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This paper investigates extensions to feed-forward queueing networks of an algorithm to set
staffing levels (the number of servers) to stabilize performance in an Mt/GI/st + GI multi-
server queue with a time-varying arrival rate. The model has a non-homogeneous Poisson
process (NHPP), customer abandonment, and non-exponential service and patience distri-
butions. For a single queue, simulation experiments showed that the algorithm successfully
stabilizes abandonment probabilities and expected delays over a wide range of Quality-
of-Service (QoS) targets. A limit theorem showed that stable performance at fixed QoS
targets is achieved asymptotically as the scale increases (by letting the arrival rate grow
while holding the service and patience distributions fixed). Here we extend that limit
theorem to a feed-forward queueing network. However, these fixed QoS targets provide
low QoS as the scale increases. Hence, these limits primarily support the algorithm with a
low QoS target. For a high QoS target, effectiveness depends on the NHPP property, but
the departure process never is exactly an NHPP. Thus, we investigate when a departure
process can be regarded as approximately an NHPP. We show that index of dispersion for
counts is effective for determining when a departure process is approximately an NHPP
in this setting. In the important common case when all queues have high QoS targets, we
show that both: (i) the departure process is approximately an NHPP from this perspective
and (ii) the algorithm is effective.

1. INTRODUCTION

Many large-scale service systems arising in healthcare, judicial and penal systems, and both
front-office and back-office operations in business systems can be viewed as networks of
multi-server queues with time-varying arrival rates [1,4,21–23,26]. The successful design and
management of these systems requires allocating critical resources, such as the number of
beds, nurses and associated equipment in a hospital ward, each of which can be represented
generically as the number of servers at each queue. Moreover, this needs to be done in a
dynamic way in order to respond effectively to the time-varying demand. As reviewed in
[16], coping with time-varying arrival rates can be difficult for longer service times, because
the level of time-varying demand extends after the arrival times by the service times of those
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arriving customers. We contribute here by developing an effective algorithm to set staffing
levels to stabilize performance at each queue within a network of queues, each of which may
be given its own Quality-of-Service (QoS) performance target. We do so in a quite general
setting, allowing customer abandonment from each queue and non-exponential service-time
and patience-time distributions at each queue. It is important to include non-exponential
service and patience distributions as well as time-varying arrivals because they commonly
occur [4,5].

1.1. The Delayed-Infinite-Server Modified-Offered-Load (DIS-MOL) Approximation

This paper extends [30], which introduced a new framework to analyze the staffing problem
for a single queue. An algorithm was developed to set time-dependent staffing levels (the
number of servers) in order to stabilize abandonment probabilities and expected delays at
specified QoS targets in the Mt/GI/st +GI model, having arrivals according to a non-
homogeneous Poisson process (NHPP, the Mt) with arrival-rate function λ(t), independent
and identically distributed (i.i.d.) service times with a general distribution (the first GI),
a time-varying number of servers (the st, to be determined), i.i.d. patience times with a
general distribution (times to abandon from queue, the final +GI), unlimited waiting space
and the first-come first-served service discipline.

The DIS-MOL algorithm exploits infinite-server (IS) queues and is a MOL approxima-
tion (reviewed in Section 2). The key DIS idea is to obtain the OL by considering two IS
queues in series, the first representing the waiting room and the second representing the
service facility. In this artificial construction for generating an appropriate OL, each arrival
is required to stay a constant waiting time w in the waiting room if that customer does
not elect to abandon. Given that F is the patience time cumulative distribution function
(cdf), each arrival abandons with probability α = F (w), so that the abandonment target α
is linked to the constant w, which should correspond to the expected waiting time target.
The expected number of busy servers in the second IS queue, mα(t), serves as the new OL
to be used in the new MOL approximation.

An initial staffing algorithm, called the DIS algorithm, simply staffs according to the
OL itself, letting sα(t) = �mα(t)�, the least integer greater than or equal to mα(t). The DIS
algorithm was shown to be effective for suitably high OLs and abandonment-probability
targets (low QoS), but the DIS algorithm is not successful in stabilizing performance at more
typical abandonment probability targets occurring in well managed systems (high QoS).

To treat the important high QoS cases, the new MOL approximation, DIS-MOL, uses
an approximation for the performance in the corresponding stationaryM/GI/s+GI model
from [42] to set staffing at each time t to meet the new abandonment and delay targets (the
usual minimum number of servers such that the QoS target is met), where the arrival rate
at time t depends on the DIS OL mα(t), in particular,

λmol
α (t) ≡ mα(t)

(1 − α)E[S]
, (1.1)

where E[S] is the mean service time. (See Section 2.)
In [30], a heavy-traffic limit theorem was proved showing that both DIS and DIS-MOL

are asymptotically correct as the scale increases for fixed targets. However, these fixed
QoS targets provide low QoS as the scale increases. Hence, these limits only support the
algorithms with a low QoS target. Simulation experiments showed that DIS-MOL staffing
tends to coincides with DIS staffing for low QoS targets, where both work well. Thus, there
is no need for DIS, but it is appealing for its simplicity.
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In contrast, DIS-MOL is needed for high QoS. Simulation experiments in [30] con-
firmed that the DIS-MOL algorithm is effective in stabilizing abandonment probabilities and
expected delays over a wide range of QoS targets, ranging from low QoS (high abandonment
probability targets) to high QoS (low abandonment probability targets).

1.2. Extending the DIS-MOL Algorithm to Feed-Forward Networks

The purpose of the present paper is to investigate if the DIS and DIS-MOL algorithms can
be extended to feed-forward networks of many-server queues, where there may be differ-
ent performance targets at the different queues. We assume that we have a feed-forward
Mt/GI/st +GI network, by which we mean that all external arrival processes are mutually
independent NHPPs, the service and patience times at all queues come from mutually inde-
pendent sequences of i.i.d. random variables with general (queue-dependent) distributions,
and each queue has unlimited waiting space and the first-come first-served service discipline.
For thisMt/GI/st +GI network, our goal is to determine staffing functions at each queue to
stabilize abandonment probabilities and expected waiting times at targets set for each queue.

It is not difficult to implement a generalization of the algorithm in [30] for these net-
works, because we can simply apply the previous algorithm iteratively to each queue one
at a time. It suffices to calculate a good approximation for the net arrival-rate function at
each queue in the network. That is not difficult because the single-queue algorithm already
calculates an approximate departure (service-completion) rate function, which simulation
shows is very accurate. However, the effectiveness of the DIS and DIS-MOL staffing algo-
rithms is not immediate. The primary question we address is: Can the DIS and DIS-MOL
staffing algorithms be effective for networks of many-server queues and, if so, when?

To address that question, here we primarily focus on the special case of an Mt/GI/st +
GI network with two queues in series, which evidently embodies the primary difficulties
among feed-forward networks. We assume an Mt arrival process with arrival-rate function
λ, service-time cdf’s G1 and G2, patience cdf’s F1 and F2, delay targets w1 > 0 and w2 > 0,
and abandonment probability targets α1 ≡ F1(w1) and α2 ≡ F2(w2).

First, we obtain a strongly supporting asymptotic result for general feed-forward net-
works. In Section 6 we prove that both the DIS and DIS-MOL algorithms achieve the
objective asymptotically as the scale increases in general feed-forward Gt/GI/st +GI net-
works with fixed QoS targets. However, with fixed abandonment probability and expected
delay targets, the limit puts the model in the overloaded ED many-server heavy-traffic
regime [14], where the DIS and DIS-MOL algorithms are asymptotically equivalent, both
approaching the corresponding staffing algorithm for a limiting fluid model [27–29]. In that
limit with increasing scale, the fixed QoS targets become low QoS targets. Our simulation
results confirm that the proposed algorithm performs well for all arrival processes for such
low QoS targets.

Of course, the systems of primary interest in applications tend to have high QoS targets.
From [30], we know that DIS-MOL is needed for high QoS targets. From extensive simulation
experiments, we find that DIS-MOL is not always effective for two queues in series when
the second has a high QoS target. Fortunately, however, we find that bad behavior only
occurs when the first queue has a low QoS. The simulations show that DIS-MOL is effective
in the important common cases when both queues have high QoS targets. See Section 8.1
for a summary of our detailed conclusions.

1.3. Statistical Tests of Departure Processes

Since the previous DIS-MOL algorithm was shown to be effective for the Mt/GI/st +
GI model with an NHPP arrival process, and since the DIS model produces a good
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approximation for the departure rate function, it is evident that the DIS-MOL algorithm
should remain effective at the second queue if the departure process from the first queue
is approximately an NHPP. We are thus led to ask the question: When is the departure
process from a many-server Mt/GI/st +GI queue approximately an NHPP?

Important insight can be gained by considering the associated Mt/GI/∞ IS queue.
The good simulation results for high QoS evidently can be attributed to the fact that the
departure process from an Mt/GI/∞ IS queue is an NHPP; see Theorem 1 of [11].

More generally, to gain insight into departure processes from queues with time-
varying arrival rates, it is natural to start by asking the more elementary question: When
is the stationary departure process from a stationary many-server M/GI/s+GI model
approximately a Poisson process?

First, it is known that the stationary departure process from the M/GI/s model (with-
out customer abandonment) is Poisson if and only if the service distribution is exponential,
but even in the more general G/GI/s system, if we let both s and the mean service time
increase, then the departure process approaches a Poisson process; see [40] and references
therein. Unfortunately, the addition of abandonment does not help, as can be seen by con-
sidering the limiting M/GI/s/0 loss model, corresponding to very fast abandonment. It
is well known that, because of the blocking, the departure process of served customers
(the carried traffic) is smoother than Poisson; see [6,25] and references therein. Even the
departure process from the Markovian Mt/M/st +M system is not exactly an NHPP.

Hence, it is natural to statistically analyze data from departure processes, either from
system data or simulation of mathematical models. At first glance, we might think that
more elementary question about the stationary model would be easily resolved by simply
looking at the histogram of inter-departure times and seeing if it is nearly exponential.
However, we show that the departure process from an M/GI/s+GI many-server queue
routinely passes that test and yet can be far from Poisson.

We find that the NHPP property can be effectively studied with the index of dispersion
for counts (IDC),

I(t) ≡ Var(D(t))
E[D(t)]

, t ≥ 0, (1.2)

for suitably large t, just as in [7,13,37].
It is significant that the IDC also applies nicely to point processes with time-varying

rates. For any NHPP, I(t) = 1 for all t. When I(t) differs significantly from 1, we judge
that the departure process is not nearly an NHPP. We estimate the IDC of each departure
process by performing independent replications in the simulations. We show that the IDC
allows us to determine whether or not the departure process can be regarded as an NHPP
in the performance prediction. This test is also important for a single queue to check if
arrival data are consistent with the NHPP assumption in [30].

The statistical analysis of departure processes conducted here is intimately connected
to recent work on statistical tests of a Poisson process and an NHPP in [5,19,20] and earlier
work on indices of dispersion [7,13,37]. We compare these methods in Section 4.

1.4. Organization of the Paper

Here is how the rest of this paper is organized: We start in Section 2 by reviewing the
MOL approximations. In Section 3, we present the results of our basic experiment for two
many-server queues in series. In Section 4, we conduct statistical tests of the departure
processes from the first queue to see if it is approximately NHPP. We show that the IDC
is effective in predicting when the DIS-MOL approximation will be effective. In Section 5,
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we conduct additional experiments to gain more insight; for example, we consider examples
with smaller scale and different service-time distributions. In Section 6, we establish the
asymptotic effectiveness of DIS and DIS-MOL (which coincide in the limit) as the scale
increases. In Section 7, we give the DIS performance functions at the second queue of two
queues in series. We draw conclusions in Section 8. Additional material appears in the
e-companion and an online appendix.

2. BACKGROUND

There is a substantial literature on queues with time-varying arrival rates, which tends to
be split between the two cases: (i) high QoS targets and (ii) low QoS targets. Of course,
there is no fixed boundary between these two cases, and the definition depends on the scale
(typical numbers of busy servers). Nevertheless, the classification is useful.

2.1. High QoS Targets

Not only are customers more satisfied with high QoS, but performance is easier to predict,
so that the system is more easily managed; see the review [16]. With shorter service times,
it is usually possible to apply familiar stationary models in a non-stationary way, using
a variant of the pointwise stationary approximation (PSA), but for longer service times
the PSA becomes highly inaccurate and alternative approximations are needed, such as
MOL [12,18], the simulation-based iterative staffing algorithms (ISA) [8,12], the stationary
backlog carry-over approach [38] and the Gaussian skewness method [34].

2.1.1. MOL and DIS-MOL. The main idea with an OL approach is to see how many
resources (servers) would be used if there were no limit on their availability, which is achieved
by using an IS model. If the system starts empty in the distant past, then the OL is the
mean number of busy servers in the Mt/GI/∞ model, which is

m0(t) =
∫ t

−∞
λ(s)P (S > t− s) ds = E[λ(t− Se)]E[S] = E

[∫ t

t−S

λ(u) du
]
, (2.1)

where S is a generic service time and Se is a random variable with associated stationary-
excess cdf; see [11]. The basic MOL approximation for the Mt/GI/st +GI model is to staff
aiming to stabilize the probability of delay using the stationary M/GI/s+GI model (or
an approximation of it, for example, [14,42]) at each time t, but with the arrival rate

λmol(t) ≡ m0(t)
E[S]

, (2.2)

at time t. (That is done because in a stationary model the OL is m ≡ λE[S].) For general
performance prediction, the MOL approximation tends to be effective if the targeted QoS is
not too low. When the MOL approximation is used to set staffing to stabilize performance,
the MOL approximation becomes more effective, because the performance becomes consis-
tent over time. In [12,18] it is shown that MOL is effective in stabilizing delay probabilities
across a wide range of performance targets.

The corresponding DIS-MOL algorithm from [30] aims to stabilize the expected waiting
time at E[W (t)] = w and the time-dependent abandonment probability at α = F (w), where
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F is the patience cdf and W (t) is the time an arrival at time t would wait if that arrival
had infinite patience. Since networks of IS models are easy to analyze [35], there are explicit
formulas for the DIS OL, mα(t). As indicated in Section 1, mα(t) is E[B(t)], the mean
number of busy servers in the second of two IS queues in series, with the first representing
the waiting room and the second representing the service facility; that is,

mα(t) ≡ E[B(t)] = (1 − F (w))E[λ(t− w − Se)]E[S], (2.3)

which differs from m0(t) in Eq. (2.1) by the two places w appears: the multiplication by
1 − F (w) and the time shift by w itself; see Section 3 of [30]. As the QoS increases (as
α and w decrease), mα(t) → m0(t) in Eq. (2.1). Experience indicates that both MOL and
DIS-MOL successfully stabilize all performance measures with a high QoS [12,30] (assuming
an NHPP arrival process), but for low QoS they each achieve their separate goals, but not
the other.

2.1.2. Extension to Networks. It is significant that the MOL approximation can eas-
ily be implemented in networks of queues without customer abandonment, because the
Mt/GI/∞ network (where again all external arrival processes are NHPPs) has been exten-
sively studied under a variety of routing schemes among the queues in [35]. There it is proved
that all the departure processes and arrival processes are NHPP’s. Moreover, explicit for-
mulas are given there for the arrival-rate function and the mean number of busy servers at
each queue inside the network. Thus, the MOL approximation can be applied to networks
by applying it to each queue using the exact expression for the OL for each queue. A special
case of this MOL approximation has been applied to treat retrials arising in healthcare
in [43].

The extension of the OL and MOL approximations to networks is more complicated
with customer abandonment because the abandonment alters the departure rate from those
queues where it occurs and thus alters the arrival rates at the queues. Thus it is natural to
calculate the departure rate functions and the arrival-rate functions iteratively, treating one
queue at a time, as discussed in Section 1. This is of course easily done recursively (without
iteration) in feed-forward networks, as we will illustrate for two queues in series. Thus, the
MOL, DIS and DIS-MOL staffing algorithms extend quite directly to feed-forward networks
of Mt/GI/st +GI queues, as specified in Section 1. We primarily focus on the special case
of two Mt/GI/st +GI queues in series, for which the DIS model has four IS queues in series,
as depicted in Figure 1. Performance functions for the second queue in this DIS model are
given in Theorem 7.1 and Corollary 7.1.

2.1.3. The Effectiveness of the Extension to Networks. While the implementation of
MOL and DIS-MOL in feed-forward networks of many-server queues is straightforward, the
effectiveness is not. Since the MOL and DIS-MOL algorithms employ stationary models
with Poisson arrival processes, their effectiveness may well depend on the assumed NHPP
(Mt) arrival process for the model. However, as discussed in Section 1.2, this Mt property
does not propagate forward to the departure process. The effectiveness of the MOL approx-
imations for networks of many-server queues was investigated to some extent in [43], but
they restricted attention to the special case of the Markovian model with exponential ser-
vice times and without abandonment. We find that the special case of exponential service
times is significantly better behaved than others (see Section 5.2), but based on this study
we conclude that the NHPP property propagates forward approximately and both MOL
and DIS-MOL ought to perform well provided that the QoS targets are consistently high
at all queues.
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Figure 1. (Color online) The DIS approximation for two queues in series with delay
targets w1 and w2.

2.2. Low QoS Targets

Low QoS targets lead to heavily loaded, even overloaded, queues, operating in the so-called
efficiency-driven (ED) regime [14]. The same MOL and DIS-MOL algorithms can be applied,
but as discussed in [12,30], abandonment probabilities are not stabilized by MOL with the
objective of stabilizing the probability of delay, while delay probabilities are not stabilized
with DIS-MOL with the objective of stabilizing abandonment probabilities.

For these overloaded queues, and more generally for queues that only experience some
periods of overloading, the essential behavior of DIS-MOL and DIS is captured by determin-
istic fluid approximations and diffusion process refinements, arising from direct modeling
or many-server heavy-traffic limits as in [28,29,31–34]. The fluid model provides important
insight into the good performance we find for the DIS and DIS-MOL staffing algorithms
with low QoS targets. We draw on those previous results to establish a new functional weak
law of large numbers (FWLLN) in Section 6 showing that the DIS and DIS-MOL staffing
algorithms are effective asymptotically as the scale increases with fixed QoS targets.

3. THE SIMULATION EXPERIMENT FOR TWO QUEUES IN SERIES

Our main experiment is the simulation of two queues in series with non-exponential service-
time distributions and an NHPP arrival process with a sinusoidal arrival-rate function at
the first queue.

3.1. The Design of the Experiment

We consider an Mt/H2/st +M network with two queues in series. We let the service-
time distributions at both queues be a hyperexponential (H2, mixture of two exponentials)
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distribution with mean E[S] = 1, squared coefficient of variation (scv, variance divided by
the square of the mean) c2 ≡ Var(S)/(E[S])2 = 4 and balanced means, as on p. 137 of [39].
This distribution is significantly more variable than an exponential distribution and yet
the variability is not extremely large. (We will discuss other service-time distributions in
Section 5.)

We use the sinusoidal arrival-rate function

λ(t) = λ̄(1 + r sin(t)) = 100(1 + r sin(t)), t ≥ 0, (3.1)

with relative amplitude r = 0.4 We let A be a generic patience time with mean θ−1 =
E[A] = 2. Since the average OL is m̄(t) = λ̄E[S] = 100, the staffing will fluctuate around
100. We let the system start empty. (We will discuss lower OLs and staffing in Section 5.)

In each case, the simulation estimates are based on 1000 independent replications of
the system over the time interval [0, 20], starting empty. (In each run sampling is done over
intervals of length 0.1.) Thus, there are approximately 2000 external arrivals in each run
and 2 × 106 arrivals for each case. However, with low abandonment probabilities, the total
abandonment rate is much less, such as about 1 when α = 0.01. Hence, over any subinterval
of length 1 the abandonment probability estimate is based on about 1000 observations.
Further details about the way the time-dependent performance functions are estimated
appear in the e-companion.

The simulation imposes a real system constraint: when the staffing level is scheduled to
decrease with all servers busy, service in progress is completed before a server is allowed to
leave, but server assignments can be switched when a server is scheduled to leave. Hence,
when the staffing is scheduled to decrease with all servers are busy, a server is released
when any one of the busy servers first becomes free. With a large number of servers, service
switching greatly reduces the remaining time until a server can depart (roughly dividing it
by the number of servers) [17].

3.2. Performance Results in the Four Cases

There are four main cases for the Mt/H2/st +M network, corresponding to all com-
binations of (i) a high QoS target (lower abandonment probability targets, α =
0.005, 0.010, 0.015, 0.020) and (ii) a low QoS target (higher abandonment probability targets,
α = 0.05, 0.10, 0.15, 0.20). We show selected results for all these cases.

3.2.1. Low QoS (High Abandonment Probability) Targets at Both Queues. First, Figure 2
shows the estimated performance functions at the two queues, with the first queue on the left
and the second on the right, for low QoS targets (relatively high α, that is, α = 0.05, 0.10,
0.15 and 0.20) and DIS staffing (sα(t) = �mα(t)�) at both queues. (The performance with
DIS-MOL is essentially the same.) For these plots, the same targets are used at both queues,
so we reduce the total number of cases considered from 4 × 4 = 16 to 4. The dashed red lines
are the targets and the DIS approximation for the mean queue length. Recall that the mean
service time has been set at E[S] = 1, so that the units for delays are mean service times.

The first plots on the top show the arrival-rate function to that queue (which is the
departure rate from the first queue on the right), while the sixth (bottom) plots show the
DIS staffing functions. The third and fifth plots show the time-dependent abandonment
probability and the expected delay (the average virtual waiting time, that is, the time that
an arrival at time t would wait, if that arrival had unlimited patience) in each case, because
these are the performance functions that the algorithm is designed to stabilize. In addition,
we see that α ≈ θEW , because w = −/θ log (1 − α) ≈ α/θ.
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Figure 2. (Color online) Performance functions in the Mt/H2/st +M network the sinu-
soidal arrival rate in Eq. (3.1) for λ̄ = 100 and r = 0.4: the cases of low QoS targets
(α = 0.05, 0.10, 0.15 and 0.20) and simple DIS staffing at both queues.

In the second and fourth plots, we also show that the average number in queue (the
“queue length”) and the delay probability (the probability that an arrival would have to
wait in queue before starting service), are not directly stabilized. The second plot shows
the average queue length, which agrees closely with the analytical approximation formula
in [30] and Section 7 in each case, has substantial variations. The fourth plot shows the
delay probability, which is also not stabilized. The delay probability starts off at 1 at time
0, because the staffing algorithm does not start staffing until time wi. (In practice, this
feature of DIS staffing is likely not to be used.)

3.2.2. High QoS (Low Abandonment Probability) Targets at Both Queues. Figure 3 shows
the corresponding estimated performance functions at the two queues for high QoS targets
(lower abandonment probability targets, α = 0.005, 0.010, 0.015 and 0.02) and DIS-MOL
staffing at both queues. Again, the same targets are used at both queues, so we reduce the
total number of cases considered from 4 × 4 = 16 to 4.

Here we see that all performance functions become more stable as the abandonment
probability target decreases. At the lowest value α = 0.005, all performance measures are
stabilized remarkably well. At the highest abandonment probability target here, α = 0.02,
the abandonment probability and expected delay are stabilized quite well, clearly much
better than the expected queue length and the delay probability. It is significant that the
performance functions at the second queue behave much like they do at the first.

For perspective, it is helpful to examine the impact of a single agent in the staffing,
as was done in Section EC.11 of [30]. Table EC.5 there shows that, for arrival rate 100
and mean service time 1, a single agent changes the abandonment probability about 9%
when the abandonment probability target is 0.10 and about 19% when the abandonment
probability target is 0.01. Very roughly, the observed fluctuations in the stabilizing cases
are within this range.
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Figure 3. (Color online) Performance functions in the Mt/H2/st +M network with the
sinusoidal arrival rate in Eq. (3.1) for r = 0.4: the cases of high QoS targets (α = 0.005,
0.01 and 0.02) and DIS-MOL staffing at both queues.
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Figure 4. (Color online) Performance functions at the second queue in a Mt/H2/
st +M network with the sinusoidal arrival rate in Eq. (3.1) for r = 0.4: the cases of low QoS
targets (α = 0.05, 0.10, 0.15 and 0.2) and DIS staffing at the second queue with fixed target
α = 0.010 at the first queue on the left, and high QoS targets (α = 0.005, 0.010, 0.015 and
0.020) and DIS-MOL staffing at the second queue with fixed target α = 0.20 at the first
queue on the right.



STABILIZING PERFORMANCE WITH TIME-VARYING ARRIVAL RATES 11

3.2.3. The Two Mixed Cases. Figure 4 shows results for the mixed cases with low
QoS targets (high abandonment probability target, α = 0.05, 0.10, 0.15 and 0.20) and
DIS staffing at one queue, but high QoS targets (low abandonment probability targets,
α = 0.005, 0.010, 0.015 and 0.020) and DIS-MOL staffing at the other queue. Since we
already have shown the performance at the first queue in these cases in Figures 2 and 3,
we now show only the performance at the second queue. Figure 4 shows on the left the
performance measures at the second queue with low QoS targets and DIS staffing, always
using the high QoS target α = 0.01 and DIS-MOL staffing at queue 1. Figure 4 shows
on the right the performance measures at the second queue with high QoS targets and
DIS-MOL staffing, always using the low QoS target α = 0.20 and DIS staffing at queue 1.
(The fixed values at the first queue were chosen to be unambiguously high and low QoS,
respectively.)

Figure 4 shows that the performance (abandonment probability and expected delay)
is remarkably good for DIS at the second queue on the left, but significantly worse for
DIS-MOL at the second queue on the right. On the right, the performance prediction
might be judged adequate for practical engineering purposes, but clearly the abandonment
probability is neither stabilized nor centered at its target. In the next section, we will show
that the poor performance of DIS-MOL on the right can be explained by the fact that
the departure process is not nearly NHPP, as required for the MOL refinement using the
stationary M/GI/s+GI model. The higher abandonment probabilities evidently occur
because the departure process is more bursty (variable) than Poisson in this example.

4. DIRECT ANALYSIS OF DEPARTURE PROCESS SIMULATION DATA

In order to better understand when the DIS-MOL approximation will be effective at a down-
stream queue in a feed-forward network, in this section we carefully examine the departure
process from the Mt/H2/st +M model with sinusoidal arrival rate in Eq. (3.1) that we are
using for the first queue. We do so by analyzing the departure process data obtained from
the simulation experiments. It is natural to expect that this departure process with time-
varying rate would be approximately an NHPP if the stationary departure process from
the associated stationary M/H2/s+M model is approximately a Poisson process. For the
stationary model, we use the long-run average constant arrival rate λ̄ = 100 (obtained by
letting the relative amplitude be r = 0), but all other parameters kept fixed. Hence, we first
look at that more elementary stationary model to gain insight. We then directly examine
the departure process from the Mt/H2/st +M model with sinusoidal arrival rate in Eq.
(3.1) for non-zero relative amplitudes.

4.1. The Stationary Departure Process from the Stationary Model

We start by examining the stationary departure process from the stationary M/H2/s+M
model with the same parameters except for the arrival process, which now is given as
the long-run average constant arrival rate λ̄ = 100, obtained by setting r = 0 in Eq. (3.1).
Again, we do so by simulating this stationary model over the time interval [0, 20]. Since
the simulation starts with the queue empty, we collect departure process data over the
interval [6, 20] to allow the system to approach steady state. This is confirmed by plots of
the estimated departure rate function over the interval [0, 20] (in the appendix). We conduct
multiple independent replications to obtain large samples, for example, of order 106. The
sample size in each run is approximately λ̄(1 − α)T = 100(20 − 6)(1 − α) = 1400(1 − α).
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4.1.1. The Interdeparture-Time Distribution. A common way to investigate whether or
not a constant-rate point process can be regarded as a Poisson process is to estimate the
distribution of the times between successive points and see if it is approximately exponential.
That can be done in various ways, a simple one being to look at the histogram.

We find that all the stationary departures processes from the stationary M/H2/s+M
model pass this test of a Poisson process with flying colors, as illustrated by Figure 5
for the three abandonment probability targets α = 0.5, 0.05, 0.005. Corresponding plots for
other cases appear in the appendix. The plots on the left show the histograms of the
interdeparture times for different α; the plots on the right compare the estimated probability
density function (p.d.f.) f (normalized histogram) to (i) the exponential p.d.f. with the
estimated mean and the scaled H2 service-time distribution with the estimated mean. Also
plotted on the right is an estimate of the hazard (or failure) rate function h(x) ≡ f(x)/F̄ (x),
where F̄ (x) = 1 − F (x), which will be constant if and only if the p.d.f. is exponential.
Here the estimation for h(x) becomes less accurate for x > 0.07 due to the lack of samples
with extremely large service times (>0.07 × 100 = 7). Clearly, Figure 5 and the similar
figures for the other cases show that the interdeparture-time distribution in the stationary
departure process from the stationary M/H2/s+M model with OL λ̄E[S] = 100 is very
closely approximated by an exponential distribution.

4.1.2. The Lag-k Correlations. Those interdeparture-time distribution tests are so con-
vincing that we might be inclined to stop there, being fully convinced, but we have not yet
looked at the joint distribution of several successive intervals. A quick way to check on the
dependence is to estimate the lag-k correlations for a few k, for example, k = 1, 2. When we
do this, we see that these correlations are consistently very small. Thus we should be even
more convinced.

Moreover, there is a limit theorem for the departure processes inM/GI/s queues in [40],
showing that the departure process converges to a Poisson process as the mean service time
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Figure 5. (Color online) Histograms of the interdeparture times from the stationary
M/H2/s+M model (on the left) and fitted densities and hazard rate functions (on the
right): the cases of low QoS targets and DIS staffing: a range of abandonment probability
targets α = 0.5, 0.05, 0.005.
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and number of servers increases. However, that convergence is expressed in the topology
of uniform convergence over bounded intervals. That implies that the departure process
should look like a Poisson process locally as the scale increases appropriately.

4.1.3. The IDC. However, when the servers are often all busy, as will be the case with
higher abandonment-probability targets, the departure process is similar to the superposi-
tion of i.i.d. renewal processes, each having service times as the i.i.d. interrenewal times.
Experience with superposition arrival processes, for example, in [2,3,13,37] indicates that
the process may look different in a longer time scale. Indeed, for any fixed m, the super-
position of m i.i.d. renewal processes tends to behave just like a single renewal process in
a sufficiently long time scale. For example, it has the same central limit theorem behavior;
see [39] and Sections 9.4 and 9.8 of [41].

Thus, just as for superposition processes, to look at the departure process across a
wide range of time scales, it is helpful to look at the IDC, I(t) ≡ Var(D(t))/E[D(t)] as a
function of time t, where D(t) is the departure counting process, as discussed in [7,13,37].
This description of point processes is also appealing because it extends naturally to non-
stationary point processes with time-varying arrival-rate functions, with I(t) = 1 for all t
for an NHPP.

And, indeed, we obtain a very different view when we look at the IDC I(t). We estimate
I(t) by taking multiple replications, again starting to collect data at time 6 in each run.
Estimates of I(t) for 0 ≤ t ≤ 14 are shown in Figure 6, again for stationary M/H2/s+M
model, in the cases of high and low QoS targets, on the left and right, respectively. For the
high QoS targets on the left, Figure 6 shows that I(t) ≈ 1, indicating that the departure
process is approximately Poisson across a range of time scales. Indeed, we see that I(t) is
actually somewhat less than 1, presumably because there is some smoothing caused by the
customer abandonment.
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Figure 6. (Color online) Estimates of the mean ED(t), variance Var(D(t)) and
IDC I(t) ≡ Var(D(t))/ED(t) for the departure counting process from the stationary
M/H2/s+M queue with arrival rate 100: the cases of DIS-MOL staffing and high QoS
targets (low α, on the left) and DIS staffing and very low QoS targets (high α, on the
right).



14 Y. Liu and W. Whitt

A theoretical reference point for these good results is the associated Mt/GI/∞ IS
model. It is well known that the departure process is exactly an NHPP in the IS model; see
Theorem 1 of [11]. Since the Mt/GI/st +GI model tends to be quite similar to this ideal
IS model if the QoS target is sufficiently high, these results for high QoS targets should not
be too surprising.

However, in stark contrast, for low QoS targets, the plots on the right in Figure 6
show that I(t) is much greater than 1, increasing towards 4, the limiting value of the
IDC for a single H2 renewal process, which would be the limiting value of the IDC of
the counting process associated with the superposition of the fixed number 100 i.i.d. H2

renewal processes with c2 = 4; see Section 9.8 of [13,41]. We thus conclude that, just as
in superposition processes, the cumulative impact of many small correlations over many
interdeparture times prevents the departure process from being approximately a Poisson
process over a longer time scale when the QoS target is low.

The IDC provides information about the lag correlations. Since the arrival rate is 100,
the departure rate is nearly 100. Thus we see approximately twice the sum of the first
100 correlations in I(1), indicating that the sum of the first 100 lag-k correlations is about
0.25, which averages to 0.0025. As discussed in [7,37], we can look directly at the cumulative
impact of the correlations among interdeparture times by looking at the corresponding index
of dispersion for intervals (IDI), which is Ii(n) ≡ nc2Dn

≡ nVar(Dn)/(E[Dn])2, where Dn is
the nth departure time, that is, the sum of n consecutive interdeparture times. The large-n
values of Ii(n) agree with the large-t values of the IDC I(t). The cumulative impact of many
small positive correlations is much easier to see by looking at the indices of dispersion than
trying to estimate the small individual correlations.

4.2. The Index of Dispersion of the Mt/H2/st + M Departure Process

Having established the importance of the IDC of an arrival process for understanding per-
formance in the queue, and seeing that the IDC applies naturally to point processes with
time-varying rate functions as well as constant arrival-rate functions, with I(t) = 1 for
all t ≥ 0 for an NHPP, we now look directly at the IDC of the departure processes in
the Mt/H2/st +M model with sinusoidal arrival rate in Eq. (3.1) and relative amplitude
r = 0.4 at the first queue that we obtained from our simulation experiments in Section 3.

Figure 7 shows the results for the sinusoidal arrival-rate function. Figure 7 is consistent
with Figure 6 for the stationary model. We see that the IDC is again consistently near 1
when the QoS is high, but is increasing toward 4 when the QoS is low. Thus, we conclude
that, from the perspective of the IDC, the departure process is approximately Poisson for
high QoS targets at the first queue, but it is not approximately Poisson for low QoS targets
at the first queue. From Section 3, we see that the IDC is able to predict whether or not
the DIS-MOL staffing algorithm will be effective at the second queue.

4.3. Kolmogorov–Smirnov (KS) Statistical Tests of an NHPP

We conclude this section by considering KS statistical tests of an NHPP, as first proposed
by Brown et al. [5] and then subsequently studied further in [19,20]. These KS tests apply if
the arrival-rate function can be regarded as approximately constant over appropriate subin-
tervals. (The question of how to choose subintervals so that the arrival-rate function can be
regarded as approximately constant over each subinterval is studied in [19].) Given intervals
over which the rate is approximately constant, we combine the data from these subintervals
after exploiting the classical conditional uniform (CU) property over each subinterval. The
CU property of a Poisson process states that, conditional on the number of points observed
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Figure 7. (Color online) Estimates of the mean ED(t), variance Var(D(t)) and IDC
I(t) ≡ Var(D(t))/ED(t) for the departure counting process from the Mt/H2/100 +M
queue with sinusoidal arrival-rate function in Eq. (3.1) having relative amplitude r = 0.4:
the cases of high QoS targets (low α, on the left) and DIS-MOL staffing and very low QoS
targets (high α, on the right) with DIS staffing.

in the subinterval, these values divided by the length of the interval are distributed as
i.i.d. random variables uniformly distributed over [0, 1]. Thus, assuming that the piecewise-
constant approximation is appropriate, under the NHPP hypothesis, all the data can be
combined into one sequence of i.i.d. random variables uniformly distributed over [0, 1]. The
first test is the CU KS test of the uniform distribution applied to the data that would be
i.i.d. random variables uniformly distributed over [0, 1] if the arrival process were an NHPP
with piecewise-constant arrival-rate function.

However, Kim and Whitt, [20] showed that the CU KS test has remarkably little power
against point processes with different marginal distributions. Hence, in [5,20] alternative
KS tests are suggested based on additional transformations of the data. In [20], a KS
test proposed by Lewis [24] based on a transformation due to Durbin [9] was found to
have relatively high power against non-exponential marginal distributions. Thus, here we
consider the Lewis KS test from [19,20], but we also consider the CU KS test, because
it has more power than the Lewis test against departures from a Poisson process due to
non-stationarity and dependence, which we have just shown turn out to be important in
the present context.

Table 1 shows the results of the CU and Lewis KS tests of an NHPP applied to the
departure process data over the interval [6, 20] for several cases.

The cases include (i) high and low QoS targets and (ii) three sinusoidal arrival-rate tests
with relative amplitudes r = 0.0 (constant), r = 0.2 (moderate fluctuations) and r = 0.6
(very high fluctuations). In order to apply the CU property we considered equally spaced
subintervals of length L (over each of which the rate is treated as being approximately
constant) for L = 0.5, 2.0 and 14.

As emphasized by [5,19], it is important to check if the data are rounded and, if so,
appropriately unround the data by adding small i.i.d. uniform random variables to the
observations. The present departure data were in fact rounded, so we first unrounded the
data here. Both the raw (unrounded) and rounded data are shown in the appendix.
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Table 1. The CU and Lewis KS tests applied to the departure processes over
[6, 20] from the Mt/H2/st +M model with the sinusoidal arrival-rate function in
Eq. (3.1) in 18 cases: three relative amplitudes [r = 0 (constant), 0.2 and 0.6] and
six abandonment probability targets, three low QoS [α = 0.5, 0.4 and 0.3] and
three high QoS [α = 0.02, 0.01 and 0.005]. The KS tests are applied 20 times,
once for each 25 replications in six cases: with rounded data and three subinterval
lengths L: 0.5, 2 and 14.

Arrival Aband. Sample
Rate Prob. Size L = 0.5 L = 2 L = 14
Fct. Target Result # n CU Lewis CU Lewis CU Lewis

r = 0 α = 0.5 p-val 17, 269 0.49 0.65 0.41 0.59 0.25 0.53
# pass 19 20 20 20 12 20

Const. α = 0.4 p-val 20, 652 0.49 0.55 0.52 0.43 0.30 0.45
# pass 19 18 19 19 14 19

α = 0.3 p-val 24, 292 0.45 0.59 0.59 0.47 0.16 0.48
# pass 16 18 20 19 14 18

α = 0.02 p-val 33, 863 0.43 0.37 0.64 0.34 0.40 0.36
# pass 20 17 19 17 15 17

α = 0.01 p-val 34, 272 0.42 0.29 0.47 0.30 0.28 0.22
# pass 16 18 19 16 15 17

α = 0.005 p-val 34, 453 0.56 0.38 0.52 0.35 0.33 0.39
# pass 19 16 19 16 16 18

r = 0.2 α = 0.5 p-val 17, 018 0.53 0.41 0.50 0.44 0.00 0.18
# pass 20 19 18 19 0 10

sine α = 0.4 p-val 20, 482 0.55 0.49 0.46 0.61 0.00 0.11
# pass 20 20 20 19 0 9

α = 0.3 p-val 23, 966 0.51 0.48 0.39 0.60 0.00 0.16
# pass 19 20 18 18 0 13

α = 0.02 p-val 33, 782 0.43 0.48 0.12 0.47 0.00 0.27
# pass 18 19 7 16 0 15

α = 0.01 p-val 34224 0.36 0.53 0.11 0.36 0.00 0.34
# pass 17 19 9 18 0 16

α = 0.005 p-val 34, 372 0.44 0.52 0.16 0.53 0.00 0.34
# pass 19 19 9 18 0 17

r = 0.6 α = 0.5 Avg p-val 16, 523 0.52 0.47 0.42 0.05 0.00 0.00
# pass 19 19 18 7 0 0

sine α = 0.4 p-val 19, 968 0.27 0.38 0.09 0.02 0.00 0.00
# pass 18 17 8 2 0 0

α = 0.3 p-val 23, 358 0.33 0.40 0.03 0.01 0.00 0.00
# pass 18 15 5 0 0 0

α = 0.02 p-val 33, 757 0.42 0.29 0.00 0.00 0.00 0.00
# pass 18 14 0 0 0 0

α = 0.01 p-val 34, 180 0.49 0.55 0.00 0.00 0.00 0.00
# pass 20 20 0 0 0 0

α = 0.005 p-val 34, 344 0.28 0.38 0.00 0.00 0.00 0.00
# pass 14 18 0 0 0 0

Table 1 shows results of 20 KS tests, each applied to the data from 25 replications, for
the rounded data. Specifically, the number of tests out of 20 that pass at an 0.05 significance
level and the p value, that is, the significance level at which the KS test would reject the
Poisson hypothesis. For the first constant arrival-rate case, there is evidence that the CU
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test detects the dependence for L = 14, but it does not consistently reject the Poisson
hypothesis.

The remaining cases involve both non-stationarity (time dependence) and stochastic
dependence. Unfortunately, the two effects of (i) non-stationarity and (ii) stochastic depen-
dence are confounded. In order to have intervals where the rate is approximately constant,
we would like to chose L relatively small (the cases with L ≤ 2.0), but in order to see the full
impact of the dependence (the cumulative impact of the many small correlations revealed
by the IDC), we need to have L large.

Table 1 shows that for the very short intervals with L = 0.5, both KS tests of an NHPP
consistently accept the NHPP hypothesis for the rounded data. However, that is consistent
with our previous analysis, because we see only dependence over times less than L in the
KS test; we do not see the cumulative impact of many small correlations. On the other
hand, Table 1 shows that a significant deviation from the NHPP is detected in the case
L = 14, especially by the CU KS test. Table 1 indicates the non-stationarity is a more
significant departure from the Poisson property than the stochastic dependence, especially
when r = 0.6.

We observe that the CU KS test is somewhat less conclusive than the IDC in rejecting
the NHPP hypothesis, but each KS test is based on the data of only a 25 simulation runs,
which involves a much smaller sample size than used to estimate the IDC. Overall, we
conclude that these KS tests are consistent with the previous analysis of the departure
process, but here (i) the CU test seems more effective than the Lewis test (for the reasons
mentioned above) and (ii) the IDC evidently is more effective in detecting whether or not
the departure process should be regarded as an NHPP, but we observe that it requires much
more data. That data are routinely not difficult to obtain with simulation, because we can
perform multiple replications. However, useful system data are much harder to obtain. In
order to have suitable sample sizes from service system data, it is natural to combine data
from multiple days, but we need to be cautious about overdispersion, caused by a random
rate function on each day, as discussed in [19].

5. ADDITIONAL EXPERIMENTS

In this section, we present the results of additional experiments to add additional insight.

5.1. Lower Arrival Rates and Staffing

It is known that the performance of the MOL and DIS-MOL staffing algorithms improves
as the scale increases. Nevertheless, these approximations can be useful for much smaller
OLs, as shown by [43]. We illustrate by showing in Figure 8 the analog of Figure 3 for the
same model except λ̄ is reduced from 100 to 20.

See the appendix for more results. As the scale decreases, the discretization becomes a
more and more serious issue. Thus there is a limit to the stabilization that can be achieved
with very small scale. Here we increase the number of replications to 5000.

5.2. The Totally Markovian First Queue

To put the previous results in Section 3 in perspective, we also simulated the same
Mt/GI/st +M network with the sinusoidal arrival rate in Eq. (3.1) having relative ampli-
tude r = 0.4 and λ̄ = 100 after changing the service-time distribution at the first queue from
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Figure 8. (Color online) Performance functions in the Mt/H2/st +M network with the
sinusoidal arrival rate in Eq. (3.1) for r = 0.4 and λ̄ = 20: the cases of high QoS targets
(α = 0.005, 0.01 and 0.02) and DIS-MOL staffing at both queues.

H2 to M , still with mean 1. We let the service-time distribution remain H2 at the second
queue.

The principal case of interest has a low QoS target at the first queue and a high QoS
target at the second queue, which produces the bad results at the second queue for the H2

service-time distribution at the first queue on the right in Figure 4. Thus we display the
results for this case in Figure 9 below. As in Figure 4, we fix the abandonment probability
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Figure 9. (Color online) Performance functions in the Mt/GI/st +M network with the
sinusoidal arrival rate in Eq. (3.1) for r = 0.4 and λ̄ = 100 when the service-time distribution
is M at the first queue and H2 at the second queue: the case of a fixed low QoS targets
(α = 0.20) and DIS staffing at the first queue and high QoS targets (α = 0.005, 0.010, 0.015
and 0.020) and DIS-MOL staffing at the second queue.
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target at α = 0.2 for the first queue, so that we have one case at the first queue and four at
the second queue.

Comparing Figure 9 to Figure 4, we see that the performance at the second queue with
DIS-MOL staffing is now good instead of bad. In particular, the performance at the second
queue is essentially the same as the performance at both queues in Figure 3.

5.3. Lognormal Service-Time Distributions

We also did experiments with lognormal (LN) service-time distributions instead of the
H2 distributions in Section 3, which are of interest because they have been found to fit
service system data [4,5]. We found that the LN distribution with scv c2 = 4 behaved like
the H2 distribution with c2 = 4 in Section 3. However, we found that the LN distribution
with c2 = 1, which is similar to the data fitting results, behaved much like the M service-
time distribution in Section 5.2, producing performance supporting DIS-MOL and IDC’s
supporting an NHPP approximation for the departure process. To illustrate, we plot the
analog of Figure 9 for the case in which both service time distributions are LN with c2 = 1
in Figure 10. See the appendix for other cases.

5.4. The Impact of a Non-NHPP External Arrival Process

We have observed that DIS-MOL is likely to perform poorly at the second queue with a
high QoS (low-abandonment-probability) target there when the departure process from the
first queue is not approximately an NHPP. We now show that the same problem occurs at
a single Gt/H2/st +M queue when the external arrival process is not nearly Mt. Such an
external arrival process has both strongly time-varying arrival rate and non-NHPP stochastic
behavior. In particular, we consider the H2(t)/M/st +M network of two queues in series,
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Figure 10. (Color online) Performance functions in the Mt/LN/st +M network with the
sinusoidal arrival rate in Eq. (3.1) for r = 0.4 and λ̄ = 100 when the service-time distribution
is LN with scv c2 = 1 at both queues: the case of a fixed low QoS targets (α = 0.20) and
DIS staffing at the first queue and high QoS targets (α = 0.005, 0.010, 0.015 and 0.020) and
DIS-MOL staffing at the second queue.
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which differs from the totally Markovian Mt/M/st +M network only by having an external
arrival process that is a time-varying version of a renewal process with H2 interarrival times.

5.4.1. Constructing a Non-NHPP Process with Time-Varying Arrival Rate. We use a stan-
dard construction to construct the H2(t) arrival process: Given any arrival-rate function
λ(t), let the associated cumulative arrival-rate function be defined by

Λ(t) ≡
∫ t

0

λ(s) ds, t ≥ 0. (5.1)

This construction is a special case of the construction in Section 7 of [36]; it is used again
in [15]. Let Ae(t) be a rate-1 equilibrium renewal process (ERP), that is a standard renewal
process with the first cycle replaced by the equilibrium version of the interarrival times.
For the cumulative arrival-rate function Λ associated with any given arrival-rate function λ,
which we take to be the specified sinusoidal arrival-rate function in Eq. (3.1) having r = 0.4,
and an ERP Ae(t) with H2 interarrival times (constructed from H2 random variables with
mean 1 and c2 = 4, just like the service-time distribution before), the H2(t) counting process
we consider is defined by the simple composition

A(t) ≡ Ae(Λ(t)), t ≥ 0. (5.2)

The stochastic process A ≡ {A(t) : t ≥ 0} inherits the time-dependence through Λ and the
stochastic dependence through Ae. Since Ae is a stationary process, we have E[A(t)] = Λ(t)
for all t ≥ 0.

5.4.2. Performance at the Queue. Since c2 = 4, the IDC of the arrival processes A2(t)
and A(t) approach 4 as t increases. The conclusions in Section 3 about the performance
at the second queue when the departure process is not nearly an NHPP now apply to the
first queue, because the external arrival process is itself not nearly an NHPP. Figure 11
confirms that DIS-MOL is not effective at the first queue with high QoS targets because
the arrival process is not nearly Mt, while DIS is effective at the first queue with low QoS
targets because only the rate of the arrival process matters.

5.5. Three-Queue Models

It is interesting to see if the conclusions drawn in Section 3 extend to bigger feed-forward
networks. We conduct two three-queue experiments in this subsection.

5.5.1. Three Queues in Series. We first show extensions of the experiment in Section 3
to the corresponding Mt/H2/st +M network with three queues in series, each with an H2

service-time distribution, but now different means: 1.0, 0.8 and 1.2. The arrival-rate function
is again sinusoidal as in Eq. (3.1) with relative amplitude r = 0.4. Figures 12 and 13 show
the results, which are consistent with the good performance seen in Figures 2 and 3 before.

5.5.2. Three-Queue Distribution Model. In order to take into account the Markovian
routing features in a general feedforward Mt/GI/st +GI network, we next design a network
of three Mt/H2/st +M queues, with Queue 1 feeding Queues 2 and 3 with probabilities
p1,2 = 1 − p1,3 = 0.6. Each queue has an H2 service-time distribution with mean 1 and
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Figure 11. (Color online) Performance functions at a H2(t)/M/st +M queue with H2(t)
arrival process having the sinusoidal arrival rate in Eq. (3.1) for r = 0.4 and λ̄ = 100: the
cases of low QoS (high abandonment probability targets), α = 0.05, 0.10, 0.15 and 0.20) and
DIS staffing on the left and high QoS (low abandonment probability targets), α = 0.005,
0.01, 0.015 and 0.02) and DIS-MOL staffing on the right.
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Figure 12. (Color online) Performance functions in the Mt/H2/st +M network with
three queues in series and the sinusoidal arrival rate in Eq. (3.1) for r = 0.4 and mean
service times 1.0, 0.8 and 1.2: the cases of identical low QoS targets (α = 0.05, 0.10, 0.15
and 0.20) and simple DIS staffing at all queues.
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Figure 13. (Color online) Performance functions in the Mt/H2/st +M network with
three queues in series and the sinusoidal arrival rate in Eq. (3.1) for r = 0.4 and mean
service times 1.0, 0.8 and 1.2: the cases of identical high QoS targets (α = 0.005, 0.010,
0.015 and 0.020) and DIS-MOL staffing at all queues.

c2 = 4. The arrival-rate function is again sinusoidal as in Eq. (3.1) with relative amplitude
r = 0.4. Figures in the appendix show good performance of DIS (for low QoS) and DIS-MOL
(for high QoS), that are consistent with Figures 2 and 3 before.

6. ASYMPTOTIC EFFECTIVENESS IN FEED-FORWARD NETWORKS

Theorem 2 of [30] established that the simple DIS staffing algorithm with sα(t) = mα(t) is
effective asymptotically for any expected delay target w > 0 and abandonment probability
targets α > 0 related by α = F (w) as the scale increases in the Mt/GI/st +GI model. We
now extend that asymptotic result to all queues within a feed-forward Gt/GI/st +GI net-
work of queues, with fixed i.i.d. routing decisions when choices are available. In particular,
we assume that departures from queue i will be routed to subsequent “downstream” queue
j with probability pi,j , independent of the history up to that time. For each queue, the sum
of these routing probabilities is less than or equal to 1, with any excess probability corre-
sponding to routing out of the network. Hence, each departure process with downstream
queues may have its departure process split, and sent in multiple directions, possibly out of
the network. Similarly, each queue with “upstream” queues that can send arrivals to it has
an arrival process that is a superposition of its external arrival process and the “internal”
arrival processes sent from upstream queues.

The first essential insight is that the performance targets involving positive values of w
and α force the system to operate in the overloaded ED many-server heavy-traffic regime
as the scale increases, as discussed for stationary models in [14]. As the scale increases, to
achieve the targets it suffices to have a proportion α of the arrivals at any time eventually
abandon, just as in the corresponding fluid model.
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The second essential insight is that, while the main queueing model is quite complicated,
the approximating DIS IS model depicted in fig1, for which formulas are given in Theorem
1 of [30] and Theorem 7.1 here, Has performance identical, except for interpretation, to
the fluid model performance when we stabilize waiting times as in Section 10 of [28]. The
expected values in the stochastic DIS IS model coincide with the deterministic values in the
fluid model. The fluid model with general staffing has a much more complicated performance
involving a fixed-point equation for the rate fluid enters service during each overloaded
interval, but that complexity disappears when we stabilize the waiting times at a positive
target. For both the fluid model and the DIS approximation, the performance is easily
extended to feed-forward networks.

The third essential insight is that there is a scale proportionality for these IS and fluid
models, discussed in Section 4 of [30], that implies that the performance scales by n if we
multiply the arrival rates and staffing by n. Hence, we can start with external arrival-rate
functions and staffing functions that coincide for the DIS and fluid models. Then we create
a sequence of stochastic models by simply multiplying the arrival-rate function and staffing
functions by n, and then discretizing the staffing function. As the scale n increases, the
discretization becomes negligible.

Finally, we establish a FWLLN to show that the associated sequence of scaled perfor-
mance processes in the original model converges to the fluid model. As in [30], we apply the
many-server heavy-traffic FWLLN theorem from [29]. That FWLLN involves a sequence of
Gt/GI/st +GI queueing models indexed by n. We consider a corresponding sequence of
feed-forward Gt/GI/st +GI networks indexed by n, with a fixed number m of queues and
fixed i.i.d. routing for departures from each queue, independent of n. We let the service and
patience distributions at the queues be independent of n. At queue i, there are i.i.d. service
times distributed as a generic random variable Si with cdf Gi, and i.i.d. patience times of
successive customers distributed as a random variable Ti with general cdf Fi. The cdf’s Gi

and Fi are differentiable, with positive p.d.f.’s gi and fi.
The arrival process Nn(t) was assumed to be NHPP in [30], but greater generality is

allowed by [29]. In order to simplify the proof, we exploit the essential insights above by
letting the external arrival-rate functions in model n be scaled versions of fixed external
arrival-rate functions.

Scaling the arrival-rate function works directly if we assume that the external arrival
processes are NHPPs, but to allow greater generality we assume a specific process represen-
tation. We assume that each queue i that has an external arrival process has a base external
arrival counting process that can be expressed as

N (i,e)(t) = N (i,1)(Λi,e(t)), t ≥ 0, (6.1)

where Λi,e(t) is a differentiable cumulative rate function with

Λi,e(t) ≡
∫ t

0

λi,e(s) ds (6.2)

and N (i,1) ≡ {N (i,1)(t) : t ≥ 0} is a rate-1 stationary point process satisfying a FWLLN,
that is,

n−1N (i,1)(n·) ⇒ e in D as n→ ∞, (6.3)

where e(t) ≡ t and ⇒ denotes convergence in distribution in the function space D with the
topology of uniform convergence over bounded subintervals of the domain [0,∞) as in [41].
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In that framework, we then define the external arrival process at queue i in model n by
letting

N (i,e)
n (t) ≡ N (i,1)(nΛi,e(t)), t ≥ 0, (6.4)

which gives it cumulative arrival rate function Λ(i,e)
n (t) = nΛi,e(t), a simple multiple of the

base arrival-rate function. On account of this construction and assumption Eq. (6.3), we
deduce that N (i,e)

n also obeys the FWLLN

n−1N (i,e)(n·) ⇒ Λi,e in D as n→ ∞. (6.5)

Since the external arrival rates have been constructed by simple scaling, the associated
DIS staffing can be constructed by simple scaling as well. Hence, in model n, we can use
a time-varying number of servers s(i)n,α(t) ≡ �n s(i)α (t)�, which we assume is set by the DIS
staffing algorithm, which is a scaled version of the staffing in the associated fluid model
with cumulative arrival rate Λi,e.

We define the following performance functions for the nth model: Let N (i)
n (t) be the

total number (external plus internal) arrivals at queue i in the interval [0, t]; let Q(i)
n (t) be

the number of customers waiting in queue i at time t; let W (i)
n (t) be the corresponding

potential waiting time, that is, the virtual waiting time at time t if there were an arrival at
time t at queue i, assuming that arrival had unlimited patience; let A(i)

n (t) be the number
of customers that have abandoned from queue i in the interval [0, t]; let A(i)

n (t, u) be the
number of customers among arrivals to queue i in [0, t] that have abandoned in the interval
[0, t+ u]; let D(i)

n (t) be the number of customers to complete service from queue i in the
interval [0, t]; let D(i,j)

n (t) be the number of customers to complete service from queue i
and be routed to queue j in the interval [0, t]. Define associated FWLLN-scaled processes:
by letting N̄ (i,e)

n (t) ≡ n−1N
(i,e)
n (t), and similarly for the other processes except the process

W
(i)
n (t) is not scaled.

We assume that the limiting arrival-rate functions λi,e, staffing function s(i)α (t), and cdf’s
Gi and Fi satisfy the assumptions of the fluid model in [28]. We assume that the regularity
conditions in [28,29] are satisfied, in particular, the model elements Λi,e, Fi and Gi are
differentiable functions with piecewise-continuous derivatives λi,e, fi and gi. We assume in
addition that the service times have finite second moments. Let 1C be the indicator variable,
which is equal to 1 if event C occurs and is equal to 0 otherwise.

Theorem 6.1 (Asymptotic Stability): Consider a sequence of feed-forward Gt/GI/st +GI
networks with external arrival processes defined as in Eq. (6.4) and the many-server heavy-
traffic scaling specified above. Suppose that these systems start empty at time 0, the regularity
conditions in [28,29,32] are satisfied and E[S2

i ] <∞ for all queues i. Then, for any set of
abandonment-probability targets αi > 0 for all queues i (or related expected waiting time
targets wi with αi = Fi(wi)), use the DIS staffing s(i)n,α(t) ≡ �n s(i)α (t)�, where

s(i)α (t) = m(i)
α (t) ≡ E[B(i)

α (t)] = F̄i(wi)
∫ t−wi

0

Ḡi(x)λi(t− wi − x)dx · 1{t>wi}, (6.6)

which involves first staffing queue i at time wi, where the total arrival-rate function at queue
i, λi, is obtained recursively via the equation

λj(t) = λj,e(t) +
∑

i

pi,jσi(t), t ≥ 0, (6.7)
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with σi(t) being the departure rate function from queue i, that is,

σi(t) = F̄i(wi)
(∫ t−wi

0

λi(t− wi − x)gi(x) dx
)

1{t>wi}, (6.8)

which necessarily is positive only after time wi. Then, as n→ ∞, the expected delays and
abandonment probabilities are stabilized at their targets wi and αi for all i for any time bi
with wi < bi <∞. In particular,

sup
0≤t≤bi

{|Q̄(i)
n (t) − E[Q(i)(t)]|} ⇒ 0, sup

0≤t≤bi

{|W (i)
n (t) − wi|} ⇒ 0, E[W (i)

n (t)] → wi, t ≥ 0,

sup
0≤t≤bi

{|Ā(i)
n (t) −A(i)(t)|} ⇒ 0 and sup

0≤t≤bi, wi<u<bi

{|Ā(i)
n (t, t+ u) −A(i)(t, u)|} ⇒ 0

(6.9)

as n→ ∞, where

E[Q(i)(t)] = E[Q(i)(t, 0)] ≡
∫ wi

0

λi(t− x)F̄i(x) dx, A(i)(t) ≡
∫ t

0

ξi(s) ds

ξi(t) ≡
∫ wi

0

λi(t− x)fi(x) dx and A(i)(t, u) ≡ Λi(t)αi, u > wi. (6.10)

The limit functions are the performance functions of the associated fluid network, con-
structed recursively from [28].

Proof: Like the result, the proof is an extension of the proof of Theorem 2 of [30]. We can
apply the results in [28,29] recursively and inductively. We exploit the deterministic limits
of all assumed and established FWLLN’s to obtain joint convergence of all individual limits
established, invoking Theorem 11.4.5 of [41]. We also exploit the feed-forward assumption.
In a feed-forward network there necessarily are some queues with only external arrival
processes. Clearly, for these queues, N (i)

n (t) = N
(i,e)
n (t) and the assumed FWLLN for N (i,e)

n

produces the FWLLN for N (i)
n with Λi(t) = Λi,e(t) and λi(t) = λi,e(t) for all t. For any

queues for which the FWLLN for N (i)
n is established, we can obtain the FWLLN from the

single-server result, Theorem 1 of [29]. That limit includes a limit for the associated total
departure process D(i)

n , that is, D̄(i)
n ⇒ D(i), with

D(i)(t) =
∫ t

0

σi(s) ds, t ≥ 0, (6.11)

where the service completion (departure) rate function σi(t) given in Eq. (6.8) above, as
in Theorem 8 of [28], which in turn follows from the general formula (9) of [28]. The key
point is that the FWLLN for D(i)

n follows directly from [28,29,32] once the limit for N (i)
n (t)

is established.
We now indicate how to obtain the FWLLN limit for N (j)

n (t) when the FWLLN limit for
D

(i)
n has been established for all upstream queues. An important step is actually constructing

the net arrival process N (j)
n (t) at each queue j. For that purpose, let {Xn,i,k : k ≥ 1} be a

sequence of routing i.i.d random variables with Xn,i,k = j if the kth departure from queue
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i is routed to queue j. Then we can represent N (j)
n (t) explicitly as

N (j)
n (t) = N (j,e)

n (t) +
∑

i

D(i)
n (t)∑
k=1

1{Xn,i,k=j}, t ≥ 0, (6.12)

and the associated scaled version as

N̄ (j)
n (t) = N̄ (j,e)

n (t) +
∑

i

Z̄n,i,j(t) ◦ D̄(i)
n (t), t ≥ 0, (6.13)

where ◦ is the composition function and

Z̄n,i,j(·) ≡ 1
n

�n·�∑
k=1

1{Xn,i,k=j} ⇒ pi,je in D (6.14)

by the FWLLN for partial sums of i.i.d. random variables. Hence, given the FWLLN
assumed for N (j,e)

n (t), the FWLLN for Z̄n,i,j in Eq. (6.14) and the recursively established
FWLLN limit for D(i)

n (t), it follows that a FWLLN holds for N (j)
n (t) with

N (j)
n (t) ⇒ Λj(t) = Λj,e(t) +

∑
i

pi,jD
(i)(t), t ≥ 0. (6.15)

In particular, we apply the continuous mapping theorem in Section 3.4 of [41] for the
continuous addition and composition functions appearing in Eq. 6.13; see Theorems 12.7.3
and 13.2.1 of [41]. In this way we recursively obtain the FWLLN limits for all the external
arrival processes. As in [30], the assumption that E[S2

i ] <∞ for all i is used to justify the
uniform integrability implying the convergence of the expected waiting times. Since we are
applying the DIS algorithm to stabilize the expected waiting time, the limiting formulas
follow Theorem 8 of [28]. �

Consistent with Figure 2, from the representation of the DIS approximating mean queue
length E[Q(i)

α (t)] in Theorem 6.1, just as in Corollary 1 of [30].

7. THE DIS PERFORMANCE AT THE SECOND OF TWO QUEUES IN SERIES

For the Mt/GI/st +GI two-queue series network, the DIS model consists of four IS queues
in series, as depicted in Figure 1. Note that this is a legitimate mathematical model in
its own right. The performance functions at the first two-queue DIS model are given in
Theorem 1 of [30]. The performance functions at the second two-queue DIS model follow
from that, using the departure rate from the first two-queue DIS model as the arrival rate
to the second two-queue DIS model. To facilitate application of the extension to two queues
in this paper, we now give explicit expressions for the DIS performance functions at the
second two-queue DIS model in terms of the model parameters. This theorem has been
used to compute the DIS OL mα(t) at the second queue and the mean queue length, for
example, as shown by the red dashed lines in Figure 2. For any random variable X, let Xe

have the associated stationary-excess distribution, just as in Eq. (2.1).

Theorem 7.1 (DIS performance at the second two-queue DIS model): Consider the four-
queue DIS model serving as am approximation for the two-queue Mt/GI/st +GI series
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network with arrival-rate function λ, service-time cdf’s G1 and G2, patience cdf’s F1 and
F2, delay targets w1 > 0 and w2 > 0, and abandonment probability targets α1 ≡ F1(w1) and
α2 ≡ F2(w2). Let Ti ≡ min(Ai ∧ wi) where Ai is a generic abandonment time at Queue i,
i = 1, 2. Then the time-dependent random numbers of customers in the waiting room and
service facility of the second two-queue DIS model, Q2(t) and B2(t), are independent Poisson
random variables having means

E[Q2(t)] = α1E

[∫ t

t−T2

λ(x− w1 − S1) dx
]

= α1E [λ(t− w1 − S1 − T2,e)] · E[T2],

m2(t) ≡ E[B2(t)] = α1α2E

[∫ t−w2

t−w2−S2

λ(x− w1 − S1) dx
]

= α1α2E [λ(t− w1 − w2 − S1 − S2,e)]

= α1α2

∫ t

−∞

∫ t

0

λ(x− y − w1 − w2) Ḡ2(t− x) dG1(y) dx.

At the second two-queue DIS model, the processes counting the numbers of customers aban-
doning, entering service and completing service are independent NHPPs with rate functions
ξ2, β2 and σ2, where

ξ2(t) = α1E [λ(t− w1 − S1 − T2)|T2 < w2] ,

β2(t) = α1α2E [λ(t− w1 − w2 − S1)]E[S2],

σ2(t) = α1α2E [λ(t− w1 − w2 − S1 − S2)] .

The following Corollary draws on [10] and Theorem 6.3 of [35].

Corollary 7.1 The special case of sinusoidal arrival rate: In the setting of Theorem 7.1,
suppose that the arrival-rate function is the sinusoidal function λ(t) = a+ b · sin(ct+ ψ),
starting in the indefinite past. Then for i = 1, 2, Qi(t) and Bi(t) are independent Poisson
random variables having sinusoidal means

E[Qi(t)] = aQ
i + bQi · sin(ct+ ψQ

i ) and mi(t) ≡ E[Bi(t)] = aB
i + bBi · sin(ct+ ψB

i ),

where

aQ
1 ≡ aE[T1], bQ1 ≡ bE[T1] γc(T1,e), ψQ

1 ≡ ψ − θc(T1,e),

aQ
2 ≡ α1 aE[T2], bQ1 ≡ α1 bE[T2] γc(S1) γc(T2,e),

ψQ
2 ≡ ψ − (θc(S1) + θc(T2,e) + cw1) ,

aB
1 ≡ α1 aE[S1], bB1 ≡ α1 bE[S1] γc(S1,e), ψB

1 ≡ ψ − (θc(S1,e) + cw1) ,

aB
2 ≡ α1α2 aE[S2], bB1 ≡ α1α2 bE[S2] γc(S1) γc(S2,e),

ψB
2 ≡ ψ − (θc(S1) + θc(S2,e) + c(w1 + w2)) ,

γc(X) ≡
√

(E[sin(cX)])2 + (E[cos(cX)])2, and θc(X) ≡ arctan
(
E[sin(cX)]
E[cos(cX)]

)
,

for a non-negative random variable X. The departure processes are NHPPs with sinusoidal
rate functions

σ1(t) = aσ
1 + bσ1 · sin(ct+ ψσ

1 ) and σ2(t) = aσ
2 + bσ2 · sin(ct+ ψσ

2 ),
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where

aσ
1 ≡ α1 a, bσ1 ≡ α1 b γc(S1), ψσ

1 ≡ ψ − (θc(S1) + cw1) ,

aσ
2 ≡ α1α2 a, bσ1 ≡ α1α2 b γc(S1) γc(S2), ψσ

2 ≡ ψ − (θc(S1) + θc(S2) + c(w1 + w2)) .

8. CONCLUSIONS

We have examined the extension of the DIS-MOL and more elementary DIS staffing algo-
rithms for one Mt/GI/st +GI many-server queue with time-varying arrivals in [30] to a
feed-forward network of such queues. We have shown that these algorithms do not neces-
sarily remain as effective in a network context. In particular, we found that there can be
significant performance degradation at a queue with a high QoS target, when a preceding
queue has both a non-exponential service distribution and a low QoS target; see the right-
hand plot in Figure 4. This same performance degradation can occur at a single queue if the
external arrival process is not nearly an NHPP, as shown in Figure 11. Otherwise (which
includes the important common case of an NHPP external arrival process and high QoS
targets at all queues), the extension to networks performed well.

We established the asymptotic effectiveness as the scale increases with fixed QoS targets
in Theorem 6.1, but that only supports good performance at each queue with a low QoS.
We relied on extensive simulation experiments to study the performance of DIS-MOL and
whether the departure process from an Mt/GI/st +GI many-server queue can be regarded
as an HNPP (Mt). We saw that the interdeparture-time distribution in a stationary depar-
ture process can be nearly exponential without the departure process being approximately
Poisson. For both stationary and non-stationary departure processes, we conclude that
the IDC is effective in predicting whether or not a departure process can be regarded as
approximately an NHPP for the purpose of this application.

We next summarize our main conclusions about the effectiveness of DIS-MOL to stabi-
lize performance in feed-forward networks ofMt/GI/st +GI queues, each with a sufficiently
high OL and sufficiently many servers (which may not need to be so large, see Section 5.1)
and an NHPP external arrival process (whenever that queue has an external arrival process).
Then we discuss the implications for other MOL approximations, which apply to systems
with or without customer abandonment. Finally, we discuss directions for future research.

8.1. The Main Conclusions about DIS-MOL

(i) (first good news) If the targeted QoS is high at all queues, then the departure
process from each queue and the net (internal) arrival process to each queue should
be approximately NHPP’s and DIS-MOL should be effective at all queues. (See
Section 3.)

(ii) (second good news) For a totally Markovian network model (if the external arrival
processes are all NHPP’s and if the service times are all exponential), the inter-
nal arrival processes should be approximately NHPP’s and the DIS-MOL staffing
algorithm should be effective at all queues. (See Section 5.2.) Indeed, it may suffice
to have the scv of the service times be c2 ≈ 1. (See Section 5.3.)

(iii) (third good news) If the targeted QoS is low at any queue, then both DIS-MOL
and the more elementary DIS algorithm (staffing at the OL mα(t) itself) should be
effective at that queue, even if the arrival process is not approximately an NHPP.
(See Sections 3 and 6.)
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(iv) (conditional good news) If the targeted QoS is high at a queue, then the DIS-MOL
approximation should be effective if the arrival process is approximately an NHPP,
which should occur if the IDC I(t) remains near 1 for all t in the range of interest.
(See Sections 3 and 4.)

(v) (bad news) For two queues in series, if (i) the second queue has a high targeted
QoS, (ii) the first queue has a low targeted QoS and (iii) the first queue has a
service-time distribution that is not nearly exponential, then the departure pro-
cess from the first queue is likely not be approximately an NHPP and DIS-MOL
is likely to be ineffective in stabilizing performance at the second queue at the
specified target. (See Figures 4 and 7.) For a single queue, DIS-MOL is likely to be
ineffective in stabilizing performance if the arrival process is not nearly an NHPP.
(See Figure 11.)

8.2. Implications for the Standard MOL Staffing Algorithm

In this paper, we focused on network extensions of the DIS and DIS-MOL staffing algorithms
from [30], but much of this paper is also applicable to the MOL approximation for stabi-
lizing delay probabilities, with or without customer abandonment, where the QoS target
involves the probability of delay, as in [8,12,18,43]. It is significant that DIS-MOL approxi-
mation is consistent with the MOL approximations. As the abandonment-probability target
α decreases to 0, the OL mα(t) approaches the OL m0(t) without any abandonment in Eq.
(2.1). Since both the MOL and DIS-MOL tend to stabilize all performance measures at high
QoS targets, all of our main conclusions above except for the third should apply directly to
the standard MOL staffing algorithm, which applies equally well to systems without cus-
tomer abandonment. At any queue where abandonment is negligible or is not of primary
concern, it is natural to use MOL with a delay probability target.

8.3. Future Research

We conjecture that the difficulty in the final bad-news case in Section 8.1 can be
addressed by extending DIS-MOL by using an appropriate approximation for the station-
ary G/GI/s+GI model instead of the current stationary M/GI/s+GI model, but that
remaining problem is complicated by the fact that the arrival process in the stationary
G/GI/s+GI model should deviate from a Poisson process by the cumulative impact of
many small correlations; it is more complicated than a time-transformed renewal process,
as shown in Section 4. We conjecture that methods such as in [13,37,39] and Section 9.8 of
[41] can be brought to bear; that remains a topic for future research.
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