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Abstract
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This paper shows that certain basic descriptions of the time-dependent behavior of the

M/M /1 queue have very simple representatfions as mixtures of exponentials. In particular,
this is true for the busy-period density, the probability that the server is busy starting at zero,
the expected queue length starting at zero and the autocorrelation function of the stationary
queue-length process. In each case the mixing density is a minor modification of a beta
density. The last two representations also apply to regulated or reflected Brownian motion

(RBM) by virtue of the heavy-traffic limit. Connections are also established to the classical

spectral representations of Ledermann and Reuter (1954) and Karlin and McGregor (1958)
and the associated trigonometric integral representations of Ledermann and Reuter, Vaulot
(1954), Morse (1955), Riordan (1961) and Takacs (1962). Overall, this paper aims to provide a
more unified view of the M/M/1 transient behavior and show how several different
approaches are related. '

Keywords: M/M/1 queue, Brownian motion, spectral representation, mixtures of exponen-
tials, busy period, autocorrelation function, time-dependent mean, transient behavior,
Chebycheff polynomials, duality, the associated process.

1. Introduction

A fundamental result for the M/M /1 queue and more general birth-and-death
processes is the spectral representation of the probability transition function
P, (t); see Ledermann and Reuter [23], Karlin and McGregor [17,18] and van
Doorn {33]. This spectral representation is an explicit representation as a (not

necessarily nonnegative) mixture of exponentials, i.e.,

Pty =m [ e, (x)q,() dB(x)

)
0

(1.1)

where my=1 and 7, = (A,... A;_;)/(p; ... p;) With A; the birth rate and p; the
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death rate in state j, g,{x) is a recursively defined system of polynomials in x
satisfying orthogonality relations

mf a(x)q,(x) d2(x) =8, (12)

with §;, =1 if i=; and O otherwise, and ®(x) is a positive measure on [0, co0)
called the spectral measure. However, even for the M /M /1 queue, the explicit
representation (1.1) is fairly complicated, yielding orthogonal polynomials ¢,(x)
related to the Chebycheff polynomials of the second kind. For example, from
(1.1) it is not obvious that there is a convenient representation for the mean queue
length at time 7. One purpose of this paper is to show how the explicit
representation (1.1) for the M /M /1 queue can be further exploited. For example,
we show that tractable expressions can be obtained for the moments.

A second purpose of this paper is to point out that several M/M /1 quantities
of interest have remarkably simple spectral representations. In particular, this is
true for the busy-period density, the probability that the server is busy starting at
zero, the mean queue length starting at zero and the (auto) correlation function of
the stationary queue-length process. If g(¢) denotes one of these functions, then it
has a representation

g(t)= [y e w(y) dy, 120, (1.3)

. where the mixing density w(y) in (1.3) is a simple modification of a four-parame-

ter beta density (B(p, ) = B(p, ¢, 7, &), i.e, w(y) =Af(y)/y* for constants
A and k where f(y) is the beta density

_Ilp+q) (y—1)" m—p)"'
f(y)= T(p)y(q)  (z—)7*e!

with I'( p) being the gamma function; see Ch. 24 of Johnson and Kotz [15). These
simple spectral representations facilitate calculation by numerical integration and
they improve our understanding of the M /M /1 transient behavior. Moreover,
these simple M /M /1 spectral representations imply corresponding simple spec-
tral representations for the first moment function starting at zero and the
correlation function of regulated or reflecting Brownian motion (RBM).

In fact, a simple spectral representation for the M /M /1 busy-period distribu-
tion was already obtained by Karlin and McGregor in (6.4) of [18], but it doesn’t
seem to be sufficiently well appreciated. We indicated how to obtain this
particular M /M /1 result directly without getting involved in the full spectral
theory (theorem 3.1 below). In fact, our argument coincides with Keilson and
Kooharian’s analysis of the probability of emptiness in M /M /1 on p. 110 of [21].
The other simple spectral representations follow immediately from the busy-period
representation by exploiting relations that we established in [3—5]. (Our recent
papers [1-5] do not discuss spectral representations; here we provide connections

’ T *‘g)’s'&: (1'4)
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between our recent results and the earlier literature.) In fact, all four spectral
representations follow immediately from any one, by virtue of these relations.
First, the probability that the server is busy at time ¢ when the system starts
empty, 1 — Py (1), is connected to the busy-period cdf B(¢) by the remarkable
relation 1 — Py,(¢) = pB(t), as shown in corollary 4.2.3 of [4]. (As indicated in
section 6, this relation can be explained to a large extent by duality; see Chapter
3 of [33]. From this relation, Keilson and Kooharian’s result in [21] can be
obtained from Karlin and McGregor {18], while our theorem 3.1 can be obtained
from either [18] or [21].) The other two quantities are connected to B(t) via
stationary-excess relations, as indicated in section 4 below. We also obtain a new
proof of the spectral representation for the transition function P, ;(¢) in (1.1) for
the M/M/1 queue starting with the spectral representation for the busy-period
distribution; see (6.5), (6.7) and section 8. We show that our proof of (1.1)
starting from the busy-period distribution is very natural by relating it to the
associated process introduced by Karlin and McGregor [18]; see section 10.

The RBM spectral representations emerge in the limit as p — 1 where p is the
traffic intensity. The connection to RBM is made transparent by using an
appropriate time scaling. For the RBM correlation function, an equivalent simple
spectral representation was already obtained by Ott [28]; also see Woodside,
Pagurek and Newell [35]. Woodside et al. show how the simple spectral represen-
tation can be exploited to obtain accurate numerical results by numerical integra-
tion, In fact, several papers have recently proposed other techniques for perfor-
ming numerical calculations to describe the transient behavior of the M/M/1
queue [8,12,13,16,31], but it appears that numerical integration {e.g., by Simpson’s
rule) using integral representations is a better way to proceed. (However, the
generalized Q-functions in {12,13] seem useful to obtain very high accuracy.) The
advantages of integral representations for generating numbers for the M/M/1
queue seems to have been first discovered and applied by Morse [26].

Given the simple spectral representations developed here, it is evident that
considerable unanticipated simplification occurs when you compute the mean
directly from the probability transition function in (1.1) via X7, jPy (7). We
show how this simplification and others occur via relationships for the Chebycheff
polynomials of the second kind. In other words, we also show how the new simple
spectral representation can be obtained directly from the general spectral repre-
sentation (1.1) by establishing appropriate propertles of the Chebycheff poly-
nomials; see theorems 5.3, 6.2 and 7.1.

We began this research to see if we might discover how our recent results in
[1-=5] are connected to the earlier literature on spectral representations. We found
that the nice M/M /1 structure in [1-5] is indeed reflected by -a corresponding
nice structure in the spectral representations, and that these results can also be
deduced relatively directly from the spectral theory. Inevitably our goal expanded
to trying to better understand the connections among several different results and .
methods for the M/M /1 queue. To reflect what we learned, this paper contains a
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certain amount of expository material, which we hope will help others understand
the literature. To a large extent, the M/M /1 queue is a solved problem, but we
believe that a better understanding of the solution is still needed.

The rest of this paper is organized as follows. We provide background on the
M/M/1 queue in section 2. We derive the simple spectral representation for the
busy-period density in section 3. We derive the associated simple spectral
representations for the mean queue length starting at zero and the correlation
function in section 4. We also obtain the corresponding results for RBM there.

In section 5 we begin to establish connections to (1.1) by establishing the
spectral representation for the first-passage-time density from »n to 0, ie., the
n-fold convolution of the busy-pertod density. In section 6 we derive the spectral
representation for the transition function F,,(¢) and consider the direct evalua-
tion of the mean 2°%_,nP,, (t) from (1.1) and [18]. In section 7 we obtain relatively
simple spectral representations for all moments of the queue length starting at i,
giving explicit integral representations for the first two. In section 8 we obtain a
new derivation of (1.1), based on a relation between the first passage times up
and the orthogonal polynomials ¢;(x). In section 9 we established connections to
the trigonometric integral representations due to Ledermann and Reuter [23],
Vaulot {34] and Riordan [29], Morse [26] and Takacs [32]. Finally, in section 10
we discuss the role of the assoctated birth-and-death process, which is used
extensively in [18]. ' '

2. The M /M /1 model with time scaling

Let Q(t) represent the queue length (including the customer service, if any) at
time ¢ in the M/M /1 model. Let the service rate be 1, so that the arrival rate
coincides with the traffic intensity p. Assume that p <1, so that the system is
stable with Q(¢) converging in distribution to Q(oc0) as t — oo, where P(Q(o0) =
ky=(1-p)p* k=0.

As in [3-6], we further scale time by 28*=2/(1 —p)? ie., we consider
Q(2t/(1 — p)?) and let P, ,; (1) be the time-scaled transition function ¢

P (1) = P(0(21/(1 - 0)") =51 Q(0) = ). (2.1)

The time scaling in (2.1} is a very important part of the story;, we use it
throughout the paper. It is significant that the first-order effect of the single
parameter p is captured by this time scaling. As discussed in section 2.2 of [3], the
time-scaling captures the heavy-traffic behavior as p — 1. In particular, the family
of processes {271 — p)@(2t/(1 — p)*): ¢t > 0} indexed by p converges to canon-
ical RBM, having drift coefficient —1 and diffusion coefficient 1, as p — 1.

We start by focusing on the busy-period distribution. Let B(¢) be the time-
scaled busy-period cdf (cumulative distribution function); let B<(z)=1 — B(¢) be
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the complementary busy-period cdf; and let b(¢) be the density. Let f?c(s) and
b(s) be the associated Laplace transforms, which are ‘

b(s) Ej:’ e=*'b(1) dt =z,(s) = [1 -8+ 6%~ 8%(s)] /o

B(s)=28/[1+6s+ ¥(s)], (2.2)
where

8=(1-p)/2, W(s)=[1+2(1-0)s+(85)7]""

r(s)=¥+(1-0s), r(s)=¥—(1-10s) (2.3)

pz; =1—8r, pza=1+r,

nth=2s, pzz;=1 andp(l—2z,)(z,—1)=286%.
The functions z, = z,(s) and z, =z,(s) are the two roots of the basic quadratic
equation pz?— (1 +p+28%)z+1=0. A
Kendail [22], pp. 168-171, first showed that the Laplace transform &(s) in
(2.2) can be inverted to obtain the representation (in our time scale)

b(t)= L e /eI (v)], t>0, (2.4)
to
where I,(») is a modified Bessel function of the first kind (p. 377 of [7]),
2
(1+p)

T= and »=16"2\p . (2.5)

The parameter + in (2.5) is the time-scaled relaxation time. Interesting probabilis-
tic and algebraic derivations of (2.4) have been given by Champernowne [14] and
Massey [25].

3. The spectral and mixing densities of the busy-period density

We start with the busy-period density 5(¢) and define two representations

b(t) =frzx e Mp(x)dx, =0, (3.1)

forO<r <r,<oo and

b()= [y e Pw(y) dy, 130, | ER)

for 0 <t <1, < oco. We call ¢(x) in (3.1) the spectral density and w(y) in (3.2)
the mixing density; ¢(x) in (3.1) averages the exponential rares x, while w(y)
averages the exponential means or times y. (Since pB(t) =1 — Py,(t) and g4(x)
=1, it is easy to see that ¢(x) in (3.1) is the density of the spectral measure @(x)
in (1.1), but & also has an atom at the origin; see {6.5).)
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From what we have done here, we do not yet know that (3.1) and (3.2) are
valid, for any ¢(x) and w(y), but we will show that they are. (This also follows
from (6.4) of [18].) Given that (3.1} and (3.2) hold, the spectral density ¢(x) and
the mixing density w(y) are easily related through the change of variables

y=1/x, so that

w(y)=y7%(y™") and é(x}=x"2w(x"") (3.3)
and the limits of integration in (3.1) and (3.2) are related by

rn=7" and r,=1". (3.4)
Hence, it suffices to consider only one of (3.1} and (3.2). For interpretation, we
prefer (3.2) because it relates directly to the relaxation time. Indeed, the upper
limit of integration 7, in (3.2) is the relaxation time. Moreover, (3.1) and (3.2) can
easily be used to describe the asymptotic behavior as t — co, e.g., via Laplace’s
method; see p. 86 of Olver [27].

THEOREM 3.1
Representations (3.1) and (3.2) are valid with

_(=k) (k)
2

S i 3 B (35)
—mx){npx—1

é(x) = 5 :) \[ x( ) , 'rz_l%xﬂ_ﬂ'f]'a (3.6)

w(y) = (1——p) /(& —n)(% —y) Cm<y<n, (3.7

P y?

The densities ¢ and w in (3.6) and (3.7) have similar properties; e.g., both are
unimodal and concave; the derivatives are strictly decreasing from + co at the
lower limit to —oc at the upper limit. The modes of ¢(x) and w(y) are
2/(1 + p) and (3(1 + p) — y1 + 34p + p*) /4, respectively. Sample values for the
case p=0.75 appear in table 1. As noted in [6], w(y) has relatively little mass
near its upper limit 7,, so that we should not be surprised that simple approxima-
tions based on the relaxation time 7, do not perform well.

Before proving theorem 3.1, we show how it can be discovered and proved
from the moments of the busy-period, which we know (theorem 3.2 of [4] or
section 2.5 of [6]). In particular, it is easy to see that the &"™ moment of w(y) is
the ™ moment of b(?), say m,, divided by k! Similarly, it is easy to see that the
k moment of ¢(x) is expressed via the derivatives of b(t) as

fx kp(x) dx = (—1)T"B%D(0), k2. - (3.8)

N
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Table 1
Sample values of the M /M1 busy-period spectral density ¢(x) in (3.6) and mixing density w(y)
in (3.7) for the case p=0.75.

rate spectral time mixing
x density ¥y density
d(x) w(y)
in (3.6) in(3.7)
(asymptotic rate)
= 0574 0.000 7, = 0.009 0.0
0.60 0.019 0.010 221
0.75 0.039 mode = 0.012 26.6
) 1.00 0.0456 0.015 24.0
mode = T+p = 114 0.0461 0.03 11.2
1.25 0.0460 0.10 2.05
1.50 0.045 0.50 017
2.00 0.042 1.00 0.05
10.0 0.021 1.50 0.01
100.0 0.002 =174 0.00
m1=111.0 0.000 (relaxation time)

However, from theorem 9 of [5], we can express the derivatives 5(*)(0) in terms of
the moments as '

(1) lpt-n(gy = M1

(=1)" b (0) (k+1)10% 17 k=2, (3.9)
Therefore, we have determined both ¢(x) and w(yp) via their moment sequences.
We can thus identify them by solving this moraent problem.

In fact, we first discovered the simple spectral representation for the RBM
correlation function by precisely this moment matching approach. As we show in
section 4, the mixing density for the RBM correlation function is a beta
B(3, 2,0, 2) density symmetric around the mode 1. All moments for this beta
distribution are given in (7) on p. 40 of [15]. We first discovered theorem 4.2
below by recognizing that the moments of the mixing density coincide with the
moments of the beta 8(3, 2, 0, 2) density.

Proof of theorem 3.1
We determine ¢(x) in (3.6) by a judicious partial evaluation of the Bromwich
integral for the inversion of the Laplace transform &(s) in (2.2), 1e.,

- L +ieop st
b(1) =5 f_,-w b(s) e ds, (3.10)
as in (7) on p. 289 on Bailey [9]. First note that ¥(s) in (2.3) can immediately be
expressed as :

Y(s) = f{ms+D(ns+1). (3.11)
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Because the singularities of B(S) are on the negative real axis, we can replace the
contour by a loop which starts at infinity on the negative real axis, stays below
the negative real axis, goes round the origin counter-clockwise and returns above
the axis to its starting point. The singularities of 3(3) are a branch point at
s;=—m; !, a branch point at s,= —7; ! and a branch cut from s; to s,.
Therefore, we can further deform the loop contour to two lines which coincide
with the upper and lower edges of the branch cut. Hence we have

1 50%(s) 1 f 8% (s)

_ eds+ ——
2aiJ,  p 2aiJ,,  p

b(t) = e* ds. (3.12)

Let s =e ""x in the first integral and let s=e*""x in the second integral. Then
we find

b(2) = j%m ) (mx—1) e*dx. m

Second proof of theorem 3.1 .
Starting with (3.1), note that the Laplace transform b(s) coincides with the

Stieltjes transform of the spectral density ¢(x), say ¢(s), see p. 15 of [30}; ie.,

- 0 o - _ w

b(s)=fo 10 d:_¢(s)_fo o #(x) dx (3.13)
which can be inverted by

1 - N LT :
x0(x) = tim 5[ (~x~ ic) = (—x +ic)]

lim 5 = [3(=x + ie) ~ $(—x— i€)]

6.
£«
=;iwﬂ1—+1x)(72x—1). - (3.14)

4. Related quantities via the stationary-excess relations

As in [3-5], let H (¢) be the time-scaled mean queue length starting at zero,
divided by the steady-state limit, and let ¢ () be the time-scaled (auto) correla-
tion function of the stationary M/M /1 quene-length process. From theorems 1
and 5 of [5], we know that ¢, () coincides with the time-scaled second moment of
the M/M /1 virtual-waiting time process starting at zero, divided by its steady-
state limit, denoted by ¥V,(¢). The functions H,(¢) and V,(z) are bonafide cdf’s
(cumulative distribution functions) with proper density functions, denoted by
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h,(t) and »,(¢). The key stationary-excess relations established in corollary 3.1.3
of [3] and theorem 1 of [5] are

m(r) =231

py(1) =c,(1) = 2H‘(r)—2f (s)ds, r>0. (4.2)

9‘1fwb(s) ds, i»0, (4.1)

From (4.1), (4.2) and theorem 3.1 we 1mrnediately obtain spectral representa-
tions for A,(¢) and »,(¢).

THEOREM 4.1
The M/M /1 densities h,(¢) and »,(¢) have the representations
(a) ()= [ xe g (x) dx= [y ™ wy(y) dy (4.3)
4] T
where
(1 —-7x)(rx—1
¢l(x)=q5§;c)___i\r : )(2 ), n<x<rn,,
x*
_yw{y) 1 ]/(}’ —n)(1,— )
Wl(y)_ @ - 7P ¥ y TRYSTy, (44)
for #, r,, 7, 7, in (3.4) and (3.5);
. 2 —x . T2 — _—
®) m(1) =[x e™y(x) dx = [y e /wa(y) dy (4.5)
n T
where

2¢1(x) _2¢(x) _ 2 JO0—nx)(nx—1)

Ox? Y - x?

Wz(Y)=2)’W1(y)="2_}i;‘(L)=;%1/()’—""1)("'2—}’)’ n<y<n. (46)

¢y(x) =

3 r'["g..x"g.rZs

REMARKS

(4.1) The mixing density w,(y) 1n (4.6) is a four-parameter beta density
B(3, 3, 7, ») as in (1.4) symmetric around (1 + p)/2. Thus w,(y) is a beta
density, while w,(y) = w,(»)/2y and w(y) = 20w,(y)/y>.

(4.2) Bailey obtained something close to the simple spectral representation for
the mean queue length in (31) of [10] After time scaling, G(A, 0, 1) there 1s
pH;(1)/26.

(4.3) Additional links can easﬂy be added to the stationary-excess chain.
Obviously all integrals and derivatives of 4(¢) have simple spectral representa-
tions obtained directly from (3.1), (3.2) and theorem 3.1. In fact, the associated
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process considered in section 10 adds a meaningful fourth link to V,(¢), H,(¢)
and B(¢); see (10.11). =

We immediately obtain the corresponding RBM spectral representations from
theorem 4.1 by letting p — 1. The scaling in (2.1) makes the limit canonical RBM
with drift coefficient —1 and diffusion coefficient 1. Note that -, >0 and =, = 2
as p—1 in (3.5). Convergence to proper Limits as p-—> 1 can be rigorously
justified in several ways; it suffices to apply corollary 5.2.2 (a) of [4]. Direct
derivations from [1] are also not difficult.

THEOREM 4.2
The RBM densities /4,(t} and »,(¢) can be represented as in (4.3) and (4.5)
with
vix—1

(I’l(x):——z—_a %-g_x<00,
wTX

w(y) = 22
1 ‘77'\/; ?

2v2Zx—1
wxX

wy(y)= ~\/y(2 y), 0<y<2,(8(3,%)).

8

REMARKS
(4.4) The representation for »,(z) in (4.5) for RBM via the rmxmg density
w,(y) was obtained previously by Ott [28] and Woodside et al. [35]: Since the
variance of equilibrium RBM is 1/4, the RBM covariance function C(¢) is
represented by

()= (/8 [ n(s) ds=(1/a) [ 2 =) dy
=@/m) [ B3] dy, 120, ; (a.7)

with the last step due to the change of variables z =y /2.
(4.5) The gamma density with mean and shape parameter 1/2,

y(t)=Qmt) e, tz0, | (4.8)
and its stationary-excess density v,(¢), which are fundamental building blocks for

RBM, appearing in (4.2) and (4.4) of [1} and theorem 9.1 (e) of [4], also can be
represented as mixtures of exponentials with beta mixing densities. For y(¢) and

v,(¢) the mixing densities are 1 /m/y{2 — y) whichis 8(1/2, 1/2) and Wy /mf2-y
which is 8(3/2, 1/2), respectively.
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5. Spectral representation for convolutions of busy-period densities

Let f(¢; n, 0) represent the density of the first-passage time from » to 0 in the
time-scaled M /M /1 queue, i.e., the #-fold convolution of the busy-period density
b(t). Since convolution does not preserve representation as a probabilistic mix-
ture of exponentials [20], we should not expect to get such a representation for
f(¢; n, 0) and indeed we do not.

We first establish a recursion for f(¢; n, 0).

THEOREM 5.1
The first-passage-time densities satisfy

pf(t; n+1,0)= (1 +p)f(t; n,0) +26%f"(2; n,0)—f(z, n—1,0),
n=1, (5.1)
where f(1,0,0)=0.

Proof
The recursion (5.1) follows from the basic law of motion. From the basic
guadratic equation after (2.3),

pzi—(1+p+20%)z,+1=0 _ (5.2)
or
pr{ =(1+p+260%)2{ — 207", n>1, (5.3)

with z% = 1. Since 27 is the Laplace transform of f(¢; n, 0) by (2.2) and sz] is the
Laplace transform of f'(¢; n, 0), the result follows. ®

We now obtain the spectral representation for f(#; n, 0); this constitutes a new
proof of (6.6) on p. 103 of Karlin and McGregor [18]. The representation is
expressed in terms of the Chebycheff polynomials of the second kind, denoted by
Ul(a); see p. 256-259 of Magnus et al. [24]; eg., U_i(a)=0, Uya)=1,
Ua)=2a, Uy(a)=4a’—1, Uy(a) =8¢’ — 4a and

Uysa(a) =2aU,(a) - U,_y(a), n>1. (5.4)
THEOREM 5.2
The first-passage-time density can be represented as
f(t; n,0) =fi‘_ é(x, n)x e dx, t =0, (5.5)

where 7, and 7, are given in (3.5) and _
Ce(x, n+1)=p""?U (a(x))¢(x) : : (5.6)
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with ¢(x) the spectral density in (3.6),
_ 2
a(x) = M (5_7)

2/p

and U, (a), n > 1, are the Chebycheff polynomials of the second kind in (5.4).

Proof
Assume (5.5) and apply the recursion in theorem 5.1 to get
po(x, n+1)=(1+p—20%x)¢(x, n) —¢(x, n— 1), nxz1, (5.8)

with ¢(x, 1) = ¢{x). Solving the second-order difference equation (5.8) for fixed
x gives (5.6), as can be checked by substitution, using (5.4). ®

Note that

(1+p;292x)¢(x) (5.9)

which is negative for x > (1 + p)/26?, so indeed negative weights occur when
nzl.

We now indicate how to apply theorem 5.2 to obtain the spectral representa-
tion for A,(¢) in theorem 4.1(a). By corollary 3.1.3 of [3],

¢(x,2) =

hy(t) = )E %ﬂﬂt; n,0), (5.10)
which implies that
() = 22 = 200, ), (5.11)

Given theorems 4.1 and 5.2, (5.11) is equivalent to the following relation among
the Chebycheff polynomials of the second kind, which we establish directly.

THEOREM 5.3
For the Chebycheff polynomials U/(a) in (5.4) with a(x) in (5.7),

S o2y, (a(x) =

=1

292 (5.12)

Proof
Apply the generating functions for U,(a), p. 259 of Magnus et al. [24]. Since

i U(a)z"=1/(1 —2az+ z?),
n=0

(n 1)/2U — — .
,E‘ -i{a(x) 1—2a(x)p +p | 26%x
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6. The spectral representations for P, (¢) and P, (z)

In [4] we saw that the M/M/1 transition functions Py, (¢) and P, () have
nice structure not present for the general case P, (¢). In this section we relate
P, () to Karlin and McGregor [18] and use it to obtain a direct evaluation of the
mean - m,(¢, 0) =X%_ ,nP,,(¢), and thus an alternate proof of theorem 4.1(a).
(Recall that H (¢} = m,(¢, 0} /m,(c0, 0).)

Since P, (¢) = p’/~'P,(t) by reversibility as in (4.3) of [4], results for P, (¢} also
translate immediately into results for P,,(¢). From corollary 4.2.2 of [4],

P, (1) =1 —p)p" —p"F(t; n, 0) + p"*'Fe(t; n+1,0) (6.1)
where F°(t; n, 0) is the complementary cdf associated with f(z; n, 0). '

REMARK 6.1

It is significant that (6.1) is a minor modification of what can be obtained in
general from the dual process; see chapter 3 of van Doorn [33]. The dual
birth-and-death process, denoted by an asterisk, is constructed from the original
by defining new birth and death rates A* and p* in terms of the old ones by-
A¥=p ., and p¥ =2 Since A,>0, p} >0 so that the dual process has an
absorbing state at —1. In general, the original process and dual are related by

P, (t)=F*(t;n—1, ~1) = F*(t; n—1). (6.2)
The special M /M /1 structure (homogeneity) then enables us to convert (6.2) into
(6.1). First, by symmetry, obviously

F*(t;n, —1)=F,(; 0, n+1) (6.3)
where F (t; 0, n) is the first-passage-time cdf for the extension of the original

M /M /1 process to all integers by removing the barrier at 0. Next, by reversibility
and homogeneity,

E(t; 0, n)=p"F(t; n, 0), (6.4)
as shown in the proof of theorem 1.4 in [1]. M

From (6.1) and theorem 5.2, we immediately obtain a spectral representation
for Py, (1)

THEOREM 6.1 _
P ()= —p)p"— fT’ Y(x, n}x e"* dx, where 7, 7, are given in (3.5),

T2

y(x, n)=[¢(x, n) — ¢(x, n+1)] /x
and ¢(x, n) is given in (5.6).

It is interesting to relate theorem 6.1 to Karlin and McGregor [18]. From (6.1)
on p. 101 and 5.4 on p. 98 of [18] or (6.4.2) on p. 65 and theorem 6.2.5 on p. 54 of
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[33], we obtain

Po(1)=(—p)e"+ [ 67 (x)q,(x)o(x) e~ dx (6.5)
where g,(x) are the orthog;nal polynomials for M /M /1, so that

g, (x)8(x) = £o(x, n) = o(x, n+1) (6.6)
and

q,(x) =p"?U,(a(x)) = p~"* V72U, _1(a(x)) (6.7)

for a(x} in (5.7), which 1s equivalent to (5.5) on p. 99 of [18], but in somewhat
cleaner form.

REMARK 6.2

Formulas (6.5) and (6.7) may not. seem to be convenient for numerical
calculation because a(x) in (5.7) depends on x. At first glance, it might seem that
we have to apply (6.7) for each of the uncountably many x in the interval
[7 %, 7,7 '], but this is not necessary, because we can represent U (a) as a

polynomial in « of the form c,,+c,,a+ -+- +¢, " and use (5.4) to obtain a
finite recursion for the coefficients, namely, coo =1, ¢;=0, ¢;; =2, cpp= —1,
en=0,¢p=4andc,,, ;=2¢,; y—c,_,;for0<j<n+1and n>3. Alterna-

tively, for any birth-and-death process we can use the basic recursion for the
‘polynomials g,(x) to obtain a recursion for their coefficients. Indeed, for the
M/M /1 queue in our time scaling, it is easy to see that

n

q,,("x)=1+p‘”l§ @, (28%)" (6.8)

where a,, =1, a,, =X7_kp*"Vand

an+l,j=(1+p)anj+an,j—l_p—lan—l,j' u (6'9)

We now consider a direct evaluation of the mean starting at zero. Given

theorem 4.1(a), what we want to establish is
o0

my(2,0)= 3, nPo,(1)

n =

p P e 9(x) _
=" H(t)=-—— ——— L e7¥ (dx. 6.10
T 0= 0, - [N T iy e (6.10)
Given (6.5), it suffices to establish the following relation for the orthogonal
polynomials
np"tlg (x) = — 6.11
T ne g, (x) =502 (6.11)

We establish (6.11) directly via the following result.
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THEOREM 6.2

2 npg,(x)=—1/26x.
n=1
Proof
Apply (6.7) and theorem (5.3) to get
o0 o0
Y np'g.(x)= X np"[p7" U, («) = 0" VU, (a)]
n=1 n=1

= —3> o"*U(a)=—-1/20°x. u

7. More moment spectral representations

We now show that the simplification provided by theorem 6.2 extends to all
higher moments. As in [3], it is convenient to work with factorial moments. For
this purpose, let n,,=n(n—1)---(n—r+1). The following result is proved
just like theorem 6.2.

THEOREM 7.1
Z n(r)pRQn(x) =-r Z n(r—l)pn/zUn(a)
n=r n=r—1
dr—-l 2
= —rplr" V2 (1—2az+z?)
dzr—l
fora=a{x)in (5.7) and z= {5 For r=12,
“ 4fp(a—z)  —1+6x
2 n(n—1)p"g,(x) = s =" (7.1)
n=2 (1—-2az+ %) °x

Let H,(t) be the second moment starting at zero divided by the limit as
t — c0. We can apply theorem 7.1 to obtain the following representations in terms
of the moment cdf’'s H,{¢) and V,(¢) treated in section 4. (These are equivalent to
(3.14) of {3})

COROLLARY 7.1
z, 2p 2p
Zn(n_l)Pﬂn(t)= 2]72(t)— 1— Hl('t)
n=1 (1-p) p .

2p P
——— ¥ (1) - 1_'___5H1(t)’

" m,(t,0)= rx’,‘zz"Po,, =
(¢,0) n§=:1 (2) i
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and
Hy (1) = 755 V(1) - PH@)

From {6.3) and theorems 6.2 and 7.1, we also obtain finite integral representa-
tions for the first two moments starting in any state i. For computational
purposes, we can perform the integration either directly after determining the
polynomial g,(x) by a finite recursion on the coefficients as indicated in remark
6.1 above or indirectly after making a change of variables to obtain

COROLLARY 7.2

xt

m(e, )= 3 2 (0) = 725 =07 a0 HELET ax

n=1 262

— L[l _ f q,.(x)qbl(x) e ™ dx]

1-p

and

malt, )= X 0B, (1)

_p(l+p) [ :
(1- p)2 ‘/1- ql( ) 63x*  28%x
! 2 +{(1—
= P(1+P) fl q,(x)[ ¢2(x) ( p)d)l(x):le—xldx )
(1-p) ' 1+p
For the first moment starting in 7, we need not apply the representation for

P, (t) in (6.3). Instead we can apply the decomposition from section 6 of [4],
namely,

]q: (x)e ™dx

T2

_ my(t, i) =m(t,0) +iG5(z, i) (7.2)
where '
iG5(t, ) = ¥ F<(t; n, 0) (7.3)

with F°(t; n,0) being the complementary cdf associated with the density
f(t; n,0) in section 5. From theorem 5.2,

F(t; n, 0) = f ~=02y  (afx))o(x) e dux. (7.4)

T2

On the other hand, from corollary 7.2,
Pl - "'1_l . q{)(X) —x
iGe(t, i) =pf72ﬂ 1 —q,.(;c)]m e~ dox. (7.5)
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We connect (7.4) and (7.5) by the following relation, which we again establish
directly.

THEOREM 7.2
1—g,(x)=28% ) p~"* V72U, _(a(x)).
n=1
Proof

Use (5.7), (5.4) and then (6.5) to express the right side as

1421 2a) & Uiy(alx))
a1 PV

e

_ i (U;—l(a) " U,_1(«) _ U, () _ Uy—a(a)
S ptnmbr2 P+ 172 N o/

U@ | ()

Pz it /2 =l-g(x). m

=1

We conclude this section by noting that integral representations for the
moments m,(f, i) can also be obtained from section 8 of [4]. There it is shown
that m_ (¢, i) can be expressed as a polynomial in terms of P,,(¢) and its first
(k —1) denvatives.

8. The probability transition function and the first passage times up

In theorem 6.1 we directly obtained the spectral representation for P, (z) in
(6.5) for the special case i = 0. We now show how we can treat the general case.
We start with an elementary relation among Laplace transforms given in theorem
4.3 of [4], namely,

ﬁin.(s)=ﬁ0n(s)/f(s; O: l) fOI'i<H; ) (8.1)
l.e., to be in state n starting at 0, you must pass through state i for a first time.

The key connection is provided by the following expression for the Laplace
transform of the first passage times up in terms of the orthogonal polynomials.

THEOREM 8.1

fs;0,i)=1/g,(~s).

n n
nz; trzy

Proof
By theorem 3.4 of {4],
S +
(510, m)= rn+r (8.2)
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for r, and z; in (2.3). Thus,
__
f(s; 0, n)
where A(s) and B(s) are independent of n. Since z; and z, are roots of the basic

quadratic equation (5.2), their powers satisfy the basic recursion (5.3), which can
be expressed as

_ 2a(—s)z _ "3

n—1
le o

for z°=1 and «(x) in (5.7). From (5.4), we see that the Chebychev polynomials
divided by p"/? satisfy the same recursion, i.e.,

Usile) _2a Ule) 10 oe) o (8.5)

=A(s)z] + B(s)z5 (8.3)

n

nz2, (8.4)

P(n+1)/2 0 pn/2 o p(n—l)/2 ’
Howéver, since
1 p+20% 2a(—-s) 1 U(a) 1 Uy(a)
fss500)  p o P @7 p
a e

Reasoning as in (8.1), we have
f(s;0, n)=F(5;0,i)f(s;i,n) forl<gi<n—1, (8.6)

so that we can deduce the following additional consequence.

COROLLARY 8.1 .
Forl<gign—1, f(s; i, n)=q,(—5)/q,(—s).

We now apply theorem 8.1 to give a new proof of the M/'M/l ;spectral
representation (6.5) for the case i+ 0. Combining (8.1) and theorem 8.1, we
obtain

B, (s)=q,(=s5)P,(s) fori<n. (8.7)

Since g¢,(—s) is a polynomial of the form a,+ a,5+a,s*+...+a,s* and

multiplication by s* with transforms is tantamount to taking the k™ derivative,
we can write

P, (t) = q,(—D) Py, (1) (8.8)
where D =d/d¢ is the differential operator. (Necessarily a, =1 and q, =0 for

k > i, as can be proved by induction.) Since g,(—D)e™* = g,(x)e™™, we obtain
the desired (6.5). '
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We treat i > n by reversibility: P,,(¢) = p'~"P,,(¢). For i =n, we use the fact
that £®_,p"*1q,(x) = 1 (reasoning as in theorem 6.2) to obtain

P(t)=1- iopin(t) = IQJ(x)[ § P"+lqn(x)}¢(X) e *dx

n+i nj

=1- fa,(x)[1-p*q,(x)]p(x) e dx
= [o*g,(x) ¢ (x) e~ dx. (8.9)

REMARK 8.1

We have just used theorem 8.1 to establish the spectral representation (1.1). If
we take the spectral representation (1.1) as having been established for general
birth-and-death processes, then we can reverse the argument to deduce theorem
8.1 and (8.7)—(8.9) for general birth-and-death processes. In fact, this was done
by Karlin and McGregor; see p. 378 of [19]. Theorem 8.1 can also be shown to be
a special case of a result by Brown and Shao [11]. They show that the distribution
of the first passage time from 0 to n can be expressed solely in terms of the
eigenvalues of the n X n submatrix of the infinitesimal generator matrix associ-
ated with states 0, 1,..., n — 1 (without a separate calculation of the eigenvalues).
|

9. Trigonometric integral representations

In this section we relate the spectral and Bessel function representations for the
busy period distribution in sections 2 and 3 to trigonometric integral representa-
tions. The first M/M /1 trigonometric integral representations were obtained in
1954 by Ledermann and Reuter [23] for the busy-period density b(¢) and
associated quantities; see (4.10) on p. 365. At the same time, Vaulot [34]
independently obtained a trigonometric integral representation for the comple-
mentary waiting-time cdf in the M/M /1 queue with the last-come first-served
(LCFS) service discipline. In 1961 Riordan [29] observed that this M /M /1-LCFS
waiting-time complementary cdf coincides with the M /M /1 busy-period comple-
mentary cdf; also see pp. 64, 108 and 114 of [30] In our time scale, the
representation is

Bc(t) W./(‘) (S‘;I(lxx)) e Y(X)1/8% g | | (9.1)

where

y(x)=(1+p—2\/; COS x)/2. ' (9.2)
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It should be apparent that, just like (3.1) and (3.2), (5.1) is conventient for
obtaining numerical results by numerical integration. (Indeed a simple trapezoidal
rule with 200 points produces an absolute error of order 1077 for p < 0.85. For
p > 0.85 you need more points near the mode.)

From section 4, it is evident that the mean queue length and the correlation
function also have trigonometric integral representations. Indeed trigonometric
integral representations for the probability transition functions P, ;(¢) in (1.1) and
the correlation function were discovered in 1955 by Morse [26]. Trigonometric
integral representations for (1.1) and the mean queue length are given in chapter
1 of Takacs [32]. Ledermann and Reuter {23] and Takacs [32] obtain their
trigonometric representations by considering the truncated M/M /1 model with a
finite waiting room. It is significant that the associated integral representations
for the truncated model constitute approximating Riemann sums for the integral
representations in the standard M/M /1 model. Thus, to consider an approxima-
tion with a finite waiting room, as Stern [31] does, is tantamount to performing a
certain numerical integration of the standard M /M /1 integral representations.

To go from the Kendall Bessel-function representation (2.4) to the
Ledermann-Reuter-Vaulot trigonometric integral representation (9.1) we can
exploit a basic trigonometric property of the Chebychev polynomials

sin(n+1)y '

U,(cos y) = “eny (9.3)
see p. 257 of [24] and p. 98 of [18]. Since a(x) in (5.7) appears as an argument of
U,, we let cos y = a(x), which is equivalent to x = (1 + p — 2/p cos y)/26>

From (2.4), we obtain

2 J_x
Bt e—x(l+p)/28 9.4
()= f Tox ( (94)
by applying (3.5) and =7, = 8% By 9.6.18 in [7],
( J_x) ) efpreoss/0® 45 (9.5)
so that
. _ 1 T . 2r o X
B(t)—wf(;(smz) L'[ exp[ T (1+p 1[.0_0032)]0 ]dz
- [ —1(1+p—2/pcosz)/28% :
_1 f (sin z)*| — dz (9.6)
T/ _(1+p—2\/5 cosz)/2

which agrees with (9.1).
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Now we apply (9.1) to establish theorem 3.1. In (9.1) make the change of
variables

_ 262
1+p—|/Ecosx.

We use the following relation

(9.7)

Y

LEMMA 9.1

=)=y - — o sin »

1+p——2\/5cosx'

Proof
Jo sin x=/p(1 — cos®x) = /p(1 ~ cos x)(1 + cos x)
= \/(]/; —Jp cos x)(/; + o cos x)

‘/(2\/; - (1 + p) + 202))_1)(2}/; +1+p— 262_)}_1)
2

1

w |

y(r—n)(n~»)

(l-l-p—?.]/,; cos x

57 J(y—m)n—y). =

Using (9.7) and lemma 9.1, we obtain

BC(I) = ._.%-fw e"y(x):/ez (\[; sin X)(\/; sin x) dox
, p Jy (1+p—2/p cos x)
1 T2 o1/ \/(y—TI)(Tz"_)’) 9?

mp J, ) F dy

which is the integral form of theorem 3.1.

10. The associated process

Karlin and McGregor’s [18] treatment of the M/M/1 queue and the multi-
server M /M /s extension is largely based on an associated absorbing birth-and-
death process with state zero removed. The fact that the associated process is
easier to analyze is closely related to our finding it easier to start with:the busy
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period density in section 3 and its n-fold convolution in section 5. However, the
value of the associated process seems pretty much limited to the M /M /1 and
M /M /2 special cases, as we will show.

To understand the role of the associated process, recall that the spectral
representation (1.1) has two parts: existence and construction. For general birth-
and-death processes (subject to appropriate regularity conditions), we know that
a spectral representation of the form (1.1) exists. The difficulty is the spectral
measure P. In general, we know that a spectral measure @ exists, but it remains
to identify it.

However, if the orthogonal polynomials g;(x) in (1.1) turn out to be well-studied
classical polynomials, then the spectral measure may have already been de-
termined. For example, for the Chebychev polynomials of the second kind U,( y),
from p. 258 of Magnus et al. [24], we know that

[ UGN ay=3, (10.1)

An important observation made by Karlin and McGregor is that in general the
spectral measure can be identified through the transition probability Py,(#). Since
=qo(x) =1, Py(¢) in (1.1) is the Laplace-Stieltjes transform of the spectral
measure Moreover, the Laplace transform Poo( §) of Py(t) is the Stieltjes
transform of @, say ®(s), ie.,

1‘30{,(3)=j(;a0 e " Py(t) dt=fwd@( %)

0 X+s

= &(s). (102)

For the M/M /1 queue, the associated process turns out to be ideally suited to
identify Py, (¢) and thus the spectral measure ®. Let °P, (1) be the probability of
being in state j at time ¢ without ever visiting state 0, starting in state /. The
associated process is the birth-and-death process on the positive integers with
probability transition function °P, ;{(2)- As on p. 90 of [18], its generator matrix is
obtained from the generator matrix of the original process by deleting the first
row and column. For the M/M/1 queue, g, = 0 so that all diagonal elements of
the generator matrix are identical except the first. When we go to the associated
process, this asymmetry is removed: all diagonal elements in the associated
generator matrix are identical. This additional symmetry is the key to the nice
orthogonal polynomials for the associated process. Thus, we can easily identify

°P,,(t) and its spectral measure, say °®. In particular, in this case the orthogonal
polynomials, say °g,(x), are expressed directly in terms of the Chebychev poly-
nomials of the second kind by

9 (x )—"’(,E%)"—)=p-“-wu-_1(a(x)) >, (03

for ¢(x) in (3.6) and ¢(x, i), U(a) and a(x) in section 5. (As in [18], we obtain
(10.3) by relating the recursion for,%,(x) to the recursion for U,(«) in (5.4).) By
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making the change of variables y = a(x) for a(x) in (5.7), we get the spectral
measure °® and the full spectral representation (1.1) for °P;,(#) from (10.1). In
particular, with our time scaling, :

% (x)="9"(x) = q—f_%\/(q'zx —~ 1)1 — 7x) =20%x¢(x) (10.4)
and
By(1) =077 [ 0 (x) g, (x) 6 (x) dx. (10.5)

For general birth-and-death processes, we express Py, (¢) in terms of °P,,(¢) by
decomposing the event of transition from O to 0 into the cases of no transition
and transition upward plus a return for the first time at time u, 0 < u < 7. Hence,
for the Laplace transforms we have the relation

1 Ao

Ead _ 0 ~ A
or
- °dP(x n 1
mgsf ()=Eﬂﬂ= —
o Stx Ao+ po+ 5= Aoy "Pri(s)
1

= —. (10.7)
Ao+ po+s—Aop,"@(s)

Equation (10.7) expresses the Stieltjes transform ®(s) of the spectral measure @

in terms of the Stieltjes transform °®(s) of the associated spectral measure °®. In

general, this relation seems to be of little use because in general the associated

process is just as complicated as the original process. However, for M/M/1 we

can solve the associated process. In particular, since the associated process of the

associated process is again the associated process, we obtain a quadratic equation
for °®(s); i.e.,

°P(s) = — | (10.8)

see p. 96 of [18], so that

A+p+s—yA+p+s—4rp

°P(s) = T

(10.9)

and

2(,u——.?\.-—s)+2ﬁ)\+p+s)2—4?\p

d(s) = s : : (10.10)

see (5.7) and (5.3) of [18].
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It turns out that it is even easier to go from the associated process directly to
the first passage times down. It is easy to see that in general the first-passage-time
density f(¢; i, 0) of the original process can be expressed as

f(8;4,0) =°Py(t)p,, (10.11)
so that for the M/M/ 1 model with our scaling
£ 8,0) = =Py (1) = —2; D e (x) e(x) dx

— ﬁ?jf"’l_ e—xl ¢i( )) 292x¢(X) dx =f':‘_1].x e_ﬂtp(x, I) dx

(10.12)

as given in theorem 5.2. Since the associated process is easier to analyze and is
directly related to the first passage times down, we should thus expect that the
first passage times down are easier to analyze than the probability transition
function P, (z), as we have found to be the case. Also note that by virtue of
(10. 12)°Pu( t)/268?% is a fourth link in the stationary-excess chain; see Remark
4.3: Paralleling (4.1), °P,,(2)/26% is a complementary cdf with b(¢) =°P,(2)/26%,
t>=0.
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