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Many methods for numerically inverting transforms require values of the transform at complex arguments. However, in some 
applications, the transforms are only characterized implicitly via functional equations. This is illustrated by the busy-period 
distribution in the M / G / 1  queue. In this paper we provide conditions for iterative methods to converge for complex arguments. 
Moreover, we show that stochastic monotonicity properties can provide useful bounds. 
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1. Introduction and summary 

In [1], [2] and [3] we describe effective methods 
for calculating probability cumulative distribution 
functions by numerically inverting transforms. 
These methods require values of the transform at 
selected (complex) arguments. In many applica- 
tions this requirement is easily met, because an 
explicit expression for the transform is available. 
However, in some applications the transform is 
only characterized implicitly via a functional 
equation. In this paper we discuss ways to solve 
these functional equations to obtain the values of 
the transform required for the numerical inver- 
sion. In this paper we only discuss one-dimen- 
sional transforms, but similar methods apply to 
multidimensional transforms; see p. 35 of [1]. 

We were motivated by the busy-period distri- 
bution in the M / G / 1  queue; e.g., see Section 6.8 
of Cooper [6] or Section 1.2 of Neuts [14]. The 
busy-period distribution in turns plays an impor- 
tant role in the transient behavior of the M / G / 1  
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queue (e.g., see Keilson and Kooharian [10], Sec- 
tion 1.3 of Takfics [18], Ott [15], Chapter II.4 of 
Cohen [5] and Abate and Whitt [4]) and the 
steady-state behavior of M / G / 1  models with pri- 
orities and other service disciplines (e.g., see 
Chapter III.3 of Cohen [5], Chapter 5 of Cooper 
[6], Doshi [7] and Neuts [14]). 

We begin by describing this M / G / 1  example. 
Let V be the cumulative distribution function 
(cdf) of a service time, which we assume has 
mean 1. Let 

#(s) = f0 e- ' tdV(t)=fo e - ' t v ( t )  dt (1.1) 

be the associated Laplace-Stieltjes transform 
(LST) of V and Laplace transform of its density 
v when V(t) = f~v(u) du for all t. (All LSTs here 
are defined for complex numbers s with nonneg- 
ative real part Re(s).) Let the arrival rate of the 
Poisson arrival process (and the traffic intensity) 
be p where 0 <p < 1. Let B be the cdf of a busy 
period and let 

/~(s) = £~e "dB(t)=fo~e-' tb(t)dt  (1.2) 
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be its LST and the Laplace transform of its 
density b when B(t)= fgb(u)du for all t. The 
LST /~ is characterized by the Kendall functional 
equation 

/~(s) = ~(s + p - p/~(s)); (1.3) 

see (8.67) on p. 230 of Cooper [6]. 
First, it is well known that (1.3) has a unique 

solution and that an analytical inversion is possi- 
ble. In particular, 

o o  

B(t)  = E f '(pu)'-I 
n = l  aO n!  

e -p" dV(')(u), t > O, 

(1.4) 

where V (m is the n-fold convolution of V with 
itself; see (8.76) on p. 232 of Cooper [6]. How- 
ever, in general (1.4) is not especially convenient 
for calculating B(t), so that numerical inversion 
remains a viable alternative. 

It is also well known that the functional equa- 
tion (1.3) is easy to analyze when the variable s is 
a nonnegative real number. For any nonnegative 
real s, we can regard the right side as an operator 
T s mapping the interval [0, 1] into itself, i.e., 

T ~ ( x ) = ~ ( s + p - p x ) ,  0 < x < l .  (1.5) 

It is easy to see that Ts is nondecreasing in x for 
all ~, with 

Ts(O ) = ~ ( s  + p )  > 0  and Ts(1 ) = ~ ( s )  < 1, 
(1.6) 

so that T s has a unique fixed point in [0, 1] and 
(1.3) has a unique solution. Moreover, successive 
iterates of T~ converge monotonically to b(s), i.e., 

T~(x)$b(s )  as n---)~ 

and 

Tsn(x)$b(s) as n ~  

see p. 232 of Cooper [6]. 

if x <b(s) (1.7) 

if x>b(s ) ;  (1.8) 

However, many numerical inversion proce- 
dures, including the principal ones in [1-3], re- 
quire values of the transform for complex argu- 
ments s. For example, the algorithm EULER in 
[1,3] which implements a variant of the Fourier- 
series method for inverting Laplace transforms 
calculates a function value f ( t )  via its Laplace 
transform 

f ( s )  = foe-S ' f ( t )  dt (1.9) 

by calculating weighted sum of the values of the 
real part of f ( s )  for s of the form u + iu where 
u > 0; i.e., the numerical approximation is 

f ( t )~-  L ak R e ( f ) ( u + i u k )  (1.10) 
k=0  

for appropriate positive integer n, positive real 
numbers u and u, and real numbers a k. 

Thus, with EULER, we would calculate the 
complementary busy-period cdf B c, where Be(t) 
= 1 - B ( t )  for all t, by applying (1.10) with the 
Laplace transform 

1 -g(s)  o ¢  

f ( s )  = / ~ C ( s ) = L  e-StBC(t) dt 
s 

(1.11) 

Hence, to apply EULER to calculate Be(t), it 
suffices to determine/~(s) for s = u + iv for u > 0 
and w > 0. The question is how to do this. 

One approach is to avoid this difficulty by 
restricting attention to numerical inversion proce- 
dures that use only the transform values f(s) for 
real numbers s. For example, the Gaver [9]- 
Stehfest [16] procedure described in Section 8 of 
[1] has been used for this purpose by Gaver [9], 
Nance, Bhat and Claybrook [14], and Middleton 
[13]. This is a satisfactory approach, but as noted 
in [1], the Gaver-Stehfest procedure requires 
quite high precision to achieve good numerical 
accuracy. 

What we would like to do to supply the trans- 
form values in (1.10) is simply iterate (1.5) for any 
desired complex s. When we tried it, we found 
that it worked. No doubt many others have dis- 
covered this as well; e.g., Bharat Doshi reports 
using this iterative scheme with complex argu- 
ments in [7]. Our first goal is to prove that this 
iterative scheme for the M / G / 1  busy-period cdf 
does indeed always converge for all complex s. 
Unfortunately, however, we do not know how to 
give a direct proof that iteration of (1.5) always 
works for complex s as well as real s. We show 
that the iteration of (1.5) does in fact work for 
complex s by viewing the problem probabilisti- 
cally. 

It turns out that the idea of using a probabilis- 
tic argument to establish convergence of the iter- 
ation is not new. It appears in Theorem 3.1.5 of 
Lucantoni [11] and Sections 1.2 and 2.2 of Neuts 
[14]. They treat Markov chains of M / G / 1  type, 
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which includes the standard M / G / 1  queue as a 
special case. However, they consider (1.5) only for 
the initial condition x = 0. In this context, our 
main contribution is to point out the significance 
of this reasoning for numerical transform inver- 
sion. We also consider more general initial condi- 
tions. We contribute further by showing that the 
monotonicity of the operator  allows us to con- 
struct two-sided bounds on the final computation 
from approximations based on finitely many iter- 
ations (based on initial conditions x = 0 and x = 
1). We also show how the procedure can be used 
more generally (outside the M / G / 1  context). 

Here  is how the rest of this paper  is organized. 
In Section 2 we establish the results for the 
M / G / 1  busy period. In Section 3 we establish 
conditions for the procedure to work more gener- 
ally. In Section 4 we give a numerical example for 
the M / G / 1  busy period. 

busy-period cdf. Then the probabilistic version of 
(1.3) is 

A(S) 
X £ S +  Z Xj, (2.2) 

j=l 

where £ denotes equality in distribution. Hence,  
we can express (2.1) equivalently as an operator  T 
acting on (possibly defective) cdf's by 

T ( F ) = T ( F ) ( t ) = P  S +  E Yj<_t , 
j = l  

t > 0 ,  

(2.3) 

where S, {A(t):  t _> 0} and {~ : j  > 1} are mutually 
independent,  S has cdf V, {A(t): t _> 0} is a Pois- 
son process with rate P and {~, j >_ 1} is a se- 
quence of i.i.d, random variables with cdf F (hav- 
ing LST f ) .  Indeed, a direct calculation of the 
LST of (2.3) yields (2.1). [] 

2. The M / G / 1 busy period 

We start by replacing (1.5) by an operator  on 
Laplace transforms of possibly defective probabil- 
ity measures; i.e., we write 

T ( f )  = - T ( f ) ( s l = g ~ ( s  + p - o f ( s ) ) ,  (2.1) 

where s is a complex number  with Re(s)  > 0 and 
f is the LST of a possibly defective cdf F, defined 
as in (1.1). Defective means that we allow F(~)  < 
1. For any fixed s, real or complex, we are just 
applying (1.5) with the stipulation that x = f ( s )  
for some cdf F. For example, it suffices to let 
x = 0 or 1, because f ( s )  = 1 for all s if F(0) = 1 
and f ( s ) =  0 for all s if F ( t ) =  0 for all t. How- 
ever, for T to be a legitimate operator  in this 
sense we must know that T ( f )  itself is a LST of a 
possibly defective cdf. 

Theorem 1. I f  f is an L S T  of  a possibly defectA, e 
cdf  F, then so is T ( f )  for T in  (2.1). 

Proof. We explicitly construct the cdf of which 
T ( f )  is the LST. We use a probabilistic charac- 
terization of (1.3) often used in its proof; e.g., p. 
229 of Cooper  [6]. For this purpose, let S be a 
service time random variable, let {A(t):  t > 0} be 
a Poisson.counting process with rate P and let X,  
X 1, X 2 . . . .  be i.i.d, random variables with the 

We show that iterates of (1.5) converge as n ~ 
for any complex s by showing that iterates of 
(2.1) converges as n ~ ~. 

Theorem 2. Let s be any complex number with 
Re(s)  > 0. I f  x = f ( s )  for some possibly defective 
cdf F , then T~n( x ) ~ [ff s ) as n ~ ~, where T s is the 
operator in (1.5) and b is the unique solution to 
(l.3). 

Proof. By Theorem 1, T n ( f )  is an LST of a 
possibly defective cdf for all n; let F n be the cdf 
associated with T~(f). For s real, the set of x 
such that x = f ( s )  for some cdf is the unit interval 
[0, 1]. As observed in Section .l, T ~ ( x ) ~ / ~ ( s )  as 
n ~  for all real s and all x ~ [ 0 , 1 ] .  Hence,  
T ~ ( f ) ( s ) ~ b ( s )  for all real s, where T is the 
operator  in (2.1). However, restricting attention 
to real s suffices to imply that the cdf's F,, con- 
verge to B as n ~ o0 in the sense that 

F . ( t )  ~ 8 ( t )  as n ~ (2.4) 

for all finite t that are continuity points of the 
limiting cdf B(t); see p. 248 and Theorem 2a on 
p. 433 of Feller [8]. However, this convergence in 
turn implies that the transforms converge for all 
complex s with R e ( s ) >  0. To see this, note that 
if u > 0 ,  then e -" tcos  ct and e "tsin u(t)  are 
continuous functions that vanish at infinity. 
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Hence, for each s = u + iv with u > 0, the real 
and imaginary parts satisfy 

Re f~(s)  
oo oo 

: £ Re e -st d F . ( t )  = f e -"t cos vt dF~(t)  
J0 

c~ 

f e -"t cos vt d B ( t )  = Re/~(s )  as n ~ ~, 
~0 

(2.5) 

and 

Im ;n(S) 

= fo~Im e - ' t  a F t ( t )  - f ~ e  -"t sin vt d F . ( t )  
- -"0  

oo 

£ e - " '  sin vt d B ( t )  = Im /~(s) as n ~ oo; 

(2.6) 

see Theorem 1 on p. 249 of Feller [8]. Finally, 
existence and uniqueness of the solution to (1.3) 
for complex s are determined by the existence 
and uniqueness for real s. [] 

We remark that it is easy to see from the proof of 
Theorem 2 that the operator T in (2.1) is contin- 
uous using the mode of convergence in (2.4). We 
now show that the operator T is also monotone. 
As a consequence, we show that the iterates 
produce bounds on the busy period cdf if we start 
with appropriate initial transforms. For this pur- 
pose, we use the usual stochastic ordering. We 
say that one possibly defective cdf F Z is stochasti- 
cally less than or equal to another possibly defec- 
tive cdf g2, and write F 1 -<st F2, if Fl(t)>>_ F2(t) 
for all t; e.g., see Stoyan [15]. 

Theorem 3. I f  F 1 -<st F2, then T(F 1) -<st T(F2), 
where T(F  i) is the possibly defective cdf associated 
with Fi(t) = p(yji -< t) in (2.3). 

Proof. From (2.3), it is immediate that S + x~A(S)Y • ~ j =  1 j 

is increasing in {~ : j > 1} for each realization of 
the random variables. If F 1 <st Fe, then it is 
possible to construct random variables {yji : j > 1} 
such that { Y / : j  > 1} is i.i.d., Y[ has cdf F i and 
yjl < yi2 for all j w.p.1. Hence, 

A(S) A(S) 
S +  ~ Yj t -<S+ Y'. yj2 w.p. 1 

j=l j= l  

which implies that 

T ( F 1 ) ( t ) = P  S +  E Y j ' < t  
j= l  

> P  S +  E Yj 2 < t  = T ( F 2 ) ( t )  
J ' = l  

for all t, so that indeed T(F 1) <st T(F2). [] 

In the space of (possibly defective) cdf's, the cdf's 
F ,  and F*  with F , ( t )  = 1 for all t and F*( t )  = 0 
for all t are minimal and maximal elements, 
respectively, in the stochastic ordering; i.e., F ,  
-<st F--<st F* for all possibly defective cdf's F. 
The cdf's F ,  and F* correspond to a unit point 
mass at 0 and at infinity, respectively. The associ- 
ated LSTs are f , ( s )  = 1 for all s and f * ( s )  = 0 
for all s. If we use these extremal LSTs as start- 
ing points then we obtain bounds on the busy 
period cdf. The following is an easy consequence 
of Theorem 3. 

Theorem 4. The iterates T,~( x ) for x = 1 and x = 0 
are LSTs b, , ( s )  and 1)*(s), respectively, o f  cdf's 
B , , ( t )  and B*( t )  with 

1 = f , ( s )  > t3(s) = / ; 1 , ( s )  > / ~ , , ( s )  ~ /~(n+l).(S) 

>__ g,( s) >-- S) >__b.*( s) s) 

= + p )  > _ f * ( s )  = 0 ( 2 . 7 )  

for all n and positive real s, and 

l = F , ( t )  > V ( t )  = B I , ( t  ) >__Bn,(t ) 

> B(,+,) .( t )  >_B(t) 

>_BLI( t  ) >_B*(t) 

> B ~ ' ( t ) = P ( S  <t ,  A ( S ) = O )  > F * ( t ) = O  

(2.8) 
for all t and n. 

As indicated in Section 1, results closely related 
to the theorems in this section appear in Theo- 
rem 3.1.5 of Lucantoni [11] and Sections 1.2 and 
2.2 of Neuts [14]. They obtain one-sided bounds 
on the generalization of B(t), paralleling (2.8). 
To make the connection, note that P(S < t, A(S)  
= k ) = A k ( t )  for Ak(t )  in (1.1.2) of [14] and t3(s 
+p) =Ao(s) in (1.2.3) of [14]; i.e., the k-th iterate 
starting with f * ( s ) =  0 corresponds to making 
the first passage in exactly k steps. 
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3. Other transform functional equations 

We now indicate how the methods of Section 2 
apply more generally. We suppose that we have a 
transform functional equation 

f =  T ( f )  (3.1) 

where f is the LST of a (possibly defective) cdf 
F. 

Theorem 5. Suppose that T in (3.1) is an operator 
mapping LSTs of  possibly defective cdf '  s into LSTs 
of  possibly defective cdf's. I f  T " ( ~ ) ( s ) - - * f ( s )  as 
n ~ oo for some L S T  ~, o f  a possibly defective cdf 
and all real s, then 

F , ( t )  ~ F ( t )  as n ~ o o  (3.2) 

for all t that are continuity points o fF ,  where F~(t ) 
is the possibly defective cdf with L S T  T~(~,) and 
F( t ) is the possibly defective cdf with L S T  ~ More- 
over, if  (3.2) holds, then Tn(~,)(s) ~ f ( s )  as n ~ oo 
for all complex s with Re(s)  > 0. 

Proof. Apply the argument used to prove Theo- 
rem 2. [] 

We now give a sufficient condition for the con- 
vergence condition in Theorem 5. 

In doing a numerical inversion we may work with 
complex s and have convergence of successive 
iterates of the operator T in (3.1) by virtue of 
Theorem 5. Theorem 7 tells us that in the case of 
(3.3) the cdf's associated with those iterations are 
ordered in the Laplace transform ordering in 
(3.4) involving all positive real s. The Laplace 
transform ordering in turn implies that the mo- 
ments are ordered in a certain way. However, 
(3.4) is not so useful to check calculations, be- 
cause for the numerical inversions using (1.10) 
iterations of (3.3) are only done for finitely many 
complex s and the numerical inversion produces 
only the cdf values F , . ( t )  and F * ( t )  for finitely 
many t. We thus do not directly produce the 
transfot;m values in (3.4). However, we could do 
the iterations of (3.3) also for several real s to get 
an idea about the quality of the approximations. 
From Theorem 7, we see that T n ( A ) ( s )  - 
T ~ ( f * ) ( s )  for real s is an upper bound on the 
error in the calculation of f ( s )  after n iterations. 

However, under extra conditions, we get useful 
direct bounds on the cdf. Theorem 3 shows that 
these conditions hold for the M / G / 1  busy pe- 
riod. 

Theorem 6. Suppose that the operator T in (3.1) 
can be represented by 

T ( f ) ( s )  = T , ( / ( s ) )  (3.3) 

for each real number s, where T, is nondecreasing 
real-valued function for a real variable with Ts(O) 
> 0 and _T,(1) < 1 for each positive real s. Then 
Ts"(X) ~ / ( s )  as n ~ oo for each positive real s and 
each x with 0 < x < 1. 

Proof. Apply the argument in (1.5)-(1.8). [] 

Combining Theorems 5 and 6 we also obtain 
Laplace transform stochastic orderings generaliz- 
ing (2.7); see p. 22 of Stoyan [17]. 

Theorem 7. Under the conditions of  both Theorems 
5 and 6, 

1 = / , ( s )  >__ T n ( / , ) ( s )  >__ T n + l ( f , ) ( s )  >_f(s) 

Tn+l([*)(S) ~ Tn(J~*)(s) ~[*(s)=0 
(3.4) 

for all n and real positive s. 

Table 1 
Successive iterates of operator (2.1) in the M / G / 1  example 
in Section 4 with s = 0.3979167+ 0.6544985i. 

starting with/~0(s)  = 0 

iteration real part imaginary part modulus 

1 0.5215651 -0.0997833 0.5310244 
2 0.5664467 -0.1524585 0.5866050 
3 0.5652960 -0.1629180 0.5883042 
4 0.5639880 -0.1638444 0.5873052 
5 0.5639511 -0.1637884 0.5870621 
6 0.5637337 -0.1637559 0.5870364 
7 0.5637357 -0.1637506 0.5870368 
8 0.5637365 - 0.1637503 0.5870374 
9 0.5637366 -0.1637504 0.5870376 

starting with b0(s) = I 

1 0.6378206 -0.2077858 0.6708130 
2 0.5657992 -0.1768587 0.5927966 
3 0.5624473 -0.1652914 0.5862322 
4 0.5634320 - 0.1637582 0.5867473 
5 0.5637051 -0.1637165 0.5869979 
6 0.5637373 -0.1637434 0.5870363 
7 0.5637374 - 0.1637497 0.5870382 
8 0.5637367 - 0.1637504 0.5870377 
9 0.5637366 -0.1637504 0.5870376 
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Table 2 
Numerical estimates of the M / G / 1  busy-period complementary cdf BC(t) for the example in Section 4 as a function of the number 
of iterations of (2.1). Each displayed value is (estimate-exact) x 106, with no number meaning less than 0.5 and ' x '  meaning greater 
than 100 

time exact 
values 

initial condition/~0(s) = 1 initial condition b0(s) = 0 

number ofi terat ions number ofi terat ions 

10 20 30 10 20 30 

0.5 0.518004 
1 0.392419 
2 0.274266 
6 0.132691 

12 0.074877 
24 0.037027 
48 0.014822 
96 0.004138 

192 0.000606 
288 0.000119 

- 1  l 

- - X  X 

- - X  X 

- × - 1 4  x 26 
- x - 6 0  - 1  x x 

- x  - x  - 3  x x 

2 
14 

Theorem 8. Suppose that T in (3.1) is an operator 
mapping LSTs of possibly defective cdf' s into LSTs 
of  possibly defective cdf' s. Moreover, suppose that 
T regarded as an operator mapping possibly defec- 
tive cdf's into possibly defective cdf's is monotone 
in the stochastic ordering. Then 

1 = F , ( t )  > F n , ( t  ) >F(~+I),(t ) > F ( t )  

> F*+l(t  ) > F * ( t )  > F * ( t )  = 0  

for all t and n, where F n , and F* are the cdf's 
associated with Tn( f , ) and T"( f * ), respectively. 

4. A numerical example 

We conclude by reporting a numerical exam- 
ple. In particular, we apply the algorithms EU- 
LER and POST-WIDDER for inverting Laplace 
transforms in [1] and [3] plus iteration of (2.1) to 
compute the complementary busy-period cdf 
BC(t) for the M / G / 1  queue when the service- 
time distribution has a gamma distribution with 

I mean 1 and shape parameter  ~ and the arrival 
rate is p = 0.75. Thus, the service-time LST is 
z3(s) = (1 + 2s)-1/2. 

Table 1 displays successive iterates of (2.1) 
starting with b 0 ( s ) = f , ( s ) =  1 and b 0 ( s ) = f * ( s )  
= 0 when s = 0.3979167 + 0.6544985i. We display 
the real part, Re[T"(bo(s))], the imaginary part, 
Im[T"(bo(s))], and the modulus, (Re[T"(bo(s))] 2 
+ Im[T"(bo(s))]2) 1/2. From Table 1, we see evi- 
dence of convergence, but no monotonicity. 

Moreover, the absolute values of the increments 
are not monotone, so that there is not a contrac- 
tion property associated with these terms. (Recall 
that we have no positive results other than con- 
vergence for the successive iterates of the trans- 
forms for complex numbers s.) 

Table 2 displays the numerical estimates of the 
complementary cdf BC(t) for several different 
values of t based on 10, 20 and 30 iterations. 
Using the two inversion algorithms E U L E R  and 
POST-WIDDER confirmed accuracy to 10 -8 in 
the inversion, so that the reported errors are due 
solely to the iteration of (2.1). The monotonicity 
in n from above and below is evident from the 
results. Moreover, we see that more iterations are 
required for higher values of t. However, satisfac- 
tory guaranteed accuracy is consistently achieved 
with a modest computation. 
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