm distribution of Ψ∗ (whether stationary and
ergodic or just stationary but non-ergodic). Under ergodicity, they are the same; but otherwise
in general they are quite different. This motivates right from the start a serious question: If
you are given a “stationary” but non-ergodic marked point process, how was it derived?

As a very simple example, let us move to continuous time and consider a point process
Ψ = {Tn} that is a mixture of two Poisson processes hence non-ergodic: with probability 1/2
it is a Poisson process at rate 1, and with probability 1/2 it is a Poisson process at rate 2.
With no point at the origin it is time-stationary, with a point at the origin it is point-stationary
which would give us P (Ψ0 ∈ ·). Both of those versions are the natural way to think about what
is the time-stationary versus the point-stationary versions. Under the time-stationary version,
λ = (1/2)(1 + 2) = 3

2 as should be. Moreover using the point-stationary version Ψ0 we get
E(U0

0 ) = (1/2)(1 + 1/2) = 3/4, again as should be. But using the Q distribution it holds that
EQ(U0) = 2/3. Going a bit further, one can show that under Q, the point process is a 1/3, 2/3
mixture of a Poisson process at rate 1 and a Poisson process at rate 2.

To handle non-ergodicity along the lines of our approach, ones needs to condition on the
invariant σ− field as in Birkoff’s ergodic theorem applied to a stationary but non-ergodic
process. For details, the reader can consult [20] where that is exactly what is done in continuous
time. Q ignores the invariant σ− field and treats the process as if it were ergodic.

References

[1] S. Asmussen (2003). Applied Probability and Queues (2nd Ed.). Springer-Verlag, New York.

[2] F. Baccelli and P. Bremaud (1994). Elements of Queueing Theory. Springer-Verlag, Berlin.

[3] L. Billingsley (1968). Probability . Addison-Wesley, New York.

[4] A. Brandt, P. Franken, and B. Lisek (1990). Stationary Stochastic Models. John Wiley and Sons,
New York.

[5] L. Breiman (1968). Probability. Addison-Wesley. Reprinted by SIAM 1998.

[6] H. Bruneel and B. G. Kim (2012). Discrete-Time Models for Communication Systems Including
ATM. Springer, New York.

[7] H. Daduna and F. Shaßberger (1982). Networks of Queues in Discrete Time. Zeitschrift fur Oper-
ations Research, 27, 139-175.

[8] R. Durrett (1991). Probability: Theory And Examples. Wadsworth and Brooks/Cole, Pacific Grove,
California

32



[9] P. Gao, S. Wiitevrongel, and H. Bruneel (2004). Discrete-time multiserver queues with geometric
service times. Computers & Operations Research 31, 81-99.

[10] P. Franken, D. König, U. Arndt, and V. Schmidt (1981). Queues and Point Processes. Akademie-
Verlag, Berlin.

[11] P. Glynn and K. Sigman (1992). Uniform Cesaro limit theorems for synchronous processes with
applications to queues. Stochastic Processes and their Applications, 40, 29-43.

[12] H. Halfin (1983). Batch Delays Versus Customer Delays. The Bell System Technical Journal, 62,
2011-2015.

[13] O. Kallenberg (2017). Random Measures, Theory and Applications, Springer, New York.
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