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Abstract

We consider a class of general Gt/Gt/1 single-server queues, including the Mt/Mt/1 queue,
with unlimited waiting space, service in order of arrival and a time-varying arrival rate, where
the the service rate at each time is subject to control. We study the rate-matching control, where
the the service rate is made proportional to the arrival rate. We show that the model with the
rate-matching control can be regarded as a deterministic time transformation of a stationary
G/G/1 model, so that the queue length distribution is stabilized as time evolves. However, the
time-varying virtual waiting time is not stabilized. We show that the time-varying expected
virtual waiting time with the rate-matching service-rate control becomes inversely proportional
to the arrival rate in a heavy-traffic limit. We also show that no control that stabilizes the
queue length asymptotically in heavy-traffic can also stabilize the virtual waiting time. Then
we consider two square-root service-rate controls and show that one of these stabilizes the waiting
time when the arrival rate changes very slowly relative to the average service time, so that a
pointwise stationary approximation is appropriate.

Keywords: stabilizing performance, queues with time-varying arrival rates, nonstationary queues,

heavy-traffic limits, single-server queues with time-varying arrival rates, service-rate controls, heavy-

traffic scaling, pointwise stationary approximations.
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1 Introduction

This is an appendix to the main paper [6]. In §2 we present simulation experiments for Gt/Gt/1

models where the arrival and service processes are non-Poisson, i.e., not Mt. In §3 we present a

proof of Lemma 1 of [3] using the argument to prove Theorem 7.1 of [6]. In §4 we present the

results of additional simulation experiments.

2 Simulation Experiments for Non-Markovian Gt/Gt/1 Models

We also conducted simulation experiments for non-Markovian Gt/Gt/1 models, using the same

sinusoidal arrival rate functions as for the main Mt/Mt/1 models. For related work on conventional

staffing (choosing the number of servers) for many-server Gt/Gt/st models having non-Mt arrival

processes constructed in the same way, see [1].

Here we consider arrival processes as defined in §3 of [6], where the base process Na is a non-

Poisson renewal process. The variability parameter c2a is then the squared coefficient of variation

(scv, variance divided by the square of the mean) of an interarrival time. We considered renewal

processes with hyperexponential (H2) and Erlang (E2) interarrival times. The H2 interarrival

times are more variable than an exponential and were chosen to have c2a = 2.0 > 1, while the

E2 interarrival times are less variable than an exponential and have c2a = 0.5 < 1. For the H2

distribution, the third parameter beyond the mean and scv c2a was chosen to yield balanced means,

as in p. 137 of [4].

Similarly we let the service requirements come from H2 and E2 renewal processes. Hence, we

considered Gt/Gt/1 models where neither the arrivals nor the service is Mt.

In particular, Figures 1 and 2 show the performance of the rate-matching service-rate control

in (2.1) of [6] applied to the model in which Na is an H2 renewal proceess, while the service

requirements are H2 and E2, respectively. The arrival rate function is the same as for Figure 1

of [6]. Just as for the GI/GI/1 models, see §5.1 of [5], the stable mean value EQ(t) tends to be

higher for the more variable H2 service-requirement distribution than for E2.
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Figure 1: Simulation estimates of the time-varying mean number in the system, E[Q(t)], and the
mean waiting time, E[W (t)], for the Gt/Gt/1 model with the rate-matching control in (2.1). The
arrival process is constructed from a rate-1 renewal process with H2 inter-renewal times having scv
c2 = 2.0. Again there is the same sinusoidal arrival rate function λ(t) ≡ 1 + β sin γt with β = 0.2
and γ = 0.001. The service times are i.i.d. H2 random variables, also with c2s = 2.0.
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Figure 2: Simulation estimates of the time-varying mean number in the system, E[Q(t)], and the
mean waiting time, E[W (t)], for the Gt/Gt/1 model with the rate-matching control in (2.1). The
arrival process is constructed from a rate-1 renewal process with H2 inter-renewal times having scv
c2 = 2.0. Again there is the same sinusoidal arrival rate function λ(t) ≡ 1 + β sin γt with β = 0.2
and γ = 0.001. The service times are i.i.d. E2 random variables with c2s = 0.5.
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Similarly, Figures 3 and 4 show the performance of the second square-root service-rate control in

(2.4) of [6] applied to the model in which Na is anH2 renewal process, while the service requirements

are H2 and E2, respectively. The arrival rate function is the same as for Figure 3 of [6], which is

the same as in Figures 1 and 2 here.
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Figure 3: Simulation estimates of the time-varying mean number in the system, E[Q(t)], and the
mean waiting time, E[W (t)], for the Gt/Gt/1 model with the second square-root control in (2.4).
The arrival process is constructed from a rate-1 renewal process with H2 inter-renewal times having
scv c2 = 2. Again there is the same sinusoidal arrival rate function λ(t) ≡ 1+ β sin γt with β = 0.2
and γ = 0.001. The service times are i.i.d. H2 random variables, also with c2s = 2.0.
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Figure 4: Simulation estimates of the time-varying mean number in the system, E[Q(t)], and the
mean waiting time, E[W (t)], for the Gt/Gt/1 model with the second square-root control in (2.4).
The arrival process is constructed from a rate-1 renewal process with H2 inter-renewal times having
scv c2 = 2. Again there is the same sinusoidal arrival rate function λ(t) ≡ 1+ β sin γt with β = 0.2
and γ = 0.001. The service times are i.i.d. E2 random variables with c2s = 0.5.
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3 Proof of Lemma 1 of Liu and Whitt [3]

The impossibility result in Theorem 7.1 of the main paper [6] showing that it is not possible to

simultaneously stabilize the mean queue length EQ(t) and the mean wait EW (t) is similar to

Lemma 1 of [3], which was used to prove a similar asymptotic impossibility result in Corollary 1

of [3]. We now show that a minor modification of our proof of Theorem 7.1 in [6] can be used to

provide a short proof of Lemma 1 of [3].

Lemma 3.1 (Lemma 1 from [3]) Given that F is a cdf, F c(x) ≡ 1−F (x) and λ is a time-varying

arrival rate function with 0 < λL ≤ λ(t) for all t as in Assumption 10 of [2], which is assumed in

[3], if

m(t) =

∫
w

0

λ(t− x)F c(x) dx, t ≥ w, (3.1)

is a positive constant for all t ≥ w, then λ is a constant function.

Proof. Given that m(t+ ǫ) = m(t) for any ǫ > 0 and any t ≥ w as in (3.1), for any for any ǫ > 0,

we can write

m(t+ ǫ)−m(t) = 0 =

∫
w

0

[λ(t+ ǫ− x)− λ(t− x)]F c(x) dx, t ≥ w, (3.2)

which is equivalent to

0 =

∫
w

0

λ(t− x)[F c(x− ǫ)− F c(x)] dx, t ≥ w,

=

∫
∞

0

λ(t− x)[P ((A ∧w) + ǫ > x)− P (A ∧w > x)] dx, t ≥ w, (3.3)

where A is a random variable with cdf F and A∧w ≡ min {A,w}, but that is not possible because,

by the tail integral formula for the mean and the lower bound on λ,

∫
∞

0

λ(t− x)[P ((A ∧ w) + ǫ > x)− P (A ∧w > x)] dx ≥ λL(E[(A ∧w) + ǫ]− E[A ∧ w]

= λLǫ > 0. (3.4)

4 Other Simulation Experiments

In this section we include some more simulation results for Mt/Mt/1 models, supplementing the

main paper [6]. Figure 5 shows the performance of the rate-matching control in (2.1) of [6] for

γ = 1.0, supplementing the results in Figures 1, 6 and 8 for γ = 0.001, 0.1 and 10.0, respectively.
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Figure 5: Simulation estimates of the time-varying mean number in the system, E[Q(t)] (left),
and the mean waiting time, E[W (t)] (right), for the Mt/Mt/1 model with sinusoidal arrival rate
function λ(t) ≡ 1+ β sin γt with β = 0.2 and γ = 1.0 with the rate-matching control in (2.1) of [6].

8



Acknowledgement

The author gratefully acknowledges support from NSF grant CMMI grant 1265070 and the help of

Columbia doctoral student Ni Ma, including all reported numerical and simulation results.

References

[1] B. He, Y. Liu, andW. Whitt. Staffing a service system with non-Poisson nonstationary arrivals. Columbia
University, working paper, 2015.

[2] Y. Liu and W. Whitt. The Gt/GI/st + GI many-server fluid queue. Queueing Systems, 71:405–444,
2012.

[3] Y. Liu and W. Whitt. Stabilizing customer abandonment in many-server queues with time-varying
arrivals. Oper. Res., 60(6):1551–1564, 2012.

[4] W. Whitt. Approximating a point process by a renewal process: two basic methods. Oper. Res., 30:
125–147, 1982.

[5] W. Whitt. The queueing network analyzer. Bell System Technical Journal, 52(9):2779–2815, 1983.

[6] W. Whitt. Stabilizing performance in a single-server queue with time-varying arrival rate. Columbia
University, http://www.columbia.edu/∼ww2040/allpapers.html, 2014.

9


