Chapter 6

The Space D

6.1. Introduction

This chapter contains proofs omitted from Chapter 12 of the book, with
the same title. For convenience, the theorems are restated here. The section
and theorem numbers parallel Chapter 12 of the book, so the proofs should
be easy to find.

Here is how the present chapter is organized: We start in Section 6.2 by
discussing regularity properties of the function space D. A key property,
which we frequently use, is the fact that any function in D can be approx-
imated uniformly closely by piecewise-constant functions with only finitely
many discontinuities.

In Section 6.3 we introduce the strong and weak versions of the M,
topology on D([0,T],R¥), referred to as SM; and W M;, and establish basic
properties. We also discuss the relation among the non-uniform Skorohod
topologies on D. In Section 6.4 we discuss local uniform convergence at
continuity points and relate it to oscillation functions used to characterize
different forms of convergence.

In Section 6.5 we provide several different alternative characterizations
of SM; and W M; convergence. Some involve parametric representations of
the completed graphs and others involve oscillation functions. It is signifi-
cant that there are forms of the oscillation-function characterizations that
involve considering one function argument ¢ at a time. Consequently, the
examples in Figure 11.2 of the book tend to be more than illustrative: The
topologies are characterized by the local behavior in the neighborhood of
single discontinuities.

In Section 6.6 we discuss conditions that allow us to strengthen the
mode of convergence from W M; to SM;. The key condition is to have the

113



114 CHAPTER 6. THE SPACE D

coordinate limit functions have no common discontinuities. In Section 6.7
we study how SM; convergence in D([0,T],R¥) can be characterized by
associated limits of mappings.

In Section 6.8 we exhibit a complete metric topologically equivalent to
the incomplete metric inducing the SM; topology introduced earlier. As
with the J; metric dj, in equation (3.2) of Section 3.3 in the book, the
natural M; metric is incomplete, but there exists a topologically equivalent
complete metric, so that D with the SM;j topology is Polish (metrizable as
a complete separable metric space).

In Section 6.9 we discuss extensions of the SM; and W M; topologies
on D([0,T], RK) to corresponding spaces of functions with non-compact do-
mains. The principal example of such a non-compact domain is the interval
[0,00), but (0,00) and (—o0,00) also arise.

In Section 6.10 we introduce the strong and weak versions of the M
topology, denoted by SMy and W Ms. In Section 6.11 we provide alternative
characterizations of these topologies and discuss additional properties.

Finally, in Section 6.12 we discuss characterizations of compact subsets
of D using oscillation functions. These characterizations are useful because
they lead to characterizations of tightness for sequences of probability mea-
sures on D, which is a principal way to establish weak convergence of the
probability measures; see Section 11.6 of the book.

6.2. Regularity Properties of D

Recall that D = D* = D([0,T],R¥) is the set of all R¥-valued functions
z = (z',...,z%) on [0, 7] that are right continuous at all ¢ € [0,T") and have
left limits at all ¢ € (0,7T:

We use superscripts to designate coordinate functions, so that subscripts
can index different functions in D. For example, z2 denotes the second
coordinate function in D([0,T],R!) of z3 = (x3,...,z%) in D([0,T],R¥),
where z3 is the third element of the sequence {z, : n > 1}. Let C be the
subset of continuous functions in D.

Let || - || be the maximum (or /o) norm on R¥ and the uniform norm on
D; ie., for each b= (b',...,b*) € RF, let

_ i
bl = mas, | (2.

and, for each z = (z',...,z*) € D([0,T],R¥), let

|zl = sup [lz(t)]| = sup max |2 (¢)] . (2.2)
0<t<T o<t<T 1<i<k
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The maximum norm on R¥ in (2.1) is topologically equivalent to the I, norm

k 1/p
18]l = (Z(bi)p> :

i=1

For p = 2, the I, norm is the Euclidean (or l3) norm. For p = 1, the [,
norm is the sum ( or /1) norm. The uniform norm on D induces the uniform
metric on D.

We first discuss regularity properties of D due to the existence of limits.
Let Disc(x) be the set of discontinuities of z, i.e.,

Disc(z) ={t € (0,T]: z(t—) # z(t)} (2.3)
and let Disc(z,€) be the set of discontinuities of magnitude at least e, i.e.,
Disc(z,e) = {t € (0,T): ||z(t—) — z(t)]| > €} . (2.4)

The following is a key regularity property of D.

Theorem 6.2.1. (the number of discontinuities of a given size) For each
z € D and € > 0, Disc(z,€) is a finite subset of [0,T].

Proof. We will show that Disc(x,€) being infinite contradicts the exis-
tence of limits from the left and right. If Disc(z, €) were infinite, then there
would exist ¢ € [0,7] and a sequence {t,, : n > 1} with ¢, € Disc(z, ¢) for all
nand t, | tort, 1 tasn — oo. Suppose that t,, | ; the other case is treated
in the same way. Since t,, € Disc(z,€), we must have ||z(t,—) — z(t,)| > €
for all n. Hence, there must exist another sequence {t!, : n > 1} such that
tn > ty, > typ1 >ty > t for all n and ||z(t,) — z(t;,)|| > €/2 for all n.
However, that contradicts the existence of limits from the right at ¢. =

Corollary 6.2.1. (the number of discontinuities) For each © € D, Disc(x)
is either finite or countably infinite.

Proof. Note that
oo
Disc(z) = U Disc(z,n™ 1) . =
n=1

We say that a function x in D is piecewise-constant if there are finitely
many time points #; such that 0 =ty <t; <+  <tp—1 <t =T and z is
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constant on the intervals [t;—1,%;), 1 <i <m — 1, and [t;;,—1,T]- Let D, be
the subset of piecewise-constant functions in D. Let v(z; A) be the modulus
of continuity of the function z over the set A, defined by

v(z; A) = . StugA{llw(tl) — z(ta2)|} (2.5)

for A C [0,T]. The following is a second important regularity property of
D.

Theorem 6.2.2. (approximation by piecewise-constant functions) For each
z € D and € > 0, there exists . € D, such that |z — z.|| < e.

Proof. We show how to construct z.. Given z and ¢, construct the subset
Disc(z,€), which is finite by Theorem 6.2.1. Due to the existence of limits,
for each t € Disc(z,e) we can find t; = t1(¢) and to = to(t) such that
b1 <t <ty v(z,[t1,t)) <e€ v(z,[t,t2]) <€

Disc(z,e) N [t1,t) = ¢ and Disc(z,e) N (t,t2] = ¢.

For each ¢t € Disc(z,¢€), let these points ¢, ¢1(¢) and t3(¢) all belong to
Disc(z.); let zo(t') = z(t—) for t' € (t1,t) and let z.(t') = z(t) for t € [t,t2).
Now let

=0,71- U (t(),00).

t€ Disc(z,e)

The set A is a finite union of closed intervals. Consider any one of these
intervals, say [a,b]. If v(z;[a,b]) < €, then it suffices to let z.(t) = z(t) for
any t € [a, b], and not add any points to Disc(z.). Suppose that v(z; [a,b]) >
e. For each t € [a,b], since t € Disc(z,€)¢, it is possible to find an interval
(t1(t),t2(2)), [a, ta(t)) or (t1(t), b] containing ¢ such that v(z, (t1(¢), t2(t)) < e.
(The intervals [a, t) and (¢, b] are open in the relative topology on [a, b]. Thus
the collection of all these subintervals form an open cover of [a,b].) Since
[a, b] is compact, there is a finite collection of these intervals covering [a, b];
i.e., there are points

a<ti<ti <<t <tm<b

for m > 1 such that [a,t1), (¢],12), (t5,t3),---, (th,_1,tm), (ti,,b] are in the
finite collection. Necessarily, t; < ¢; for all i. It suffices to choose t € (/,1;)
for each i, 1 < i < m, and let t]! € Disc(z.). We can let z.(t]) = z(t!) for

each such t/. We have thus constructed z. € D, with ||z — z.|| <e. =
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6.3. Strong and Weak M; Topologies

6.3.1. Definitions

We start by making some definitions, repeating what is in the book. The
strong and weak topologies will be based on different notions of a segment
in R¥. For a = (a',...,a*), b= (b',...,b%) € R*, let [a,b] be the standard
segment, i.e.,

[a,b] ={aa+ (1 —a)b: 0 < a<1} (3.1)

and let [[a, b]] be the product segment, i.e.,

[[a, 0] =

I~

[a%,b]] = [al,b] x - - x [a®,bF] , (3.2)

1

where the one-dimensional segment [a?, b’] coincides with the closed interval
[a* A b, at V b, with ¢ A d = min{c,d} and ¢V d = max{c,d} for c,d € R.
Note that [a,b] and [[a,b]] are both subsets of R¥. If a = b, then [a,b] =
[[a,b]] = {a} = {b}; if a* # b’ for one and only one i, then [a,b] = [[a, b]].
If a # b, then [a,b] is always a one-dimensional line in R¥, while [[a,b]] is
a j-dimensional subset, where j is the number of coordinates ¢ for which
a* # b'. Always, [a,b] C [[a, b]]-

We now define completed graphs of the functions: For z € D, let the
(standard) thin graph of x be

Ty ={(z,t) e R¥ x [0,T]: 2z € [z(t—), ()]}, (3.3)
where 2(0—) = z(0) and let the thick graph of = be

Gy = {(zt) €R* x[0,7]: 2 € [lo(t-), (O)]}
{(z,) € R¥ x [0,T] : 2 € [#°(t—), 2" (t)] for each i} (3.4)

for 1 < i < k. Since [a,b] C [[a,b]] for all a,b € R¥, T, C G, for each .

We now define order relations on the graphs I'y; and G,. We say that
(Zlatl) < (Zz,tg) if either (1) t1 < 1o or (ii) t1 = t9 and |.’13i(t1—) — Zﬂ <
|z*(t1—) — 24| for all . The relation < induces a total order on I';, and a
partial order on G,.

It is also convenient to look at the ranges of the functions. Let the thin
range of = be the projection of I'; onto R¥ | i.e.,

p(Ty) ={z € RF : (z,t) €T, for some ¢t € [0,T]} (3.5)
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and let the thick range of z be the projection of G, onto R¥, i.e.,
p(Gy) ={z € R* : (2,t) € G, forsome te€[0,T]}. (3.6)

Note that (z,t) € I'y (G3) for some ¢ if and only if z € p(I'y) (p(Gz)). Thus
a pair (z,t) cannot be in a graph of z if z is not in the corresponding range.

We now define strong (standard) and weak parametric representations
based on these two kinds of graphs. A strong parametric representation of x
is a continuous nondecreasing function (u,r) mapping [0, 1] onto I'y. A weak
parametric representation of  is a continuous nondecreasing function (u,r)
mapping [0,1] into G such that #(0) =0, 7(1) = T and u(l) = z(T). (For
the parametric representation, “nondecreasing” is with respect to the usual
order on the domain [0, 1] and the order on the graphs defined above.) Here it
is understood that u = (u!,...,u*) € C(]0,1],R¥) is the spatial part of the
parametric representation, while r € C([0,1],[0,7]) is the time (domain)
part. Let II;(z) and IL,(xz) be the sets of strong and weak parametric
representations of z, respectively. For real-valued functions z, let II(z) =
II,(z) = I, (x). Note that (u,r) € I, (x) if and only if (u’,r) € II(z*) for
1<i<k.

We use the parametric representations to characterize the strong and
weak M topologies. As in (2.1) and (2.2), let || - || denote the supremum
norms in R¥ and D. We use the definition ||- || in (2.2) also for the R¥-valued
functions u and 7 on [0, 1].

Now, for any 1,22 € D, let

ds(z1,29) = inf uy —us|| Vllri —r 3.7
o) = o L=l Vs = ) (3.7
G=1,2
and
do(wi,20) = - dnf Al =l Vi = oI} (3-8)
i=1,2

Note that ||u; —usg||V||r1 —72|| can also be written as ||(u1,7r1) — (u2, 72)||, due
to definitions (2.1) and (2.2). Of course, when the range is R, d; = d,, = dpy,
for dps, defined in equation (3.4) in Section 3.3 of the book.

We say that z,, — = in D for a sequence or net {z, } in the SM; (WM;)
topology if ds(zn,z) = 0 (dw(xn,xz) — 0) as n — oco. We start with the
following basic result.

6.3.2. Metric Properties

Theorem 6.3.1. (metric inducing SM;) ds is a metric on D.
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Proof. Only the triangle inequality is difficult. By Lemma 6.3.2 below,
for any € > 0, a common parametric representation (us,r3) € IIs(x3) can be
used to obtain

llur —us|| V ||r1 — r3|| < ds(z1,23) + €

and

|lug — us|| V ||re — r3|| < ds(z1,z3) +€

for some (uy,7r1) € (1) and (ug,r2) € Ils(z2). Hence
ds(z1,z2) < ||lur —ue|| V||r1 — r2|| < ds(z1,23) + ds(x3,22) + 2€ .

Since € was arbitrary, the proof is complete. =

To prove Theorem 6.3.1, we use finite approximations to the graphs I';.
We first define an order-consistent distance between a graph and a finite
subset. We use the notion of a finite ordered subset.

Definition 6.3.1. (order-consistent distance) For x € D, let A be a finite
ordered subset of the ordered graph (U'z, <), i.e., for some m > 1, A contains
m + 1 points (2;,t;) from 'y such that

(2(0),0) = (20,%0) < (z1,t1) <+ < (Zm,tm) = (2(T),T) . (3.9)

The order-consistent distance between A and I'y is

~

d(A,T') = sup{||(z, 1) — (zi,2)[| V (2, 8) = (zig1, tara)l} (3.10)

where the supremum is over all (z;,t;) € A, 1 <i<m—1, and all (z,t) € T
such that

(zi,ts) < (2,1) < (Zig1,tit1)

using the order on the graph. =

We now show that finite ordered subsets A can be chosen to make

~

d(A,T,) arbitrarily small.

Lemma 6.3.1. (finite approximations to graphs) For anyz € D and € >0,
there exists a finite ordered subset A of T'y such that d(A,T';) < € for d in
(3.10).
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Proof. First put finitely many points (z(¢;),¢;) in A to meet the require-
ment on the domain [0,77], i.e., to have 0 = t; <t < -+ < t;, = T with
tiv1 —t; < e. We add additional points to account for the spatial com-
ponent. For each ¢t € Disc(z,¢€), choose the points (z(t—),t), (z(t),t) and
finitely many points on the segment [(z(t—),t), (z(t),t)] such that the dis-
tance between successive points is less than e. Since z has left and right
limits everywhere, there are open neighborhoods (¢1,¢) and (¢,%2) of each
t € Disc(z,€) such that

sup{||z(t') — z(t")]| : 1 <t' <t <t} <e

and
sup{||lz(t') —z(")|| : t <t <t" <t} <e€.

We thus can choose one more point, if needed, in each of the sets I'; N [R’C X
(t1,t)] and T N [R* x (t,12)] to achieve the desired property over each open
interval (¢1,t2) in [0,7]. The complement of the union of these finitely may
open intervals in [0,7] is a compact subset of [0,7]. Knowing that (i) all
remaining discontinuities are of magnitude less than € and (ii) limits exist
everywhere from the left and right, we can conclude that there is a closed
interval of positive length about each point in the compact set, where z
oscillates by less than ¢, i.e., sup{||z(t') — z(t")|| < €, where ¢, " are points
in the interval. However, by the compactness, only finitely many of these
closed intervals cover the compact set. We add points (z(t),t) to A to ensure
that there is at least one point (z,t) for which ¢ is in one of these closed
intervals. By this construction, A is finite and d(4,Ty) <e. =

To complete the proof of Theorem 6.3.1, we need the following result,
which we prove by applying Lemma 6.3.1.

Lemma 6.3.2. (flexibility in choice of parametric representations) For any
z1,29 € D, (u1,71) € ls(x1) and € > 0, it is possible to find (ug,72) €
IIs(z2) such that

llur — uo|| V ||r1 — r2|| < dgs(z1,22) + € -

Proof. For z1,z2 € D and e given, choose (u},r]) € Il;(z1) and (uh, ) €
II4(xz2) such that

luf —us|| v ||Ir] — ol < ds(z1,22) +€/4 . (3.11)

Next apply Lemma 6.3.1 to find a finite ordered subsets A; C I'y, such that

~

d(A1,T;,) < €/4. Next find a finite subset S of [0, 1] of the same cardinality
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as A; such that (u)(s),r](s)) € Ay for each s € S]. Let S; be another finite
subset of [0, 1] of the same cardinality as A; such that (ui(s),r1(s)) € A; for
each s € S;. Let A be a homeomorphism of [0, 1] such that A maps S; onto
S1. Let (ug,7m2) = (uh oA, rh0oX), where o is the composition map. Trivially,
by (3.11),

luf o X —uh o X|| V[Jri oA —rh o \|| < ds(z1,72) +€/4 .
Hence, it suffices to show that
lug —u) o A|| V [jr1 — 7} o A|| < 3¢/4 . (3.12)

First there is equality u1(s) = u{(A(s)) by construction at each s € Si.
However, since d(A1,T';) < €/4, (3.12) holds: For each s € [0, 1], there is
s; € S7 such that s; < s < s;41 and

lus(s) —uy A < flus(s) = un(si)]l + fua(si) — ui (A(sq)
Hluy (A(si)) — uh (A(s))]| < €/2. m

We will show that the metric ds induces the standard M; topology de-
fined by Skorohod (1956); see Theorem 6.5.1. Since Il (z) C II,(z) for all z,
we have dy(z1,x2) < ds(x1,x2) for all z1,x9, so that the WM, topology is
indeed weaker than the SM; topology. However, we show below in Example
?? that dy, in (3.8) is not a metric when k& > 1.

For z1,z9 € D([0,T],R¥), let d, be a metric inducing the product topol-
ogy, defined by o

dp(z1,12) = [max d(z},z%) (3.13)

for z; = (mjl,,a:f) and j = 1,2. (Note that dy = d,, = d, when the
functions are real valued, in which case we use the notation d.) It is an
easy consequence of (3.8), (3.13) and the second representation in (3.4) that
the WM, topology is stronger than the product topology, i.e., d,(z1,z2) <
dy(z1,22) for all z1,z9 € D. In Section 6.5 we will show that actually the
W M, and product topologies coincide.

Example 12.3.1 of the book shows that SM; is strictly stronger than
W M;.

We now relate the metrics dp;, = ds and dj, for dj, in equation 3.2 of
Section 3.3 in the book.

Theorem 6.3.2. (comparison of J; and M; metrics) For each 1,22 € D,

ds(z1,22) < dj (x1,22) .
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Proof. For any z1,z9 € D and A € A, we show how to define parametric
representations (uj,r;) in IIi(z;) for j = 1,2 such that

Jur —ug|| Vlry —rof| = [lzr 0o A=z VI[A —ef . (3.14)
If, for any € > 0, we first choose A € A so that
|10 A —zo|| VI|A —e]| < dj (z1,22) + €,
the associated parametric representation yield
ds(z1,m2) < ||ur —ue|| V [|r1 — r2|| < dj (1, 22) + € .
Since € is arbitrary, that will complete the proof. Suppose that
tn € Disc(z1,x2) = Disc(z1) U Disc(zz), n>1,

where t,, is ordered (indexed) first by the norm of the jump and then the
location, with values closer to 0 occurring first. Associate with each time
point t, a closed subinterval [an,b,] in (0,1) such that the subintervals are
ordered, i.e., if t; < t; < t; are three points in Disc(z1,z2), then a; <
b; < aj < bj < ap < bg. Then let ro(s) = t, for ap, < s < by. Ift ¢
Disc(zy,x2) but t,, |t as ngy — oo for t,, € Disc(z1,z2), then let ro(s) =
limy,, ;00 r2(ap, ). Similarly, if ¢ ¢ Disc(zi,22) but t,, 1t as ny — oo
for t,, € Disc(z1,2), then let ro(s) = limy,, o0 2(by, ). Finally, let ro(s)
be defined by linear interpolation in all remaining gaps. This makes 7o
continuous and nondecreasing. Having defined 79, let r1 = Ao 19, ui(s) =
(z1 0o7r1)(s) and ua(s) = (xz2 or2)(s) for all s, except s € (ap,b,) for some
n. Within each subinterval (ay,b,), let u; and uy be defined by linear
interpolation from their values at the endpoints a,, and b,,. This construction
makes (uj,rj) € Ils(z;) for j = 1,2 and yields (3.14), thus completing the
proof. =

6.3.3. Properties of Parametric Representations

We conclude this section by further discussing strong parametric rep-
resentations. For z € D, t € Disc(z) and (u,r) € II4(x), there exists a

unique pair of points s; = s;(¢,z) and s, = s,(t,z) such that s; < s, and
r Y ({t}) = [s1,84], i-e-,
(i) r(s) < tfor s < s (3.15)
(ii) r(s) =t for 5y < s < s,
(iii) r(s) >t for s > s, .
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We will exploit the fact that a parametric representation (u,r) in I (z)
is jump consistent: for each t € Disc(xz) and pair s; = si(t,z) < sp =
sr(t,z) such that (3.15) holds, there is a continuous nondecreasing function
B+ mapping [0, 1] onto [0, 1] such that

u(s) = By ( ST_ Z) ulsy) + [1 _ 3, (SST—_sSz)] u(s) for s <s<sn.

(3.16)
Condition (3.16) means that u is defined within jumps by interpolation from
the definition at the endpoints s; and s,, consistently over all coordinates.
In particular, suppose that ¢ € Disc(z?). (Since t € Disc(z), we must have
t € Disc(z') for some coordinate i.) Suppose that z*(t—) < z*(t). Then we

can let ; ;
u'(s) —u'(s
ﬁt(s) — ( ) ( l) ]
ut(sy) — u'(s1)
We see that (3.16) and (3.17) are consistent in that

u'(s) = B (SS __Ssl> "(sr) + [1—@:(8_8 )] (3.18)
r l
for B, in (3.17). For another coordinate j, (3. 16) and (3.17) imply that
() —uie) i(s)
UJ(S) - (ui(sr) - ui(sl)> UJ(ST) * (uz 37" - ’UZ Sl > UJ 3 19)

It is possible that ¢ & Disc(z’), in which case u/(s) = u/(s;) = u/(s,) for all
s, 81 < 8 < 8.

(3.17)

We can further characterize the behavior of a strong parametric represen-
tation at a discontinuity point. For z € D, t € Disc(z) and (u,r) € IIs(z),
there exists a unique set of four points s; = s;(t,z) < 57 = sj(t,z) < s, =
sh(t,z) < sp = sp(t,z) such that (3.15) holds and

(1) uls) = uls) for s < s < s,
(ii) for each i, either u’(s;) < u’(s) < u'(s,),
or u'(s;) > u'(s) > u'(s,) for s) < s < s,
(iii) u(s) = u(s,) for s. < s < s, . (3.20)

Let Dy be the subset of D containing functions all of whose jumps occur

in only one coordinate, i.e., the set of x such that, for each ¢t € Disc(z) there

exists one and only one i = i(t) such that ¢ € Disc(z"). (The coordinate 4
may depend on t.)

Lemma 6.3.3. (strong and weak parametric representations coincide on
Dy) For each x € Dy, Tli(x) = ().
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Proof. Since Il (z) C II,(x), we need to show that (u,r) € II,(z) is in
II,(z) for z in D). Pick any ¢ € Disc(z) and let ¢ be the coordinate of
with a jump at £. We can then define the §; needed for (3.16) using (3.17).
Since u/(s) = u/(s;) = u’(s,) for all j with j # 4, (3.19) and (3.16) are then
satisfied. =

Corollary. For each z € D([0,T],R!), s(x) = Iy(z).

We now show that parametric representations are preserved under linear
functions of the coordinates when z € II;(z). That is not true in II,(z).

Lemma 6.3.4. (linear functions of parametric representations) If (u,r) €
I, (), then (qu,r) € Hy(nz) for any n € RE.

Proof. By the Corollary to Lemma 6.3.3, II;(nz) = IL,(nz). Hence, it
suffices to show that (nu,r) € II,(nz). It is clear that (nu,r) is continuous
and nondecreasing. For t € Disc(nz), necessarily ¢t € Disc(z). (We could
have t € Disc(z) but t ¢ Disc(nz), but that does not concern us.) By
(3.16), when r(s) = t,

mu(s) =6 (222 ) muton) + [1 = 6 (222 )

Sp — 81

which completes the proof. =

6.4. Local Uniform Convergence at Continuity Points

In this section we provide alternative characterizations of local uniform
convergence at continuity points of a limit function. The non-uniform Sko-
rohod topologies on D all imply local uniform convergence at continuity
points of a limit function. They differ by their behavior at discontinuity
points.

We start by defining two basic uniform-distance functions. For x1,z9 €
D,t€[0,T] and ¢ > 0, let

u(z1, w2,1,6) = sup {llz1(t1) — z2 ()1} (4.1)
OV (t—08)<t1 <(t+0)AT

v(z1,22,t,0) = sup {l|lz1(t1) — z2(t2)||} » (4.2)
OV(t—08)<t1,t2<(t+0)AT
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We also define an oscillation function. For z € D, t € [0,T] and § > 0, let

o(z,t,0) = sup {llz(t1) —x(t2)]]} - (4.3)
OV(t—8)<t1<ta <(t+0)AT

We next define oscillation functions that we will use with the M; topolo-
gies. They use the distance ||z — A|| between a point z and a subset A in
R defined in equation 5.3 in Section 11.5 of the book. The SM; and W M;
topologies use the standard and product segments in (3.1) and (3.2). For
each z € D, t € [0,T] and ¢ > 0, let

ws(x,1,6) = sup {llz(t2) — [z(t1), z(E3)]| (4.4)
0V (t—0)<t1 <ta<t3<(t+0)AT

and

wy (2,1, 6) = sup {llz(t2) — [[=(t1), =)l (4.5)
0V(t—(5)§t1 <to <t3§(t+5)/\T

We now turn to the M, topology, which we will be studying in Sections
6.10 and 6.11. We define two uniform-distance functions. We use w as
opposed to w to denote an My uniform-distance function. Just as with the
M topologies, the SMy and W My topologies use the standard and product
segments in (3.1) and (3.2). For z1, z9 € D, let

Ws (w1, T, 1, 0) = sup {lz1(t1) = [22(t=), z2 (D]} (4.6)
OV(t—0)<t1 <(t+0)AT

Wy (21, T2, 1,0) = sup {llzr (1) = [[z2(t=), @]}  (4.7)
OV (t—8)<t1 <(t+6)AT

It is easy to establish the following relations among the uniform-distance
and oscillation functions.

Lemma 6.4.1. (inequalities for uniform-distance and oscillation functions)
For all x,z, € D, t € [0,T] and § > 0,

’U/(.’L'n,l‘,t, (5) S ’U(.’L'n,di,t, 5) S u(:cn,x,t,é) + ’l_J(J,‘,t, (5) ’
ww(acn,t, 5) S ’ws(l'n,t, 5) S 5($nat7 6) S 2U(l‘n,l‘,t,5) + ’lj(.’L‘,t,(S) ’

ww(xn,x,t, 6) < ’lI)s(lL‘n,:L‘,t,(S) < v(xn,x,t,é) < 2ww($na$ata 5) + @(x,t,é) .
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Since the Mj-oscillation functions wg(x,,t,d) and wy(z,,t,6) do not
contain the limit z, their convergence to 0 as n — oo and then § | 0
does not directly imply local uniform convergence at a continuity point of a
prospective limit function z.

We relate convergence of ws(z)n,t,d) and wey(y,t,0) to 0 as n — oo
and § | 0 to local uniform convergence by requiring pointwise convergence
in a neighborhood of ¢; see (vi) in Theorem 6.4.1 below.

Theorem 6.4.1. (characterizations of local uniform convergence at conti-
nuity points) If t € Disc(z), then the following are equivalent:

(2) lim lim u(z,,z,t,6) =0, (4.8)
0 psoo

(11) lim lim v(z,,z,t,6) =0, (4.9)
N0 pooo

(i)  lim lim ws(zn,,t,6) =0, (4.10)
0 nooo

(iv)  lim lim Wy(z,,z,t,6) =0, (4.11)
0 psoo

(v) zn(t1) — z(t1) for all t1 in a dense subset of a neighborhood of t
(including 0 if t =0 or T ift =T) and

lim lim wg(zy,t,8) =0,
0 nooo

(vi) zn(t1) — xz(t1) for all t1 in a dense subset of a neighborhood of t
(including 0 if t =0 or T if t =T) and

lim lim wy(z,,t,6) =0 . (4.12)

0 nsoo

Proof. By Lemma 6.4.1, we have the implications (i) <> (ii) <> (iii) <> (iv)
and (ii) — (v) — (vi). Hence it suffices to show that (vi) — (i), which we
now do. For z,t & Disc(z) and € > 0 given, choose § > 0 so that o(z, t,d) <
€, which is possible since ¢t € Disc(x). Also let ¢ be sufficiently small so that
zn(t)) — z(t)) as n — oo for all ¢} in a dense subset of [0V (t—4), (t+6) AT].
Note that we can treat 0 and T directly. For ¢; € (0V(t—3d), TA(t+6)) given,
choose t1, 1, so that 0V (t—4) <t} < t1 <ty < (t+0)AT and z,(t;) — z(t})
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as n — oo for j = 1,2. Then choose ng so that ||z, (') —z(t")|| < € for t" = 0,
T, t} and t,, and wy,(zy,t,d) < € for n > ng. Then, for n > ny,

[ (t1) — x(t)] l2n(t1) = 2 (BN + 20 (1) — 2@ + l2(t1) — 2 ()]
20 (t1) — 2 (81)]] + 2e
l2n(t1) = [[2n (1), 2a @) + 20 (1) — 2n ()] + 2¢

Wy (T, t,0) + ||~77n(t11) - $n(t,2)|| + 2e
ln (81) — 2(8)[| + 1= (81) — 2 (t5) ||
+ [Jz(ty) — za(ts) || + 3€ < 6e .

VAN VAN VAN VAR VAN

It remains to consider ¢t = 0 and ¢ = T'. The reasoning is the same for these
two cases, so we consider only ¢ = 0. For ¢ = 0, note that

[ (t1) —2(@)]| < ll2n(t1) =20 (0)][ +[|2n (0) =2 (0)][ +[|2(0) —2(®)]| . (4.13)

The third term in (4.13) can be made small using the right continuity of z at
0; the second term in (4.13) can be made small by the assumed convergence
at 0; the first term in (4.13) can be made small by (4.12). =

We now show that local uniform convergence at all points in a compact
interval implies uniform convergence over the compact interval.

Lemma 6.4.2. (local uniform convergence everywhere in a compact inter-
val) If (4.8) holds for all t € [a,b], then

lim lim sup {llzn(t) — ()|} =0 .
N0 oo 0V(a—08)<t<(b+8)AT

Proof. By (4.8), for all € > 0 and t € [a, ], there exists 6(¢) such that

lim u(zy,z,t,0(t) <e.

n—o0

For each t, there is thus uniform asymptotic closeness in the intervals (0 V
(t —46(t)), (t + 6(t)) AT). However, these intervals form an open cover of
the interval [a,b]. Since [a,b] is compact, there is a finite subcover. Hence,
there is a ¢’ > 0 such that

Tm sip {llzn(®) — 2@} <e.
n—oo 0V(a—0d'])<t<(b+0")AT

Since € was arbitrary, this implies the desired conclusion. =
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6.5. Alternative Characterizations of M; Convergence

We now give alternative characterizations of SM; and W M; conver-
gence.

6.5.1. SM; Convergence

We first establish alternative characterizations of SM; convergence or,
equivalently, ds-convergence. One characterization is a minor variant of the
original one involving an oscillation function established by Skorohod (1956).
Another one — (v) below — involves only the local behavior of the functions.
It helps us establish sufficient conditions to have dy((zn,yn), (z,y)) — 0
in D([0,T),R¥*!) when dy(z,,z) — 0 in D([0,T],R*) and ds(yn,y) — 0
in D([0,T],R'); see Section 6.6. For the SM; topology, we define another
oscillation function. For any x1,z9 € D and § > 0, let

ws(z,0) = sup ws(x,t,0) , (5.1)
0<t<T
for ws(z,t,0) in (4.4).
The following main result is proved in the book. It only remains to prove
the supporting lemmas, which we do here.

Theorem 6.5.1. (characterizations of SM; convergence) The following are
equivalent characterizations of convergence x, — x as n — oo in (D, SM):

(i) For any (u,r) € Ils(x), there ezxists (up,rn) € s(zy), n > 1, such
that
lup —ul| V| —7|| >0 as n—oo. (5.2)

(ii) There ezist (u,r) € Ils(z) and (up, ™) € s(zy) for n > 1 such that
(5.2) holds.

(#ii) ds(zp,z) — 0 as n — oo; i.e., for all € > 0 and all sufficiently large
n, there exist (u,r) € ly(z) and (upn,ry) € Ms(z,) such that

[t —ul| Vs —rll <e.
(iv) zn(t) = z(t) as n — oo for each t in a dense subset of [0,T] including
0 and T, and
lim lim wg(z,,d) =0 (5.3)

0 nooo

for ws(z,8) in (5.1) and wy(z,t,0) in (4.4).
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(v) z,(T) = z(T) as n — oo; for each t ¢ Disc(z),
%iim lim v(zy,,z,t,6) =0 (5.4)

0 n—oo

for v(z1,x9,t,0) in (4.2); and, for each t € Disc(x),
lim lim wg(zy,,t,6) =0 (5.5)

0 psoo

for ws(z,t,0) in (4.4).

(vi) For all € > 0, , there exist integers m and ni, a finite ordered subset
A of Ty of cardinality m as in (3.9) and, for all n > n;, finite or-
dered subsets A, of I';, of cardinality m such that, for all n > nq,
d(A,T,) <€, d(An,Ts,) <€ for d in (3.10) and d*(A, An) < €, where

d*(A, An) = max {||(zi, )= (zn,i tai) ||  (2i,%) € A, (Zni tni) € An}.
1<i<m
(5.6)

In preparation for the proof of Theorem 6.5.1, we establish some pre-
liminary results. We first show that SM; convergence implies local uniform
convergence at all continuity points.

Lemma 6.5.1. (local uniform convergence) If ds(zpn,z) — 0 as n — oo,
then (4.9) holds for each t € Disc(x).

Proof. For z, t € Disc(z)® and € > 0 given, choose § > 0 so that ||z(t) —
z(t)|| < € for |t — /| < 4. Then choose ng > 4, (up,r,) € Is(z,) and
(u,r) € II4(x) such that

|un —ul| Vrn =7l < (6 A€)/4
for all n > ng. Let s1, so, s3 be such that r(s1) =t — §/2, r(s2) =t and
r(s3) =t+6/2. Then r,(s1) <t < /4 and r,(s3) >t + 6/4 for all n > ny.

Hence, for all ¢’ € (t—3/4,t+8/4) and n > ng there exists sp, s1 < s, < 83,
such that (un(sn),n(sn)) = (zn(t'),t). Hence,

lzn(®) = 2@ = llun(sn) — u(s2)|l + [le(t) — =(t")]]
[un(sn) = ulsn)ll + lu(sn) —uls2)]| + e

<
< (0A€)/2+2<3e. =

We next relate the modulus wy applied to z and the modulus applied to
corresponding points on the graph I';. The following lemma is established
in the proof of Skorohod’s (1956) 2.4.1.
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Lemma 6.5.2. (extending the modulus from a function to its graph) If
(Zl,tl), (Zg,tg), (Z3,t3) €'y with 0V (t - (5) <t <ta <tz < (t + (5) AT,
then ||zo — [z1, z3]|| < ws(z, 9).

Proof. Suppose that ws(z,d) = e. It suffices to show: (i) that ||zo —
[21,23]|| < € when [|25 — [21,23]|| <€, [|25 — [21, 23]|| < € and 22 € [23,29]
and (ii) that |22 — [21, 23]|| < € when |22 — [21, z3][| <€, [l22 — [27, 23] < €
and z1 € [2],2]]. For (i), note that there exist 2z’, 2 € [21,23] such that
|z, — 2'|| < e and ||z] — 2"|| < e. Also there exists o, 0 < @ < 1 such that
2o = azh+ (1 —a)zl). Hence ||z3 — (@2’ + (1 — a)2")|| < ¢, which implies that

llz2 = [, 2"]Il < llz2 — [21, 28]l < €.

For (ii), note first that there exist 2’ € [}, 23] and 2" € [2, 23] such that
llz2 — 2/|| < € and ||z9 — 2"|| < e. Hence, for any z € [2/,2"], |22 — 2| < e.
The desired z lies on the intersection of [z1, 23] and [2/, 2”"]. That implies the
desired conclusion. =

Lemma 6.5.3. (asymptotic negligibility of the modulus) For any x € D,
ws(z,8) L 0 as d§ 0.

Proof. For any € > 0, choose z. € D, such that ||z — z.|| < €/2, which is
always possible by Theorem 6.2.2. Note that, for any ¢ > 0,

ws(z,0) < wy(ze,d) + 2|z — x| ,
so that
wy(z,0) < ws(x(,0) + €.

Let n be the minimum distance between successive discontinuities in z..
Since wg(z.,d) = 0 when § <7, ws(z,d) < e when d < 7. =

Proof of Theorem 6.5.1. Contained in the book. =

6.5.2. W M; Convergence

We now establish an analog of Theorem 6.5.1 for the W M; topology.
Several alternative characterizations of W M convergence will follow directly
from Theorem 6.5.1 because we will show that convergence z, — z as
n — oo in WM; is equivalent to d,(zy,z) — 0. To treat the W M; topology,
we define another oscillation function. Let

Wy (z,0) = sup wy(z,t,0) (5.7)
0<t<T
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for wy,(z,t,0) in (4.5). Recall that wy,(z,t, ) in (4.5) is the same as wy(z, t, §)
in (4.4) except it has the product segment [[z(¢1),z(t3)]] in (3.2) instead of
the standard segment [z(¢1), z(¢3)] in (3.1).

Paralleling Definition 6.3.1, let an ordered subset A of G of cardinality
m be such that (3.9) holds, but now with the order being the order on G;.
Paralleling (3.10), let the order-consistent distance between A and G, be

~

d(A, Gz) = sup{]|(2, 1) — (21 t2) || V [|(2, 1) = (zis1, tiga)I| = (2,8) € G} (5.8)

with the supremum being over all (z,t) € G, such that (z;,t;) < (z,t) <
(Zi+1,ti+1) for all i, 1 S ) S m — 1.

Theorem 6.5.2. (characterizations of WM; convergence) The following
are equivalent characterizations of T, = x asn — oo in (D, W M):

(i) dy(zn,z) = 0 as n — oo.
(it) dp(zp,z) = 0 as n = oo.

(15i) xn(t) — z(t) as n — oo for each t in a dense subset of [0,T] including
0 and T, and
lim lim wy(z,,d) =0 . (5.9)

00 nooo

() xp(T) — x(T) as n — oo; for each t ¢ Disc(z),

lim lim ov(zp,z,t,6) =0 (5.10)

0 nooo

for v(zp,x,t,0) in (4.2); and, for each t € Disc(x),

lim lim wy(z,,t,0) =0 (5.11)

0 pooo

for wy(zn,t,0) in (4.5).

(v) for all € > 0 and all n sufficiently large, there exist finite ordered
subsets A of Gy (in general depending on n) and A, of G, of common
cardinality such that d(A,Gy) < €, d(An,Gy,) < € and d*(A, Ay) < €
for d in (5.8) and d* in (5.6).
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Proof. (i)—(ii). Since d < dy, (i)—(ii) is immediate.

By Lemma 6.5.1, % (t) — z*(t) as n — oo for each ¢ € Disc(z?)¢, 1 <i < k.
That implies that z,(t) — z(t) as n — oo for each ¢ € Disc(z)®. From
Theorem 6.5.1, d,(zp,z) — 0 as n — oo also implies that

lim lim L,6) =
61&1 ni>Hc>lo wg(z;,,8) =0

for each i, 1 <4 <k, but that directly implies (5.9), because

20 (t2) = [l#n(t1), 2a (t3)]]] = max 25 (t2) = a7, (1), 2 (B3]l 5 (512)
so that .
Wy (T, §) = lszggckws(xfl,é) . (5.13)

(iii)<>(iv). The equivalence between (iii) and (iv) holds by the same reason-
ing used to establish the equivalence of (iv) and (v) in Theorem 6.5.1.
(iii)—(v). The proof of (iii)—(v) parallels the proof of (iv)—(vi) in Theorem
6.5.1, but requires some modifications. Paralleling the previous beginning,
for € > 0 given, find n < €/16 and ng such that wy(z,,n) < €/32 for n > nyg.
However, we do not next directly construct A € G;. Instead, just as with
the SM; topology, we first construct the finite set A of I'; as before with
the properties in the proof of Theorem 6.5.1. We denote this subset A’ to
distinguish it from the desired subset A of G;. As before, for all t; € SN A’,
let ny > ng be such that ||z, (t;) — z(t;)|| < €/32 for all 4, 1 <4 < k, and
all n > nyj. We now want to construct the ordered subset A4,, in G;,. For
t € S, the construction is as before: (zp i, tni) = (zn(ti),t;). Next suppose
that (?7) holds. Then (z,r,tn ) and (2n r4j+1,tn,r+j+1) have been defined
with respect to A’. We insert points into A4, from G,, appropriately spaced
in between the two points. By construction specified before (but using the
product segments),

||[[(37n (tr)str), ($n(tr+j+1)a tr+j+1)]]
—[[((tr), tr), (@(Er4jt1), trrjr)]]l] < €/32 (5.14)

and

(2 (Er)s tr)s (@ (Erjaa) s trgrn)]] = [[(2(E2), 8), (2(2), ]I < €/32 . (5.15)

To simplify the discussion, suppose that z'(t—) < z*(t) for all i. (This
is without loss of generality after redefining the order.) Consider an ar-
bitrary nondecreasing (in the order on G ,) continuous curve in G, from
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(Zns tngr) 10 (Znrtjt1s tnrtjrl)- Let (z;wH, t;L,H—l) be the first point on this
curve for which the i*" coordinate first reaches zﬁw + €/4 for some i. Given
(Zn,r+ks tnr+k)s 1€t (Znr4k+1, tn,rp+1) be the next point on the curve at which
the i*® coordinate first reaches sz 1, +€/4 for some i. Since z’(t—) < (1)
for all 7 and since wy,(z,,n) < €/32, no coordinate of the curve in G, can
decrease by more than ¢/32 over any subinterval, and thus from one points
to the next in A,. Continue in this manner for at most finitely many steps
until the end point (2 ,4j4+1,tnr+j+1) is reached. The distance between
successive points is €/4, while the distance between the last point inserted
and (znr4j+1,tn,r+j+1) i less than e/4. Delete the first and last point in-
serted, so that all distances between successive points are between €/4 and
€/2. In general, the number of inserted points is some finite number, not
necessarily equal to j. These points are ordered, since they lie on the non-
decreasing continuous curve through G, . For each ¢ € Disc(z,¢€/2), let A,
contain these specified points. This construction yields cZ(An, Gz,) < €/2.
For ¢t ¢ Disc(z,€/2), let A contain the points already constructed in A’. Tt
remains to construct the points in A for ¢ € Disc(z, €/2). For this purpose,
we use the points in A4,, associated with . Again, to simplify the discussion,
suppose that z*(t—) < z(t) for all i. With this ordering, we let

Zrap = ¢ (12) V max 2, - Aa'()

for each k and 4. This definition guarantees that the points (2,4,t) belong
to G, and are ordered. Moreover, ci(A, G;) < e. Finally, we must have
d*(A, A,) < €, because otherwise the condition wy(zy,n) < €/32 would be
violated.

(v)—(i). Suppose that the conditions in (v) hold and let € > 0 be given.
Construct the finite subsets A and A,, with the specified properties. Let
(u,r) and (up,T,) be arbitrary parametric representations of G, and G,
such that there are points s; in S C [0,1] such that both (u(s;),7(s;)) =
(zi,ti) € A and (un(s;),rn(si)) = (2ni tni) € An. Since A and A, are
ordered subsets of G, and G, , respectively that construction is possible.
Finally, for any s, 0 < s < 1, there is s; € S such that s; < s < s;41 and

lun(s) = u(s)I| V llrn(s) = r(s)Il < [[(un(s), mn(s)) — (un(si), (i)l
H(un(85), rn (i) — ulsi), r(sa) || + [[(u(si),r(si) — u(s),r(s)]l
< d(An,Gy,) +d* (A, Ap) +d(A,Gy) <3e. =
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6.6. Strengthening the Mode of Convergence

Section 12.6 of the book applies the characterizations of M; conver-
gence in previouis sections to establish conditions under which the mode
of convergence can be strengthened: We find conditions under which W M,
convergence can be replaced by SM; convergence. Most of the material
appears in the book.

We use the following Lemma.

Lemma 6.6.1. (modulus bound for (z,,y,)) For z, € D([0,T),RF), y.,y €
D([0,T),R'), t € [0,T] and § > 0,

ws((xn,yn),t,d) < ws(mmta 5) + 2U(yn,y,t,5) .

Proof. For (t—0)VO<t1 <te <tz <(t+I)AT,

1@, yn)(t2) = [(@n,yn) (E1), (20, yn) (E3)]]

< (@, yn) (t2) = [(2n(t1),y(2), (2 (E3), y ()]

<

+ (llyn (1) =y @IV llyn (E3) = y(B)])
< lzn(te) = fza(ta), za (@) V ya(tz) — y(@)]]
+ (llyn (1) =y @IV llyn (E3) = y(B)I])

< l#n(t2) = [#n(t1), 2a ()]l + 20(Yn, v, 8,0) . =

Theorem 6.6.1. (extending SM; convergence to product spaces) Suppose
that ds(zn,z) — 0 in D([0,T),R*) and ds(yn,y) — 0 in D([0,T],R!) as
n — oo. If

Disc(z) N Disc(y) = ¢.

then
ds (%, Yn), (z,y)) = 0 in D([0,T],R*!) as n — oo.

The proof is in the book.

6.7. Characterizing Convergence with Mappings

In this section we focus on alternative characterizations of SM; conver-
gence using mappings.
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6.7.1. Linear Functions of the Coordinates

The strong topology SM; differs from the weak topology W M; by the
behavior of linear functions of the coordinates. Example ?? shows that linear
functions of the coordinates are not continuous in the product topology
(there (z. —22) /4 (z' —2?) as n — 00), but they are in the strong topology,
as we now show. Note that there is no subscript on d on the left in (7.1)
below because 7z is real valued.

Theorem 6.7.1. (Lipschitz property of linear functions of the coordinate
functions) For any 1, zo € D([0,T],R*) and n € R,

d(nzy,nee) < ([0l v 1)ds (1, z2) - (7.1)

Proof. Pick an arbitrary e > 0 and choose (uj,7;) € II;(z;) for j = 1,2
such that

lur —ual| V ||r1 —rof| < ds(w1,22) + €,

which is possible by the definition (3.7). Because nu; € II(nz;) for j = 1,2,
by Lemma 6.3.4,

< lpur —nug|| V |jr1 — 2]
< lre =72l V |l — uzl|[|nl|
< (Il v 1)(ds(z1,22) +€) -

d(nfﬂla 77372)

Since € was arbitrary, (7.1) is established. =

We now obtain a sufficient condition for addition to be continuous on
(D,ds)x (D, ds), which is analogous to the J; result in Theorem 4.1 of Whitt
(1980).

Corollary 6.7.1. (SM;i-continuity of addition) If ds(xy,z) — 0 and ds(yn,y) —
0 in D([0,T],R¥) and

Disc(z) N Disc(y) = ¢,

then
ds(Zp + yn,z +y) = 0 in D([0,T],R¥).
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Proof. First apply Theorem 6.6.1 to get ds((n,yn),(z,y)) — 0 in
D([0,T],R?*). Then apply Theorem 6.7.1. =

Remark 6.7.1. Measurability of addition. The measurability of addition
on (D,ds) x (D,ds) holds because the Borel o-field coincides with the Kol-
mogorov o-field. It also follows from part of the proof of Theorem 4.1 of
Whitt (1980). =

In Theorem 6.7.1 we showed that linear functions of the coordinates are
Lipschitz in the SM; metric. We now apply Theorem 6.5.1 to show that
convergence in the SM; topology is characterized by convergence of all such
linear functions of the coordinates.

Theorem 6.7.2. (characterization of SM; convergence by convergence of
all linear functions) There is convergence z,, — z in D([0,T],R¥) as n — oo
in the SM topology if and only if nx, — nz in D([0,T],R') as n — oo in
the M, topology for all n € R:.

Proof. One direction is covered by Theorem 6.7.1. Suppose that =, /4 =
as n — 0o in SMj. Then apply part (v) of Theorem 6.5.1 to deduce that
N, /4 nz as n — oo for some 7. Note that [|a|| > 0 for a € R* if and only
if [na| > 0 in R for some n € R¥. Also, ||a — A|| > 0 for A C R* if and only
if [na — nA| > 0 in R for some 1 € R¥, where nA = {nb: b€ A}. =

We can get convergence of sums under more general conditions than in
Corollary 6.7.1. It suffices to have the jumps of z* and 3’ have common sign
for all . We can express this property by the condition

(a'(t) = 2" (=) (' () —y'(t=)) > 0 (7.2)
forall¢,0<t<T,and alli, 1 <1<k
Theorem 6.7.3. (continuity of addition at limits with jumps of common

sign) If z, — z and y, — y in D([0,T],R¥, SMy) and if condition (7.2)
above holds, then

Tn+yn — x4y in D(0,T],RF,SM)) .

Proof. The proof is in the book.
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6.7.2. Visits to Strips

In Sections (2.2.7)—(2.2.13) of Skorohod (1956), convenient characteri-
zations of convergence in each topology are given for real-valued functions.
We can apply Theorem 6.7.2 to develop associated characterizations for R¥-
valued functions. For each z € D([0,7],R!), 0 < t; < to < T and, for each
a < bin R, let U?f?tz (z) be the number of visits to the strip [a,b] on the

interval [t1,t2]; i.e., vfl’b (z) = k if it is possible to find k£ (but not k + 1)

it2

points t; such that ¢; <t} <--- <t} <ty such that either
‘T(tl) € [a'a b]a 'T(tll) g [a',b], x(tIQ) € [a',b]a LR

#(t1) € [a,b], x(t1) € [a,b], z(t3) & [a, D], ..

We say that z € D([0,T],R) has a local mazimum (minimum) value at
t relative to (t1,t2) in (0,T) if t; <t < t9 and either

(1) sup{z(s):t;1 <s<to} <z(t) (inf{z(s):t; <s<ty} > z(t))
(ii) sup{z(s) :t;1 <s<to} <z(t—) (inf{z(s):t1 <s<ty)}>z(t—)) .

We say that x has a local mazimum (minimum) value at t if it has a local
maximum (minimum) value at ¢ relative to some interval (t1,t2) with ¢; <
t < to. We call local maximum and minimum values local extreme values.

Lemma 6.7.1. (local extreme values) Any z € D([0,T],R) has at most
countably many local extreme values.

Proof. For each n, let {t, ;} be a finite collection of points in [0, T'], includ-
ing 0 and T'. Let {t,;} be a subcollection of {¢, 11,7} for each n and let the
minimum distance between points in {¢,;} be €,, where ¢, | 0 as n — oo.
Note that there is one local maximum value and one local minimum value
of z relative to the interval endpoints in each interval [t,, ;, ¢y ;11), where ¢, ;
and t, ;11 are successive points in {t, ;}. Hence the total number of extreme
values of z relative to {t,;} is countably infinite. Next note that any ex-
treme value of z is contained in this set. To see this, suppose that b is an
extreme value of z at ¢ relative to the interval (¢1,t2). Then, for sufficiently
large n, there is an interval (¢, ;,t,,i4+1) such that ¢; <1t,; <t <ty ;41 < to,
so that b is an extreme value of z within (¢, ;,t,+1). =
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If b is not a local extreme value of z, then z crosses level b whenever x
hits b; i.e., if b is not a local extreme value and if z(t) = b or z(t—) = b, then
for every t1, to with t; < ¢ < t9 there exist ¢}, t, with t; < ], t) < ¢ such
that z(t}) < b and z(t}) > b. This property implies the following lemma.

Lemma 6.7.2. Consider an interval [t1,t2] with 0 < t1 < to < T. If
z(t;) & {a,b} for i =1,2 and a,b are not local extreme values of x, then x
crosses one of the levels a and b at each of the Ugf?tz (z) visits to the strip

[a, b] in [tl, tg].

Theorem 6.7.4. (characterization of SM; convergence in terms of conver-
gence of number of visits to strips) There is convergence ds(zy,,z) — 0 as
n — oo in D([0,T),R*) if and only if

v (zn) = v, (nz) as n - oo

for all n € R¥, all points t1,ty € {T} U Disc(x)¢ with t; < ty and almost all
a,b with respect to Lebesgue measure.

Proof. By Theorem 6.7.2, it suffices to establish the result for R-valued
functions. First, suppose that =, — z as n — oo in D([0,T],R, M7). Sup-
pose that a and b are not local extreme values of z. Let t1,ty € Disc(x)®
and suppose that z(t1),z(t2) € {a,b}. Then, for sufficiently large n, by

Lemma 6.7.2, vf;?m (zn) = ’U?l’?tz (x). Since there are at most countably many

“bad” a,b for any z, vfl’f’tz () — vfl’f’tz (z) for almost all a,b with respect to
Lebesgue measure. On the other hand, suppose that v?{f’b () — U?f?m (z)
for all ¢1,t2 € Disc(z)® and for almost all a,b. We will show that char-
acterization (v) of SM; convergence in Theorem 6.5.1 holds. For z,¢ and
e > 0 given, find 7 such that v(z,[t —n,t)) < €¢/2 and v(z, [t,t + 1]) < €/2.
First suppose that ¢ € Disc(z)¢. Then vf{f’h (z) = 0 for t1, t2 € Disc(z)¢,
t—n <t <t<ty <t+nandall(a,b) witha < z(t)—€¢/2 < z(t)+€/2 <b.
By assumption, for all suitably large n, fug‘l' f’t; (zn) = 0 for some a',b’ with

z(t) —e<ad <z(t)—e/2<z(t)+e/2<V <z(t)+e.
By the argument above, we can show that, for a time interval before ¢, zj,
and z are first in a neighborhood of z(t—) and then leave. Afterwards, z,,

and z enter the neighborhood of z(t) and stay there for a short interval after
t. To see this, let t; and t9 be as above and then find a1, b1, as, by such that

z(t—)—e<ap <z(t—)—€/2, z(t—) +€/2 < by < z(t) + €
z(t) —e<as <z(t) —€/2, z(t) +€/2 < by < z(t) + €,
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vfll’;il () — vfll,’f; () =1 and Uff,’tl_’; (zn) — U?f,;gz (z) = 1. that implies that

v(Zp, z,1,0) < €for § < min{|t—t1]|,|t—t2|}. Next suppose that t € Disc(z).
Let t1, t2 be as above. Find aq, b1, as, by such that

z(t—) —e<a <z(t—)—€¢/2 <z(t—)+€/2 < by < z(t—) + ¢,

z(t) —e<ag <z(t) —€/2 < z(t) + /2 < b < z(t) + ¢,

Ufllj;g () — vfll,;gl () = 1 and 1)21127;51’22 () — Uffib; (z) = 1. It remains to

show that z,, cannot fluctuate significantly between z(¢t—) and z(t). To be
definite, suppose that z(t—) < z(t) and suppose that € < z(t) —z(t—). Then
for almost all a,b with

z(t—)+e€/2<a<b<z(t)—e/2,

U?f?tz(xn) — Ugf?tz () =2 as n— o0 .
That implies that ws(zn, z,t,d) = 0 as n — oo for § < min{|t; —¢|, |t — 2|},
which completes the proof. =

6.8. Topological Completeness

In this section we exhibit a complete metric topologically equivalent to
the incomplete metric ds in (3.7) inducing the SM; topology. Since a prod-
uct metric defined as in (3.13) inherits the completeness of the component
metrics, we also succeed in constructing complete metrics inducing the as-
sociated product topology. We make no use of the complete metrics beyond
showing that the topology is topologically complete. Another approach to
topological completeness would be to show that D is homeomorphic to a G
subset of a complete metric space, as noted in Section 11.2 of the book.

In our construction of complete metrics, we follow the argument used by
Prohorov (1956, Appendix 1) to show that the J; topology is topologically
complete; we incorporate an oscillation function into the metric. For M;,
we use wg(z,d) in (5.1). Since wy(z,0) — 0 as § — 0 for each z € D, we
need to appropriately “inflate” differences for small §. For this purpose, let

wy(z,e?), z2<0
ws(z,2) = (8.1)
ws(z,1), 2z>1.

Since ws(x,d) is nondecreasing in §, Ws(x, z) is nondecreasing in z. Note
that ws(z,z) as a function of z has the form of a cumulative distribution
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function (cdf) of a finite measure. On such cdf’s, the Lévy metric A is known
to be a complete metric inducing the topology of pointwise convergence at
all continuity points of the limit; i.e.,

MNP, Fo)=inf{e >0: Fo(z —€) —e< Fi(z) < Fa(x +€) +€} . (8.2)

The Helly selection theorem, p. 267 of Feller (1971), can be used to show
that the metric A is complete.
Thus, our new metric is

ds (1, 82) = ds(w1,72) + A(bs (1, ), s (2, )) - (8.3)
Theorem 6.8.1. (a complete SM; metric) The metric ds on D in (8.3) is
complete and topologically equivalent to ds.

Proof. To show topological equivalence of ds and dg, it suffices to show
that A(Ws(xy, ), Ws(x,-)) — 0 as n — oo whenever ds(zy, ) — 0 as n — oco.
However, if ds(zn,z) — 0 as n — oo, then wg(zp,d) = ws(z,d) as n — oo
at all 6 which are continuity points of ws(z,d). (See Lemma 6.8.1 below.)
That in turn implies that wg(zy,,2) — Ws(z,z) as n — oo for all z which
are continuity points of ws(z,z). However, such convergence is equivalent
to convergence under \. Next, suppose that a sequence {z,} is fundamental
under dy, i.e., ds(Zm,zn) = 0 as m,n — oo. It follows that {z,(t) : 0 <
t < T,n > 1} is compact. Hence, there exists a countable dense set N of
[0,T], including 0 and T, and a subsequence {zy, } such that z,, (t) = z(t)
as ny — oo for all t € N, where 7 is some RF-valued function on [0,7]. At
the same time, since )\ is known to be a complete metric, there must exist a
distribution function F' such that
lim A(ws(zp,-),F) =0,

n—oo

which implies that

lim lim wy(z,,8) =0.

=0 nooo
However, Theorem ?? and Corollary ?? imply that there exists x € D
(with Z not necessarily z) such that ds(z,,,Z) — 0 as ny — oco. Since
ds(zn,z) < dg(zpn,zn,) + ds(zpn,,z) and dg(zm,z,) — 0 as m,n — oo,
ds(zp,Z) >0asn —oco. =

To complete the proof of Theorem 6.8.1, we need the following lemma.

Lemma 6.8.1. (continuity of SM; modulus) If ds(z,,z) — 0 as n — oo,
then ws(xyn, ) = ws(z,d) as n — oo for each § that is a continuity point of

ws(z,0).
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Proof. Let § be a continuity point of wy(z,d). Then, for each ¢; > 0,
there is eo > 0 such that ws(z,d —e2) > ws(z,0) —€1. For §, €1 and e given,
it is possible to choose continuity points ¢, ¢1, to and t3 of z such that

(t—0)VO<t <to<ty3<(t+0)AT (8.4)
and
lz(t2) — [z(t1), z(t3)]|| = ws(z,d — €2) — €1 > ws(z, ) — 2¢7 -

Since ds(zp,z) = 0 as n = oo, z,(t;) = z(tj) as n — oo for j = 1,2,3.
Hence, there exists ng such that, for all n > ny,

[0 (t2) = [2a (1), zn (E3)]]] = ws(2,8) — ez -

However,
ws(xn,0) 2 ||lzn(te) — [zn(t1), zn ()]l ,

so that wg(zy,d) > ws(z,d) — 3e2. Since €2 can be made arbitrarily small,

lim wg(zp,d) > ws(z,0) . (8.5)

n—0o0

We now establish an inequality in the other direction. Since § is a continuity
point of ws(z,d), for any €; > 0 there exists e2 > 0 so that wg(z,d + €2) <
ws(z,0) + €1. We can choose ty, tp1, the and t,3 so that

(thn =) VO<ty <tna<t3<(tn+0)AT

and
|1 Zn (tn2) — [Zn(tn1)s Zn (tn3)]l]| > ws(Tn,0) — €2

for all n. There thus exists a subsequence {nj} such that t,, — t and
tnkj — tj, j =123, (84) holds and ||~'L'nk(tnk]) — ZJ” — 0 as nx — oo.
Moreover, since = and z,, n > 1, are right-continuous for all n, we can have
t1, to and t3 be continuity points of x with

(t—(0+e) Vo<t <t <t3<(t+(0+e)AT.

Then ||y, (tn, ;) — z(t;)|| = 0 as ny — oco. Hence, there is ng such that, for
all ng > ny,
[z (t2) — [2(t1), ()3)]] [0y (bn2) = [0y (bng1), Zny (B 3)]l| — €2

>
> wy(T,0) — 26 . (8.6)
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However,
ws(2,0) + €1 > ws(7,0 + €2) > [[a(te) — [w(t), z(B) . (8.7)
Combining (8.6) and (8.7), we obtain
ws(z,0) > w(Tp,0) — €1 — 2€ .
Since €1 and €3 can be made arbitrarily small,

lim  wy(z,,6) < ws(z,d) . (8.8)

n—oo

Combining (8.5) and (8.8) completes the proof. =

6.9. Non-Compact Domains

It is often convenient to consider the function space D([0, c0), R¥) with
domain [0, co) instead of [0, T"]. More generally, we may consider the function
space D(I,R¥), where I is a subinterval of the real line. Common cases
besides [0, 00) are (0,00) and (—o0,00) = R

Given the function space D(I,R¥) for any subinterval I, we define con-
vergence x,, — = with some topology to be convergence in D([a, b], R¥) with
that same topology for the restrictions of x, and = to the compact inter-
val [a,b] for all points a and b that are elements of I and either boundary
points of I or are continuity points of the limit function z. For example, for
I = [c,d) with —o0 < ¢ < d < 00, we include a = ¢ but exclude b = d; for
I = [¢,d], we include both ¢ and d.

For simplicity, we henceforth consider only the special case in which
I =[0,00). In that setting, we can equivalently define convergence z,, — x
as n — oo in D([0,00), R¥) with some topology to be convergence z, — =
as n — oo in D([0,1],R¥) with that topology for the restrictions of z,, and z
to [0, ¢] for t = ¢, for each ¢ in some sequence {tx} with ¢, — oo as k — oo,
where {t;} can depend on z. It suffices to let t; be continuity points of the
limit function z; for the J; topology, see Lindvall (1973),

Whitt (1980) and Jacod and Shiryaev (1987). We will discuss only the
SM; topology here, but the discussion applies to the other non-uniform
topologies as well. We also will omit most proofs.

As a first step, we consider the case of closed bounded intervals [¢1, t2].
The space D([t1,to], RF) is essentially the same as (homeomorphic to) the
space D([0,T],R*) already studied, but we want to look at the behavior
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as we change the interval [t1,%s]. For [ts,t4] C [t1,t2], we consider the
restriction of x in D([t1,t2], R¥) to [t3,t4], defined by

Tigita * D([t1, t2], RF) — D([ts, ta], RF)

with 74, 4,(2)(t) = z(t) for t3 < t < t4. Let di, 4, be the metric d; on
D([t1,ts],R¥). We want to relate the distance dy, 4, (z1,72) and convergence
di, t,(Zn,z) = 0 as n — oo for different domains. We first state a result
enabling us to go from the domains [¢1,t2] and [t2, t3] to [t1,t3] when ¢; <
to < t3.

Lemma 6.9.1. (metric bounds) For 0 < #; < ty < t3 and z1, 2 €
D([tlat3]aRk)7

diy 13 (71, 22) < dyy 1y (21,72) V dpy 5 (71, 22) .

We now observe that there is an equivalence of convergence provided
that the internal boundary point is a continuity point of the limit function.

Lemma 6.9.2. For 0 < t; < t3 < t3 and z, , € D([t1,t3],RF), with
to € Disc(x), diy ty(xn,z) = 0 as n — oo if and only if dy, 1,(xn,z) = 0
and dy, 1,(zn,z) = 0 as n — oco.

For z € D([0,T),RF) and 0 < t; < to < T, let 74, ¢, : D([0,T],RF) —
D([t1,t2],R¥) be the restriction map, defined by 74, 1,(z)(s) = z(s), t; <
S S t2.

Corollary 6.9.1. (continuity of restriction maps) If z, — = as n — oo in
D([0,T], Rk, SM;) and if t1,ts € Disc(z)¢, then

Tty ts(Tn) = Tiy 4o (¥) as n— 00 in D([t1,to], RF, SM) .

Let 4 : D([0,00),R¥) — D([0,], R¥) be the restriction map with ry(z)(s) =
z(s), 0 < s < t. Suppose that f : D(]0,00),RF) — D([0,00),R¥F) and
ft : D([0,t],R¥) — D([0,t],R*) for ¢ > 0 are functions with

fe(ri(x)) = ri(f(x))

for all x € D([0,00),R¥) and all + > 0. We then call the functions f;
restrictions of the function f.

Theorem 6.9.1. (continuity from continuous restrictions) Suppose that f :
D([0,00),R¥) — D([0,00),R') has continuous restrictions f; with some
topology for all t > 0. Then f itself is continuous in that topology.
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Proof. Suppose that =, — = as n — oo in the specified topology. That
means that r, (z,) — 7, (z) as n — oo for some sequence {t,,} with
tm — 00, possibly depending on z. Since f has continuous restrictions,

Ttm (F(@n)) = fim (Pt (n)) = fi (11 (2)) = 74, (f ()

as n — oo for all m, which implies that f(z,) — f(z) as n — oo in the
specified topology. =
No more material has been deleted from Section 12.9 of the book.

6.10. Strong and Weak M, Topologies

We now define strong and weak versions of Skorohod’s My topology. In
Section 6.11 we will show that it is possible to define the M5 topologies by a
minor modification of the definitions in Section 6.3, in particular, by simply
using parametric representations in which only r is nondecreasing instead of
(u,r), but now we will use Skorohod’s (1956) original approach, and relate
it to the Hausdorff metric on the space of graphs.

The weak topology will be defined just like the strong, except it will use
the thick graphs G, instead of the thin graphs I';. In particular, let

ps(T1,T2) = sup inf  {||(z1,t1) — (22, %2) ||} (10.1)
(Zl,tl)Ele (22,752)EF,;2

and

piw(T1,72) = sup inf  {||(z1,t1) — (22, t2)||} - (10.2)
(zlatl)EGml (227t2)€Gw2

Following Skorohod (1956), we say that z, — = as n — oo for a sequence
or net {z,} in the strong M, topology, denoted by SMy if ps(zp,z) — 0
as n — oo. Paralleling that, we say that z, — x as n — oo in the weak
M, topology, denoted by W My, if py(z,,xz) — 0 as n — oo. We say that
T, — T as n — oo in the product topology if us(z%, ') — 0 (or equivalently
(78, 7%) — 0) as n — oo for each i, 1 < i < k.

We can also generate the SMs and W M5 topologies using the Hausdorff
metric in equation 5.2 of Section 11.5 in the book. As in equation (5.4) in
Section 11.5 of the book, for z1,22 € D,

m3($1,$2) = mH(lea F:L‘2) = Ms(l'l,fL'Q) \ M5($2,$1) ) (103)

mw($1;~752) = mH(GwlaGwz) = /Jw(.’L‘l,.’I,‘Q) \ Nw(x%xl) (104)
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and
mp(z1,22) = [max, ms(zy, xh) . (10.5)
We will show that the metric ms induces the SMs, topology.

That will imply that the metric m, induces the associated product topol-
ogy. However, it turns out that the metric m,, does not induce the WM,
topology. We will show that the W M, topology coincides with the prod-
uct topology, so that the Hausdorff metric can be used to define the W My
topology via my, in (10.5).

Closely paralleling the d or M metrics, we have m, < mson D([0,T], R¥)
and my, = my, = ms on D([0,T],R!). Just as with d, we use m without sub-
script when the functions are real valued. Example 7?7, which showed that
W M is strictly weaker than SM; also shows that W M, is strictly weaker
than SM;. Example 7?7 shows that the SMs topology is strictly weaker than
the SM; topology.

Note that ps in (10.1) is not symmetric in its two arguments. Example
12.10.1 of the book shows that if us(z, z,) — 0 as n — oo, we need not have
ps(zn,z) = 0 as n — oco.

6.10.1. The Hausdorff Metric Induces the SM; Topology

We now show that mg induces the SM, topology.

Theorem 6.10.1. (the Hausdorff metric m; induces the SM> topology)
If ps(zp,z) — 0 as n — oo, then ps(xz,z,) — 0 as n — oo. Hence,
ps(zn,xz) = 0 as n — oo if and only if ms(zp,z) — 0 as n — oco.

Proof. Our proof will exploit lemmas below. Suppose that ps(zp,z) — 0
but ps(z,z,) /~ 0 as n — oo. Since ps(x, z,) 4 0, there exists (z,t) € 'y
for which it is not possible to find (z,,t,) € 'y, for n > 1 such that
(zn,tn) = (2,t) as n — oo, but that contradicts Lemma 6.10.4 below. =

In order to complete the proof of Theorem 6.10.1, we prove the following
four lemmas.

Lemma 6.10.1. Suppose that ps(xn,z) — 0 as n — oo. If (zn,tn) € I'y,
forn > 1, then there ezxists a subsequence {(zn, ,tn, )} with (2p,,tn,) — (2,1)
as ng — oo for some (z,t) € T'y. Moreover, the limits of all convergent
subsequences must be in ['y,.
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Proof. Suppose that pus(z,,z) — 0 as n — oo and consider any sequence
{(zn,tn)} with (z,t,) € 'y, for n > 1. By the definition of yg, there must
exist (2],t) € T'y such that ||(zn,t,) — (2],t))] = 0 as n — oco. Since T'; is
compact, there exists a convergent subsequence of the sequence {(z],,t,)};
i.e., there exists {(zy,,%,,)} such that (z,,,t, ) — (2,t) for some (2,t) €
I'y. By the triangle inequality, we must also have (zp,,t,,) — (z,t) as
ny — oo. Finally, suppose (2, ,tn,) is an arbitrary convergent subsequence
of {(zn,tn)}. By the argument above, there exists (z,t) € I'; such that a
subsequence (znkj,tnkj) — (2,t) as ng; — oo. This implies that (2,t) must

be the limit of the convergent subsequence {(zy,,t5,)}. =

Lemma 6.10.2. Suppose that ps(z,,z) — 0 as n — oo, t € Disc(z) and
(2n,t) €Ty, forn>1. Then z, — z(t) as n — oo.

Proof. By Lemma 6.10.1, there is a subsequence (z,,,t) — (z,t) € 'y,
but z = z(t) for (z2,t) € T'y because t ¢ Disc(z). Since all convergent
subsequences must have the same limit, z, - z = z(t) asn — co. =

Corollary 6.10.1. If t ¢ Disc(z) and ps(zn,z) — 0 as n — oo, then
T (t) = z(t) and z,(t—) — z(t) in R* asn — oo.

Lemma 6.10.3. If us(z,,z) — 0 asn — oo and (z,t) € 'y, then for any i,
1 <4 <k, there ezist (zp,tn) € I'y, forn > 1 such that |z}, —2*|V|t,—t| — 0.

Proof. The conclusion follows from Corollary 6.10.1 if ¢ ¢ Disc(z), so
suppose that ¢ € Disc(z). Then z belongs to the segment [z(t—),z(t)].
First choose t,, > t with ¢/, & Disc(z) for all m and t,, | t as m — oo.
By Lemma 6.10.2, there exist (2, ,,%,) € Ty, such that z;, , — z(t;,) as
n — oo. Next choose I < t with t!' & Disc(z) for all m and ¢!, 1t as
m — oo. By Lemma 6.10.2 again, there exist (zp,,tp,) € I'z, such that
Zmn — T(tp,) as n — oo. The diagonal sequences (2, ,,,1,,) and (zp, ,tp)
thus belong to Ty, and satisfy t;, | t, t; 1 t, 2z, , — x(t) and 2, ,, = z(t—)
as n — oo. Since I';i is a continuous real-valued curve, every value in the

segment [z ., zn"] is realized for some ¢ with ¢, <t/ < t;. Hence, for
any (z,t) € 'y, there exists (2)/,¢) € Ty, such that (2/*,¢") — (2*,t) as

n'n n *’n
n—00. =m

Lemma 6.10.4. If ys(zp,z) — 0 as n — oo and (z,t) € Ty, then there
exist (zp,tn) € [y, for n > 1 such that ||(zn,tn) — (2,t)|| = 0 as n — oo.
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Proof. If ¢t ¢ Disc(x), then we can take (z,(t),t) € Ty, or (z,(t—),t) €
Iz, by Corollary 6.10.1. Hence it suffices to assume that ¢ € Disc(z).
Then, by the first part of the proof of Lemma 6.10.3, it suffices to consider
(z,t) with z # z(t) and z # x(t—). For at least one coordinate 4, either
T(t—) < z < z'(t) or z*(t) > 2z > z'(t). Consider one such coordinate.
By Lemma 6.10.3, there is (z,,t,) € ['y, such that t, — ¢ and 2} — 2° as
n — 0o. Moreover, since pg(zn, ) — 0, given (zp,t,) € I'z,, we must have
(21,t) € 'y such that ||z, — z.|| V [t, — t,| — 0. Since t, — t, we must
also have ¢/, — t. Since 2/ — z* and T, contains the line joining (z(t—),t)
and (z(t),t), we must have 2z, — z as well, which implies that z, — z,
establishing the desired conclusion. =

6.10.2. WM, is the Product Topology

We now observe that m, induces the W M, topology.

Theorem 6.10.2. (W My is the product topology) puy(zn,z) — 0 as n —
oo for py in (10.2) if and only if my(z,,z) = 0 as n — oo for my in
(10.5), so that the W My topology on D([0,T],R¥) coincides with the product
topology.

Proof. First, if piy(zn, ) — 0 as n — oo, then g, (z%,x') — 0 for each
i, but py, (2, ) = ps(zh,x%), so that pg(z®,z8) — 0 and my(z,,z) — 0
by Theorem 6.10.1. Conversely, suppose that mp(z,,z) — 0 as n — oo.
Lemma 6.10.1 implies that Up,>1;: is compact for each ¢, 1 < i < k. That
in turn implies that Up>1 Gy, is compact. Hence, if (zy,,t,) € Gy, for n > 1,
then every subsequence necessarily has a convergent subsubsequence. To
have py,(zn,z) # 0, we must have a subsequence of {(z,,t,)} converge to a
limit not in G5. We will show that is not possible. Consider (z,,t,) € Gy, ,
n > 1. Since t,, € [0,T] for all n, there exists a subsequence (2, ,t,,) such
that ¢,, — ¢ for somet, 0 <¢ < T. Since my,(zy,z) — 0asn — oo, thereis a
subsequence {(znkj »tn, )} such that zflkj — 2* for some z* where (2*,t) € T':.

Moreover, there are such subsequences for all 4, 1 < i < k, so that 22 — 2
for all 4 along the final subsequence. Moreover, (2%,t) € T',: for all i, but
this implies that (z,t) € G,. Hence every subsequence of (z,,t,) has a
convergent subsubsequence and every convergent subsequence of {(z,,%,)}
has limit (z,t) € G,. That implies that ., (z,,z) >0asn —oco. =
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6.11. Alternative Characterizations of M, Convergence

We now give alternative characterizations of the SMy and W Ms topolo-
gies.

6.11.1. M, Parametric Representations

We first observe that the SMs and W Ms topologies can be defined just
like the SM; and W M; topologies in Section 6.3. For this purpose, we
say that a strong My (SMs) parametric representation of x is a continuous
function (u,r) mapping [0, 1] onto I'; such that r is nondecreasing. A weak
My (W Ms) parametric representation of z is a continuous function map-
ping [0,1] into G, such that r is nondecreasing with r(0) = 0, (1) = T
and u(1) = z(T). The corresponding M; parametric representations are
nondecreasing using the order defined on the graphs I';, and G, in Section
2. In contrast, only the component function r is nondecreasing in the My
parametric representations. Let Il o(x) and II, 2(z) be the sets of all SM,
and W My parametric representations of x.

Paralleling (3.7) and (3.8), define the distance functions

ds,z(.Tl,.'L‘g) = inf {||U1 — U,QH \Y ||7”1 — ‘I”QH} (11.1)
(uj,rj)€llg o(zj)
Jj=1,2
and
dw,g(ml,mg) = inf {“’U,l — u2|| \Y ||’/‘1 — ’1“2”} . (11.2)
(uj,rj)€My o(z;)
j=1,2

We then can say that z, — z as n — oo for a sequence or net {z,}
if dso(zn,z) — 0 or dy2(zn,z) = 0 as n — oo. A difficulty with this
approach, just as for the W M; topology, is that neither ds2 nor dy 2 is a
metric.

6.11.2. SM, Convergence

We now establish the equivalence of several alternative characterizations
of convergence in the SMs topology. To have a characterization involving
the local behavior of the functions, we use the uniform-distance function
Wy(x,T2,t,0) in (4.6). We also use the related uniform-distance functions

wg(z1,T2,0) = sup w(zy,zo,t,d) . (11.3)
0<t<T

ws (21, 22,1, 6) = [lz1(t) — [w2((t — 6) V 0), z2((t + 6) AT)]| (11.4)
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W, (£1,22,0) = sup W, (r1,2,t,0) . (11.5)
0<t<T

We now define new oscillation functions. The first is

ws(z,1,0) = sup{[|z(t) — [2(t2), z(2)]]]} , (11.6)

where the supremum is over
OV({t—0) <t1 <[0V(t—0)]+d/2 and [TA(t+6)]—3/2 <ty < (t+)AT.

The second is

w;(z,0) = sup wi(z,t,0) . (11.7)
0<t<T

The uniform-distance function @%(z1,z2,d) in (11.5) and the oscillation
function w}(z,d) in (11.7) were originally used by Skorohod (1956).

As before, T need not be a continuity point of z in D([0,7],R¥). Un-
like for the M; topology, we can have z,, — z in (D, M) without having
zn(T) — z(T).

Let v(z, A) represent the oscillation of z over the set A as in (2.5).

Theorem 6.11.1. (characterizations of SM, convergence) The following
are equivalent characterizations of T, = x as n — oo in (D, SMy):

(i) ds2(zn,z) = 0 as n — oo for dso in (11.1); i.e., for any € > 0 and
n sufficiently large, there exist (u,r) € s 2(z) and (un,m) € ILs 2(zy)
such that ||up — ul| V ||r, — 7] <e.

(1i) ms(zp,z) = 0 as n — oo for the metric my in (10.3).
(15i) ps(xn,x) — 0 as n — oo for ps in (10.1).
(iv) Given ws(x1,z2,0) defined in (11.3),

lim lim ws(zy,s,0) =0 . (11.8)

0 nsoo

(v) For eacht, 0 <t<T,

lim lim w@(zy,,,t,0) =0 (11.9)

0 nooo

for ws(z1,z2,t,0) in (4.6).
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(vi) For all € > 0 and all n sufficiently large, there ezist finite ordered
subsets A of 'y and A, of T'z,, as in (3.9) where (z1,t1) < (22,t2) if
t1 < to, of the same cardinality such that d(A,T;) <€, d(An,Tz,) <€
and d*(A, A,) < € for d in (3.10) and d* in (5.6).

(vii) Given wk(z1,x2,0d) defined in (11.5),

lim lim @} §)=0.
i Tim. Wy (Tn, T, 0)

(viii) xn(t) = z(t) as n — oo for each t in a dense subset of [0,T] including
0 and o
lim lim wj;(zp,6) =0 (11.10)

M0 oo

for wk(z,d) in (11.7).

Proof. We already have shown the equivalence (ii)<(iii) in Theorem 11.10.1.
(i)—(ii). Suppose that (i) holds with € and n given. Since the parametric
representations in II; () map onto the graph I'y, for any (2,,t,) € Ty,
we can find s € [0,1] such that (un(s),mn(s)) = (zn,tn). For that s,
(u(s),r(s)) = (z,t) for some (z,t) € I'; and

1(zn, tn) = (2, D) < lun —ul| V]lr — 7| <e. (11.11)

By the same reasoning, for any (z,t) € I';, there exists (z,,t,) € 'y, such
that (11.11) holds.

(ii))—=(v). For z, ¢t and € given, find § such that v(z,[t — §,t)) < €/2 and
v(z, [t,t + J)) < €/2 for v in (2.5). Then apply (ii) to find ng such that
ms(zn,z) < n = (e Ad)/2 for n > ng. Then, for each ¢/ with 0V (t — ) <
t' < (t+mn) AT, there must exist (z,t) € 'y such that

I(@n(t), ) = (2,8)| <n for n>=nq.
Since |t —t| < [t —t'| + |t/ — t] <21 < 4,
I(z,1) = [z(t=), z(B)]ll <e/2.
Consequently, for n > ng,
2 (t) — [2(t=),2@)]l <n+e/2<e.

Since t' was arbitrary,
wy (T, T,t,0) < €.
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(v)<>(iv). Characterization (iv) clearly implies (v), so that it suffices to
show that (v) implies (iv). We will show that if (iv) fails, then so does (v).
Hence suppose that (iv) does not hold. Then there must exist € > 0, such
that for any 6 > 0 there is a subsequence {ny} such that n; — oo and
Ws(Tp,,,0) > € for all ng. Hence, there is an associated sequence t,, such
that

Ws(ZTny, T, tny,,0) > €/2

for all ny. However, {¢,, } has a convergent subsequence {tnkj} with tny, =1

as ng, — oo for some t. Note that, if z, € [z(t,—),z(t,)] for all n, where
tn, — t, and if 2z, — 2, then necessarily z € [z(t—), z(¢)]. Hence,

u_)s(a:nkj,:v,t,%) >€/2

for all sufficiently large ny;. That implies that (11.9) does not hold, so that
(v) fails.

(iv)—(vi). We construct the desired finite subsets A of I'; and A, of T,
by considering two kinds of points in I';. For € > 0 given, we let A contain
at least one point (z,t) for each ¢ € Disc(z,€/2). The other points have ¢ €
Disc(z)¢. We first construct A for ¢ outside a finite union of neighborhoods
of points in Disc(z,€e/2). We then construct A, and finally we complete
the definition of A by adding appropriate points (z,t) for ¢t € Disc(z,€/2),
which depend on A,,. Thus the set A ultimately depends upon A,, and thus
upon z, and n.

Let t(A) denote the set of ¢ for which there is at least one pair (z,1)
from I'; in A. We first identify ¢(A). We include Disc(z,€/2) in t(A). Use
(11.8) to find an 1 and an ng such that ws(z,,z,n) < ¢/4 for all n > nyg.
Let t1 < -++ < ty, be the ordered set of points in Disc(z,e/2) — {T}; let
to = 0 and t,41 = T. Use the existence of left and right limits for x
to identify points, for 1 < ¢ < m, points ¢, and ¢! in Disc(z)® such that
ti <t <ty <t <t |-t <, |t -t <n, vzt t) < /4
and v(z, [t;,t]]) < €/4 for v(z, B) in (2.5). We include these points ¢, and
ti in t(A). We also include in A points tj and #/ _, from Disc(z)¢ such
that tg = 0 < &5 < t, ty, <t < tmy1 = T, v(z,[0,%5]) < €/4 and
v(z, [ty,41,T]) < €/4. We also include the points 0 and 7" in ¢(A). Moreover,
we include the points (z(t}),t;), (z(¢]),t]), ((0),0) and («(T),T) in A
itself. (Except possibly for T, these are the only possibilities since t}, ¢,
0 € Disc(z)¢.) We next define A for ¢ in the compact set

m

C = 10,T) = |t t) — [0:85) — (s, T) (1112
=1
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The set C'is a finite union of the closed intervals [t], %, ,], 0 <i <m—1. For
each ¢ in C not a boundary point of one of these subintervals, it is possible to
find ¢ and ¢” in the same subinterval as ¢ such that ¢’ < t < ¢", [t—t'| < n/4,
|t —t"| < n/4 and v(z,[t',t"]) < /2. (Recall that C C Disc(z,€/2)¢.) For
the boundary points ¢; and ¢/, include intervals (Z;,?;] and [t,t}) with the
same properties; these intervals are open in the relative topology on C. Also
include intervals [0,¢*) and (¢,7] with the same properties; these intervals
again are open in the relative topology on C. These open intervals form an
open cover of C. Since C is compact, there exists a finite subcover. We
let ¢(A) contain one point ¢ in Disc(z)® from each subinterval in the finite
subcover; we also put (z(t),t) into A. Let the set A be ordered according to
the time points; i.e., (z1,%1) < (22,%2) if t1 < ta. So far, A contains points
(z(t),t) for t € Disc(z)¢, including the boundary points ¢; and ¢ of C. We
have completed the definition of ¢(A), which includes Disc(z,€/2). If {t;} is
the ordered set of points in ¢(A), then the construction above implies that
|tit1 — ti| < n for all ¢ (where 7 has been chosen so that ws(zy,z,n) < €/4).

We now construct the set A,. By Theorem 11.4.1, condition (11.8)
implies that z,(t) — z(t) for each ¢ € Disc(z)¢. For each t € t(A4) —
Disc(z,€e/2), let t € t(A,) and (z,(t),t) € Ay,. Since each such ¢ belongs to
Disc(x)¢, there is ny > ng such that ||z, (t) — z(t)|| < ¢/4 for all ¢ € t(A) —
Disc(z,€e/2) and for all n > n;. Hence we have established d*(A4, 4,) <
e/4 for n > ny over C (outside the neighborhoods of Disc(z,€/2)). We
complete the definition of A, by adding finitely many points (z,¢) for ¢ in
the open interval (¢, t!') where ¢/ and ¢/ are the adjacent points in ¢(A) to ¢; €
Disc(z,€e/2). We also do this for the interval (¢],,,,7T] if T € Disc(z,€/2).
We do this for all ¢; € Disc(z,€/2) so that overall d(A,, Ty, ) < €/2. This
is always possible by Lemma 6.3.1. We next complete the definition of A
by including a point (z,t;) for each point (z,t¢) in A, with ¢ € (¢,¢/). This
ensures that A, and A have the same cardinality. Since d(4,,T;,) < €/2,
y(ns7,1) < €/4,

lzn(t) — 2@ < €/4; lzn(ti) — 2] < €/4,

l=(t) — z(ti—)| <e/4 and |z(t)) — =(t:)] < €/4

for n > n, we can choose points in A so that d*(4,,A) < €/2 for n > ny
and d(A,T,) < ¢, which completes the proof.

(vi)—(i). Suppose that € is given and the sets A and A, in (vi) have points
(zi,ti) and (zn4,tn:), 0 < % < m, where ¢ = 0 and ¢,, = 7. Construct
arbitrary parametric representations of (u,r) of z and (uy,r,) of =, such
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that
r(i/m) =t;, wu(i/m) =2z

and
r(i/m) =tni, up(i/m) =zp; .

Since d*(A4,, A) <€,

onax {|r(i/m) —rn(i/m)| V [Ju(i/m) — un(i/m)ll} <e.

Since d(A,T;) < € and d(A4,,Ty,) < € too, by the triangle inequality,
lr — 7l V [Jun — ul| < 3€ .

(iv)«>(vii). Suppose that 0 < ¢t < T. If z is constant in the intervals
(0V (t—26),t) and [t, (t +26) AT), then

[0V (' = 0)),z((t' +0) AT)] = [z(t—), z(t)]

for all #/ with 0V (¢t —d) <t' < (t+6) AT. Consequently, in that situation

sup {llzn(®) = [2(0V (' = 08)),z((t' + 0) AT}
OV(t—0)<t! <(t+0)AT
= sup {llzn () = [=(t=), z@)]I} - (11.13)

OV(t—d)<t' <(t+8)AT

Thus if z is piecewise constant with the distance between successive discon-
tinuities at least 4, then w}(z,,z,d/2) = ws(xy,z,d/2). Hence, for e given
suppose that we can choose 1 to make ws(x,,z,n) < €/3. Then approximate
z by z. € D, such that |z — z.|| < €/3. For that z., let @ be the minimum
distance between successive discontinuities. Then, for § < n A («/2),

Wy (Tn, Te, §) + €/3

Ws(Tn, T, 0) +€/3
We(Tn,x,m) +2¢/3 < €. (11.14)

W (Tn, T, 0)

ININ DA

Alternatively, for e given, suppose that we can choose 7 to make @} (2, z,n) <
€/3. Following the same reasoning,

Ws(Tn, Te, d) + €/3
Wi (Tp, Ze, ) +€/3
Wy (Tp,z,n) +2€¢/3 < €. (11.15)

ws(xnaxa 6)

INIA A
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Hence (iv) is equivalent to (vii).

(ii)—(viii). By Theorem 11.4.1 and (ii)<>(v), (ii) implies that z,(t) — z(¢)
for each ¢t € Disc(z)®. It remains to show that (ii)—(11.10). For ¢ > 0
given, first pick a piecewise-constant z. such that ||z — z.|| < €/4, which is
possible by Lemma 6.3.1. Let v be the RF-valued function with v*(¢) = 1,
0<t<T,1<i<k. Thenz.— (¢/4)y <z < z¢+ (e/4)y, ie.,

z(t) —€/4 <z(t) < zc(t)+€/4 for 0<t<T.
Let the («, 8)-neighborhood of z € D be

Nog(z) = {[[z(t) — oy, z(t) + an]] X [0V (E = B),E+ B) AT]: 0<t <T} .

(11.16)
Thus, z € N¢js0(zc) and . € N¢/40(z). Now let o be the minimum distance
between successive discontinuities in z., or to 0 or T' for the leftmost and
rightmost discontinuity points. Given (ii), choose ng so that ms(z,,z) =
M <1 < (e Na)/4 for n > ng. Then x, € Nyyc/4pn(2c). Suppose that
{ti : 1 <14 < m —1} is the set of discontinuities of z., with t; = 0 and
tm = T. By the construction above, the open intervals (¢; — n,t; + ) are
disjoint, 1 <7 < m — 1. Now let § = 2n. Hence, if ¢’ € (t; — n,t; +n) for
t; € Disc(x.), then

tici4n <t'=8 <t'—6/2 < ti—n < ti+n < t'+6/2 < '+ < tiy1—n (11.17)

for all ¢, 1 <4 <m — 1. On the other hand, if ¢’ € [t;_1 +n,t — 7] = Bjn,
then necessarily either (¢' + 6/2,t' + ¢) intersects B, or (t' — 4, — §/2)
intersects B;,. Thus, for n > ng and each ' € [0,7], there exists ¢; €
OV (t'—46),0V(t'—06)+6/2) and ty € (T A(t' +6) —6/2,T A (t' + )] such
that

2 (t") — [2n(t1), za ()]l < 2((e/4) +1) <€ ; (11.18)

i.e., Wi(zy,,0) < e

(viii)—(v). For z,t¢ and € given, choose n so that 0 <t—n<t<t+n<T,
v(z, [t —n,t)) < €/4 and v(z,[t,t + n]) < €/4. Now choose § < 7 and
t' e (t—4/2,t 4+ 6/2). For 6 and t' given, find ¢y, t2 in Disc(z)® such that
hh<t<to,t'—d<t;<t'—d/2andt' +6/2 <ty <t'+ 4. Then choose ng
so that ||z, (t;) — z(ti)|| < /4 for i — 1,2 and n > ng. Apply (viii) to choose
ny > ng so that w}(zy,d) < e/2. Then

lzn () = [2(t=), 2@l < [lzn(®) = [2(t1), z(t2)]]] + /4
< lzn(®) = [2a(t1), 2a(t2)]]l + /2
< wi(zp,0) +€/2<e for n>mni(l11.19)
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Since t' is arbitrary in (t — 6/2,t + 6/2),
Ws(Zn,z,t,0/2) <e for n>ng,
which implies (v). =

Remark 6.11.1. The equivalence (iii)<>(vii)<>(viii) was established by Sko-
rohod (1956). =

Remark 6.11.2. There is no analog to characterization (v) involving @} (z,, z, t, J)
in (11.4) instead of ws(zn,z,t,d). For t € Disc(z)¢,

lim lim w*(z,,z,t,0) =0
i o Whom 3 10)

implies pointwise convergence z,(t) — z(t), but not the local uniform con-
vergence in Theorem 6.4.1. =

6.11.3. WM, Convergence

Corresponding characterizations of W My convergence follow from Theo-
rem 6.11.1 because the W M, topology is the same as the product topology,
by Theorem 6.10.2. Let

Wy (T, T2,0) = sup Wy (x1,22,1,0) (11.20)
0<t<T

for wy, (1, z2,t,d) in (4.7).

Theorem 6.11.2. (characterizations of W M, convergence) The following
are equivalent characterizations of T, — x as n — oo in (D, W My):

(i) dy2(Zn,z) = 0 as n — 0o for dy o in (11.2); i.e., for any € > 0 and
all n sufficiently large, there exist (u,r) € Iy, 2(z) and (up,my) € Iy 2(zy)
such that ||u, — ul|| V ||rn — ]| <e.

(it) mp(zp,z) = 0 as n = oo for the metric my, in (10.5).

(iii) Given wy(x1,x2,0) defined in (11.20),

lim lim @y (zy,7,6) =0 .
0 nooo

(iv) For each t, 0 <t <T,

lim lim @y (z,,z,t,0) =0 .
0 nsoo wl(an )
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(v) For all e > 0 and all sufficiently large n, there exist finite ordered
subsets A of Gy and A, of T'y,, of common cardinality m as in (3.9) with
(z1,11) < (22,t2) if t1 < ta, such that d(A,Gy) < €, d(An,Ty,) < € and
d*(A, A,) < € for all n > ng, for d in (5.8) and d* in (5.6).

Proof. (i)—(ii). Clearly, dy 2(7n,z) — 0asn — oo implies that d, o(z%,, 2*) —
0 as n — oo for each i. By Theorem 6.11.1, that implies m(z%,z%) — 0 as

n — oo for each 7, which implies (ii).

(ii)<>(iii). By Theorem 6.11.1, (ii) is equivalent to

lim Tim ,(z%, 2%, 6) = 0 (11.21)

00 p 0o

for each 7, but that is equivalent to (iii) because

_ ) ) -
112?5)(19w3(x"’x ,0) = Wy (zp,x,0) . (11.22)

(iii)«>(iv). By Theorem 6.11.1, (iii) is equivalent to

lim Tim @, (z?,2%,t,0) =0 (11.23)

0 nooo

for each i, but that is equivalent to (iv) because

121@ ws(zy, x',t,0) = Wy (Tn, z,t,0) . (11.24)
(iii)—(v). Follow the proof of (iv)—(vi) in Theorem 6.11.1. Use (??) to find
an 7 and an ng such that wy(z,,z,n) < €/4 for all n > ny. Define ¢(A)
as before, first by including Disc(z,€/2) and then by adding points from
Disc(z)€ in the complement of the union of the intervals about the points in
Disc(z,€/2). Let A be defined for ¢t € t(A) — Disc(z, €/2) just as before. Let
A, be defined just as before. We complete the definition of A by including
a point (z;,1;) for each point (z,t) in A, with ¢ € (¢},¢). This ensures that
A and A,, have the same cardinality. Since d(A4,,T',) < €/2, wy(z,, z,1) <
/4, llon(tl) — o) < e/4, on(t) — s < /4, l2(#) — z(t-)| < e/4
and ||z(t]) —z(t;)|| < €/4 for n > ny, we can choose these points to add to A
so that d*(Ay, A) < €/2 for n > n; and d(A4,G;) < e. (Unlike in the proof
of Theorem 6.11.1, here we cannot conclude that d(4,T,) < e.)
(v)—(i). Paralleling the proof of (v)—(i) in Theorem 11.5.2, suppose that
the conditions of (v) hold and A, A, and € are given. Let (u,r) and (uy,r,)
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be parametric representations of z and z,, such that

u(i/m) = z, r(i/m)=1t; for (z;,t;) €A

up(i/m) = zn4, To(i/m) =tn; for (znstn;) € Ay .
For any s € [0,1] there is 7 such that s; < s < s;41 and

[un(s) —u(s)|| V [Irn(s) = r(s)|| < [[(un(s),rn(s)) — un(si),rn(si)ll
+(un(si), rn(si)) — (ulsi), ()|l + [[(u(s),7(s:)) — (uls),r(s))]
< d(An,Gg,) +d*(An, A) +d(A,G;) < 3c. =

Theorem 6.11.2 and Section 6.4 show that all forms of M convergence
imply uniform convergence to continuous limit functions.

Corollary 6.11.1. (from W M5 convergence to uniform convergence) Sup-
pose that my(zp,z) — 0 as n — oco.
(i) If t € Disc(z)¢, then

lim lim v(zp,z,t,0) =0.
0 pnsoo (@ )

(i) If x € C, then lim, 0 ||zn, — z|| = 0.

Proof. For (i) combine Theorems 6.4.1 and 6.11.2. For (ii) add Lemma
6.4.2. =

Convergence in W My has the advantage that jumps in the converging
functions must be inherited by the limit function.

Corollary 6.11.2. (inheritance of jumps) If z, — = in (D, W M), t, =t
in [0,T] and z} (t,) — =}, (tn—) = ¢ > 0 for all n, then z'(t) — z'(t—) > c.

Proof. Apply Theorem 6.11.2 (iv). =

Let J(z) be the maximum magnitude (absolute value) of the jumps of
the function z in D. We apply Corollary 8.5.1 to show that J is upper
semicontinuous.

Corollary 6.11.3. (upper semicontinuity of J) If z,, — z in (D, My), then

lim J(z,) < J(z) .

n—o0
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Proof. Suppose that z,, — z in (D, W M) and there exists a subsequence
{zn,} such that J(z,,) — c. Then there exist further subsubsequences
{xnkj} and {tnkj}, and a coordinate 7, such that tny, = for some t €

[0,7] and |af, (tnkj) —ah, (tnkj —)| = ¢. Then Corollary 8.5.1 implies that
J J

n

|zt (t) — z'(t=)| >c. =

6.11.4. Additional Properties of M,

We conclude this section by discussing additional properties of the My
topologies. First we note that there are direct My analogs of the M results
in Theorems 6.6.1, 6.7.1, 6.7.2 and 6.7.3.

Theorem 6.11.3. (extending SM, convergence to product spaces) Suppose
that mg(zn,z) — 0 in D([0,T),R¥) and ms(yn,y) — 0 in D([0,T],R") as
n — oo. If

Disc(z) N Disc(y) = ¢,

then
mMs((Tn, Yn), (7,9)) = 0 in D([0,T],R*) as n — oo.

Proof. We use characterization (v) in Theorem 6.11.1. Using the discon-
tinuity condition, it is easy to show that (11.9) holds for [(zn,yn), (z,¥)]
when it holds separately for [z,,z] and [y,,y], because i.e., at most one
of the segments [(z(t—),z(¢)] and [y(t—), y(¢)] contains more than a single
point. =

Corollary 6.11.4. (from W M, convergence to SM, convergence when the

limit is in D1) If mp(zp,z) = 0 as n — oo and x € D, then my(zp,z) — 0
asn — oo.

Theorem 6.11.4. (Lipschitz property of linear functions of the coordinate
functions) For any z1, 2o € D([0,T],R¥) and n € R¥,

m(nzy,nee) < ([0l V )ms (1, z2) -

Proof. For (??), the key property is that

Lpz = {(nz,t) : (2,t) € [} .
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It suffices to show that for all e > 0 and (2},t1) € 'z, there exists (z5,1) €
[z, such that

|21 = 25| V [t — t2| < (llnll V D)ms (21, 22) + € .

However, for (z{,t1) € I'yy,, there exists (z1,¢1) € I'y, such that nz; = 2i.
Then choose (z2,t2) € I'y, such that

|21 — 22|| V |t1 — to| < ms(z1,22) +¢€
Let (24,t2) = (n22,t2). Then
|21 — 25| = Inz1 — nza| < lnllllz1 — 22l . =
We have an analog of Corollary 6.7.1 for the M5 topology.

Corollary 6.11.5. (SMas-continuity of addition) If ms(zy, z) — 0 and ms(yn,y) —
0 in D([0,T],R¥) and

Disc(z) N Disc(y) = ¢,

then
ms(Tn +Yn,z +y) = 0 in D([0,T],RF).

Proof. First apply Theorem 6.11.3 to get ms((zn,yn), (z,y)) — 0 in
D([0,T),R¥*!). Then apply Theorem 6.11.4. =

Theorem 6.11.5. (characterization of SMj convergence by convergence of
all linear functions of the coordinates) There is convergence x, — T in
D([0,T),R¥) as n — oo in the SMy topology if and only if nz, — nz in
D([0,T),R') as n — oo in the My topology for all n € R,

Proof. One direction is covered by Theorem 6.11.4. Suppose that z,, A =
as n — oo in SMy. Then apply part (v) of Theorem 6.11.1 to deduce that
nTy, /4 nr as n — oo for some 7. Note that [|a| > 0 for a € R* if and only
if [nal > 0 in R for some 1 € R¥. Also, ||a — A|| > 0 for A C RF if and only
if [na —nA| > 0 in R for some n € R¥, where nA = {nb: b€ A}. =

Just as with the M; topology, we can get convergence of sums under
more general conditions than in Corollary 6.11.5. It suffices to have the
jumps of z* and y* have common sign for all i. We can express this property
by the condition (7.2).
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Theorem 6.11.6. (continuity of addition at limits with jumps of common
sign) If , — z and y, — y in D([0,T],R¥, SMy) and if condition (7.2)
holds, then

Tn+yn = x+y in D(0,T],RF, SMy) .

Proof. Apply the characterization of SMj convergence in Theorem 6.11.1
(v). At points t in Disc(z)¢ N Disc(y)¢, use the local uniform convergence
in Lemma 12.5.1 of the book and Corollary 6.11.1 here. For other ¢ not in
Disc(z) N Disc(y), use Theorem 6.11.3. For ¢ € Disc(z) N Disc(y), exploit
condition (7.2) to deduce that, for all € > 0, there exists § and ng such that

W (Tr + Yn, T + Y, t,0) < ws(xp, z,t,0) + ws(yn,y,t,0) + € (11.25)

foralln>mng. =

We now apply Theorem 6.11.5 to extend a characterization of con-
vergence due to Skorohod (1956) to R¥-valued functions. For each z €
D([0,T],R') and 0 < t; <ty < T, let

My, 1,(z) = sup z(t) . (11.26)
t1 <t<t>

The proof exploits the SMs analog of Corollary 6.9.1.

In preparation for the next result, we state a basic lemma about preser-
vation of convergence under restriction maps. For z € D([0,7T],R*) and
0 <t <ty <T*let sy, : D(0,T],RF) — D([t1,12], R¥) be the restriction
map, defined by 74, 1, (x)(s) = z(s), t1 < s < ty. We omit the proof.

Lemma 6.11.1. (continuity of restriction maps) If z, — = as n — oo in
D([0, T],R¥) with one of the SMy, WMy, SMy and W M, topologies and if
t1,to € Disc(x)®, then

Tt o (Tn) = T 1o (2) as n— 00 in D([tl,tg],]Rk)
with the same topology.

Theorem 6.11.7. (characterization of SM> convergence in terms of con-
vergence of local extrema) There is convergence mg(xn,z) — 0 as n — o0
in D([0,T],RF) if and only if

My, 1, (nz) = My, 1,(nz) as n — oo (11.27)

for all n € R* and all points t1, ty € {T} U Disc(z)¢ with t; < to.
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Proof. By Theorem 6.11.5, it suffices to consider the case of real-valued
functions. By considering n = +1 in (11.27), we get both the minimum and
the maximum over [t1,%2]. it is easy to see that (11.27) for n = +1 implies
characterization (v) in Theorem 6.11.1: For z,¢ and e given, choose -y so that
v(z, [t —v,t)) <€/2, v(z,[t,t+7]) <€/2and 0 <t—vy <t+y<T. Then
finding ng such that |M;, 4, (nzy) — My, 4, (nz)| < €/2 for n > ng, n = £1
and
t—y<thi<t—0<t<t+dod<ta<t+r

implies that ws(zy,z,t,d) < € for n > ng. On the other hand, if z, — z in
D([0,T],R*, Ms), then the restrictions converge in D([t1,t2], R!, M3) for all
t1,to € Disc(r)® by Lemma 6.11.1. If my(z,, ) < € in D([t1, 2], R, My),
then clearly | My, 1, (2n) — My, 1, (z)| < € and | My, 4, (—2n) — My, 1, (—2)| <€,
so characterization (ii) of Theorem 6.11.1 implies (11.27). =

We can apply the characterization of My convergence in Theorem 6.11.7
to show the preservation of convergence under bounding functions in the My
topology. See Corollary 12.11.6 in the book.

6.12. Compactness

We have nothing to add in this final section.
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