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Abstract

We consider a general Gt/Gt/1 single-server queue with unlimited waiting space and a time-
varying arrival rate, where the the service rate at each time is subject to control. We first study
the rate-matching control, where the the service rate is made proportional to the arrival rate.
We show that the model with the rate-matching control can be regarded as a deterministic time
transformation of a stationary G/G/1 model, so that the queue length distribution is stabilized
as time evolves. However, the time-varying virtual waiting time is not stabilized. We show
that the time-varying expected virtual waiting time with the rate-matching service-rate control
becomes inversely proportional to the arrival rate in a heavy-traffic limit. We also show that
no control that stabilizes the queue length asymptotically in heavy-traffic can also stabilize the
virtual waiting time. Then we consider a square-root service-rate control, where the service rate
exceeds the arrival rate by a constant multiple of the square root of the arrival rate. We show
that this alternative service-rate control stabilizes the waiting time, but not the queue length,
when the arrival rate changes very slowly relative to the average service time. This behavior is
supported by a limit theorem supporting the pointwise-stationary approximation.

Keywords: stabilizing performance, queues with time-varying arrival rates, nonstationary queues,

heavy-traffic limits, single-server queues with time-varying arrival rates, service-rate controls, heavy-

traffic scaling, pointwise stationary approximations.
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1 Introduction

In this paper we study controls to stabilize the performance of a queueing system with a time-

varying arrival rate function. It has been shown how server staffing (choosing a time-varying

number of servers) can be used to achieve this goal in multi-server systems with fixed service-time

distribution for each customer when the required number of servers is not too small and there is

flexibility in its assignment; see [3, 5, 10, 23] and references therein. In contrast, here we consider a

single-server queue, in which there is no flexibility in the number of servers. To achieve stabilization,

we assume that the service rate of the single server is flexible and subject to control. In doing so,

we assume that the service rate can be specified separately from the random service requirements

as a deterministic function. For example, a customer service requirement might correspond to the

size of a message to be transmitted in a communication network, while the service rate might be

the processing rate of the message. Thus a service requirement S with a constant service rate µ

would lead to a service time of S/µ. However, here the service rate can change while the customer

is in service. With this approach, all randomness appears through the service requirements.

Having a single-server queue where the the service rate is a continuous deterministic function

subject to control is an idealization of what can occur in many service operations, such as hospital

surgery rooms and airport security inspection lines. In the short run, there may be a fixed number

of service facilities, sometimes only one, but the processing rate can be increased by assigning

additional staff or changing procedures, which may occur at some cost. Assigning more doctors and

nurses can increase the rate of completed operations; assigning more inspection agents at the airport

security line or relaxing the inspection requirements can increase the rate at which passengers are

processed through inspection. In these applications, the possible service rate functions may not

really be continuous, or even fully under control. Nevertheless, to better understand the possible

benefits of these practical service-rate controls, it is helpful to understand what controls are desirable

in the ideal situation when any deterministic continuous function is possible.

We start by considering the simple rate-matching control, which chooses the service rate to be

proportional to the arrival rate; i.e., for a given target traffic intensity ρ, we let the service rate be

µ(t) ≡ λ(t)

ρ
, t ≥ 0. (1.1)

In considering this rate-matching control, we assume that the arrival rate function is known. In

future work, we intend to consider the case in which the rate-matching control is used with an

estimate of the arrival rate function obtained from data. By definition, the rate-matching control
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stabilizes the time-varying instantaneous traffic intensity ρ(t) ≡ λ(t)/µ(t) for all t ≥ 0. We will

show that it stabilizes the queue length as t → ∞ (to allow the effect of the initial condition to

dissipate), but not the waiting time.

By having the service rate function as the control, our problem is similar to the capacity

allocation problem for open Jackson queueing networks in steady state, considered by Kleinrock

[7], extended for approximations of generalized Jackson networks in [17] and reviewed in §5.7 of

[8], in §7 of [2] and elsewhere. Now, instead of allocating capacity to several queues in different

locations, we allocate capacity to a single queue at different times. As an analog of Kleinrock’s [7]

square-root capacity allocation formula (appearing in (7.2) here), we also consider the square-root

service-rate control

µ(t) ≡ λ(t) + β
√

λ(t), t ≥ 0. (1.2)

We will identify a setting in which the square-root service-rate control in (1.2) is optimal in §7 by

establishing a connection between the two problems.

Here is how this paper is organized: We start in §2 by defining the specific Gt/Gt/1 model,

showing how to construct the service times, and showing that the queue length process in this model

is a deterministic time transformation of the queue length process in an associated stationaryG/G/1

model. In §3 we establish positive stabilization properties of the rate-matching control. In §4 we

give an explicit representation of the time-varying waiting time in terms of the waiting time in the

corresponding stationary G/G/1 model and establish the heavy-traffic limit theorem that yields a

useful approximation for the time-varying waiting time distribution. In particular, Theorem 4.2

shows that, with the rate-matching service-rate control, the time-varying expected virtual waiting

time is asymptotically inversely proportional to the time-varying arrival rate in the heavy-traffic

limit. Paralleling Theorem 2 and Corollary 1 of [10] for staffing multi-server queues, Theorem 4.3

shows that no control that asymptotically stabilizes the queue length in this heavy-traffic regime

can simultaneously stabilize the virtual waiting time.

In §5 we consider the special case of a periodic arrival rate function in more detail. After

Theorem 5.1 formalizes the notion of a periodic steady state, Theorem 5.2 establishes a periodic

heavy-traffic limit for the waiting times of successive arrivals. As in [9] for multi-server queues, this

illustrates a nearly periodic situation in which the limit depends on the order of the two iterated

limits as n → ∞ and t → ∞.

Finally, in §7 we consider the square-root service-rate control in (1.2) that is an analog of the

square-root capacity allocation formula in Kleinrock [7] and the square-root staffing formula in
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[3, 10, 23]. We draw conclusions in §8.

2 The Model

For our results, we exploit a special composition construction of the arrival and service processes

in order to obtain a general Gt/Gt/1 model. This is without loss of generality for the Mt/Mt/1

model, but is a restriction more generally.

In particular, we assume that the arrival process is defined by the composition

A(t) ≡ Na(Λ(t)) = Na(

∫ t

0
λ(s) ds), t ≥ 0, (2.1)

where Na is a rate-1 stochastic counting process satisfying a functional strong law of large numbers

(FSLLN) and a functional central limit theorem (FCLT), i.e.,

N̄a,n → e and N̂a,n ⇒ caBa in D as n → ∞, (2.2)

with

N̄a,n(t) ≡ n−1Na(nt) and N̂a,n(t) ≡ n−1/2[Na(nt)− nt], t ≥ 0, (2.3)

e the identity function, e(t) = t, t ≥ 0, Ba a standard (drift 0, variance 1) Brownian motion (BM),

⇒ denoting convergence in distribution and D denoting the function space of right-continuous

real-valued functions on the interval [0,∞) with left limits, as in [21], while Λ is a deterministic

cumulative arrival rate function, satisfying

Λ(t) ≡
∫ t

0
λ(s) ds, t ≥ 0, (2.4)

with λ being the arrival rate function, which is assumed to be strictly positive and continuous with

finite long-run average

λ̄ ≡ lim
t→∞

t−1Λ(t). (2.5)

Without loss of generality, we assume that λ̄ = 1. In addition, we assume that λ(t) is uniformly

bounded above and below.

The composition construction in (2.1) is a standard way to construct a nonhomogeneous Poisson

process (NHPP, Mt), which is an important special case; then Na above is a rate-1 Poisson process.

More generally, the composition construction is convenient for constructing non-Markov counting

processes with time-varying rates that satisfy FSLLN’s and FCLT’s; see §4.4 of [21] and [11].

This model has all unpredictable stochastic variability in the arrival process associated with the
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processes Na and its FCLT behavior characterized by the single variability parameter ca, while all

the predictable deterministic variability associated with the deterministic arrival rate function λ(t)

and the associated cumulative rate function Λ. If the process Na is a renewal counting process,

then c2a is the scv of a time between renewals.

As indicated in §1, we specify the random service requirements of successive customers sep-

arately from the service rate, which is deterministic and subject to control. For the first seven

sections of the paper, we assume that, for each ρ, 0 < ρ < 1, µρ is defined by the rate-matching

policy, as specified in (1.1). We assume that the successive service requirements are generated

(in a way to be explained in the next paragraph) from a rate-1 stochastic counting process Ns,

independent of Na, satisfying an FSLLN and an FCLT, i.e.,

N̄s,n → e and N̂s,n ⇒ csBs in D as n → ∞, (2.6)

where

N̄s,n(t) ≡ n−1Ns(nt) and N̂s,n(t) ≡ n−1/2[Ns(nt)− nt], t ≥ 0, (2.7)

with Bs being a standard BM, necessarily independent of Ba.

As usual, the queue length process can be defined as

Q(t) ≡ A(t)−D(t), t ≥ 0, (2.8)

where D(t) is the total number of departures in the interval [0, t]. We understand D(t) to satisfy

D(t) ≡ Ns(

∫ t

0
µ(s)1{Q(s)>0} ds) = Ns(

∫ t

0
(λ(s)/ρ)1{Q(s)>0} ds), t ≥ 0, (2.9)

where 1A is the indicator function, equal to 1 on A and 0 otherwise. Note that Q and D in (2.8)

and (2.9) are defined in terms of each other. However, as in Lemma 2.1 of [14], there is a unique

solution, as can be proved by induction on the successive events in the processes A and S.

2.1 Direct Construction of the Service Times

The present paper differs from the majority of the literature on single-server queues by not introduc-

ing the sequence of successive service times, which we denote as {Vk : k ≥ 1}, as a model primitive.

Instead, here we have the sequence of successive service requirements {Sk : k ≥ 1} specified as the

times between events in the counting process Ns, while the service rate µ(t) is time-dependent and

subject to control. For the rate-matching control in (1.1) and the square-root service-rate control

in (1.2), the service rate becomes a fully specified function that is continuous and positive.
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We now show how to construct the sequence of successive service times, assuming that the

sequence {Sk : k ≥ 1} of service requirements is given and the service rate µ(t) is a fully specified

continuous function, uniformly bounded above and below, just like λ. That condition on µ follows

from the assumption about λ with (1.1) or (1.2). This construction is important for computer

simulations.

We assume that the system starts empty. Let Ak, Bk, Dk, be the times at which customer

k arrives, begins service and departs, respectively. Let Vk and Wk be the durations (length of

the time intervals) that customer k spends in service and spends waiting in queue before starting

service, respectively. Since the system starts empty, D0 = 0, B1 = A1 ≥ 0. As usual, we have the

basic recursions

Bk = Dk−1 ∨Ak, Dk = Bk + Vk and Wk = Ak −Bk, k ≥ 1, (2.10)

where a ∨ b ≡ max {a, b}. The complication is that Vk is not specified exogenously.

To construct Vk, we need to properly relate rates to requirements and time. When we do so,

we see that Vk is specified implicitly via the equation

Sk =

∫ Bk+Vk

Bk

µ(s) ds, k ≥ 1. (2.11)

If we let

M(t) ≡
∫ t

0
µ(s) ds, t ≥ 0, (2.12)

then we see that M(t) is the total amount of service completed in the interval [0, t], assuming that

the server is busy continuously. Since M is strictly increasing and continuous, it has an inverse

M−1. With that inverse, we obtain an explicit formula for the service times, in particular,

Vk = M−1(Sk +M(Bk))−Bk, k ≥ 1. (2.13)

For example, if µ(t) = µ, t ≥ 0, then M(t) = µt and M−1(t) = t/µ, t ≥ 0. Hence, M(Bk) = µBk,

M−1(Sk +M(Bk)) = (Bk + Sk/µ) and Vk = Sk/µ for all k, as it should.

Since the service-time formula (2.13) is somewhat complicated, it is helpful to have a useful

practical approximation. That is achieved by employing local linear Taylor approximations

M(t+ s) ≈ M(t) + µ(t)s and M−1(t+ s) = M−1(t) +
s

µ(M−1(t))
, (2.14)

assuming that s is relatively small. We obtain the second from the inverse function theorem from

calculus. In particular, with an abuse of notation, let µ−1(t) be the derivative of M−1(t). By the
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inverse function theorem, µ−1(t) = 1/µ(M−1(t)). Thus the corresponding Taylor approximation

for M−1(t+ s) is given in (2.14). When we apply the Taylor approximation in (2.13), regarding Sk

as a small perturbation about M(Bk), we get

Vk = M−1(M(Bk)) +
Sk

µ(M−1(M(Bk)))
−Bk =

Sk

µ(Bk)
. (2.15)

The approximation in (2.15) corresponds to assuming that each customer’s service rate does not

change during service. In particular, the service rate for each customer is the constant rate operating

at the time the customer starts service. In the actual model, the service rate may keep changing,

but this seems to be a reasonable approximation. Indeed, this could be the model assumption.

Under heavy-traffic conditions, the difference will be negligible.

2.2 Time Transformation of Stationary Model

We now show that, with the rate-matching service-rate control in (1.1), we can circumvent the

construction of the service times in (2.13) in order to deduce some important structure. (With this

approach, we do not use the approximation in (2.15).) An important consequence of the composition

construction in (2.1)-(2.9) above is that the queue length process Q(t) depending on the arrival

rate function λ(t) can be related to the associated queue-length process Q1(t) with constant arrival

rate 1 and constant service rate 1/ρ by a simple time transformation. In particular, let the arrival

process of Q1 be A1 ≡ Na and let the queue length and departure process be defined as

Q1(t) ≡ A1(t)−D1(t), t ≥ 0, (2.16)

where A1 ≡ Na and D1(t) is the total number of departures in the interval [0, t]. We understand

D1(t) to satisfy

D1(t) ≡ Ns(

∫ t

0
µ1(s)1{Q1(s)>0} ds) = Ns(

∫ t

0
ρ−11{Q1(s)>0} ds), t ≥ 0. (2.17)

Let Λ−1 be the inverse of the continuous strictly increasing function Λ, so that Λ(Λ−1(t)) =

Λ−1(Λ(t)) = t, t ≥ 0.

Theorem 2.1 (time transformation of a stationary model) For (A,D,Q) with the rate-matching

service-rate control and the stationary single-server model (A1, D1, Q1) defined above,

(A(t), D(t), Q(t)) = (A1(Λ(t)), D1(Λ(t)), Q1(Λ(t))), t ≥ 0. (2.18)
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Proof. The relation between A and A1 holds by definition. We will establish the relation between

the pair (Q,D) and the pair (Q1, D1) together, paralleling their definitions via (2.8) and (2.9) ((2.16)

and (2.17)). We will exploit the change of variables s = Λ−1(u) or u = Λ(s) and the associated

differential relation du = λ(s)ds. Starting with (2.9), we express D as

D(t) = Ns(

∫ t

0
ρ−1λ(s)1{Q(s)>0} ds), t ≥ 0,

= Ns(

∫ Λ(t)

0
ρ−11{Q(Λ−1(u))>0} du), t ≥ 0,

= Ns(

∫ Λ(t)

0
ρ−11{Q1(u)>0} du) = D1(Λ(t)), t ≥ 0, (2.19)

as claimed, where we have used Q = Q1 ◦Λ in the third step. As in the definitions (2.8) and (2.9),

we can use induction on the transition epochs of the processes Na and Ns to verify that there is a

unique solution for (D,Q) and for (D1, Q1) that must be related by (2.19).

3 Basic Stabilization of the Rate-Matching Service-Rate Control

We first show that the rate-matching service-rate control always stabilizes (as time evolves) the

proportion of arrivals that are delayed, which we define (as a function of the traffic intensity ρ) by

d̄ρ(t) ≡
∫ t
0 λ(s)1{Q(s)>0} ds

Λ(t)
. (3.1)

In (3.1) we weight the server busy event at s, which is 1{Q(s)>0}, by the relative likelihood of an

arrival at time s during the interval [0, t], which is λ(s)/Λ(t). In the case of constant arrival rate,

d̄ρ(t) reduces to the utilization over [0, t], defined by

Ū1,ρ(t) ≡ t−1

∫ t

0
1{W1(s)>0} ds ≡ t−1

∫ t

0
1{Q1(s)>0} ds. (3.2)

Theorem 3.1 (stabilizing the average delay probability) Under the conditions above,

Ū1ρ(t) → ρ and d̄ρ(t) → ρ in R as t → ∞ (3.3)

for Ū1ρ(t) in (3.2) and d̄ρ(t) in (3.1).

To prove Theorem 3.1, we use FSLLN’s and SLLN’s for the arrival and service processes. Let

S1(t) ≡ Ns(t/ρ) be the counting process associated with the successive partial sums of the service

times in the system with constant rates, paralleling A1 = Na for the arrival process. By direct

assumption, A1 satisfies a FSLLN and thus also an ordinary SLLN. We now show that is also true

of A and S1. Let Ān(t) ≡ n−1A(nt) and S̄1,n(t) ≡ n−1S1(nt), t ≥ 0.
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Lemma 3.1 (preliminary FSLLN’s) Under the conditions above, the processes A and S1 satisfy

the FSLLN’s

Ān → e and S̄1,n → ρ−1e in D as n → ∞ w.p.1 (3.4)

and the associated SLLN’s

t−1A(t) → 1 and t−1S1(t) → ρ−1 in R as t → ∞ w.p.1 (3.5)

Proof. First the FSLLN’s and SLLN’s are actually equivalent in this setting of a single process;

see Ch. 1 of the internet supplement to [21]. Thus, the limit in (2.5) is equivalent to the stronger

limit Λ̄n → e in D as n → ∞, where Λ̄n(t) = Λ(nt)/n, t ≥ 0. We can obtain the FSLLN’s by the

continuity of the composition map, which is defined by (x◦y)(t) ≡ x(y(t)): Ān = N̄a,n◦Λ̄n → e◦e =

e, i.e., Ān(t) = N̄a,n(Λ̄n(t)), t ≥ 0; see §13.2 of [21]. Similarly, S̄1,n = N̄s,n ◦ρ−1e → e◦ρ−1e = ρ−1e.

Then the ordinary SLLN’s are obtained by applying the projection map from D to R taking x to

x(t) at t = 1, which is also continuous at all t that are continuity points of x.

Proof of Theorem 3.1. We first deduce the conclusion for the system with queue-length process

Q1, having constant arrival and service rates. For that system, we can apply the sample-path version

of Little’s law to the service facility; see [16, 19]. The limit in (3.3) for Ū1,ρ to be established is

then L. The LLN for Na with limit 1 is λ. Since the service rate is constant, Ns(ρ
−1t) counts the

number of partial sums of the service times that are less than or equal to t. Since the SLLN of S1

established in Lemma 3.1 is equivalent to the SLLN of the service times, we see that the average of

the service times approaches ρ, which is W . Since the limits for λ and W hold, the limit for Ū1,ρ

holds as well with L = λW = 1× ρ = ρ.

For the second limit, perform a change of variables as in (2.19) to obtain

d̄ρ(t) =

∫ Λ(t)
0 1{Q1(u)>0} du

Λ(t)
. (3.6)

Since Λ(t) → ∞ as t → ∞, we can apply the first result.

Finally, we conclude this section by observing that there is a proper limiting steady-state dis-

tribution for Q(t) as t → ∞ whenever there is a proper steady-state distribution for Q1(t) as

t → ∞.

Theorem 3.2 (stabilizing the queue-length distribution and the steady-state delay probability) Let

Q1(t) be the queue length process when λ(t) = 1, t ≥ 0. If Q1(t) ⇒ Q1(∞) as t → ∞, where
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P (Q1(∞) < ∞) = 1, then also

Q(t) ⇒ Q1(∞) in R as t → ∞, (3.7)

and

P (W (t) > 0) = P (Q(t) ≥ 1) → ρ as t → ∞. (3.8)

Proof. Let Λ−1 be the inverse of the continuous strictly increasing function Λ. it follows that

{Q(Λ−1(t) : t ≥ 0} is distributed as {Q1(t) : t ≥ 0}. Since Λ−1 is deterministic with Λ−1(t) → ∞

as t → ∞, Q(Λ−1(t)) ⇒ Q1(∞) as t → ∞, which directly implies that Q(t) ⇒ Q1(∞) as t → ∞

as well, which in turn immediately implies the associated limit. Given Little’s law for the system

with Q1, we have P (Q1(∞) > 0) = ρ in (3.8).

4 The Virtual Waiting Time with the Rate-Matching Control

Often we are interested in the distribution or the moments of the virtual waiting time W (t). Unlike

Theorem 2.1, we do not haveW (t)
d
= W1(Λ(t)), where

d
=means equal in distribution. Unfortunately,

the virtual waiting time is more complicated. We can write

P (W (t) > w) =

∞∑
k=1

P (W (t) > w|Q(t) = k)P (Q(t) = k), (4.1)

where

P (W (t) > w|Q(t) = k) = P (inf {u ≥ 0 : D(t+ u)−D(t) ≥ k} > w). (4.2)

Theorem 3.2 shows that Q(t) approaches a steady-state limit as t → ∞ in considerable generality,

but, because of the first passage time structure in (4.2), the conditional probability in (4.2) is in

general time varying.

In this section we first develop an explicit expression for the virtual waiting time W (t) with the

rate-matching service-rate control in (1.1). Afterwards, we establish a heavy-traffic limit theorem.

4.1 An Explicit Expression

To develop an explicit expression for the virtual waiting time for the rate-matching service-rate

control, we exploit the connection to the stationary G/G/1 model. For the base G/G/1 model we

assume that the interarrival times U1,k of the counting process A1 ≡ Na and the service times V1,k

of the counting process S1 ≡ Ns ◦ ρ−1e have been specified.
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Given the interarrival times and service times, we use the classical Lindley recursion as on p.

207 of [21] that maps the interarrival times U1,k and the service times V1,k into the waiting times

W1,k in the stationary G/G/1 model. The formulas for the arrival times A1,k and departure times

D1,k as well as the waiting times W1,k are through the equations

A1,k ≡ U1,1 + · · ·+ U1,k,

W1,k ≡ [W1,k + V1,k − U1,k−1]
+,

D1,k ≡ A1,k +W1,k + V1,k, k ≥ 1, (4.3)

where [x]+ ≡ max {0, x} and W1,1 ≡ 0. The associated arrival counting process A1(t) and departure

counting process D1(t) are constructed as inverse processes, while the queue length process Q1(t)

is their difference, i.e.,

A1(t) ≡ max {k ≥ 0 : A1,k ≤ t},

D1(t) ≡ max {k ≥ 0 : D1,k ≤ t},

Q1(t) ≡ A1(t)−D1(t), t ≥ 0. (4.4)

We then can construct the virtual waiting time at time t in terms of the waiting time of the last

arrival before time t, W1,A1(t), by

W1(t) ≡ W1,A1(t) + V1,A1(t) − (t−A1,A1(t)), t ≥ 0. (4.5)

A short S program to convert the sequence {(U1,k, V1,k,W1,k) : k ≥ 1} into the associated

sequence {(A1,k, D1,k, C1,k, Q1,k) : k ≥ 1}, where C1,k is the time of the kth change in the queue

length process (caused by an arrival or a departure) and Q1,k = Q1(C1,k) is the queue length at

time C1,k, is given on p. 210 of [21]. Similarly, the associated virtual waiting time in the G/G/1

model at change time C1,k is then W1(C1,k).

We then obtain a relatively simple construction of the associated sequence {(Ak, Dk, Ck, Qk) :

k ≥ 1} for our Gt/Gt/1 model with time-varying arrival rate function λ, in particular,

(Ak, Dk, Ck, Qk) ≡ (Λ−1(A1,k),Λ
−1(D1,k),Λ

−1(C1,k), Q1,k), k ≥ 1, (4.6)

where Λ−1 is the inverse of Λ, which is well defined because Λ is strictly increasing and continuous.

Then for any t ≥ 0, we can construct the queue length at time t by setting

C(t) ≡ max {k ≥ 0 : Ck ≤ t} and Q(t) ≡ QC(t), t ≥ 0. (4.7)
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Similarly, for any t ≥ 0, we can construct the departure counting process at time t by setting

D(t) ≡ max {k ≥ 0 : Dk ≤ t}, t ≥ 0. (4.8)

Theorem 4.1 (constructing the virtual waiting time) The virtual waiting time W (t) can be repre-

sented as

W (t) = Λ−1
t (W1(Λ(t)), t ≥ 0, (4.9)

where Λ−1
t is the inverse of

Λt(v) = Λ(t+ v)− Λ(t), v ≥ 0 and t ≥ 0, (4.10)

which is strictly increasing and continuous. If W1(t) has its stationary distribution W ∗
1 , then

W (t)
d
= Λ−1

t (W ∗
1 ).

Proof. From (4.1) and (4.2),

W (t) ≡ inf {u ≥ 0 : D(t+ u)−D(t) = Q(t)}

= inf {u ≥ 0 : D1(Λ(t+ u))−D1(Λ(t)) = Q1(Λ(t))}, t ≥ 0, (4.11)

while

W1(Λ(t)) = inf {v ≥ 0 : D1(Λ(t) + v)−D1(Λ(t)) = Q1(Λ(t))}. (4.12)

Thus we have Λ(t) +W1(Λ(t)) = Λ(t+W (t)) or

W1(Λ(t)) = Λ(t+W (t))− Λ(t) = Λt(W (t)), t ≥ 0, (4.13)

for Λt defined in (4.10) above or, equivalently,

W (t) = Λ−1
t (W1(Λ(t))), t ≥ 0. (4.14)

We can use Theorem 4.1 to give an explicit integral formula for the mean E[W (t)] in the

Mt/Mt/1 model. Hence we can numerically compute the mean in this case.

Corollary 4.1 (mean wait in the Mt/Mt/1 model) For the Mt/Mt/1 model with the rate-matching

service-rate control, if t is large so that W1(t) can be regarded as being in steady state, then

E[W (t)] =

∫ ∞

0
e−(1−ρ)Λt(x)/ρ dx. (4.15)
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Proof. First the associated stationary G/G/1 model is M/M/1 with arrival rate 1 and service

rate 1/ρ, so that P (W1(t) > x) = e−(1−ρ)x/ρ for large t. Next use the tail integral formula for the

mean with (4.9) to write

E[W (t)] =

∫ ∞

0
P (W (t) > xdx =

∫ ∞

0
P (Λ−1

t (W1(Λ(t)) > xdx

=

∫ ∞

0
P ((W1(Λ(t)) > Λt(x) dx =

∫ ∞

0
e−(1−ρ)Λt(x)/ρ dx. (4.16)

As a sanity check, note that if λ is constant, then the model is M/M/1 with arrival rate 1 and

service rate ρ, so that E[W (t)] = ρ/(1− ρ).

4.2 A Heavy-Traffic Limit for the Virtual Waiting Time

We now obtain a heavy-traffic limit for W (t) that provides helpful insight. As usual with heavy-

traffic limits of single-server queues, we scale time and space as we allow the traffic intensity to

increase toward 1; e.g., see Chapters 5 and 9 of [21]. We start by constructing a a sequence of the

models with constant arrival and service rates, corresponding to the triple (A1, D1, Q1) indexed

by n. As usual, we let the traffic intensity in model n be ρn = 1 − (1/
√
n), we scale time by

n = (1− ρ)−2 and we scale space by n−1/2 = (1− ρ). We achieve these traffic intensities by scaling

the service requirements, i.e., we let S1,n(t) ≡ Ns(t/ρn) for ρn just specified.

To obtain interesting limits that capture the time-varying arrival rate, we consider a sequence of

arrival rate functions {λn : n ≥ 1} indexed by n, with each being continuous and strictly positive.

Let associated scaled arrival rate functions and cumulative arrival rate functions be defined by

λ̄n(t) ≡ λn(nt) and Λ̄n(t) ≡ n−1Λn(nt), t ≥ 0 and n ≥ 1, (4.17)

so that Λ̄n(t) =
∫ t
0 λ̄n(s) ds. We also introduce a refined scaling involving increments of order

√
n

in Λn about time nt. For that purpose, let

Λ̃n,t(u) ≡ n−1/2[Λn(nt+ u
√
n)− Λn(nt)], t ≥ 0 and n ≥ 1. (4.18)

We assume that these scaled functions have the limits

λ̄n → λf and Λ̄n → Λf in D as n → ∞ (4.19)

and

Λ̃n,t(u) → λf (t)u as n → ∞ (4.20)
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uniformly in t and u over bounded subintervals of [0,∞), where λf is a continuous and strictly

positive. To be consistent with §2, we assume that λf has a long-run average λ̄f = 1. As a further

regularity condition, we assume that λn(t) is uniformly bounded for all n and t.

We also specify a refined “diffusion scale” scaling with

Λ̂n(t) ≡ n−1/2[Λn(nt)− nΛf (t)], t ≥ 0 and n ≥ 1, (4.21)

and assume that

Λ̂n → Λd in D as n → ∞, (4.22)

where Λd is a continuous function, although the limit (4.22) will play no role in Theorem 4.2 below.

Since ρn → 1 as n → ∞, the service requirements remain O(1) as n → ∞. The time scaling

makes the arrival rates and service rates be of order O(n) as n → ∞ means that we look over large

time intervals, but the arrival rate and service rate remain O(1) as n → ∞, so that the service

times are also O(1) as n → ∞. As usual, the heavy-traffic scaling of space and time will make the

queue lengths and waiting times be of order O(
√
n). Hence, the service times are asymptotically

negligible compared to the waiting times, but both are asymptotically negligible compared to the

time scale n.

Even though the arrival rate at time t remains O(1) as n → ∞, the arrival rate function is

affected significantly by the scaling, because it is changing more slowly as n increases. In particular,

the arrival rate at time t is λn(t) ≈ λf (t/n), so it has derivative λ̇n(t) ≈ λf (t/n)/n. Thus, the

arrival rate changes more slowly as n increases. That makes the model tends to be in steady-

state at each time t with arrival rate λn(t), service rate λn(t)/ρn and constant traffic intensity

ρn = 1 − (1/
√
n). It is significant that the steady-state behavior at time t itself depends on t,

because the operative arrival rate itself is a function of time.

The following example may help to understand the scaling in (4.17)-(4.22) and the interpretation

above.

Example 4.1 (a sinusoidal example) To illustrate, we start with the limit arrival rate function

λf (t) and proceed backwards to construct the sequence of arrival rate functions with this limit, using

the usual scaling. Let λf (t) ≡ 1 + β sin (γt) for 0 < β < 1 and γ > 0 and let Λf (t) ≡
∫ t
0 λf (s) ds

for t ≥ 0. Let Λn(t) ≡ nΛf (t/n), so that λn(t) ≡ λf (t/n) and λ̇n(t) = λ̇f (t/n)/n. From the

perspective of the arrival rate function in model n, we see that the scaling corresponds to slowing

time down by a factor of n, making the periodic cycles get longer as the scale n gets larger.
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Then, by construction, λ̄n(t) ≡ λn(nt) = λf (t), Λ̄n(t) ≡ n−1Λn(nt) = Λf (t) and Λ̂n(t) = 0 ≡

Λd(t) for all n and t, while

Λ̃n,t(u) =
√
n[Λf (t+ u/

√
n)− Λf (t)] → λf (t)u (4.23)

as n → ∞ uniformly in t and u, by the definition of a derivative, consistent with the assumptions

in (4.19) and (4.20).

In order to have Λd play a role, we can define a more general family of arrival rate functions,

Λn(t) ≡ nΛf (t/n) +
√
nΛd(t/n). (4.24)

With (4.24), we have

Λ̄n(t) = Λf (t) + n−1/2Λd(t) and Λ̂n(t) = Λd(t) (4.25)

so that again Λ̄n → Λf and Λ̂n → Λd in D. Instead of (4.23), we now have

Λ̃n,t(u) =
√
n[Λf (t+ u/

√
n)− Λf (t)] + [Λd(t+ u/

√
n)− Λd(t)] (4.26)

so that, just as before, Λ̃n,t(u) → λf (t)u as n → ∞ uniformly in t and u over any bounded interval,

now exploiting the assumed continuity of Λd. We use the bounded interval to obtain uniform

continuity.

In applications, we would want our system to be system n for some n. For any n to be

appropriate, the long-run average arrival rate should be unchanged at 1, but since the length of

the sinusoidal cycle in λf is 2π/γ, the length of the sinusoidal cycle in λn should be 2πn/γ. The

key relationship assumed as n → ∞ is that the cycles in the periodic arrival rate function are of

length O(n), where n = (1− ρ)−2.

As a consequence of (4.17)-(4.22), we have associated limits for the scaled arrival process. To

state them, let

Ān(t) ≡ n−1Na(Λn(nt), Ân(t) ≡ n−1/2[An(nt)− nΛf (t)] and

Ãn,t(u) ≡ n−1/2[An(nt+ u
√
n)−An(nt)], t ≥ 0 and n ≥ 1. (4.27)

Lemma 4.1 (limits for the scaled arrival process) Under the scaling above, we have the FSLLN

Ān = N̄a,n ◦ Λ̄n → Λf in D as n → ∞ w.p.1, (4.28)
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the associated FCLT

Ân = N̂a,n ◦ Λ̄n + Λ̂n ⇒ B ◦ Λf + Λd in D as n → ∞. (4.29)

and

Ãn,t(u) → λf (t)u as n → ∞ (4.30)

uniformly in t and u within finite intervals.

Proof. Apply the continuous mapping theorem with the composition map, with and without

centering; see §§13.2 and 1.3.3 of [21]. For (4.30), we use the fact that tightness associated with

the weak convergence of N̂a,n in (2.2) implies that

n−1/2[Na(nt+ u
√
n)−Na(nt)] ⇒ u as n → ∞ (4.31)

uniformly in t and u within bounded time intervals. In particular,

n−1/2[An(nt+
√
nu)−An(nt)] = n−1/2[Na(Λn(nt+ u

√
n))−Na(Λn(nt))]

= n−1/2[Na(Λn(nt) + λf (t)u
√
n+ o(

√
n))−Na(Λn(nt))] ⇒ λf (t)u (4.32)

uniformly in t and u within finite time intervals. We use the convergence Λ̄n → Λf to deduce that

Λn(nt) < cnt for some constant c for all suitably large n.

We now introduce the scaled queueing processes, using the usual heavy-traffic scaling. Let

Q̂1,n(t) ≡ n−1/2Q1,n(nt), t ≥ 0, (4.33)

so that Q̂n(t) = Q̂1,n(Λ̄n(nt)), t ≥ 0 by Theorem 2.1. Let Wn(t) be the virtual waiting time at

time t in model n and define the associated scaled processes

Ŵn(t) ≡ n−1/2Wn(nt), t ≥ 0. (4.34)

Let Dk be the k-fold product space of D with itself with the usual product topology. Let R(t; a, b)

be reflected Brownian motion (RBM) with drift −a and diffusion coefficient b.

Theorem 4.2 (heavy-traffic limit for the time-varying waiting time) Let the system start empty.

Under the scaling assumptions above, including (4.17)-(4.20),

(Q̂n, Ŵn) ⇒ (Q̂, Ŵ ) in D2 as n → ∞, (4.35)
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where

Ŵ (t) ≡ Q̂(t)/λf (t) and Q̂(t) ≡ R(Λf (t);−1, c2a + c2s), t ≥ 0. (4.36)

As a consequence, for each T > 0,

sup
0≤t≤T

{Ŵn(t)− (Q̂n(t)/λf (t))|} ⇒ 0 as n → ∞ (4.37)

and, for each x ≥ 0,

P (Q̂n(t) > x) → e−2x/(c2a+c2s) and P (λf (t)Ŵn(t) > x) → e−2x/(c2a+c2s) (4.38)

as first n → ∞ and then t → ∞.

Proof. We rely on the basic heavy-traffic FCLT for the standard G/G/1 queue covering the triple

(A1,n, Q1,n, D1,n) and related processes, as given in Theorem 9.3.4 of [21] and the continuity of the

inverse function used in the first passage-time, as discussed in §§5.7, 13. 6 and 13.7 of [21]. The

essential argument follows §5.4 of the Internet Supplement of [21], drawing on Theorem 13.7.4 of

[21], but we will give a direct proof.

First, we define the sequence of scaled processes associated with the arrival and service processes

Â1,n(t) ≡ n−1/2[Na(nt)− nt], t ≥ 0 and n ≥ 1 (4.39)

and

Ŝ1,n(t) ≡ n−1/2[Ns(nt/ρn)− nt] = n−1/2[Ns(nt/ρn)− nt/ρn] + t t ≥ 0 and n ≥ 1. (4.40)

As a consequence,

(Â1,nŜ1,n) ⇒ (Ba, Bs + e) in D2, (4.41)

where Ba and Bb are independent BM’s. Thus, Â1,n − Ŝ1,n ⇒ Ba − Bs − e in D and we can

apply Theorem 9.3.4 of [21] to obtain

Q̂1,n ⇒ R(·) ≡ R(·;−1, c2a + c2s) in D as n → ∞, (4.42)

so that Q̂n = Q̂1,n ◦ Λ̄n ⇒ R(Λf (·)) in D as n → ∞, by applying the continuous mapping theorem

with the composition map without centering, as in §13.2 of [21].

We now come to the more difficult part of the argument. Let Dn(t) and D1,n be the departure

processes associated with system n. Since

Ŵn(t) ≡ n−1/2Wn(nt) = inf {u ≥ 0 : Dn(nt+ u
√
n)−Dn(nt) ≥ Qn(nt)}
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= inf {u ≥ 0 : n−1/2[Dn(nt+ u
√
n)−Dn(nt)] ≥ n−1/2Qn(nt)}

= inf {u ≥ 0 : D̂n,t(u) ≥ Q̂n(t)}, (4.43)

where D̂n,t(u) ≡ n−1/2[Dn(nt + u
√
n) −Dn(nt)]. We have observed that Q̂n ⇒ R(Λf (·)) in D as

n → ∞; we will now show that D̂n,t(u) → uλf (t) uniformly in t and u over the time intervals [0, T ]

for 0 < T < ∞.

For that purpose, Let B1,n(t) be the amount of time that the server has been busy in the interval

[0, t] in the system with queue length Q1,n. Since Dn(nt) = D1,n(Λn(nt)), we have Dn(nt) =

Ns(ρ
−1
n B1,n(Λn(nt))), t ≥ 0. We obtain

n−1/2[B1,n(Λn(nt+ u
√
n)−B1,n(Λn(nt))] → uλf (t) (4.44)

uniformly in t and u in [0, T ] by applying condition (4.20) and the FCLT for B̂1,n contained in

Theorem 9.3.4 of [21]. From the assumed FCLT for Ns in (2.6), we obtain the desired convergence

D̂n,t(u) → uλf (t) uniformly in t and u over the time intervals [0, T ] for 0 < T < ∞. From

there we can apply the continuity of the inverse function used in the first passage time. This

argument directly implies (4.37), where we already have established that Q̂n ⇒ Q̂ with the specified

distribution in (4.36). The joint limit in (4.35) then follows by the convergence-together theorem,

as in Theorem 11.4.7 of [21].

The last two limits in (4.38) follow immediately from (4.35) by applying the continuous mapping

theorem with the projection at t because the direct limit R(t;−1, (c2a+c2s)) converges in distribution

to an exponential random variable with mean (c2a + c2s)/2 as t → ∞.

Remark 4.1 (the resulting approximation) The limit in (4.38) leads to approximating Qρ(t) and

Wρ(t) by exponential random variables if t is not too small. It also leads to a time-varying

approximation for the time-varying mean. In particular, if we express the limiting arrival rate

function λf in terms of the original arrival rate function λ and the traffic intensity ρ, using

λ(t) ≡ λρ(t) ≈ λf ((1− ρ)2t), then we get

E[Qρ(t)] ≈
c2a + c2s
2(1− ρ)

≈ ρ(c2a + c2s)

2(1− ρ)
, (4.45)

and

E[Wρ(t)] ≈
c2a + c2s

2(1− ρ)λ(t)
=

(c2a + c2s)

2(1− ρ)ρµ̄(λ(t)/λ̄)
≈ ρ(c2a + c2s)

2(1− ρ)µ̄(λ(t)/λ̄)
, (4.46)

where µ̄ = λ̄/ρ is the limiting average of µ(t), which exists by (1.1) and (2.5). The last approxi-

mation in each case is obtained to make the approximation consistent with the exact result for the
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M/M/1 model, and is justified by using ρ ≈ 1; see [18] for a discussion of such refinements to direct

heavy-traffic approximations. That final formula in (4.46) differs from the familiar heavy-traffic

approximation for the steady-state wait in a G/G/1 queue, E[W ] ≈ ρ(c2a+c2s)/2(1−ρ)µ, by simply

inserting the relative arrival rate λ(t)/λ̄ in the denominator. (We assume that t is sufficiently

large, or we have different initial conditions, so that a steady-state formula would be appropriate

otherwise.) The joint limit also leads to the pathwise approximation

Wρ(t) ≈
Qρ(t)

λ(t)
, t ≥ 0. (4.47)

Remark 4.2 (Application of Corollary 4.1) For the sequence of Mt/Mt/1 models with long-run

average arrival rates λ̄n = 1 and average service rate 1/ρn = 1/(1 − (1 −
√
n)), we can apply

Corollary 4.1 to obtain a limit for the mean waiting time consistent with Theorem 4.2 under the

assumed scaling. Again assume that W1,n(t) can be regarded as being in steady state distributed

as W ∗
1,n with mean ρn/(1 − ρn) ∼

√
n as n → ∞, so that E[Ŵ ∗

1,n] ≡ E[W ∗
1,n]/

√
n → 1 as n → ∞.

Then Corollary 4.1 implies that

E[Ŵn(t)] ≡ E[Wn(nt)/
√
n] → 1

λf (t)
as n → ∞. (4.48)

Paralleling (4.16), the reasoning is

E[Ŵn(t)] =

∫ ∞

0
P (Wn(nt) > x

√
n) dx =

∫ ∞

0
P (Λ−1

n,t(W
∗
1,n) > x

√
n) dx

=

∫ ∞

0
P (Ŵ ∗

1,n > Λ̃n,t(x)) dx =

∫ ∞

0
e−Λ̃n,t(x)/(1−(1/

√
n)) dx

→
∫ ∞

0
e−λf (t)x dx =

1

λf (t)
as n → ∞. (4.49)

We formalize the qualitative conclusion about the implications of time variability to be drawn

from formula (4.46) in the following corollary.

Corollary 4.2 In the heavy-traffic limit of Theorem 4.2, the approximating time-varying mean

wait at time t is decreasing in the relative arrival rate λ(t)/λ̄, being largest when λ(t)/λ̄ is smallest.

If λ↓ ≤ λ(t) ≤ λ↑ for all t ≥ 0. Then, provided that t sufficiently large,

λ↓

λ↑ ≤ E[W (t1)]

E[W (t2)]
≤ λ↑

λ↓ for all t1, t2 such that t1 > t and t2 > t. (4.50)

In applications we have a single model with a fixed traffic intensity ρ. The applied relevance

of the heavy-traffic limit in Theorem 4.2 will depend on the limiting cumulative rate function Λf

in (4.19). To usefully approximate an observed time-varying arrival rate, it is important that Λf
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have time variability seen in the application. We now want to see the consequence of omitting the

time scaling of the arrival rate functions in Example 4.1, so we return to that example.

Example 4.2 (the sinusoidal example without time scaling) We now return to Example 4.1 and

suppose instead that we do not include the time scaling as n increases. It is natural to approach

this through the arrival rate function. If we do so, then we would have λno
n (t) = λf (t) and thus

Λno
n (t) = Λf (t) for all n. Having done this, we see that Λ̄no

n (t) = n−1λf (nt) → t in D as n → ∞

and Λ̃no
n,t(u) = n−1/2[Λf (nt + u

√
n) − Λf (nt)] → uλ̄ = u as n → ∞ uniformly in t and u, because

we are looking at the average of λf over an interval of length u
√
n multiplied by u. Hence, we so

not impact of the periodicity in the limit.

We might instead omit the time scaling in the cumulative arrival rate function. Then we would

have the cumulative arrival rate function

Λ#
n (t) ≡ nΛf (t), t ≥ 0, (4.51)

without including the time scaling in Λn above. Then we still get the limits in (4.19) and (4.20),

but now Λ#
f (t) = t and λ#

f (t) = 1 for all t ≥ 0. Thus, if we do not scale time, the limits in (4.19)

and (4.20), and thus also in Theorem 4.2, reveal no impact of the time variability.

Paralleling Theorem 2 and Corollary 1 of [10] for many-server queues, we now show that any

service rate control that stabilizes the queue length in heavy-traffic cannot also stabilize the virtual

waiting time at the same time.

Theorem 4.3 (stabilizing both in heavy traffic) Let the system start empty. Let the scaling as-

sumptions above apply, including (4.17)-(4.20), but consider any service-rate control that stabilizes

the queue length in the sense that Q̂n ⇒ Q̂ in D as n → ∞, where Q̂(t) ⇒ Q̂(∞) as t → ∞ with

0 < E[Q̂(∞)] < ∞. Then

(Q̂n, Ŵn) ⇒ (Q̂, Ŵ ) in D2 as n → ∞, (4.52)

where Ŵ (t) ≡ Q̂(t)/λf (t), t ≥ 0. As a consequence, Ŵn(t) is not stabilized asymptotically as first

n → ∞ and then t → ∞ unless λf (t) → λf (∞) as t → ∞.

Proof. We can apply the second half of the proof of Theorem 4.2. Given the assumed convergence

Q̂n ⇒ Q̂ in D as n → ∞, we can apply the tightness that follows from this convergence to deduce

that

n−1/2[Qn(nt+ u
√
n)−Qn(nt)] ⇒ 0 as n → ∞ (4.53)
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uniformly in t and u over finite intervals. Combined with the limit for Ãn,t in (4.30), (4.53) implies

that

D̃n,t(u) ≡ n−1/2[Dn(nt+ u
√
n)−Dn(nt)] ⇒ λf (t)u as n → ∞ (4.54)

uniformly in t and u over finite intervals. Thus the limit(4.52) and the subsequent results hold by

the proof of Theorem 4.2.

5 A Periodic Arrival Rate Function

Let us now consider the special case of a periodic arrival rate function λ with period c; see [6, 15]

for background. In addition, we assume that the stationary model (A1, D1, Q1) has a limiting

steady-state version, by which we mean the following process limit

{(A1(t+ s)−A1(s), D1(t+ s)−D1(s), Q1(t+ s)) : t ≥ 0} ⇒ {(A∗
1(t), D

∗
1(t), Q

∗
1(t) : t ≥ 0} (5.1)

in D3 as s → ∞, where Q∗
1 is a stationary process, while (A∗

1, D
∗
1) has stationary increments.

5.1 A Periodic Steady State

With these assumptions, we can deduce that our model has a periodic steady state. The following

expresses a process version of that periodic steady state. It is significant that the one-dimensional

marginals Q(t) have a simple limiting steady-state distribution, independent of the periodic struc-

ture, but the 2-dimensional (and higher) marginals (Q(t1), Q(t2)) only have a limiting periodic

steady-state distribution, with the periodic structure.

Theorem 5.1 (periodic steady state) If λ is periodic with period c and (5.1) holds, then

{(A(t+ kc)−A(kc), D(t+ kc)−D(kc), Q(t+ kc),W (t+ kc)) : t ≥ 0}

⇒ {(A∗(t), D∗(t), Q∗(t),W ∗(t) : t ≥ 0} in D4 as k → ∞, (5.2)

where (Q∗,W ∗) is a periodic process with the marginal distribution of Q∗(t) in R independent of t,

while (A∗, D∗) has periodic increments, i.e., the distribution of {(A∗(t+ kc)−A∗(kc), D∗(t+ kc)−

D∗(kc), Q∗(t+ kc)),W ∗(t+ kc) : t ≥ 0} in D4 is independent of k.

Proof. With the assumptions, Theorem 2.1 implies that (5.2) holds for the triple (A,D,Q).

Then (4.1) and (4.2) imply that the same is true for W . (Theorem 4.2 and and (4.46) yield an

approximation for that periodic steady-state variable W ∗(t).)
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In this context of a periodic steady-state distribution, under regularity conditions, the waiting

times of successive arrivals will directly have a steady-state distribution. For example, if the arrival

process Na is a renewal process with a non-lattice interarrival-time distribution, then the waiting

time of the kth arrival Wn,k should converge to a proper steady-state limit Wn,∞ as k → ∞ for

each n, because the arrivals do not occur at fixed places within a cycle. The periodic arrival rate

implies that the steady-state wait Wn,∞ should be a continuous mixture of W ∗
n(s) over a cycle, i.e.,

P (Wn,∞ > w) =

∫ nc
0 λn(s)P (W ∗

n(s) > w) ds

ncλ̄
; (5.3)

See Proposition A1 in the Appendix of [12].

However, Theorem 4.2 provides a heavy-traffic limit as n → ∞ for the integrand in (5.3), which

is independent of the time argument s. Hence, we see that the limit in (4.38) should apply to Ŵn,∞

as well as λf (t)Ŵn(t); i.e., paralleling (4.46), we have the associated heavy-traffic approximation

E[Wρ,∞] ≈ ρ(c2a + c2s)

2(1− ρ)µ̄
. (5.4)

As a consequence, the expected waiting time of successive arrivals is also stabilized by the

rate-matching service rate control. However, this occurs, not because the expected waiting time

is independent of the time of arrival, but because successive arrivals might occur anywhere in the

periodic cycle. That is, we focus on Wn,k, the waiting time of the kth arrival as k gets large, which

has no fixed arrival time within a cycle. We can only conclude that (5.3) should hold. If we consider

possible arrival times, then we should focus on E[W (t)], which is periodic.

5.2 A Heavy-Traffic Limit for the Waiting Times of Successive Arrivals

We now show that a heavy-traffic limit can be obtained for the waiting time sequence {Wn,k : k ≥ 0}

in the periodic setting of §5 above, which has a periodic limit. This shows that the order of the two

limits as t → ∞ and as n → ∞ cannot be interchanged, just as for the multi-server queues with

deterministic service times in [9]. In the heavy-traffic limit, the arrival times occur at fixed places

within the cycle.

To state the limit, let

Ẑn(t) ≡ n−1/2Wn,⌊nt⌋, t ≥ 0 and n ≥ 1, (5.5)

where ⌊x⌋ is the floor function denoting the greatest integer less than or equal to x.
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Theorem 5.2 (heavy-traffic limit for the waiting times of successive arrivals) Let the system start

empty. Under the scaling assumptions above, including (4.17)-(4.20),

Ẑn ⇒ Ẑ = Ŵ ◦ Λ−1
f in D as n → ∞, (5.6)

where Ẑn is defined in (5.5) and

Ẑ(t)
d
=

R(t;−1, c2a + c2s)

λf (Λ
−1
f (t))

, t ≥ 0, (5.7)

with λf (Λ
−1
f (t)) being a periodic function with period cλ̄.

Proof. Note that ∥Ẑn − Ŵn ◦ Ā−1
n ∥T ⇒ 0 as n → ∞ for any T > 0. Any difference is due to

multiple arrivals at the same time, which is o(
√
n) uniformly in t over bounded intervals by the

tightness of Ân. By the continuous mapping theorem with the inverse map, Ā−1
n → Λ−1

f in D as

n → ∞; see §13.6 of [21]. Hence, by the continuous mapping theorem with composition, we have

the claimed (5.6). We then obtain (5.7) from (4.36).

For the final statement, since λf is periodic with period c, we have Λf (nc + t) = ncλ̄ + Λf (t),

0 ≤ t ≤ c. As a consequence, Λ−1
f (ncλ̄ + t) = nc + Λ−1

f (t), 0 ≤ t ≤ cλ̄. Since λf is periodic with

period c, λf (nc+Λ−1
f (t)) = λf (Λ

−1
f (t)), 0 ≤ t ≤ cλ̄ and λf (Λ

−1
f (ncλ̄+t)) = λf (Λ

−1
f (t)), 0 ≤ t ≤ cλ̄,

showing that indeed λf (Λ
−1
f (t)) is a periodic function with period cλ̄.

We remark that the steady-state approximation in (5.4) can be obtained from (5.7) if we consider

t sufficiently large that we replace the RBM with its exponential steady-state distribution and we

replace λf (Λ
−1
f ) in the denominator by its long-run average λ̄f = 1. As in [9], the periodic heavy-

traffic limit shows the possibility of nearly periodic behavior for systems in practice.

6 Simulation Experiments for the Rate-Matching Control

Theorems 2.1 and 5.1 are useful for conducting simulation experiments in order to evaluate the

time-varying behavior of the queue length Q(t) and the virtual waiting time W (t) with the rate-

matching service-rate control. First, Theorem 2.1 implies that Q(t) approaches the steady-state

limiting distribution of Q1(t) in the associated stationary G/G/1 model (assuming that it has a

proper limiting steady-state distribution). Hence, it suffices to start by simulating the stationary

G/G/1 model in a conventional way.

Second, Theorem 5.1 implies that, if the arrival rate function is periodic with period c, then the

stochastic process {(Q(t),W (t)) : t ≥ 0} has a periodic steady-state distribution {(Q∗(t),W ∗(t)) :
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t ≥ 0}, where (Q∗(t+ c),W ∗(t+ c))
d
= (Q∗(t),W ∗(t)) for all t ≥ 0. Hence, if we consider examples

with periodic arrival processes, then we can observe when the periodic steady-state is reached, and

thus know when the impact of the initial conditions will have dissipated.

Formula (4.6) requires that we be able to compute Λ−1, while Theorem 4.1 requires that we be

able to compute Λ−1
t . That task is simplified if we have a periodic function. In particular, if λ is

periodic with periodic cycle c and with long-run average λ̄ = 1, then

Λ−1(kc) = Λ(kc) = kc for all k ≥ 1. (6.1)

As a consequence, it suffices to know the inverse over just one cycle, because

Λ−1(kc+ t) = kc+ Λ−1(t), 0 ≤ t ≤ c. (6.2)

Hence, we could compute, table and apply the values of Λ−1(ck/n) for 1 ≤ k ≤ n to compute

relevant inverse function values.

Example 6.1 (Example 4.1 revisited) Suppose that

λ(t) = 1 + β sin (γt), t ≥ 0, (6.3)

so that

Λ(t) = t− (β/γ)(cos (γt)− 1), t ≥ 0, (6.4)

and

Λt(u) = u− (β/γ)(cos (γ(t+ u))− cos (γt)), t ≥ 0, (6.5)

Also note that, since the periodic cycles are of length 2π/γ, we have

Λ(2kπ/γ) = 2kπ/γ = Λ−1(2kπ/γ) for all k ≥ 1.

But how do we calculate Λ−1(t) and Λ−1
t (u)?

We now observe that the heavy-traffic scaling of time and space in §4 makes the approximate

simulation method in (2.15) more appropriate as n increases. As observed just prior to Example

4.1, the service requirements and service times are of order O(1) as n → ∞. However, the arrival

rate and service rate change more slowly as n increases. Indeed, the derivative of the service rate

is O(1/n) as n → ∞. This provides strong support for approximation (2.15), showing that it is

asymptotically correct as n → ∞.
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7 A Control to Stabilize the Expected Waiting Time

In this section we examine the square-root service-rate control in (1.2) as a way to stabilize the

waiting time instead of the queue length. For multi-server models with time-varying arrival rates,

the various approaches to server staffing (choosing a time-varying number of servers) in order to

stabilize the performance of a queueing system with a time-varying arrival rate function lead to a

square-root staffing formula, i.e.,

s(t) = m(t) + β
√

m(t), (7.1)

where m(t) is an appropriate offered load, corresponding to an expected number of busy servers in

an associated infinite-server model, with different methods to find the quality-of-service parameter

β in (7.1) in order to focus on a particular performance measure; see [3, 10, 23] and references

therein.

An analog in our setting is the square-root service-rate control in (1.2). From Theorem 4.2,

we see that if we are interested in stabilizing the expected virtual waiting time E[W (t)], the rate

matching control in (1.1) overstaffs when the arrival rate λ(t) is relatively large and understaffs

when it is relatively low. Formula (1.2) acts to correct that bias. We now show that the squar-

root service-rate control in (1.2) is asymptotically optimal with respect to an appropriate criterion

with an appropriate time scaling.

To establish this positive asymptotic result, we exploit connections to the earlier work on optimal

capacity allocation in [2, 7, 8, 22] mentioned in §1. The goal in that work is to allocate service rates

µi to each of n single-server queues with specified arrival rates λi. The object is to minimize the

total expected steady-state waiting time at all queues,
∑n

i=1E[Wi] subject to a budget constraint∑n
i=1 riµi ≤ B, where ri is the cost of allocating rate µi at queue i and B > Λ ≡

∑n
i=1 riλi. (The

waiting time is the elapsed time from customer arrival to starting service.)

The key to a simple solution is the product-form steady-state distribution for open queueing

networks, under which the n queues are mutually independent in steady state, so that allocation

of µi affects queue i but no other queue. The product form is exact for a Markovian Jackson

network, where in steady state each queue behaves as an M/M/1 model, and can be a reasonable

approximation for a generalized Jackson network, where each queue behaves as an GI/GI/1 model.

Interestingly, this problem is also solved by a square-root formula much like (7.1). Assuming that

E[Wi] ≈ λi(c
2
a,i + c2s,i)/2(µi − λi), where c2a,i and c2s,i are the squared coefficients of variation (scv,

variance divided by the square of the mean) of an interarrival times and a service time (which is

25



exact for M/M/1), and the product form is approximately valid, the optimal allocations are

µi = λi +
(B − Λ)

√
λiri(c2a,i + c2s,i)∑n

j=1

√
λjrj(c2a,j + c2s,j)

. (7.2)

We make three initial observations: First, if ri(c
2
a,i + c2s,i) is independent of i, then (7.2) looks

more like (7.1). Second, we note that the theoretical bases for (7.1) and (7.2) are quite different.

Formula (7.1) can be explained by the central limit theorem (e.g., the number of busy servers in

the Mt/GI/∞ infinite-server model is Poisson, and thus approximately Gaussian, with mean and

variance equal to m(t)), whereas formula (7.2) follows from basic optimization theory (the form of

the convex objective function with µi−λi in the denominator of each term and the independence of

the queues). Third, the form of the solution in (7.2) depends critically on the form of the objective

function. If we want to balance the ratio of the mean waiting time to the mean service time or

minimize the sum of these ratios, then the rate-matching service rate control in (1.1) would be

optimal.

The nice analysis leading to (7.2) would apply to our time-varying arrival-rate setting under

two-conditions: (i) if we had a similar objective function involving the sum of the mean waiting

times at different times, and (ii) if we could assume that the performance of the queue at one time

is approximately independent of its performance at another time, with the allocation of capacity

at one time not affecting the performance at any other time.

To consider condition (i), we first need to replace the steady-state waiting time by the time-

varying virtual waiting time, W (t), i.e., the time an arrival at time t would have to wait if there

were an arrival at time t. Condition (i) should be approximately satisfied if we elect to minimize the

average mean time-varying expected waiting time, i.e., if for some T > 0 and m > 1, the objective

function is
1

m

m∑
k=1

E[W (kT/m)] (7.3)

and we have the service rate constraint∫ T

0
µ(t) dt > ρ−1

∫ T

0
λ(t) dt for 0 < ρ < 1. (7.4)

However, condition (ii) is more problematic. Clearly, condition (ii) cannot hold exactly, because

the performance at any time depends on the history prior to that time. Nevertheless, it might hold

approximately. Indeed, for queues with time-varying arrival rates, condition (ii) is captured by the

pointwise-stationary approximation (PSA), discussed in [1, 4, 13, 20]. Assuming that the PSA is
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valid as an approximation, then (7.1) is optimal. We state the asymptotic result for Markovian

systems that follows from [20].

Theorem 7.1 (asymptotic optimality in the PSA scaling) Consider the Markovian Mt/Mt/1 model

with the time-varying arrival rate λ(t) and service rate µ(t), where µ(t) is subject to control subject

to the constraint that µ(t) > λ(t) for all t, 0 ≤ t ≤ T . Consider a sequence of models indexed by n

in which both the arrival rate function and the service rate function in model n are multiplied by n.

If the goal is to choose a service rate function µ(t) to minimize the objective function (7.3) subject

to the constraint in (7.4), then the PSA control in (1.2) is asymptotically optimal as n → ∞.

Proof. We combine the asymptotic result in [20], which shows that the system asymptotically

has the steady state distribution of an M/M/1 queue at each time with the traffic intensity at that

time, independent of other times, and the optimization in [7].

7.1 Simulation Experiments for the Square-Root Control

Here we simulate only the Mt/Mt/1 model. We generate the arrival counting process A as an

NHPP with arrival rate λ(t) at time t. We generate a potential service process S(t) as another

NHPP with service rate function µ(t) = λ(t) + β
√

λ(t). W let a net input process bee defined by

X(t) = A(t)− S(t), t ≥ 0. (7.5)

We then define the qqueue length process by applying the one-dimensional reflection map, as in

§14.5 of [21],

Q(t) = X(t)− inf
0≤s≤t

{X(s)}, t ≥ 0. (7.6)

After simulating this system, we see the arrival times and the waiting times of successive cus-

tomers. We see the waiting times Wk that go with the arrival times Ak. We average the waiting

times for all arrival times in a bin of the periodic cycle.

8 Conclusion

We have studied a general Gt/Gt/1 single-server queue with time-varying arrival rate function λ(t)

where the model of the random customer service requirements are specified but the deterministic

service rate µ(t) is subject to control. The specific model specified in §2 involves a composition

construction of the arrival and service processes in (2.1) and (2.9), starting from fixed stochastic

processes Na and Ns that satisfy a FSLLN and a FCLT.
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In §§2-5 we studied the rate-matching service rate control in with µ(t) ≡ λ(t)/ρ for selected

traffic intensity ρ, 0 < ρ < 1. Theorem 2.1 shows that the composition construction makes the

performance triple (A(t), D(t), Q(t)) a deterministic time transformation of the triple in a stationary

model. As a consequence, Theorem 3.1 and Theorem 3.2 showed that the average delay probability

as defined in (3.1) and the virtual delay probability P (W (t) > 0) both converge to ρ as t → ∞.

In fact, Theorem 3.2 shows that the entire queue-length process typically converges to a proper

steady-state distribution.

Nevertheless, the tail probability of delay remains time-dependent. Theorem 4.2 establishes

a heavy-traffic limit showing that, for sufficiently large t, the virtual waiting time W (t) can be

approximated by an exponential random variable with a time-varying mean, which is inversely

proportional to the relative arrival rate λ(t)/λ̄, as in (4.46). Crucial for that limit is time scaling

within the arrival rate function, as specified in (4.17)-(4.22). For a periodic arrival rate function,

the periodic cycle should grow as (1 − ρ)−2 as ρ ↑ 1. Theorem 4.3 shows that no control that

asymptotically stabilizes the queue length in this heavy-traffic regime can simultaneously stabilize

the virtual waiting time. Theorem 5.2 establishes a periodic heavy-traffic limit for the waiting

times of successive arrivals, providing another example in which the limit depends on the order of

the two iterated limits as n → ∞ and t → ∞.

Finally, in §7 we consider the square-root service-rate control in (1.2) that is an analog of

the square-root staffing formula (7.1) for multi-server queues from [3, 10, 23] and the square-root

capacity allocation formula (7.2) for Markovian open Jackson networks from Kleinrock [7]. Theorem

7.1 shows that it is optimal for Mt/Mt/1 models in the limit from [20] supporting the pointwise

stationary approximation.
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