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1. Introduction

The primary purpose of this short paper is to supplement and complement two recent

papers on multi-server queues with abandonment. These two papers on multi-server queues

with abandonment in turn were motivated by the desire to develop new tools to help analyze

telephone call centers; for background, see Gans, Koole and Mandelbaum (2003).

First, in Whitt (2005a) we developed an algorithm for calculating approximations for all the

standard steady-state performance measures in the M/GI/s/r + GI model, having a Poisson

arrival process, independent and identically distributed (IID) service times with a general

distribution (the first GI), s servers, r extra waiting spaces, IID times to abandon before

starting service with a general distribution (the +GI) and the first-come first-served (FCFS)

service discipline. That algorithm is based on approximating the given M/GI/s/r+GI model

by an associated Markovian M/M/s/r+M(n) model with state-dependent abandonment rates.

It yields exact numerical results for the M/M/s/r + M special case.

Second, in Whitt (2005c) we developed a deterministic fluid approximation for the general

G/GI/s/r + GI model, having an arrival process that is a general stationary point process,

IID service times with a general distribution, s servers, r extra waiting spaces, IID times to

abandon with a general distribution and the FCFS service discipline. That fluid approximation

describes the transient behavior of the queueing system. The steady-state behavior of that fluid

model serves as an approximation for the steady-state behavior of the queueing model. The

fluid approximation becomes appropriate in the many-server heavy-traffic limit in which both

the arrival rate and the number of servers are allowed to increase. The fluid approximation

is especially interesting in the efficiency-driven (ED) limiting regime, in which the probability

of eventually abandoning approaches a limit strictly between 0 and 1 as the the arrival rate

and the number of servers approach infinity. Equivalently, the associated sequence of traffic

intensities {ρs : s ≥ 1} approaches a limit ρ > 1. Indeed, it suffices to assume that the traffic

intensity is held fixed with ρ > 1. The fluid approximation evidently is asymptotically correct

in the ED many-server heavy-traffic limiting regime, but that is yet to be proved. In Whitt

(2005c) strong supporting evidence is given by establishing the fluid limit in a discrete-time

framework.

Given those two papers, we are interested in establishing an ED many-server heavy-traffic

fluid limit for the M/M/s/r + M(n) model to see if the approximation developed in Whitt

(2005a) is asymptotically correct, i.e., to see if it agrees with the fluid approximation for the
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M/GI/s/r+GI special case in the ED regime. That would provide additional support for the

approximation in Whitt (2005a), at least in the ED regime. We hasten to point out that there

are two gaps in this program: First, establishing a fluid limit does not directly imply associated

convergence of the steady-state distributions (invariant measures) and, second, convergence to

the continuous-time fluid limit for the M/GI/s+GI model has not yet been fully proved. But

the issue addressed here is worth addressing.

In the present paper we establish the desired deterministic many-server heavy-traffic fluid

limit, and a more general diffusion-process limit, for the M/M/s/r + M(n) model. Unfor-

tunately, however, we find that the two fluid approximations do not coincide, but they are

sufficiently close that the new fluid limit nevertheless does provide positive support for the

approximation in Whitt (2005a). More generally, the difference between the two fluid approx-

imations can be used to help judge if the algorithm in Whitt (2005a) should produce good

approximations in contemplated scenarios.

The present paper goes beyond that initial goal by establishing many-server heavy-traffic

limits for the more general M(n)/M(n)/s/r + M(n) model, having state-dependent arrival

and service rates as well as state-dependent abandonment rates. The many-server heavy-traffic

limits here extend the many-server heavy-traffic limits for the M/M/s/r + M model in the

ED limiting regime established in Whitt (2005b). Theorems 2.1, 2.2 and 2.3 there established

a diffusion limit, a fluid limit, and limits for the steady-state distributions, respectively. That

paper also presented numerical examples to show that the ED approximations can be useful

for describing the performance of call centers that are providing low-to-moderate quality of

service, and thus are experiencing substantial customer abandonment. Such low-to-moderate

quality of service often occurs in service-oriented (non-revenue-generating) call centers. It

is widely recognized that alternative quality-and-efficiency-driven (QED) many-server heavy-

traffic limits yield useful approximations in a wide range of commonly occurring scenarios;

see Garnett, Mandelbaum and Reiman (2002). The recent work is aimed at showing the ED

approximations can also be useful.

As in Whitt (2005b), the stochastic-process limits established here can be viewed as conse-

quences of corresponding results for more general state-dependent Markovian queues in Man-

delbaum and Pats (1995); see Theorems 4.1 and 4.2 plus Section 5.3 there. Nevertheless, the

alternative proofs here are appealing because the special cases considered here are much easier

to treat directly. In the special cases considered here, the limit processes have no boundaries,

so that it is not necessary to consider the reflection map at all. Instead, we use the relatively
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simple argument in the seminal heavy-traffic paper on the M/M/s model by Iglehart (1965),

drawing upon Stone (1963). The main contribution here, though, is not general theory, but the

new insight into the behavior of multi-server queues with abandonment gained by establishing

the connections between the two papers Whitt (2005a, c).

Here is how the rest of this paper is organized. First, in Section 2 we establish the the

many-server heavy-traffic stochastic-process limits for the M(n)/M(n)/s/r + M(n) model.

Afterwards, in Section 3 we discuss associated approximations for the steady-state performance.

That depends upon the existence and uniqueness of solutions to a fundamental fixed-point

equation, ((2.2)). In general there can be multiple solutions, implying the existence of multiple

asymptotic equilibrium points (as s → ∞) even though there is always a unique limiting

steady-state distribution for each s.

In Section 4 we briefly describe the M/M/s/r+M(n) approximation for the M/GI/s/r+GI

model developed in Whitt (2005a). Next, in Section 5 we describe the fluid approximation for

the G/GI/s/r + GI model developed in Whitt (2005c). Finally, in Section 6 we compare the

two fluid approximations in the ED regime.

For additional discussion about customer abandonment in queues, see Garnett, Mandel-

baum and Reiman (2002) and Mandelbaum and Zeltyn (2004).

2. The Stochastic-Process Limits in the ED Limiting Regime

In the section we establish the stochastic-process limits for the M(n)/M(n)/s/r + M(n)

model with Markovian state-dependent arrival rates, service rates and abandonment rates. We

consider a sequence of models indexed by the number of servers, s, and let s →∞.

For each s ≥ 1, the model is characterized by one parameter and three functions. The

parameter is the number of extra waiting spaces rs, where 0 < rs ≤ ∞. When rs < ∞, we will

let rs be sufficiently large that it plays no role, asymptotically. The three functions are the

arrival rate λs ≡ {λs(n) : 0 ≤ n < s+ rs}, the (total) service rate µs ≡ {µs(n) : 1 < s+ rs +1}
and the (total) abandonment rate δs ≡ {δs(n) : 1 ≤ n < s + rs + 1}. (We use ≡ to denote

equality by definition.) For example, λs(n) is the arrival rate when there are n customers in

the system, either being served or waiting. If rs < ∞, then λs(s + rs) = 0.

Let Ns(t) be the number of customers in the system at time t. Let Ns(0) be a random

initial number of customers, specified independently of the evolution of the system after time 0

assumed to satisfy 0 ≤ Ns(0) < rs + 1 with probability one. For each s, the stochastic process

{Ns(t) : t ≥ 0} is a birth-and-death stochastic process with birth rates λs(n) and death rates
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µs(n) + δs(n).

We assume that there are fixed functions λ̂, λ̃, µ̂, µ̃, δ̂ and δ̃ such that for each positive

real number x and each sequence {xs : s ≥ 1}, where sxs is a nonnegative integer with xs → x

as s →∞,

λs(sxs)− sλ̂(x)√
s

→ λ̃(x) ,

µs(sxs)− sµ̂(x)√
s

→ µ̃(x) ,

δs(sxs)− sδ̂(x)√
s

→ δ̃(x) as s →∞ . (2.1)

The general idea is that, asymptotically as s →∞, the number of customers in the system

will concentrate at a point where the input rate equals the output rate. Thus, for each s, we

look for a point xs > 1 such that sxs is an integer and λs(sxs) ≈ µs(sxs) + δs(sxs). Because

of the assumed behavior of the rate functions in (2.1), to capture the behavior asymptotically

as s →∞, we seek x > 0 such that there is a solution to the fundamental fixed-point equation

λ̂(x) = µ̂(x) + δ̂(x) . (2.2)

Since we are primarily interested in the ED limiting regime in which the servers all tend to be

busy, in our intended application we want x > 1, but in general we do not require it.

To establish convergence to a diffusion process in this setting, we form the normalized

stochastic process

Ns(t) ≡ Ns(t)− sx̂√
s

, t ≥ 0 , (2.3)

for positive real number x̂, which will turn out to be a solution to equation (2.2).

To establish a stochastic-process limit for the processes Ns, let D ≡ D([0,∞),R) denote

the space of all right-continuous real-valued functions on the positive half line [0,∞) with left

limits everywhere in (0,∞), endowed with the usual Skorohod J1 topology; see Billingsley

(1999) or Whitt (2002). Let ⇒ denote convergence in distribution (weak convergence), both

for sequences of stochastic processes in D or for sequences of random variables in R. Let

Nor(m,σ2) denote a random variable that is normally distributed with mean m and variance

σ2.

Theorem 2.1. (stochastic-process limit for the state-dependent model) Consider the sequence

of M(n)/M(n)/s/r+M(n) models specified above, satisfying (2.1). Suppose that Ns(0) ⇒ N(0)

in R as s → ∞, where Ns is the scaled process in (2.3). Assume that the fundamental fixed-

point equation (2.2) has a solution, denoted by x̂, and let the constant x̂ appearing in (2.3) be
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such a solution. Assume that rs ≥ sζ for all s, where x̂ < ζ, or rs = ∞ for all s. Moreover,

suppose that (i) the functions λ̂, µ̂ and δ̂ appearing in (2.1) have continuous derivatives λ̂′, µ̂′

and δ̂′ in the neighborhood of the point x̂ and (ii) the functions λ̃, µ̃ and δ̃ appearing in (2.1)

are continuous in the neighborhood of the point x̂. Then

Ns ⇒ N in D as s →∞ , (2.4)

where N is a diffusion process with infinitesimal mean

m(y) = γ̃ − γy (2.5)

for

γ̃ ≡ λ̃(x̂)− µ̃(x̂)− δ̃(x̂) (2.6)

and

−γ ≡ λ̂′(x̂)− µ̂′(x̂)− δ̂′(x̂) (2.7)

and infinitesimal variance

σ2(y) = σ2(0) = 2λ̂(x̂) . (2.8)

If γ > 0, then N is an Ornstein-Uhlenbeck (OU) diffusion process with

N(t) ⇒ N(∞) d= Nor(γ̃/γ, λ̂(x̂)/γ) as t →∞ . (2.9)

Proof. Since Ns is a birth-and-death process and the limiting diffusion process has no bound-

aries, we can apply the weak convergence theory in Stone (1963), just as Iglehart (1965) did

in his seminal paper. Given Stone (1963), with the scaling in (2.3) it suffices to show that the

infinitesimal means and variances converge to the infinitesimal means and variance of the limit

process.

Since Ns(t) is nonnegative-integer-valued, the possible values of Ns(t) are [k − sx̂]/
√

s for

k ≥ 0. Hence, for arbitrary real number y, we consider a sequence {ys : s ≥ 1}, where ys is an

allowed value of Ns(t) for each s and ys → y as s →∞. For example, for all sufficiently large

s, we can construct an allowed value by letting

ys ≡ bsx̂ + y
√

sc − sx̂√
s

,

where btc is the floor function, i.e., the greatest integer less than or equal to t. When y < 0,

we need s to be sufficiently large to guarantee that bsx̂ + y
√

sc ≥ 0.
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To complete the proof, we exploit conditions (2.1) and (2.2) and apply Taylor’s theorem to

represent the functions λ̂, µ̂ and δ̂ in the neighborhood of the point x̂. Let o(1) be a quantity

that converges to 0 as s →∞.

For the infinitesimal means,

ms(ys) ≡ lim
h→0

E[(Ns(t + h)−Ns(t))/h|Ns(t) = ys]

= lim
h→0

E[
Ns(t + h)−Ns(t)

h
√

s
|Ns(t) = x̂s +

√
sys]

=
λs(x̂s + ys

√
s)− µs(x̂s + ys

√
s)− δs(x̂s + ys

√
s)√

s

=
sλ̂(x̂ + ys/

√
s) +

√
sλ̃(x̂ + ys/

√
s)− sµ̂(x̂ + ys/

√
s)√

s

−
√

sµ̃(x̂ + ys/
√

s) + sδ̂(x̂s + ys/
√

s) +
√

sδ̃(x̂ + ys/
√

s)√
s

+ o(1)

=
sλ̂(x̂) + sλ̂′(x̂)(ys/

√
s) +

√
sλ̃(x̂ + ys/

√
s)√

s

−sµ̂(x̂) + sµ̂′(x̂)(ys/
√

s) +
√

sµ̃(x̂ + ys/
√

s)√
s

−sδ̂(x̂) + sδ̂′(x̂)(ys/
√

s) +
√

sδ̃(x̂ + ys/
√

s)√
s

+ o(1)

→ λ̂′(x̂)y + λ̃(x̂)− µ̂′(x̂)y − µ̃(x̂)− δ̂′(x̂)y − δ̃(x̂) = γ̃ − γy ≡ m(y)

for γ̃ in (2.6) and γ in (2.7).

For the infinitesimal variances,

σ2
s(ys) ≡ lim

h→0
E[(Ns(t + h)−Ns(t))2/h|Ns(t) = ys]

= lim
h→0

E[
(Ns(t + h)−Ns(t))2

hs
|Ns(t) = x̂s + ys

√
s]

=
λs(x̂s + ys

√
s) + µs(x̂s + ys

√
s) + δs(x̂s + ys

√
s)

s

=
sλ̂(x̂ + ys/

√
s) + sµ̂(x̂ + ys/

√
s) + sδ̂(x̂s + ys/

√
s)

s
+ o(1)

→ 2λ̂(x̂) ≡ σ2(y) .

It is well known that the limiting diffusion process is an OU process if γ > 0, and that

process has a normal steady-state distribution with variance equal to the infinitesimal variance

divided by twice the state-dependent drift rate; e.g., see p. 218 of Karlin and Taylor (1981).

Otherwise, the diffusion process does not possess a proper steady-state distribution.

We are primarily interested in the ED limiting regime, where x̂ > 1. Complications occur

in the QED limiting regime, where x̂ = 1. Theorem 2.1 then does not apply directly to typical
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applications because the asymptotic rate functions µ̂ and δ̂ typically are not differentiable at

1. Mandelbaum and Pats (1995) address this more complicated situation. On the other hand,

the case in which x̂ < 1 is also elementary, corresponding to the heavy-traffic limit for the

infinite-server M/M/∞ model, as in Iglehart (1965). That previous result is a special case of

Theorem 2.1.

By a variation of the same reasoning, it is possible to establish a more general deterministic

fluid approximation. We then scale more crudely by dividing by s instead of by
√

s. Instead

of (2.1), we now assume that there are fixed functions λ̂, µ̂ and δ̂ such that for each positive

real number x and each sequence {xs : s ≥ 1}, where sxs is a nonnegative integer with xs → x

as s →∞,

λs(sxs)
s

→ λ̂(x) ,

µs(sxs)
s

→ µ̂(x) ,

δs(sxs)
s

→ δ̂(x) as s →∞ . (2.10)

Moreover, we assume that

λ̂(0) > 0, µ̂(0) = 0 and δ̂(0) = 0 (2.11)

and, if rs < ∞,

λ̂(1 + ζ) = 0, µ̂(1 + ζ) > 0 and δ̂(1 + ζ) ≥ 0 , (2.12)

where ζ is the limit of rs/s as s →∞. A fundamental role is played by the asymptotic total-drift

function

f(x) ≡ λ̂(x)− µ̂(x)− δ̂(x) (2.13)

We will obtain an ordinary differential equation (ODE) for the limit, which is useful for

describing the transient behavior. To state the limit, we introduce the scaled process

N̄s(t) ≡ Ns(t)
s

, t ≥ 0 . (2.14)

Now, since we scale by s, the process Ns need not be in the neighborhood of the point sx̂, so

we might encounter boundaries. We have assumed (2.11) and (2.12) to avoid the boundaries.

They imply that f(0) > 0 and f(ζ) < 0 if 0 < ζ < ∞.

Theorem 2.2. (fluid limit for the state-dependent model) Consider the sequence of

M(n)/M(n)/s/r + M(n) models specified above, satisfying (2.10), and let N̄s(t) be the scaled

7



number in system in (2.14). Assume that rs ≥ sζ for all s, where ζ ≤ ∞ and x̂ < ζ. Assume

that the functions λ̂, µ̂ and δ̂ appearing in (2.10) are continuous and satisfy (2.11) and (2.12). If

N̄s(0) ⇒ n(0) as s →∞, where n(0) is a real number (deterministic) satisfying 0 < n(0) < ζ,

then

N̄s ⇒ n in D as s →∞ , (2.15)

where n is a degenerate diffusion process with infinitesimal mean (state-dependent drift)

m(y) = f(y) (2.16)

for f in (2.11) and infinitesimal variance σ2(y) = 0; i.e., n is the ODE

ṅ(t) = f(n(t)) (2.17)

with initial value n(0). If (2.2) has a unique solution, then

n(t) → n(∞) ≡ x̂ as t →∞ . (2.18)

Proof. We first extend the scaled process Ns in (2.14) to the entire real line by letting (i)

λs(n) = λs(0), µs(n) = µs(0) = 0 and δs(n) = δs(0) = 0 for integers n with n < 0 and (ii)

λs(n) = λs(s + rs) = 0, µs(n) = µs(s + rs) > 0 and δs(n) = δs(s + rs) ≥ 0 for integers n with

n > s + rs. With this construction, the process Ns will never visit negative values and will

never exceed s+rs. However, now the process Ns is defined on the whole real line, so there are

no boundaries, and we can apply the argument of Theorem 2.1. For the final limit in (2.18),

we use the fact that f(0) > 0, so that f(x) > 0 for x < x̂, while f(x) < 0 for x > x̂.

As indicated in the introduction, Theorems 2.1 and 2.2 are also consequences of Theorems

4.1 and 4.2 of Mandelbaum and Pats (1995).

3. Approximations for the Steady-State Distribution

In this paper, we are primarily interested in applying the diffusion and fluid limits in

Theorems 2.1 and 2.2 to generate approximations for the steady-state behavior of the queueing

system. Since the stochastic process {Ns(t) : t ≥ 0} is a birth-and-death process, much

is known about its limiting steady-state behavior (as t → ∞). Under regularity conditions,

which hold whenever rs < ∞, there will exist a unique proper limiting steady-state distribution,

which is also a stationary distribution. We assume that there does indeed exist a unique steady-

state distribution for Ns for each s; let the random variable Ns(∞) have that steady-state

distribution.
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There will be no difficulty when there exists a unique solution to the fundamental fixed-

point equation (2.2). If there does, then the main practical conclusion to draw from Theorems

2.1 and 2.2 is that, under the stated conditions, in steady state the number of customers in the

system tends to be concentrate about the level x̂s for large s, where x̂ is a solution of equation

(2.2). The fluid limit in Theorem 2.2 concludes the error is of order o(s) as s → ∞, while

the diffusion limit in Theorem 2.1 concludes the error is of order O(
√

s). The diffusion limit

provides a finer description.

It is important to note, however, that in general the fundamental equation (2.2) need not

have a solution and, if it does, the solution need not be unique. In a large class of settings

there will exist a solution on account of the following elementary result.

Theorem 3.1. (existence of a solution to (2.2) for the state-dependent model) Suppose that

asymptotic arrival-rate function λ̂ is a nonincreasing continuous function, while the asymptotic

total-service-rate function µ̂ and the asymptotic total-abandonment-rate function δ̂ are both

nondecreasing continuous functions, for all s sufficiently large. Suppose that

λ̂(0) > µ̂(0) + δ̂(0) (3.1)

and δ̂(x) →∞ as x →∞. Then there exists at least one solution to equation (2.2).

Moreover, in a large class of settings the solution will be unique.

Theorem 3.2. (uniqueness of a solution to (2.2) for the state-dependent model) In addition

to the conditions of Theorem 3.1, suppose that µ̂ + δ̂ is strictly increasing. Then there exists a

unique solution to equation (2.2).

For the standard application in Section 4, µ̂ + δ̂ is strictly increasing because µ̂ is strictly

increasing on the interval [0, 1], but constant on the interval (1,∞), while δ̂ is strictly increasing

on the interval (1,∞), but constant on the interval [0, 1]; i.e.,

µ̂(x) = x ∧ 1, x ≥ 0, (3.2)

and

δ̂(x) = η(x− 1), x ≥ 1 , (3.3)

where η(x) = 0 for x ≤ 0, η is strictly increasing on (0,∞) and η(x) →∞ as x →∞.

We also want to draw attention to the possibility that the fundamental equation (2.2)

could have more than one solution. The system would then have multiple stable points,
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asymptotically as s → ∞. Theorems 2.1 and 2.2 would then apply to all such solutions

describing transient behavior that depends strongly upon the initial conditions. Since the

stochastic process of interest {Ns(t) : t ≥ 0} is a birth-and-death process on a finite state space

(assuming rs < ∞) for each s, the process has a unique limiting steady-state distribution for

each s. Nevertheless, as s increases, the process could tend to exhibit multi-stable behavior;

i.e., the steady-state distribution for large s would tend to be approximately a mixture of

point masses attached to the different equilibrium points. The stochastic process Ns would

tend to remain a long time near one equilibrium point and then eventually move to another

equilibrium point and spend a long time there.

Such anomalous behavior could arise if the natural monotonicity assumptions in Theorems

3.1 and 3.2 are violated. For example, the arrival rate could increase as the queue length

increases if customers were somehow attracted to the queue. For example, customers in a

store might think that there must be something worth waiting for if they see a line, and have

a greater propensity to join the queue the longer it is.

Even more likely is the possibility that the total service rate might decrease when the

congestion increases, perhaps because service efficiency declines due to fatigue caused by the

higher workload. That phenomenon in call centers was noted by Sze (1984). However, it is

not our purpose to explore multi-stability phenomena here.

Assuming that there exists unique solution to (2.2), and assuming that the conditions of

Theorem 2.1 hold with γ > 0, we obtain the natural approximation for the steady-state number

of customers in an M(n)/M(n)/s/r + M(n) system by letting the actual system be term s in

such a limit; i.e.,

Ns(∞) ≈ sx̂ +
√

sN(∞) d= Nor(sx̂ +
√

s(γ̃/γ), sλ̂(x̂)/γ) , (3.4)

where d= means equal in distribution. That in turn implies that, for large s and t, Ns(t) will

tend to be of order O(
√

s) away from the level sx̂. Of course, Theorem 2.1 also directly yields

approximations for the transient behavior too.

Assuming that there exists unique solution to (2.2), and assuming that the conditions of

Theorem 2.2 hold, we obtain the cruder approximation

Ns(∞) ≈ sx̂ . (3.5)

This is the intended simple fluid approximation.
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4. The M/M/s/r + M(n) Approximation for M/GI/s/r + GI

As indicated in the introduction, we were motivated to consider the M(n)/M(n)/s/r+M(n)

model because the M/M/s/r + M(n) special case was proposed as an approximation for the

M/GI/s/r + GI model in Whitt (2005a). Unlike the approximations developed in this paper

above, that approximation is not based on any limit theorem.

The Markovian M/M/s/r+M(n) model is much more tractable than the M/GI/s/r+GI

model because, in the Markovian model, the number of customers in the system over time is

a birth-and-death process. In Whitt (2005a), further approximations are proposed to describe

the experience of individual customers, starting with a more careful analysis of which customers

abandon when an abandonment occurs.

For the special M/M/s/r + M(n) case, we choose the approximating exponential service-

time distribution by simply matching the mean of the given service-time distribution. We

choose the total-abandonment-rate function δs to approximate the behavior in the M/GI/s/r+

GI model with IID abandon times having abandon-time cdf F . We assume that the cdf F

is absolutely continuous with a probability density function (pdf) f ; i.e., we assume that

F (x) =
∫ x
0 f(y) dy for all x > 0. We then work with the hazard-rate (or failure-rate) function

h(x) ≡ f(x)
1− F (x)

, x ≥ 0 . (4.1)

We think of the pdf f as being continuous and positive on the entire nonnegative real line, but

that is not required.

The key approximation in Whitt (2005a) is an approximation for the abandonment rate of

a customer who is jth from the end (back end) of a queue (necessarily of length at least j):

αs(j) ≈ h(j/λs) . (4.2)

(Here, of course, the arrival rate is constant.)

We get approximation (4.2) by first recognizing that, in the actual M/GI/s/r +GI model,

any customer’s abandonment rate would be exactly h(t) if he had been waiting for time t. The

problem is that, given the state of the M/M/s/r + M(n) model at any time, we do not know

how long customers have waited, so we estimate it. Thus, as an approximation, we estimate

that there have been j arrivals since the time a customer who is jth from the end of the queue

arrived. (In this step, we are ignoring abandonments, which tend to occur at a lower rate

than arrivals.) Given that customers arrive at rate λs, the expected time between successive

arrivals is 1/λs. Combining these two approximations, we estimate that a customer who is
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jth from the end of the queue has been waiting for time j/λs. That gives us approximation

(4.2). The approximation may seem terribly crude, but numerical comparisons indicate that

it is remarkably accurate.

The associated approximation for the total abandonment rate when there are k customers

in the system is then

δs(k) ≈
k−s∑

j=1

αs(j) for k > s , (4.3)

with δs(k) = 0 if k ≤ s, because in this application we are assuming customers only abandon

before beginning service. As indicated in Whitt (2005a), if the density f were not smooth,

then we might instead let

αs(j) ≈ λs

∫ j/λs

(j−1)/λs

h(t) dt . (4.4)

Then the approximate total abandonment when there are k customers in the system would be

δs(k) ≈ λs

∫ (k−s)/λs

0
h(t) dt = −λs loge F c((k − s)/λs) for k > s , (4.5)

and δs(k) = 0 for k ≤ s.

The special M/M/s/r + M(n) case considered here starts with (4.5). In addition, we

assume that λs(k) = sρ for all k and µs(k) = k ∧ s = min{k, s} for k ≥ 0. (That implies we

are assuming that the mean service time is 1.) Since here we are evaluating the approximation

in the ED limiting regime, we assume that ρ > 1. As a consequence, in the special case the

assumptions in both (2.1) and (2.10) are satisfied, with λ̃(x) = µ̃(x) = δ̃(x) = 0 forall x.

Indeed, δs(xs) = sδ̂(x) for all x > 0 and s > 0, where

δ̂(x) = −ρ loge F c((x− 1)/ρ) for all x > 1 , (4.6)

and δ̂(x) = 0 for 0 ≤ x ≤ 1, with F c(x) ≡ 1− F (x) being the complementary cdf (ccdf).

As a consequence, the fundamental fixed-point equation (2.2) becomes

F c((x̂− 1)/ρ) = e−(ρ−1)/ρ , (4.7)

where ρ > 1. In this setting, there clearly exists a unique solution x̂ > 1 to the fundamental

fixed-point equation, because the right side is a number strictly between 0 and 1, while the

left side is a continuous function on the interval (1,∞) decreasing from 1 at x = 1 toward 0 as

x →∞.

The drift rate in the limiting OU diffusion process obtained from Theorem 2.1 is

γ = δ̂′(x̂) = h((x̂− 1)/ρ), (4.8)

12



where h is the hazard-rate function in (4.1) and x̂ is the unique solution to the fundamental

fixed-point equation (2.2) in this context, i.e., to (4.8).

Remark 4.1. The M/M/s/r + M Special Case. We now show that Theorem 2.1 here is

consistent with Theorem 2.1 in Whitt (2005a) for the M/M/s/r + M special case. If the

abandon-time cdf F is exponential with mean 1/α, then F c(x) = e−αx and the failure-rate

function is h(t) = α for all t. Equation (2.2) thus becomes (4.8) with F c(x) = e−αx, which

implies that

x̂− 1 =
ρ− 1

α
, (4.9)

just as in Theorem 2.1 of Whitt (2005a). Since h(t) = α for all t, the state-dependent drift is

γ = δ̂′((x̂− 1)/ρ) = α , (4.10)

again just as in Theorem 2.1 of Whitt (2005a).

5. The Fluid Approximation for G/GI/s/r + GI

In this section we describe the equilibrium behavior of the fluid approximation for the

general G/GI/s/r + GI model; for the full time-dependent behavior, see Whitt (2005c). The

fluid approximation directly approximates the scaled process Ns(t)/s and related quantities;

we obtain the desired approximation for Ns(t) by undoing the scaling.

As before, for the initial queueing model, we assume that the individual service rate is 1

and that the arrival rate is sρ for ρ > 1, which puts us in the ED limiting regime. The key

model elements are the service-time cdf G and the abandon-time cdf F . Let Gc and F c be

the associated ccdf’s. We assume that the arrival process is a general stationary point process

with a well defined rate, with that rate being sρ, where ρ > 1.

We scale by dividing the number in system for each s by s and letting s → ∞. Our final

approximation for the steady-state number of customers in the system is obtained by unscaling,

i.e.,

Ns(∞) ≈ s(1 + qF ), (5.1)

where qF is the queue content (amount of fluid waiting before starting service), which is given

in (5.4) below.

The fluid approximation for the equilibrium behavior in the ED limiting regime (without

undoing the scaling) is depicted in Figure 1. It is significant that the fluid approximation

depends on the two cdf’s G and F (or ccdf’s Gc and F c), but not on the stochastic structure
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Overloaded Equilibrium

in service

in queue

Fc(t)
ρ

Gc(u)

ρ

w time  t 0w + u

1

Figure 1: The steady-state distribution of fluid content in the G/GI/s + GI fluid model with
individual service rate 1, traffic intensity ρ > 1, service-time distribution G and abandon-time
distribution F . The figure plots the density of fluid content that has been in the system for
time t. Time increases to the left.
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of the arrival process (beyond its rate). In Figure 1, time appears on the horizontal axis,

increasing toward the left, while queue content (scaled number of customers) appears on the

vertical axis. Specifically, the value at time t is the density of the fluid that has been in the

system for exactly length t, i.e., the remaining portion of the fluid that arrived t time units in

the past. Fluid arrives at rate ρ and a proportion F (t) of that fluid abandons by time t. Fluid

that does not abandon waits in queue until time w, after which it is in service. Entering fluid

exits before time w by abandonment, and after time w by service completion. In particular,

the general fluid approximation has, first, all customers who do not abandon waiting exactly

time w and, second, a proportion F (t) of arrivals abandoning before time t after arrival, for

0 < t < w. Moreover, in equilibrium for the fluid approximation, all servers are busy and fluid

abandons at an overall rate ρ− 1.

The density of fluid content that has been waiting in queue for a length t is

q(t) = ρF c(t), 0 ≤ t ≤ w, and q(t) = 0, t > w, (5.2)

where the constant waiting time before starting service, w, is the solution to the equation

F (w) =
ρ− 1

ρ
. (5.3)

The total fluid content waiting in queue is

qF =
∫ w

0
q(t) dt = ρ

∫ w

0
F c(t) dt . (5.4)

Since the servers are all busy in the fluid model, we can apply (5.4) to obtain the desired

fluid approximation in (5.1).

Remark 5.1. The M/M/s/r+M Special Case. We now observe that the fluid approximation

in (5.1), (5.3) and (5.4) here is consistent with both Theorem 2.1 in Whitt (2005a) and Theorem

2.1 here for the M/M/s/r + M special case, continuing Remark 4.1. If the abandon-time cdf

F is exponential with mean 1/α, then F c(x) = e−αx and equation (5.3) becomes 1− e−αw =

(ρ− 1)/ρ. Then equation (5.4) becomes

qF = ρ

∫ w

0
e−αt dt = ρ

(1− e−αw)
α

=
ρ− 1

α
, (5.5)

just as in (4.10).

However, more generally, we see that qF in (5.4) need not coincide with x̂−1 obtained as the

solution to (4.8). In support of the M/M/s/r + M(n) approximation for the M/GI/s/r + GI
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model in Whitt (2005a), though, we see that the service-time cdf G beyond its mean has

played no role in the fluid approximation for the G/GI/s/r + GI model. The service-time cdf

G only plays a role in describing how long fluid in service has been in service. Let b(t) denote

the density of fluid that has been in service for a length of time t. Equilibrium for the fluid

approximation has b(t) = Gc(t), t ≥ 0.

6. A Comparison of the Two Fluid Approximations

In this final section we do further analysis to compare (i) the fluid approximation for

the M/M/s/r + M(n) approximation to the M/GI/s/r + GI model and (ii) the direct fluid

approximation for the M/GI/s/r+GI model. To have similar notation, let qM (M for Markov)

denote the fluid approximation for the scaled queue content (waiting in queue before starting

service) in the M/M/s/r+M(n) approximation to the M/GI/s/r+GI model; i.e., qM = x̂−1

for x̂ the solution to (4.8). Our goal now is to compare qM to qF in (5.4) above. Let other

quantities associated with the two models be designated by superscripts M and F .

We have already observed that in general qM does not coincide with qF . In any con-

templated scenario, we can calculate qM and qF to judge how close the M/M/s/r + M(n)

approximation is likely to be. To establish more general connections, we first change notation,

writing ε ≡ ρ− 1, so that we can focus on the comparison for ρ close to 1, which corresponds

to small ε. We then make an additional simplifying assumption for the Markovian model: We

assume for the M/M/s/r + M model that all abandonments are from the front of the queue

(by the customers who have been there the longest). Up to now, it has not mattered which

customers abandon in the Markovian models. With that assumption, the waiting time of all

customers, served or not, is the same, and by Little’s law (L = λW ) must be wM = qM/ρ.

Thus Combining this with (4.8), we obtain the equation

F (wM ) = 1− e−(ρ−1)/ρ = 1− e−ε/(1+ε) . (6.1)

Equation (6.1) is convenient, because it is easy to compare to equation (5.3), which with the

change of notation becomes

F (wF ) =
ε

1 + ε
. (6.2)

First, from equations (6.1) and (6.2), we easily see that in all cases wF 6= wM , even in the

M/M/s/r +M model, where qF = qM , as shown in Remark 5.1. (That is not surprising, since

we are treating the abandonments differently.) However, if we expand the exponential in (6.1),
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then we obtain

1− e−ε/(1+ε) =
ε

1 + ε
− ε2

2(1 + ε)2
+

ε3

6(1 + ε)3
+ O(ε4) as ε ↓ 0 . (6.3)

To relate the quantities wF and wM , assume that the abandon-time cdf F has a positive

density f . Then the cdf F is continuous and strictly increasing, so that it has an inverse, say

g ≡ F−1. Then wF = g(1/(1+ ε)) and wM = g(1−e−ε/(1+ε)). Using a Taylor series expansion,

we get

wM ≈ wF − g′(ε/(1 + ε))
ε2

2(1 + ε)2
. (6.4)

From formulas (6.1)–(6.2), we also have the inequalities wF ≤ qF ≤ wF (1 + ε), while

wF (1 + ε)− g′(ε/(1 + ε))
ε2

2(1 + ε)
≈ qM = wM (1 + ε) ≤ wF (1 + ε) . (6.5)

We then have the bounds

|qF − wF (1 + ε)| ≤ εwF

|qM − wF (1 + ε)| ≤ g′(ε/(1 + ε))
ε2

2(1 + ε)2

|qM − qF | ≤ max {εwF , g′(ε/(1 + ε))
ε2

2(1 + ε)2
} . (6.6)

Example 6.1. The case of a Uniform Abandon-Time Distribution. Suppose that the abandon-

time distribution is uniformly distributed on the interval [0, 1], so that the abandon-time cdf

is F (x) = x, 0 ≤ x ≤ 1. From (5.3) and (5.4), we see that in this case qF = ε− ε2

2(1+ε) , while,

from (4.8),

qM = (1 + ε)(1− e−ε/(1+ε)) = ε− ε2

2(1 + ε)
+

ε3

6(1 + ε)2
+ O(ε4) , (6.7)

so that

qM − qF =
ε3

6(1 + ε)2
+ O(ε4) . (6.8)

For example, if ε = 0.1 (ρ = 1.1), then qF = 0.09545, while qM = 0.09559 and qM − qF ≈
0.0001377. There is a difference of only about 0.1%. That is much closer than predicted by the

bounds in (6.6), because wF (1+ ε) = ε = 0.1, εwF = ε2/(1+ ε) = 0.0091, g′(x) = 1, 0 < x < 1,

and g′(ε/(1 + ε)) ε2

2(1+ε)2
= ε2

2(1+ε)2
= 0.01

2.42 = 0.0041.
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