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The distribution of upward first passage times in skip-free Markov chains can
be expressed solely in terms of the eigenvalues in the spectral representation,
without performing a separate calculation to determine the eigenvectors. We
provide insight into this result and skip-free Markov chains more generally
by showing that part of the spectral theory developed for birth-and-death
processes extends to skip-free chains. We show that the eigenvalues and eigen-
vectors of skip-free chains can be characterized in terms of recursively defined
polynomials. Moreover, the Laplace transform of the upward first passage time
from 0 to 7 is the reciprocal of the nth polynomial. This simple relationship
holds because the Laplace transforms of the first passage times satisfy the same
recursion as the polynomials except for a normalization.

1. INTRODUCTION

This paper focuses on skip-free continuous-time Markov chains (CTMCs) on
the nonnegative integers. A CTMC with infinitesimal generator matrix 4 =
(ay) is skip-free to the right (left) if ¢; =0 forall j=i+ 2 @l j=<i-2),ie.,
if the only upward (downward) jumps allowed are +1(—1). A CTMC that is
simultaneously skip-free to the left and right is a birth-and-death process. The
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order of the state space will play no role, so that it suffices for the CTMC to
be skip-free after relabeling the states.

The purpose of this paper is to describe the spectral representation (eigen-
values and eigenvectors) of skip-free CTMCs and the distribution of associated
first passage times. It turns out that part of the spectral theory for birth-and-
death processes developed in the fundamental papers by Ledermann and Reuter
[8] and Karlin and McGregor [4,5] extends to skip-free chains. Unfortunately,
in general, it is not possible to represent the probability transition function as
a mixture of exponentials, but it is still possible to recursively define and apply
polynomials that are intimately connected to the characteristic polynomials of
the n X n infinitesimal generator matrices associated with absorbing and reflect-
ing chains restricted to states 0,1,...,n — 1 obtained from A. Indeed, with the
approach of Karlin and McGregor [4] (also see van Doorn [9]), the nth recur-
sively defined polynomial coincides with ¢, (x)/¢,(0), where ¢, (x) is the char-
acteristic polynomials of the » X n submatrix 4, (Theorem 2.1(e)). Thus, the
eigenvalues of the submatrix A, are precisely the roots of the nth recursively
defined polynomial. From the algebraic point of view, the skip-free structure
enables us to obtain the characteristic polynomials of the matrices A, re-
cursively. Moreover, as Ledermann and Reuter [8] observed for birth-and-
death processes, ail eigenvectors of A, can be expressed solely in terms of the
eigenvalues of the n submatrices 4 (), 1 < k < n. These are elementary alge-
braic consequences of the skip-free structure, which do not depend on the prob-
abilistic interpretation.

This spectral theory for skip-free CTMCs provides additional insight into
recent results about upward first passage times by Keilson [6] and Brown and
Shao [2]. Keilson [6, p. 59] showed that the distribution of the upward first pas-
sage time from state O to state » in a birth-and-death process is a convolution
of n distinct exponential distributions. Brown and Shao [2} extended this result
to CTMC:s that are skip-free to the right with distinct real eigenvalues. (From
Ledermann and Reuter [8], we know that all eigenvalues for finite birth-and-
death processes are real and distinct. From Kendall [7] and Keilson [6, p. 33],
we know that this property can be explained by symmetry and it holds for all
time reversible CTMCs.) Moreover, Brown and Shao showed that the eigenvec-
tors in the spectral representation for the distribution of the upward first pas-
sage times from 0 to n can be expressed solely in terms of the eigenvalues of
A, S0 that no separate calculation of eigenvectors is necessary. We provide
additional insight by giving an alternate proof: we directly relate the Laplace
transform fo,(s) of the upward first passage time from 0 to » to the nth recur-
sively defined polynomial R, (x). In particular, we show that f,,(s) = 1/R,(s)
(Theorem 4.1). This connection is easy to understand because, except for the
initial conditions (Ro(x) = 1 for all x and f,,(s) =1 for all s), the Laplace
transforms fp, (s) satisfy the same recursion as the polynomials R, (x), which
is determined by the law of motion (the Chapman-Kolmogorov equations). For
birth-and-death processes, this reciprocal relation was discovered by Karlin and
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McGregor [5]. (E. van Doorn pointed this out to us after we completed this
work.) _

Brown and Shao’s explicit expression for the upward first passage time dis-
tribution (Eq. (1.2) of [2]), is tantamount to an inversion of the Laplace trans-
form f,,(s) = 1/R,(s) using partial fractions; see Feller [3, p. 275]. R,(s) is

* a polynomial of degree n, so that f,,(s) is the transform of the convolution of

n exponentials when the n roots of R,,(s) = 0 are distinct and real (and neces-
sarily negative).

2. RIGHT EIGENVECTORS FOR CHAINS SKIP-FREE TO THE RIGHT

Consider a CTMC on the nonnegative integers with infinitesimal generator
matrix A = (a;;). Assume that the chain is skip-free fo the right, i.e., a; =0
for all j = i + 2. In this section, we also assume that 0 < @; ;) < —a; < o for
all i > 0. :
- Because of the skip-free property, we can recursively define a sequence of
polynomials {R;(x): i = 0} in x by letting
it1

RQ(X) =1, XR,‘(X) = 2 a,-,-R_,-(x) fori=1. (2.1)
j=0

It is easy to see that R;(x) is a polynomial of degree i for each i. Let R(x) be
the column vector (Ry(x),R;(x),...)" in matrix notation Eq. (2.1) becomes

XR(x) = AR(x) 2.2)

with the initial condition Ry{x) = 1. For the special case of birth-and-death
process, this sequence of polynomials was defined by Karlin and McGregor [4].
Aside from the boundary condition Ry(x) = 1, x = 0, Eq. (2.2) corresponds to
the Kolmogorov backward equations for the probability transition matrix
P(1), P’ (t) = AP(1); Eq. (2.2) is obtained by taking Laplace transforms and
letting R{x) correspond to one column of the matrix of Laplace transforms.

It is apparent from Eq. (2.2) that R(x) is a right eigenvector of the infinite
matrix A corresponding to the eigenvalue x for all x. We now want to obtain
corresponding results for the n X n submatrices A, associated with transi-
tions among the states {0,1,...,n — 1}. We think of the corresponding Mar-

kov chain as being absorbing in state n because a,_; , > 0, so that —a,; ,—1 >
n—2 ’

D} @n_1x; 1.e., from state n — 1 there is always a possibility of absorption
k=0

with 4, . Indeed, there is possibility of absorption from any other state i for

which
j=1
—@; > G + 25 a;. : (2.3)
i=0
When —ag > ag;, we think of the chain as having the possibility of absorption
in —1. The matrix A, thus is the infinitesimal generator matrix of a purely
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transient chain; there is eventual absorption from any initial state with prob-
ability 1. We treat the case of a reflecting upper barrier in Section 5.
The right eigenvector equation for A, can be written as

XR (i (X) = Ay Ry (). @2.4)

Note that Eq. (2.4) is nearly the same as the first » rows of Eq. (2.2), but not
quite, There is a difference in the last row: the last row in Eq. (2.4) is

n-—1
XRp_1(X) = 2} @y £ Re(X), 2.5)
k=0

whereas the nth row in Eq. (2.2) is

n—l

XR,_1{x) = kZE) By, ke R (X) + @y, nRp(X). (2.6)
This simple difference enables us to relate the eigenvalues and eigenvectors of
the finite matrices A, to the polynomials R;(x). The following result is an
easy consequence of the construction above, so we give no further proof. The
resulf is purely algebraic; it does not depend on the probabilistic interpretation
of A or the sign of any element. To state the result, recall that the character-
istic polynomial ¢,(x) of A, is

¢, (x) =det(x] — A(py) =[] (x— /), Q.7
— _

J=

where 7 is always the identity matrix of appropriate dimension and «f, 1 <
J = n, are the n eigenvalues.

THEOREM 2.1:

(a) The eigenvalues of Ay coincide with the roots of R,(x) =0 for
R, (x) defined by Egs. (2.1) or (2.2).
(b) A right eigenvector for A,y associated with eigenvalue i} is R ) (af') =
(Ro{et]')s .- -, Ry (o)) '
(c) Up to a scalar multiple, there is precisely one right eigenvectof associ-
ated with each eigenvalue, so that A, Is similar to a diagonal matrix if
and only if the n eigenvalues are distinct.

(d) If there are n distinct eigenvalues, of, . .. ,al, then the probability tran-
sition matrix P, (t) associated with A, can be expressed as

Py (1) = R(nyeP ' RES, X))

where D, is the n X n diagonal matrix with diagonal elements af, . . .,
ay, and Ry is the right eigenvector matrix [R (), ..., Ry (az)].
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(e) The polynomials R, (x) defined by Eq. (2.1) can be expressed in terms
of the characteristic polynomial ¢,(x) in Eq. (2.7) and the eigenvalues

by
]:[ (x —af)
R, (x) = z“g)) =& . 2.9)
" I]l: (‘_a_,r{:)
Jj=

We can combine parts (b) and {(e) of Theorem 2.1 to obtain the following-
property of the eigenvectors.

CoroLLARY 2.1: The right eigenvector of A,y associated with eigenvalue of
can be expressed solely in terms of the eigenvalues of Any, Ay, ..., Aw—n
and of . All the eigenvectors of A, can be expressed solely in terms of the
eigenvalues of A (0 »A (2)5 -+ - ,A ()~

Remark 2.1: Corollary 2.1 constitutes a transformation of the data from the
entries of A4, to the eigenvalues of A4 ; for j < n, but not necessarily a reduc-
tion in data because in general for the skip-free chains under consideration

n=—1

Ay has Z (k+2) — 1 = (n* 4+ 3n — 2)/2 nonzero elements, of which n — 1

are redundant when the first # — 1 row sums are zero. Thus, when the first
n — 1 row sums are zero, the number of distinct data inputs is n(n + 1}/2,
which coincides exactly with the number of eigenvalues in 4y, 4, ..., 4(n-
When some of the first » — 1 rows have nonzero row sums, Theorem 2.2(e)
provides a slight reduction in the data determining P, (¢}. Of course, for
birth-and-death processes and other skip-free chains with special structure, the
number of eigenvalues of 4, for £ < n may be greafer than the number of
nonredundant entries in A .

Remark 2.2: Following Ledermann and Reuter [8], we can provide an alternate
(more difficult) proof of Theorem 2.1 by directly establishing a recursion for
the characteristic polynomials ¢,(x) in Eq. (2.7). Following Ledermann and
Reuter [8], consider the case in which all row sums of A are zero. By induction,
it can be shown that

¢n+l (JC) = (x - ann)qsn(x) 2 an, k‘lﬁk(x) ]:]I; a;, j+.l (2-10)
J._

with ¢;(x) = (x — aw), qbo(x) = 1 and qS ((x) = 0. From Eq. (2.10}, it

is not difficult to see that ¢,(x) / H a; i+ satisfies Eq. (2.1), i.e., R,(x) =
=0
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n—1

é.(x)/ TI a; j41- We connect this to Eq. (2.9) by noting (from Eq. (2.10) by
J=0

induction} that

n—i n
IMasi=Tlaf =¢.(0), n=l (2.11)
Jj=1

=0

Note that in Eq. (2.11), we have used the fact that the row sums are zero.

3. LEFT EIGENVECTORS FOR CHAINS SKIP-FREE TO THE LEFT

The analysis in Section 2 is easily modified to treat CTMCs on the nonnega-
tive integers that are skip-free to the left instead of to the right, i.e., for which
a; = 0 for all j < i — 2. Paralleling Section 2, we assume that a;;_; > 0 for all
i=1.

Once again we can apply the skip-free property to define a sequence of
polynomials, but now we define them by

Lo(x) =1 and xL;(x) = iLj(x)aj,- fori=20. 3.1

j=0
If L(x) = (Lo(x),L{(x)}),...), then in matrix notation, Eq. (3.1) becomes
xL(x) =L(x)A (3.2)

with the initial condition Ly(x) = 1. Note that L(x) in Eq. (3.2) is a left eigen-
vector of A whereas R(x) in Eq. (2.2) is a right eigenvector. Analogs of the
results of Section 2 describing the absorbing chains associated with A, and
states 0,1,...,n — 1 then follow easily, now working with left eigenvectors
L (x). , _ _

The special case of birth-and-death processes studied by Ledermann and
Reuter [8] and Karlin and McGregor [4,5] arises when the CTMC is skip-free
both to the left and right. For the case of birth-and-death processes, we can
express the left eigenvectors directly in terms of the polynomials R;(x) evalu-
 ated at x = of and the potentials w; = (AgA; ... A1)/ (py . .. ;) and 7w = 0,
where ;i1 = }\,‘ and a;j—1 = Wi In partiCUIaI, (1, W]Rl (O(}I), - "Tn—an—l (G.’Jn))
is a left eigenvector of A4 ,, associated with eigenvalue «f'. This was discovered by
Ledermann and Reuter [8] (see Egs. (1.38) and (1.39) in [8]), but is perhaps most
easily understood via the symmetry of 74 (see Keilson [6, p. 33]).

We thus can express the transition probabilities associated with A, as

Pty = m; 3, e 'Ri(af)Ri(af)of, (3.3)

k=1
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where
n
; 23 Ri(af)Ri(af) ol = 8y 3G9
k=1
and
1
PE = EPEE— 3.5)
Z WI-RIZ(OU?)
=0

(see Eq. (1.48) of [8], p. 90 of [9] and p. 34 of [6]). (Recall that Ieft and right
eigenvectors associated with different eigenvalues are necessarily orthogonal.)
1edermann and Reuter also proved for birth-and-death processes that the
eigenvalues of A, are real, negative, and distinct. In fact, by virtue of sym-
metry, the eigenvalues are real, negative, and distinct for any reversible CTMC
(see Keilson [6, p. 33]), but the reversible skip-free chains are precisely the birth-
and-death processes. Ledermann and Reuter also showed that the eigenvalues
of A, separate those of A(,_y,, i.e., :

O>af>af '>af >af ' > > af > o] > al. 3.6)

4. FIRST PASSAGE TIMES AND RIGHT EIGENVECTORS

Let F(2) = (f;(£)) be the densities of the first passage times to state j from
state { in a CTMC with infinitesimal generator matrix 4 and let F(s) =
(f;; (s)) be the Laplace transforms. Of course, a proper density is not defined
for i = j; then the probability distribution has a unit mass at 0, so that we work
with Laplace-Stieltjes transforms, and stipulate that f;(s) = 1 for all s = 0. By
conditioning on the first transition, we immediately obtain the relation

o ik Jen(S)

fn(s) = 3} “HH T 0 s> 0andi#n | @.1)
k=0 —qi + S

k#l
with f;(s) = 1 for all i and s > 0 or, equivalently,

Fin(8) = @ fun($) + X Ay fin(s), s>0andi#n. 4.2)
k=0

For the special case of a chain that is skip-free to the right, Eq. (4.2) has
the same form as the first » rows of Eq. (2.2) which determines the polynomials
R;(x), except for the normalizations Ry(x) = 1 and f,,(x) = 1. Since scalar
multiples of solutions to Eqs. (2.2) and (4.2) are still solutions, we can relate
Egs. (2.2) and (4.2) by simply renormalizing, i.e., by redefining Ry(x) =
1/R,(x) or, equivalently, stipulating that R,(x) = 1. Thus, we have deter-
mined the Laplace transforms of the first passage time dlstnbutlon in CTMCs

that are skip-free to the right.
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’{‘HEOREM 4.1: For a CTMC that is skip-free to the right, the Laplace transform
Jin(S) of the upward first passage time from i to n can be expressed in terms of
the polynomials R;(xY defined in Eq. (2.2) and thus by the eigenvalues by

ﬁ(—a,>11<s—a
Ri(s) _ ¢.(0)di(s) _ j=1 ) (4.3)

Ra(S)  pa(8)$;(0)
H (s —aff) H (_O‘J

Remark 4.1: Note that f,(s) = 1/R,(s), so that the distribution of the
upward first passage time from 0 to » can be expressed solely in terms of the
n eigenvalues of A,,; we do not need the eigenvalues of A4, for k < n.

Jin(8) =

Remark 4.2: It is easy to go from fp,(s) to fi,(s) because
Jon(8) = foi($) fu(s), 1=i=n-—L .4)

To go from 0 to n for the first time in a chain that is skip-free to the right, you
must pass through the intermediate state / for a first time.

Remark 4.3: When the eigenvalues are real, negative, and distinct, as is the case
for birth-and-death processes, f,,(s) is the Laplace transform of the convolu-
tion of n exponential distributions. For birth-and-death processes, this result
was established in Keilson [6, p. 59]. (The analysis here provides some addi-
tional insight; see Remark 5.1(b) there.) For skip-free chains, this result coin-
cides with Eq. (1.2) of Brown and Shao [2]. However, note that Eq. (4.3) holds
without assuming the eigenvalues are real or distinct.

Remark 4.4: The connection between the first passage time transforms and the
polynomials R(x) is not limited to skip-free chains. In general, the system of
equations (4.2) coincides with the system of equations xR(x) = AR(x) with
Ry(x) = 1 but without the nth equation xR, (x) = 2] @R (x). If there is a

k=0
unique solution for R, {x) without this nth equation, then the first passage

time transform f},(s) can be expressed as
fin(s) = Ri(5)/R,(s)  fors>0andi#n .5)

with £,,(s) = 1. Of course, the skip-free property is needed to get the connec-
tion to the eigenvalues in Eq. (2.9).

Example 4.1: To see that the nice connection to the eigenvalues for upward
first passage time distributions does not extend beyond skip-free chains, con-
sider a simple stochastically monotone CTMC with state space {0,1,2} and
infinitesimal transition rates g, = —@y =@ = a2 = —ay /2 =Aand g; =0
otherwise. The first passage time distribution from O to 2 is exponential with
rate A, i.e., f2(5) = A/ (A + 5), but
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—A0
Apgy = ()\ _2)\)
and ¢,{(x) = (x + A)(x + 2\), so that the last part of Eq. (4.3) does not hold
(although Eq. (4.5) does hold).

By Theorem 4.1, the recursion (2.1) for R;{x) provides a recursion for the
Laptlace transforms. As noted in Keilson [6, p. 61] for the special case of birth-
and-death processes, recursions for the moments can be found by differentiat-
ing the recursion for the Laplace transforms, but the transforms themselves
seem somewhat inaccessible via Eq. (2.1). In fact, however, the transforms can
easily be determined because they are reciprocals of polynomials of finite
degree. We can use Eq. (2.1) to establish a finite recursion for the coefficients
of the polynomials.

TrEOREM 4.2: For CTMCs that are skip-free to the right, if R;(x) is the ith

polynomial determined by Eq. (2.1), then R;(x) = Cio + ¢iyx + -+ + ¢ x' for

constants c¢;; for each i, where the coefficients c; are defined recursively by
I

oo =1, Civr0 = — 2, @;;Cio/ i1y and
Jj=0

i
—a,-.,-+1c,-+1,m = Z aijij + ci,m-l’ l=m=i+1.

J=m
If ago = —ay;, then cio = 1 for all i.

Proor: By Eq. (2.1),

i i+1 J i+1 i+1
—X Z Cimx™ = Z aj; E ijxm = Z x™ Z @ijCims
m=0 Jj=0 =0 m=0  j=m

so that we can solve for the coefficients by identifying the coefficients of x™
for each m, i.e.,

i+1 i+1 .
0= E a;iCip and —Cim—-1 = E @i Cimns l=m=<i+ 1 |
j=0 J=m

5. FINITE SKIP-FREE CHAINS WITH A REFLECTING UPPER BARRIER

The finite CTMCs with infinitesimal generator matrices A, treated in Sec-
tions 2-4 are absorbing from state n — 1. We now apply the results for these
absorbing chains to treat the corresponding chains with a reflecting upper bar-
rier, just as Ledermann and Reuter [8] did for birth-and-death processes.
We only discuss the case of chains that are skip-free to the right; chains
that are skip-free to the left can be treated similarly. Let B, be obtained from
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A by replacing element a,_; ,_; by @,y ,—1 + @n_1 ,. The interesting case is
when
n—2

an—l,n—l + an—l,n = an—l,k < O: (5-1)
k=0

so that B, has a reflecting barrier at n — 1.
Just as in Section 2, the right eigenvector equation for B,

XR (m(x} = B(m Ry (X) (5.2)

coincides with the first 7 rows of Eq. (2.2) except in the last row, where the dif-
ference is a,_ (R, (x) — R,—, (x)). ‘Consequently, we obtain an analog of
Theorem 2.1. We only state part of it, and again we give no additional proof.
Let 87, 1 < j < n, be the eigenvalues of B, and ¥,(x) its characteristic poly-
nomial.

THEOREM 5.1:

(a) The eigenvalues of By, coincide with the roots of R,(x) — R,_,(x) =
0 for R, (x) defined by Eq. (2.1) or (2.2).

(b) A right eigenvector associated with eigenvalue ] is R, (B]') =
(Ro(BF),s .-, Raq (BFYY.

(c) The characteristic polynomials of A, and B, are related by },{x) =
¢n(x) - an—l,n‘bn-—l (X).

(d) If the row sums of B are all zero, then 0 Is an eigenvalue of mul-
tiplicity one, say B¢. If also ¢ ,(x) = ¥,,(x)/x, then

] T (x = B7)
Rp(X) = Rpy(x) _ ¥u(X) _ fgﬁ i (5.3)
X ‘nbn(()) n n . '
11 (-8
j=2

To summarize, the roots of R, (x) = 0 provide the eigenvalues of A4,,; the
roots of R,(x) — R,_;(x) provide the eigenvalues of B,,; the eigenvalues
Aqys--.,Am provide the eigenvectors of A(,,,i and the eigenvalues of
Ay, .., Ay and B, provide the eigenvector of B(,,. Thus, to obtain the
complete spectral representation for B, it suffices to know the roots of
Ri(x)=0,1l<i=n-—1,and R,(x) — R,_;(x) = 0. Of course, for compnta-
tion we would exploit Theorem 5.1(b) and only find the roots of one matrix.

6. THE FULL SPECTRAL REPRESENTATION

For the finite-state skip-free cases, the abéorbing chains determined by A,
and the reflecting chains determined by B,,,, we have full spectral representa-
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tions for the probability transition function as in Eq. (2.8) if and only if the
eigenvalues are distinct. (Recall Theorem 2.1(c).) This corresponds to a simple
mixture of exponentials when the eigenvalues are also real, as with birth-and-
death processes. As discussed by Keilson [6], the extra symmetry associated with
reversibility yields Eq. (3.3) for birth-and-death processes. For skip-free chains,
we know of no useful conditions for the eigenvalues of A, and B, to be

real or distinct.
For the infinite-state skip-free case, we would expect to have a spectral rep-

resentation of the form
P;(t) =f e Y (x)Z;(x)d ¥ (x), 6.1)
0

where Yy(x) = Zy(x) = 1 if all the eigenvalues of A4, are real and distinct for
all n. We can partially characterize this representation as follows.

TuroreM 6.1: For CTMCs skip-free to the right (left), Eq. (6.1) holds for all
iandjif Eq. (6.1) holds for i =0 (j = 0}, in which case Y;(x) = R;(x) defined
in Eq. (2.1) (Z;(x) = L;(x) defined in Section 3).

Proor: Consider the case of skip-free to the right. The skip-free property
immediately yields the relation

Po(s) = foi()Py(s), 1=isx] (6.2)
for the Laplace transforms. By Theorem 4.1,
B;(s) = Ri(s)By;(s), l=i=<j, 6.3)

where R;(s) is the polynomial of degree i defined recursively by Eq. (2.1). In
the time-domain, Eq. (6.3) translates into

Py (1) = R;{(—D)Py;(t), (6.4)

where D = B’d—t is the differential operator. If Eq. (6.1) holds for i = 0, then
P;(t) = R,-(-—D)f e ™MZ;(x)d¥ (x), (6.5)
0

= f me"“R,—(x)Zj(x)d‘I’ (x). L
0

Note that Theorem 6.1 provides the form of the full spectral representation
given by Eq. (6.1) for birth-and-death processes and its validity from the valid-
ity for Pyy(t) alone. From Theorems 4 and 7 of Kendall [7], we know that a
sufficient condition for Eq. (6.1) is reversibility, but the reversible skip-free
CTMC:s are just the birth-and-death processes. It remains to determine when
Eq. (6.1) holds more generally. For further discussions about Eq. (6.1) in a spe-
cial case, see [1]. '
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