Chapter 8

Queueing Networks

8.1. Introduction

This chapter contains proofs omitted from Chapter 14 of the book, with
the same title. Section 8.9 also contains supplementary material on the
existence of a limiting stationary version for a general reflected process.
With the exception of Section 8.9, the section and theorem numbering here
parallels Chapter 14, so that the proofs should be easy to find.

Here is how this chapter is organized: We start in Section 8.2 by care-
fully defining the multidimensional reflection map and establishing its basic
properties. Since the definition (Definition 8.2.1) is somewhat abstract, a
key property is having the reflection map be well defined; i.e., we show that
there exists a unique function satisfying the definition (Theorem 8.2.1). We
also provide multiple characterizations of the reflection map, one alternative
being as the unique fixed point of an appropriate operator (Theorem 8.2.2),
while another is a basic complementarity property (Theorem 8.2.3).

A second key property of the multidimensional reflection map is Lipschitz
continuity in the uniform norm on D([0,7], R¥) (Theorem 8.2.5). We also
establish continuity of the multidimensional reflection map as a function of
the reflection matrix, again in the uniform topology (Theorems 8.2.8 and
14.2.9 in the book). It is easy to see that the Lipschitz property is inherited
when the metric on the domain and range is changed to d;, (Theorem 8.2.7).
However, a corresonding direct extension for the SM; metric d; does not
hold. Much of the rest of the chapter is devoted to obtaining positive results
for the M; topologies.

Section 8.3 provides yet another characterization of the multidimensional
reflection map via an associated instantaneous reflection map on R¥.

Sections 8.4 and 8.5 are devoted to obtaining the M; continuity results.
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196 CHAPTER 8. QUEUEING NETWORKS

In Section 8.4 we establish properties of reflection of parametric represen-
tations. We are able to extend Lipschitz and continuity results from the
uniform norm to the M; metrics when we can show that the reflection of
a parametric representation can serve as the parametric representation of
the reflected function. The results are somewhat complicated, because this
property holds only under certain conditions.

In Sections 8.6 and 8.7, respectively, we apply the previous results to
obtain heavy-traffic stochastic-process limits for stochastic fluid networks
and conventional queueing networks. In the queueing networks we allow
service interruptions. When there are heavy-tailed distributions or rare long
service interruptions, the M topologies play a critical role.

In Section 8.8 we consider the two-sided regulator and other reflection
maps. The two-sided regulator is used to obtain heavy-traffic limits for
single queues with finite waiting space, as considered in Section 2.3 and
Chapter 5 of the book. With the scaling, the size of the waiting room
is allowed to grow in the limit as the traffic intensity increases, but at a
rate such that the limit process involves a two-sided regulator (reflection
map) instead of the customary one-sided one. Like the one-sided reflection
map, the two-sided regulator is continuous on (D!, M;). Moreover, the
content portion of the two-sided regulator is Lipschitz, but the two regulator
portions (corresponding to the two barriers) are only continuous; they are
not Lipschitz.

We also give general conditions for other reflection maps to have M; con-
tinuity and Lipschitz properties. For these, we require that the limit function
to be reflected belong to Di, the subset of functions with discontinuities in
only one coordinate at a time.

In Section 8.9 we show that reflected stochastic processes have proper
limiting stationary distributions and proper limiting stationary versions
(stochastic-process limits for the entire time-shifted processes) under very
general conditions. Our main result, Theorem 8.9.1, establishes such lim-
its for stationary ergodic net-input stochastic processes satisfying a natural
drift condition (9.7). It is noteworthy that a proper limit can exist even if
there is positive drift in some (but not all) coordinates. Theorem 8.9.1 is
limited by having a special initial condition: starting out empty. Much of
the rest of Section 8.9 is devoted to obtaining corresponding results for other
initial conditions. Theorem 8.9.6 establishes convergence for all proper ini-
tial contents when the net input process is also a Lévy process with mutually
independent coordinate processes. Theorem 8.9.6 covers limit processes ob-
tained in the heavy-traffic limits for the stochastic fluid networks in Section
14.6 of the book.
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8.2. The Multidimensional Reflection Map

We start by giving basic definitions and establishing alternative charac-
terizations. Then we establish continuity and Lipschitz properties.

8.2.1. Definition and Characterization

Let Q be the set of all reflection matrices, i.e., the set of all column-
stochastic matrices @ (with Qf,j >0 and Ele ngj < 1) such that Q" — 0
as n — 0o, where Q" is the n'® power of Q.

Definition 8.2.1. (reflection map) For any x € D*¥* = D([0,T],R¥) and
any reflection matriz QQ € Q, let the feasible regulator set be

U(z) E{wEDf:J;—i—(I—Q)wZO} (2.1)

and let the reflection map be R = (¢, ¢) : D¥ — D?* with regulator compo-
nent

y=9(z) =inf ¥(z) = inf{w: w e ¥(z)}, (2.2)

i.e.,

y'(t) = inf{w'(t) e R:w € U(z)} forall i and t, (2.3)

and content component
z=d(z)=z+ (I —-Q)y . (2.4)

It remains to show that the reflection map is well defined by Definition
8.2.1; i.e., we need to know that the feasible regulator set ¥U(z) is nonempty
and that its infimum y (which necessarily is well defined and unique for
nonempty ¥(z)) is itself an element of ¥(z), so that z € D¥ and z > 0.

To show that ¥(z) in (2.1) is nonempty, we exploit the well known fact
that the matrix I — ) has nonnegative inverse.

Lemma 8.2.1. (nonnegative inverse of reflection matrix) For all Q € Q,
I — Q is nonsingular with nonnegative inverse

(I_Q)_l :ZQn )
n=0

where Q° = I.
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Proof. Note that

(I-QU+Q++Q" ) =1-Q". (2.5

Since Q*" - 0asn — oo, I — Q™ — I as n — oo, where I has determinant
1. Hence, for all sufficiently large n, the left and right sides of (2.5) have
nonzero determinant. Since the determinant of the product of two matrices
is the product of the determinants, the determinant of 7 —() must be nonzero,
so that I — @ must be nonsingular. Now multiply both sides of (2.5) by this
inverse, which we have shown exists, to obtain

I+Q+--+Q"'=(I-Q) 7 'I-Q").

Since the right side tends to the proper limit (I — Q)~! as n — oo, so does
the left. =

The key to showing that the infimum belongs to the feasibility set is
a basic result about semicontinuous functions. Recall that a real-valued
function z on [0,T] is upper semicontinuous at a point ¢ in its domain if

lim sup z(t,) < z(t)
tn—t

for any sequence {t,} with ¢, € [0,7] and ¢, — ¢t as n — oco. The function
x is upper semicontinuous if it is upper semicontinuous at all arguments ¢
in its domain.

Lemma 8.2.2. (preservation of upper semicontinuity) Suppose that {z; :
s € S} is a set of upper semicontinuous real-valued function on a subinterval
of R. Then the infimum z = inf{zs : s € S} is also upper semicontinuous.

Proof. For any ¢t and € > 0 given, we need to find § such that z(t') <
z(t) + € whenever |t' —t| < 4. Since z is the infimum, for any ¢ and €, we
can find z € {z; : s € S} such that z(t) < z(t) + €¢/2. Since z is upper
semicontinuous, there exists ¢ such that z(t') < z(t) + ¢/2 for all ¢’ with
|t —t'| < d. As a consequence,

z(t') <z(t') <a(t) +€/2 <a(t) +e

whenever |t —¢'| < J. =
Recall that 7 = supg,<; z(s), ¢ > 0, for z € D'. Forz = (a!,...,2%) €
D¥ let 2T = ((z})T,..., (zF)1).
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Theorem 8.2.1. (existence of the reflection map) For any z € D* and

QeQ,

(I-Q)H(-2)"v 0] € U(z) , (2.6)

so that ¥(x) # ¢,
y = y(s) € V(z) C Dk 27)

fory in (2.2) and
z=¢(z)=z+(T—-Q)y>0. (2.8)

Proof. The proof is in the book. =
We now characterize the regulator function y = 1 (z) as the unique fixed
point of a mapping ™ = 7, ¢ : D’TC — D’T“, defined by

m(w) = (Qw —z)TV 0 (2.9)
for w € D’T“. For this purpose, we use two elementary lemmas.

Lemma 8.2.3. (feasible regulator set characterization) The feasible regula-
tor set W(x) in (2.1) can be characterized by

U(z) ={we D? cw > w(w)}
for w in (2.9).

Proof. The proof is in the book. =

Lemma 8.2.4. (closed subset of D) With the uniform topology on D, The
feasible regulator set U(x) is a closed subset of Df, while D’Tc is a closed
subset of D.

Theorem 8.2.2. (fixed-point characterization) For each Q € Q, the regu-
lator map y = () = pg(z) : D* — D’TC can be characterized as the unique

fized point of the map m = 7y : Df — D’TC defined in (2.9).
Proof. The proof is in the book. =

Theorem 8.2.3. (complementarity characterization) A function y in the
feasible regulator set U (z) in (2.1) is the infimum ¥(x) in (2.2) if and only
if the pair (y,z) for z = x+ (I — Q)y satisfies the complementarity property

/ Zdy' =0, 1<i<k. (2.10)
0



200 CHAPTER 8. QUEUEING NETWORKS

Proof. The proof is in the book. =

8.2.2. Continuity and Lipschitz Properties

We now establish continuity and Lipschitz properties of the reflection
map as a function of the function z and the reflection matrix (). We use the
matriz norm, defined for any k£ x k real matrix A by

k
4] = max Ay (211)
=1

We use the maximum column sum in (2.11) because we intend to work with
the column-substochastic matrices in Q. Note that

[ A1 Ag | <Al - [[A2]

for any two k X k real matrices A; and Ay. Also, using the sum (or /1) norm

k
lull =l (2.12)
i=1

on R¥ we have
[ Aul] < [ A - [|ul] (2.13)

for each k x k real matrix A and u € R¥. Indeed, we can also define the
matrix norm by

[A]l = max{[|Au]| : w € R, [Jul| = 1}, (2.14)

using the sum norm in (2.12) in both places on the right. Then (2.11)
becomes a consequence. Consistent with (2.12), we let

k
lz|l = sup |lz(t) = sup Y [l*(#)] (2.15)
0<t<T 0<t<T t—

for z € D([0,T],R*). Combining (2.13) and (2.15), we have
[Az[| < [IA]] - [l]] (2.16)

for each k x k real matrix A and = € D([0,T], RF).
We use the following basic lemma.

Lemma 8.2.5. (reflection matrix norms) For any k X k matriz Q € Q,

QI <1, Q¥ =v<1 (2.17)
and

-7 < = - (2.15)
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Proof. The first relation in (2.17) is immediate. Since Q™ — 0 for all @

in Q, the Markov chain associated with Q' is transient. Since the Markov

chain has k states,

k
Qi )F <1, (2.19)

=1

J

which, with (2.11), implies the second relation in (2.17). Probabilistically, if
the probability of eventually exiting the state space {1,...,k} of the Markov
chain is 1, then the probability of immediately exiting the state space from
some state must be positive. Then the probability of reaching that state or
the exterior (leaving the state space) in one step must be positive from some
other state. Proceeding on by induction, the state space must be exhausted
after k steps, so that (2.19) holds. Finally,

00 00 k-1 00
DoM< IR < Y NQMI+ ) I
n=0 n=0 n=0 n=0

so that (2.18) holds. =

We now show that 7 = 7, ¢ in (2.9) is a k-stage contraction map on D’T“.
Recall that for z € D, |z| denotes the function {|z(¢)| : ¢ > 0} in D, where
lz(t)| = (|z*(t)],...,|z*(t)|) € R¥. Thus, for z € D, |z|" = (|z*|T,..., |zFT),
where |2°[T(t) = supy<,<; [27(s)], 0 <t < T.

Lemma 8.2.6. (7 is a k-stage contraction) For any Q € Q and wi,wy €
Dk
1

7" (wr) — 7 (we)|" < |Q"(jwy —wa|")| for n>1, (2.20)
so that
[7" (w1) — 7" (w) || < Q|- llwr — wal| < Jlwy — wy (2.21)
forn>1 and
|7 (w1) — 7" (wo)[| < yllwr —wo|  for n=k,

where
1QFl=v<1.

Hence
|7 (w) —Y(z)]| =0 as n—oo.
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Proof. The proof is in the book. =

We now establish inequalities that imply that the reflection map is a
Lipschitz continuous map on (D, || - ||). We will use the stronger inequalities
themselves in Section 8.9.

Theorem 8.2.4. (one-sided bounds) For any Q € Q and z1,z9 € D,
—(I = Q)" 'm(z1 — z2) < p(a1) —p(@2) < (I — Q) 'mi(zo — 1) (222)
where n1(z) = (A1(z1),. .., H1(z%) with H; : D' — D' defined by
Mn(z') = (") vo.

Proof. The proof is in the book. =
As a direct consequence of Theorem 8.2.4, we obtain the desired Lipschitz

property.

Theorem 8.2.5. (Lipschitz property with uniform norm) For any Q € Q
and r1,T9 € D,

lp(z1) — (@)l < (= Q7| llw1 — 2]
D 1Q™ - llzy — 2]

n=

IN

0
k
1—7

IN

lz1 — 22| (2.23)

where v = ||Q¥|| < 1, and

I¢(z1) = p(a2)ll < A+ =QI- I - Q) Dllz1 — 2l

2k
(14 72 ) o —zal (2.24)

IA

Proof. The proof is in the book. =
We now summarize some elementary but important properties of the
reflection map.

Theorem 8.2.6. (reflection map properties) The reflection map satisfies
the following properties:

(i) adaptedness: For any z € D and t € [0,T], R(z)(t) depends upon z
only via {z(s) : 0 < s < t}.

(#7) monotonicity: If z1 < z9 in D, then ¥ (z1) > P(z2).
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(iii) rescaling: For each z € D([0,T],R*), n € R, B8 > 0 and vy nonde-
creasing right-continuous function mapping [0,T1] into [0,T], n+ B(zo7y) €
D([0,T1],R*) and

R(n+ Bz o)) = BR(B™ n +z) 0y .
(iv) shift: For allz € D and 0 < t; <ta2 < T,

P(z)(b2) = () (t1) + p(P(2) (81) + 2t + ) — x(t1)) (b2 — 1)

and
P(z)(t2) = (d(x) (1) + z(t1 + ) — z(t1)) (22 — 11)
(v) continuity preservation: If x € C, then R(x) € C.

We can apply Theorems 8.2.5 and 8.2.6 (iii) to deduce that the reflection
map inherits the Lipschitz property on (D, J;) from (D, U). Unfortunately,
we will have to work harder to obtain related results for the M; topologies.

Theorem 8.2.7. (Lipschitz property with dj,) For any Q € Q, there ezist
constants K1 and Ko (the same as in Theorem 8.2.5) such that

dy, (Y(z1),¥(x2)) < Kidy, (z1,22) (2.25)

and
dj, (¢(z1), d(z2)) < Kody, (z1,22) (2.26)

for all x1,29 € D.

Proof. The proof is in the book. =

We now want to consider the reflection map R as a function of the
reflection matrix ) as well as the net input function z. We first consider
the maps 7 = 7, 5(0) in (2.9) and ¥ = 1pq in (2.2) as functions of Q when
Q is a strict contraction in the matrix norm (2.11), i.e., when ||Q|| < 1.

Theorem 8.2.8. (stability bounds for different reflection matrices) Let Q1, Q2 €
Q with ||Q1|| =71 <1 and ||Q2]| =2 < 1. For alln > 1,

173, O < (175 4+ 977 |2 (2.27)

and

[lz]] - [|@1 — Q2]

7201 (0) =m0, Ol < (1 72 -5 ==

. (2.28)
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so that
(2.29)

and

2] - ]| Q1 — Q2]
(I —=y)1—2)

%1 (z) — e, (2)]| < (2.30)

Proof. First
I7g,0, O] = I(=2)T VOl < [|=]| .

Next, by induction,

It )

(@75, (0) —2)T v 0|

< 1Q5l - [z, ()] + [|]
< L+ 4 )l + )
< (At )l
Similarly, by induction
725 (0) =75 (0] < [1Qu7 0, (0) — Q2ma, (0)]
< |Q@17mx,q,(0) — Qa7 o, (0) || + [|Q27y g, (0) — Qa7 o, (0)]|
< Q1 — Qo - |2/ (1 —71) + ||Q2l| - [|7% g, (0) — 77 g, (0)]]
< T4y +--+)IQ1 — Qo - l2ll/(1 — 1) -

Finally, since ||77; 5(0) —%q(z)|| — 0 as n — oo, the final two bounds (2.29)
and (2.30) follow. =
Nothin more is omitted from Section 14.2 of the book.

8.3. The Instantaneous Reflection Map

Nothing has been deleted from this section in the book.

8.4. Reflections of Parametric Representations

In order to establish continuity and stronger Lipschitz properties of the
reflection map R on D with the M; topologies, we would like to have
(R(u),r) be a parametric representation of R(z) when (u,r) is a parametric
representation of z. That is not always true, but we now obtain positive
results in that direction.
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Theorem 8.4.1. (reﬂections of parametric representations) Suppose that
z €D, (u,r) € Us(x) and r—1(t) = [s_(t), 5. (t)].
(a) Ift € Disc(x)¢, then

R(u)(s) = R(z)(t) for s_(t) <s<sy(t) .
(b) If t € Disc(z), then
R(u)(s-(t)) = R(z)(t—) and R(u)(s1(t)) = R(z)(t) .
(c) If t € Disc(x) and z(t) > z(t—), then

$(u)(s) = dlx)(t—) + (ua?:ii)t); ﬁjzgjzs(f)()t

))) a(t) — 2(t-)]

forany 5,1 <5<k, and

so that
R(u)(s) € [R(z)(t—), R(z)(t)] for s—(t) <s<si(1).

(d) If t € Disc(z) and z(t) < z(t—), then ¢*(u) and ¢ (u) are monotone
in [s_(t), sy (t)] for each i, so that

R(u)(s) € [[R(z)(t=), R(x) ()] for s (t) <s<s4(F) -

We can draw the desired conclusion that (R(u),r) is a parametric rep-
resentation of R(x) if we can apply parts (c) and (d) of Theorem 8.4.1 to
all jumps. Recall that D, (Ds) is the subset of D for which condition (c)
(condition (c) or (d)) holds at all discontinuity points of z. For x € Dy, the
direction of the inequality is allowed to depend upon ¢.

Theorem 8.4.2. (preservation of parametric representations under reflec-
tion) Suppose that x € D and (u,r) € s(x).

(a) If x € D, then (R(u),r) € II;(R(x)).

(b) If x € Dy, then (R(u),r) € II,(R(x)).

We also have an analog of Theorems 8.4.1 and 8.4.2 for the case z € D
and (u,r) € Iy (z).

Theorem 8.4.3. (preservation of weak parametric representations) If z €
Dy and (u,r) € I, (z), then (R(u),r) € I, (R(x)).
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As a basis for proving Theorem 8.4.1, we exploit piecewise-constant ap-
proximations.

Lemma 8.4.1. (left and right limits) For any = € D, (u,r) € (z) and
rH(E) = [s- (1), s+ ()],

R(u)(s-(t)) = R(z)(t—) and R(u)(s+(t)) = R(x)(t) . (41)

In order to prove Lemma 8.4.1, we establish several other lemmas. First,
the following property of the reflection map applied to a single jump at
time t is an easy consequence of the definition of the reflection map. We
consider the reflection map applied to the jump in two parts. Given the
linear relationship in (2.4), it suffices to focus on only one of ¥ or ¢.

Lemma 8.4.2. (the case of a single jump) For any b;,by e R¥, 0 < g < 1
and 0 <t <T,

¢(b1+bo1j 1) (w) = P(b(b1+8bo L1y 1) (1) +(1—B)bo Iy ) (u) for t<u<T.

Lemma 8.4.3. (generalization) For any by,by € R¥ and right-continuous
nondecreasing nonnegative real-valued function a on [0,T] with «(0) = 0,

(b1 + aby) () = p(by + a()boIipr)(t), 0<t<T . (4.2)

Proof. Represent a as the uniform limit of nondecreasing nonnegative
functions «, in D.. Then ||¢(by + anbs) — ¢p(by + abs)|| — 0 as n — oo
by the known continuity of ¢ in the uniform metric. Hence it suffices to
assume that o € D.. We then establish (4.2) by recursively considering
the successive discontinuity points of a, using Lemma, 8.4.2 and Theorem
8.2.6(1V). ]

Proof of Lemma 8.4.1. Any x € D, can be represented as

m
z= 2 bl
=0

f01r()=t0<t1<---<tm§Ta,ndbj€]R’C for 0 < j < m. Thus ¢; is the
4§ discontinuity point of z. Let [s_(t;), s+ (t;)] = r~1(¢;) for each j. Since
(u,r) € II4(x) instead of just I, (z), u can be expressed as

m
u = E ajb; ,
j=0
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where o (s) =1 for all s and, for j > 1, a; : [0,1] — [0, 1] is continuous and
nondecreasing with a;(s) = 0, s < s_(t;) and a;(s) =1, s > sy(t;). We
can now consider successive intervals [s_(%;), s4(t;)] recursively exploiting
Lemma 8.4.3. First, for any s with 0 < s < s_(1).

P(u)(s) = d(boljo,11)(s) = ¢(2)(0) = ¢o(x(0)) -

Now assume that (4.1) holds for all j < m—1 and consider s € [s_(t,,), S+ (tm)]-
By the induction hypothesis, Lemma 8.4.3 and Theorem 8.2.6(iv),

pu)(s) = ¢(d()Em-1) + tmbmis_(10),1]) ()
= $(d(@)(tm—1) + am(8)bmI[s_(1,,),1)(8)

so that (4.1) holds for ¢,,. =

Proof of Theorem 8.4.1. (a) Since t € Disc(x)®, u(s) = z(t) for s_(t) <
s < s4(t). Given z € D with t € Disc(z)¢, it is possible to choose z,, € D,
such that ¢ € Disc(zy,)¢ for all n and ||z, —z|| — 0, by a slight strengthening
of Theorem 6.2.2 in Section 6.2. By characterization (i) of M; convergence

in Theorem 6.1 in Section V.6, given (u,r) € II4(x), we can find (uy,r,) €
[Is(z,) such that

lup —u||V]rp —7| >0 as n— oo.

Since R is continuous in the uniform topology, ||R(u,) — R(u)|| — 0 and
|R(z,) — R(z)|| — 0 as n — oo. Let s, be such that r,(s,) = t. Since z,, €
D, and t € Disc(xy,)¢, R(uy)(sn) = R(x,)(t) by Lemma 8.4.1. Since 0 <
sp <1, {sp} has a convergent subsequence {sy, }. Let s’ be the limit of that
convergent subsequence. Since 7, (sp,) = t for all ny, we necessarily have
s' € [s—(t), s+ (t)]. Since [|R(un) — R(u)|| = 0, R(zn,)(t) = R(un,)(sn,) =
R(u)(s'). Since we have already seen that R(z,)(t) — R(z)(t), we must
have R(u)(s') = R(z)(t). Since R(u) is constant on [s_(t), sy (t)], we must
have R(u)(s) = R(z)(t) for all s with s_(t) < s < s(t).

(b) Since R maps D into D and C into C, R(z) is right-continuous
with left limits, while R(u) is continuous. Given t € Disc(z), we can find
tn € Disc(z)® with t, 1 ¢t. We can apply part (a) to obtain R(u)(sy(t,)) =
R(z)(t,) — R(z)(t—), but s (t,) 1 s—(t), so that R(u)(s+(tn)) = R(u)(s—(t)).
Hence, we have established the first claim: R(u)(s—(t)) = R(z)(t—). Sim-
ilarly, we can find ¢, € Disc(z)® with ¢, | t. Then we can apply part (a)
again to obtain R(u)(s_(t,)) = R(x)(t,) — R(z)(t). Since s_(t,) | s4(¢),
R(u)(s—(tn)) 4 R(u)s4(t)). Hence R(z)(t) = R(u)(s+(t)) as claimed.
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(c) We can apply Lemma 14.3.4 (a) in the book. Since the increment
z(t) — z(t—) is nonnegative in each component,

z(t) = 2(t—) + z(t) — z(t—)
and y(t) = y(t—). Similarly,
P(u)(s) = d(u)(s—(2)) + uls) —u(s—())

and 9 (u)(s) = (u)(s-(t)) for s_(£) < s < s1(¢). .

(d) We apply Lemma 14.3.4 (b) in the book. Each coordinate ¢'(u) and
% (u) is monotone in s over [s_(t), s, ()], so that the desired conclusion
holds.

Proof of Theorem 8.4.2. (a) We combine parts (a)—(c) of Theorem 8.4.1
to get (R(u),7)(s) € Tg(y for all s. Since R maps C into C, (R(u),r) is
continuous. Also r is nondecreasing with 7(0) = 0 and (1) = T because
(u,7) € (). Finally, (R(u),r) maps [0,1] onto g,y and (R(u),v) is
nondecreasing with respect to the order on I'g(;) because the increments of
R(u) coincide with the increments of u over each discontinuity in z because
z € Dy, and (u,r) has these properties.

(b) We incorporate part (d) of Theorem 8.4.1 to get R(u) monotone over
[s_(t),s.(t)] = r~L(t) for each t € Disc(z) = Disc(R(x)). This allows us
to conclude that (R(u),r) € II,,(R(z)). =

We now turn to the proof of Theorem 8.4.3. For the proof, we find it
convenient to use a different class of approximating functions. Let D; be
the subset of all functions in D that (i) have only finitely many jumps and
(ii) are continuous and piecewise linear in between jumps with only finitely
many changes of slope. Let D, ; = Dy N D;.

Analogous to Theorem 6.2.2 in Section 6.2, we have the following result.

Lemma 8.4.4. (approximation of elements of D, by elements of Dy ;) For
any © € Dy, there exist x,, € Dy such that ||z, — z|| = 0 as n — co.

Proof. For z € D, and € > 0 given, apply Theorem 6.2.2 in Section 6.2 to
find z1 € D, (with only finitely many discontinuities) such that ||z — z1|| <
€/4. The function z; can have jumps of opposite sign, but the magnitude
of the jumps in one of the two directions must be at most ¢/2. Form the
desired function, say z2, from z;. Suppose that {t1,...,t} = Disc(z1).
Suppose that x; has one or more negative jump at t;, none of which has
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magnitude exceeding €/2. If z; has a negative jump at t; in coordinate i
for some 4, then replace z¢ over [tj—1,t;) by the linear function connecting
7t (tj_1) and z%(¢;). Similarly, if z; has one or more positive jumps at some
t; with all magnitudes less than €/2, then proceed as above. It is easy to
see that Disc(z2) C Disc(z1), z2 € Dy and ||z — 22| <e€. =

We now show that limits of parametric representations are parametric
representations when ||z, — z|| — 0.

Lemma 8.4.5. (limits of parametric representations) If (i) ||z, — z|| — 0
as n — o0, (i) (up,rn) € U (zy) for each n, where z = s or w, and (iii)
|un, —ul|| V ||rn —7]] = 0 as n — oo where u and r are functions mapping
[0,1] into R® and R, respectively, then (u,r) € I1,(x) for the same z.

Proof. Since (u,r) is the uniform limit of the continuous functions (uy,7,),
(u,r) is itself continuous. Since r is the limit of the nondecreasing functions
Tn, T 18 itself nondecreasing. Since r,(0) = 0 and r,(1) = T for all n,
r(0) = 0 and (1) = T. Since r is also nondecreasing and continuous, r
maps [0, 1] onto [0,T]. Pick any s with 0 < s < 1. Then r(s) = ¢ for some t,
0<t<T,and ry(s) =t, — t as n — oo. Suppose that (u,,r,) € s(zy)
for all n. That means that

Un(8) = an(8)Tn(tn) + (1 — an(s))zn(tn—)

for all n. Since 0 < ay,(s) < 1, there exists a convergent subsequence
{an, (s)} such that oy, (s) = a(s) as ny — co. At least one of the following
three cases must prevail: (i) t,, > t for infinitely many ny, (ii) t,, = ¢
for infinitely many nj and (iii) t,, < ¢ for infinitely many nj. In case
(i), we can choose a further subsequence {rny,} so that Uny, (s) = z(t); in
case (ii), we can choose a further subsequence so that Uny, (s) = a(s)z(t) +
[1 — a(s)]z(t—); in case (iii) we can choose a further subsequence so that
Uny, (s) = z(t—). Since uy(s) — u(s), the limit of the subsequence must
be u(s). Hence, (u(s),r( )) € T'y for each s. Since (u,r) is continuous with

7(0) =0and r(1) =T, (u,r) maps [0, 1] onto I';. Since (up,r,) is monotone
as a function from [0, 1] (Tz,,<) and ||up, — u|| V ||rn — || = 0, (u,7) is
monotone from [0, 1] to (I'y, <). Hence, (u,r) € II;(x). Finally, suppose that
(un,mn) € Ily(zn) for all n. By the result above applied to the individual
coordinates, (u’(s),r(s)) € Iy and thus (u,r) € II,(z*) for each 4, which
implies that (u,r) € I, (z). =
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Proof of Theorem 8.4.3. For z € D,, apply Lemma 8.4.4 to find z,, €
Dy, such that ||z, — z|| — 0. Suppose that (u,r) € II,(z). Then it is
possible to find u, such that (uy,r) € I, (z,) and ||u, —u|| — 0. To do so,
let up(s—(t)) = za(t—) and un(s1(t)) = zn(t), where [s_(t),s4+(8)] = 77" (t)
for each t € Disc(z). If t € Disc(zy)®, let up(s) = un(s4(t)) for s_(t) <
s < s4(t); if t € Disc(zy,), define u, so that ||u, — u|| — 0. Given that
(tun,7) € y(zyn), we can apply mathematical induction over the finitely
many time points such that x, has a jump or a change of slope to show
that (R(uy),r) € I, (R(zy)) for each n. We use Lemma 14.3.4 of the book
critically at this point to treat the discontinuity points of z, in Dy;. The
continuous linear pieces between discontinuities can be treated by applying
the rescaling property in Theorem 8.2.6 (iii) with 5 =1 and n = 0. Finally,
we apply Lemma 8.4.5 to deduce that (R(u),r) € II,(R(z)). For that, we
use the fact that |R(x,) — R(z)|| — 0 and ||R(upn) — R(u)|| — 0.

8.5. M; Continuity Results

In this section we establish continuity and Lipschitz properties of the
reflection map on D = D*¥ = D([0,T],R*) with the M; topologies. Our
first result establishes continuity of the reflection map R (for an arbitrary
reflection matrix () as a map from (D, SM;) to (D, L), where L; is the
topology on D induced by the L; norm

T
lellz, = /0 le(t)ldt (5.1)

Under a further restriction, the map from (D, W M) to (D, W M;) will be
continuous.

Recall that D; is the subset of functions in D without simultaneous
jumps of opposite sign in the coordinate functions; i.e., x € Dy if, for all
t € (0,7), either z(t) —x(t—) < 0 or z(t) — z(t—) > 0, with the sign allowed
to depend upon t. The subset D; is a closed subset of D in the J; topology
and thus a measurable subset of D with the SM; and W M; topologies (since
the Borel o-fields coincide). The proofs of the main theorems here appear
in Section 6.2 of the Internet Supplement.

Theorem 8.5.1. (continuity with the SM; topology on the domain) Sup-
pose that x, — x in (D, SM).
(a) Then
R(z,)(t,) — R(z)(t) in R* (5.2)
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for each t € Disc(z)¢ and sequence {t, : n > 1} with t, —t,

Sup [R(zn)|| < oo, (5.3)
R(z,) = R(z) in (D,Ly) (5.4)
and
P(zy) = Y(z) in (D,WM) . (5.5)
(b) If in addition x € D, then

d(zn) = d(x) in (D,WM), (5.6)

so that
R(z,) — R(xz) in (D,WM) . (5.7)

Proof. (a) We first prove (5.2). Since z, — z in (D,SM;), we can find
parametric representations (u,r) € Ils(z) and (upn,r) € Hs(zy,) for n > 1
such that

lun — || V||rn —7|| = 0.

By Theorem 14.4.1 (a) in the book, R(u)(s) = R(z)(t) for any s € [s_(t), s4(t)] =
r~1(t), since ¢t € Disc(z)¢. Moreover, by Corollary 14.3.4 in the book,
t € Disc(R(z))¢. For any sequence {t, : n > 1} with ¢, — ¢, we can
find another sequence {t,, : n > 1} such that ¢/, — ¢, ¢/, € Disc(z,)¢ and
|R(zn)(t,) — R(zy)(tn)|| = 0 as n — oo. (Here we exploit the fact that
R(z,) € D for each n.) Consequently, R(z,)(t,) — R(z)(t) if and only if
R(z,)(t,) = R(z)(t). By Theorem 13.4.1 (a) again, R(u,)(sp) = R(z)(t],)
for any s, € [s_(t,),s.(t)] = r,1(t,). Since 0 < s, < 1 for all n, any
such sequence {s, : n > 1} has a convergent subsequence {s,, : k > 1}.
Suppose that s,, — s’ as ny — oco. Since t;, = t as n — oo and t;, =
Tn,, (Sn,) — 7(8") as ny — 0o, we must have s’ € [s_(t), s4(¢)]. Then, since
[ R(un) — R(u)[| = 0,

R(n, ) (tn,) = R(un,)(sn,) = R(u)(s) = R(z)(?) .

Since every subsequence of {R(zy)(t!,) : n > 1} must have a convergent
subsequence with the same limit, we must have R(z,)(t)) — R(z)(t) as
n — oo, which we have shown implies that R(zy)(t,) — R(z)(t) as n —
oo, as claimed in (5.2). Next we establish (5.3). For any =z € D, ||z| =
supg<;<7 ||z(t)|| < co. Since dg(zy,z) — 0, ||zn| — ||z|| as n — oco. Hence,
it suffices to show that there is a constant K such that

|R(z)|| < K||z|| forall zeD,
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but that follows from Theorem 13.2.5. We apply the bounded convergence
theorem with (5.2) and (5.3) to establish (5.4). We now turn to (5.5).
Since ¥ (zy) and ¥(z) are nondecreasing in each coordinate the pointwise
convergence established in (5.2) actually implies W M7 convergence in (5.5);
see Corollary 12.5.1 in the book.

(b) First, we use the assumed convergence z, — z in (D, SM;) to pick
(u,r) € Is(z) and (up,rn) € Ls(zy), n > 1, with

[tn = ul[ V[ = 7]l = 0.

Since R is continuous on (D, U), we also have ||R(u,) — R(u)|| — 0. By part
(a), we know that there is local uniform convergence of R(x,) to R(z) at
each continuity point of R(z). Thus, by Theorem 12.5.1 (v) in the book, to
establish R(z,) — R(z) in (D, W M), it suffices to show that

lim Tim wy(R(z,),t,6) =0 (5.8)

50 oo
for each i, 1 <14 < 2k, and t € Disc(R(z)), where
ws(x,t,0) = sup{||z(t2) — [2(t1), z(83)]]| : (81,22, 23) € A(£,0)}  (5.9)
for
A(t,0) = {(t1,t2,83) : (1 —0) VO < t1 <to <t3 < (t+6) AT} .

(Since we are considering the i*" coordinate function R(z,), the function
in (5.9) is real-valued here.) Suppose that (5.8) fails for some 7 and t. Then
there exist € > 0 and subsequences {0} and {ny} such that dx | 0, ny — oo
and

ws(R (2, ),t,01) > ¢ forall &, and mny.

That is, there exist time points t1, , t2,,, and t3,, with
(t — (Sk) VO <t <ton, <t3n, < (t + 5k) AT (5.10)
and . _ _
||RZ($nk)(t2a”k) - [Rz(‘xnk (tl,nk)’Rz($nk (t3,nk)]|| > €. (5'11)

Since the values R'(zp,)(t) are contained in the values R(un,)(s) where
(Uny,Tny) € ILs(zn, ), we can deduce that there are points s;,, for j =1,2,3
such that 0 < s1n, < Son, < 83,0, <1, Ty (Sjny,) = tjm, for j =1,2,3 and
all ny, and

1R (uny) (s2,m0) = [B () (51,m0), B (tm, ) (83,011 > € - (5.12)
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By (5.10) and (5.12), there then exists a further subsequence {n} } such that
tj,n’k — t and Sjmi > Sj as n;c — oo for j = 1,2,3, where 0 < 51 < 59 <
s3 <1, rp (8j) = 7(s;) =1t and

IR () (s2) — [R(u)(s1), R (w)(s3)]l 2 € > 0. (5.13)

However, by Theorem 14.4.2 in the book, (R(u),r) € IL,(R(x)) since z €
D, so that (R'(u),r) € My(R(x)). Hence (R'(u),r) € M, (R(x)). Since
R'(u) is monotone on [s_(t), sy (t)], (5.13) cannot occur. Hence (5.8) must
in fact hold and R!(z,) — R'(z) in (D, My). Since that is true for all i, we
must have R(z,) — R(z) in (D,WM;). =

Under the extra condition in part (b), the mode of convergence on the
domain actually can be weakened. However, little positive can be said if
only z, — z in (D, WM;) without = € Ds; see Example 14.5.3 in the book.

Theorem 8.5.2. (continuity with the WM; topology on the domain) If
ZTn = x in (D, W M) and z € Ds, then (5.7) holds.

The proof of Theorem 8.5.2 is more difficult. We now work towards its
proof. By Theorem 8.4.3, R is Lipschitz on (Ds, W M), but z, need not be
in D;. We show that we can approximate z, by elements of D;.

We first restate Corollary 12.11.2 in the book as a lemma. It states that
Convergence in W My, which of course is implied by convergence in W My,
has the advantage that jumps in the converging functions must be inherited
by the limit function.

Lemma 8.5.1. (inh(_eritance of jumps) If ¢, — = in (D,WMQ), th = tin
[0,T] and =} (tn) — zk,(tn—) > ¢ > 0 for all n, then z*(t) — z*(t—) > c.

For z € D and t € Disc(x), let y(z,t) be the largest magnitude (absolute
value) of the jumps in z at time ¢ of opposite sign to the sign of the largest
jump in z at time ¢. Let y(z) be the maximum of y(z, t) over all t € Disc(z).
We apply Lemma 8.5.1 to establish the next result.

Lemma 8.5.2. If z, — = in (D,W M), then

lim (zn) < 7(z) -

n—00

We only use the following consequence of Lemma 8.5.2.



214 CHAPTER 8. QUEUEING NETWORKS

Lemma 8.5.3. If z,, —» = in (D,WM;) and x € Dy, then y(z,) — 0.

We also use a generalization of Lemma 8.4.4 above, which is established
in the same way.

Lemma 8.5.4. For any x € D, there exist z,, € Dy such that ||z, —z| —
v(z) as n — oo.

We combine Lemmas 8.5.2 and 8.5.4 to obtain the tool we need.

Lemma 8.5.5. If z, — = in (D,WMi) and = € Dy, then there exists
z;, € Dg; for n > 1 such that ||z;, — z,|| — 0.

Proof of Theorem 8.5.2. Given z, — z in (D,W M), apply Lemma
8.5.5 to find z, € Dy, for n > 1 such that ||z}, — z,|| — 0 as n — oco. Then,
by the triangle inequality, Theorem 14.2.5 in the book and Lemma 8.5.3
above,

dp(R(zn), R(z)) < dp(R(zn), R(zh)) + dp(R(zy,), R(z))
< [|R(zn) — R(zp)|| + dw(R(z7,), R(z))
< Kllzg — ol + Kdy(ar,, ).
Since
dp(:v;“w) S dp(mguxn)_‘_dp(mma:)
< lag = znll + dp(@n, z)
— 0,

dy(z),xz) — 0. Hence, d,(R(zy), R(z)) — 0 as claimed. =

Example 12.3.1 in the book shows that convergence x, — z can hold in
(D,W M) but not in (D,SM;) even when z € D,;. Thus Theorems 8.5.1
(a) and 8.5.2 cover distinct cases. An important special case of both occurs
when z € D1, where D; is the subset of £ in D with discontinuities in only
one coordinate at a time; i.e., z € Dy if t € Disc(z*) for at most one i when
t € Disc(x), with the coordinate i allowed to depend upon ¢. In Section 6.7
it is shown that W M; convergence x,, — x is equivalent to SM; convergence
when z € D;.

Just as with Dy above, D; is a closed subset of (D, J;) and thus a Borel
measurable subset of (D, SM;). Since Dy C Dy, the following corollary to
Theorem 8.5.2 is immediate.



8.5. M; CONTINUITY RESULTS 215
Corollary 8.5.1. (common case for applications) If z,, — = in (D, W M)
and x € Dy, then R(z,) — R(z) in (D, W M).

We can obtain stronger Lipschitz properties on special subsets. Let
D, be the subset of x in D with only nonnegative jumps, i.e., for which
z'(t) — 2*(t—) > 0 for all i and ¢. As with D, and D; above, D/ is a closed
subset of (D, J;) and thus a measurable subset of (D, SM;).

Theorem 8.5.3. (Lipschitz properties) There is a constant K (the same as
associated with the uniform norm from Theorem 8.2.5) such that

ds(R(z1), R(22)) < Kdy(z1,72) (5.14)
for all x1,z9 € D, and
dp(R(z1), R(z2)) < dy(R(z1), R(z2)) < Kdy(z1,22) < Kdg(z1,22) (5.15)
for all x1,z9 € Ds.
Proof. Given that x € D, apply Theorem 14.4.2 (a) in the book to get
(R(u),r) € IIi(R(x)) when (u,r) € IIs(x). Then
ds(R(z1), R(z2))

inf u —ubl|V|r —r
L (R R LR
i=1,2

< inf uy) — o(u Vry —
S i (19000 = BVl = ral}

< inf  {K||uy —uz| V[lr1 —rol|}

(ujorg)€Ts(24)
i=1,2
S de (:L‘].a x2)

because K > 1. The other results are obtained in essentially the same
way. Apply Theorem 14.4.3 in the book to get (R(u),r) € I, (R(z)) when
(u,r) € Iy (z) and x € D;. When z € Dy, apply Theorem 13.4.2 (b) to get
(R(u),r) € II,(R(z)) when (u,r) € Il5(z). =

We can actually do somewhat better than in Theorem 8.5.1 when the
limit is in D

Theorem 8.5.4. (strong continuity when the limits is in D) If
zn =z in (D,SMp), (5.16)
where x € D, then

R(zy) = R(z) in (D,SM) . (5.17)
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Proof. Suppose that z, — z in (D,SM;). By Theorem 8.5.1(a), we
have (z,) — ¥(z) in (D,WM;). Since x € Dy, 9(z) € C, by Corollary
14.3.5 in the book. Hence the W M; convergence is equivalent to uniform
convergence; i.e.,

$(xn) = p(z) i D([0,7],R*,U) .
We can then apply addition with equation (14.2.6) in the book to get
R(z,) — R(z) in D([0,T],R* SM;). =

Our final result shows how the reflection map behaves as a function of
the reflection matrix @), as well as x, with the M7 topologies.

Theorem 8.5.5. (continuity as a function of (z,Q)) Suppose that Q, — Q
in Q.
(a) If z, — z in (D¥,WM,) and z € Dy, then

R, (z,) = Rg(z) in (D* WMy) . (5.18)
(b) If z,, — x in (D*,SM;) and x € D, then
Rg, (zn) = Rg(z) in (D**,SMy) . (5.19)

Proof. We only prove the first of the two results, since the two proofs are
essentially the same. If z,, — z in (D, W M;) with z € Dy, then we can find
z;, € Dy, for n > 1 such that ||z, — z;,|| = 0 by Lemma 8.5.5. By Theorem
14.2.5 in the book,

IRq. (2n) — Rq, (27)|| < Knllzn — ]| — 0 (5.20)

because K, — K < oo. By Theorem 14.4.3 in the book, (Rg(u),r) €
II,(R(x)) when x € Ds. So, for any ¢ > 0 given, let (u,r) € I, (z) and
(un,7n) € Iy(z}) such that |u, — u|| V ||rp — 7] < €. Then (Rg(u),r) €
I, (Rg(z)), (Rg, (un),rn) € Iy(Rg, (x),)) for n > 1 and

1R, (un) — Ro(u)|| < K(e+[|Qn — QI)) (5.21)
by Theorem 14.2.9 and equation (14.2.35) in the book, so that
Rg, (z},) = Rg(z) in (D* ,WMy). (5.22)

Combining (5.20), (5.22) and the triangle inequality with the metric d),, we
obtain (5.18). =

We can apply Section 6.9 to extend the continuity and Lipschitz results
to the space D([0,00), RF).
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Theorem 8.5.6. (extension of continuity results to D([0, c0), R¥)) The convergence-
preservation results in Theorems 8.5.1, 8.5.2 and 8.5.4 and Corollary 8.5.1
extend to D([0,00), R).

Proof. Suppose that z,, — z in D([0,00), R¥) with the appropriate topol-
ogy and that {t; : j > 1} is a sequence of positive numbers with ¢; €
Disc(z)¢ and t; — oo as j — oo. Then, 4, (zn) — 7 (7) in D([0, o0), R¥)
with the same topology as n — oo for each j, where r; is the restriction map
to D([0,#], R¥). Under the specified assumptions,

rt; (R(zn)) = Ry, (r1;(zn)) = Ry (re; (z)) = rt; (R(z)) (5.23)
in D([0,,],R?*) with the specified topology as n — oo for each j, which

implies that
R(z,) = R(z) in D([0,00), R%*) (5.24)

with the same topology as in (5.23). =

Theorem 8.5.7. (extension of Lipschitz properties to D([0,00), RF)) Let
R : D([0,00),R¥) — D([0,00),R?*) be the reflection map with function do-
main [0,00) defined by Definition 8.2.1. Let metrics associated with domain
[0,00) be defined in terms of restrictions by (?7) in Section 6.9. Then the
conclusions of Theorems 8.2.5, 8.2.7 and 8.5.3 also hold for domain [0, 0).

Proof. Apply Theorem 12.9.4 in the book. =

8.6. Limits for Stochastic Fluid Networks

Nothing has been omitted from Section 14.6 of the book.

8.7. Queueing Networks with Service Interruptions

Nothing has been omitted from Section 14.7 of the book.

8.8. The Two-Sided Regulator

Nothing has been omitted from Section 14.8 of the book.
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8.9. Existence of a Limiting Stationary Version

In this section, drawing on and extending Kella and Whitt (1996), we
show that there exists a proper limiting stationary version of a reflected
stochastic process under natural conditions. We establish existence and
uniqueness of the limiting stochastic process, but we do not otherwise char-
acterize the limiting marginal distribution on R* or determine how to cal-
culate it.

Our existence and uniqueness results with general initial conditions cover
the case of the reflected Lévy process obtained as the heavy-traffic limit of
the vector-valued buffer-content stochastic processes in a stochastic fluid
network, as in Section 14.6 of the book, when the exogenous input processes
at the different nodes are independent Lévy processes (i.e., processes with
stationary independent increments) under a natural condition on the net
input rates. We also obtain useful results about more general reflected
processes without the independence conditions.

8.9.1. The Main Results

We are given a net-input stochastic process {X(¢) : ¢ > 0} and the
associated reflected content stochastic process

Z(t) = $X)(1) = X() + (T - Q¥ (1), ¢>0, (9.1)

where Y = (X)) is the minimal nondecreasing nonnegative stochastic pro-
cess such that Z > 0, as in Definition 8.2.1. We want to consider the limiting
behavior as ¢ — co. We want to determine conditions under which

(Zs(t1), -y Zs(tm)) = (Zu(t1), ..., Zu(tm)) in RF™ as s—o00 (9.2)

for all positive integers m and any m time points ¢; with 0 <11 < --- < tp,
where
Zst)y=Z(s+t), t>0, s>0, (9.3)

and the limiting stochastic process Z, = {Z.(t) : t > 0} is a stationary
stochastic process, i.e., where

(Zo(ts +h), ..., Za(tm + B) S (Zu(t1),- .., Zultm))

for all positive integers m, any m time points ¢; with 0 <t < -+ <1, and
all h > 0. We also want the limit process to be proper, i.e., we want to have

P(Z,(t) <oc)=1 forall ¢.
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We then call the stochastic process Z, the limiting stationary version of Z.

We first observe that convergence of the finite-dimensional distributions
in (9.2) for processes Z, defined as in (9.3) directly implies that the limit
process Z, is stationary.

Lemma 8.9.1. (stationarity from convergence) If
(Z(s+t1),..s Z(s +tm)) = (Ze(t1), ..., Zu(tm)) in RE™ (9.4)

as s = oo for all positive integers m and all m time points t; with 0 < t; <
coo < ty, then Z, is a stationary process.

Proof. If (9.4) holds, then
(Z(s+ti+h),...,Z(s +tm + k) = (Zi(t1 +u),..., Z(tm +u)) (9.5)

as s — oo for any u, 0 < u < h, because we can let s’ = s+h—u, t; = t;+u,
1 <i<m,andlet s’ — oo with (9.4). Hence the distribution of the random
vector on the right in (9.5) must be independent of u. =

In order to obtain a unique limiting stationary version, we will assume
that the net-input process X has stationary increments, i.e., the joint dis-
tribution of the random vector

(X (b1 +5) = X (1 +8), -, X (b + 8) = Xt + 5))

in R¥™ is independent of s for all positive integers m and all m-tuples of
real numbers (t1,...,t,) and (u1,...,un). We assume that X is defined on
the whole real line (—o0,00). As a consequence,

X;={X({t+s)—X(s):t>0} (9.6)

has a distribution as a random element of D¥ independent of s. We will also
assume that X has ergodic increment, i.e., the increment X (¢ + s) — X(s)
have finite mean and

t1X(t) - E[X(1) — X(0)] w.p.l as t—o00.

Here is our main result: In addition to the assumptions above, it depends
on the special initial condition X (0) = 0, which forces Z(0) = Y (0) = 0.
The proof of the following result and several others are given at the end of
the section.
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Theorem 8.9.1. (existence of a limiting stationary version) If X has sta-
tionary ergodic increments with X(0) =0 and

(I-Q'EX(1) - X)) <0, 1<i<k, (9.7)

then (9.2) holds, i.e., the finite-dimensional distributions of Zs in (9.3) con-
verge as s — oo to the finite-dimensional distributions of a proper stationary
stochastic process Z,.

We now show the necessity of condition (9.7), leaving untouched the
boundary case of equality. In particular, we show that a proper limit cannot
exist if the strict inequality in (9.7) is reversed in any coordinate 7. Indeed,
then the i*P coordinate of the reflected process grows without bound.

Theorem 8.9.2. (necessity of the drift condition) Suppose that

t1X(t) >z in R wpl as t— . (9.8)
If
I-Q)'z<0, (9.9)
then
t71Z(t) -0 as t— oo w.p.l (9.10)

for Z in (9.1). On the other hand, if (I — Q~')x)* > 0 for some i, then

liminft~*Z*(t) >0 for that i . (9.11)

t—o0

Proof. By Corollary 3.2.1 in the Internet Supplement, the SLLN in con-
dition (9.8) implies the stronger FSLLN

X, —ze in D wp.l

for
X,(t) =n"'X(nt), t>0.

By Theorem 8.2.5,
d(X,) = p(ze) in D w.pl as n— oo.
However, condition (9.9) implies that ¢(ze) = 0. Hence, (9.10) is obtained

by applying the projection map 71 (z) = z(1). Finally, we obtain (9.11) from
(9.8) after noting from (9.1) that (I - Q) 'Z > (I - Q) 'X. =
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Theorem 8.9.1 does not cover all cases, because it requires the special
initial condition X (0) = 0. However, we also obtain additional results with
other initial conditions below. A difficulty occurs because in general the
initial condition X (0) and the remaining net-input process {X(¢) — X(0) :
t > 0} are dependent. Hence, in general we cannot talk about the increments
process as if it did not depend upon the initial condition. Nevertheless, we
are able to obtain some positive results. We first establish a tightness result;
see Section 11.6 of the book.

Theorem 8.9.3. (tightness under general initial conditions) If X has sta-
tionary ergodic increments, and if condition (9.7) holds, then the family of
random variables {Z(t) : t > 0} is tight in RE.

Since tightness in product spaces is equivalent to tightness of the com-
ponents in each coordinate by Theorem 11.6.7 in the book, Theorem 8.9.3
implies the following.

Corollary 8.9.1. (tightness of the finite-dimensional distributions) Under
the conditions of Theorem 8.9.3, the family {Zs(t1),...,Zs(tm) : s > 0} is
tight in RE™ for every positive integer m and m time points 0 < t; < --- <

tm-

We can combine Prohorov’s theorem (Theorem 11.6.1 in the book) with
monotonicity to obtain the following result.

Corollary 8.9.2. (convergence of subsequences) Under the conditions of
Theorem 8.9.3, every subsequence {Z(ty) : k > 1} based on a sequence
{tx : k > 1} of nonnegative numbers has a convergent subsequence {Z(t},) :
kE>1}. If Z(ty) = L in R* as t;, — oo, then

Z:(0) < L, (9.12)
where Z, is the stationary process obtained in Theorem 8.9.1 and
P(li<oo)=1, 1<i<k.

If we can conclude that the process Z gets arbitrarily close to the origin,
then we can replace tightness in Theorem 8.9.3 with convergence.

Theorem 8.9.4. (convergence if the origin is approached) If, in addition
to the assumptions of Theorem 8.9.3, for any € > 0 there exists random time
Te with

P(T.<o0)=1 (9.13)



222 CHAPTER 8. QUEUEING NETWORKS

such that
1Z(Te)| <€, (9.14)

then the finite-dimensional distributions of Zs in (9.3) converge as s — oo
to the finite-dimensional distributions of the limit process Z, in Theorem
8.9.1.

We can obtain a stronger conclusion if the origin is actually hit for all
initial positions.

Theorem 8.9.5. (coupling if the origin is always hit) If, in addition to the
assumptions of Theorem 8.9.3, for each initial value X (0), there exists a
random time T with P(T < o) = 1 such that Z(T) = 0, then the process
{Z(t) : t > 0} couples with the stationary version in finite time, so that

li)m Ef(Zs) = Ef(Z*)
for all measurable real-valued functions f on DF.

However in general {Z(t) : ¢ > 0} need never visit a neighborhood of the
origin.

Example 8.9.1. The process Z need not vist a neighborhood of the origin.
To see that it is possible to have Z(t) # (0,...,0), and even | Z(t)|| > ¢ >0
for some constant ¢, for all ¢ > 0 under the conditions of Theorem 8.9.3,
consider a two-dimensional case in which either X(t + ¢) — X1(t) > de or
X2(t+€) — X2(t) > e for all ¢, where € and § are small positive constants.
For example, let

0, 3k<t<3k+2
Vi) =

—1, 3k+2<t<3k+3

and

5, 3k+1<t<3k+3
V3(t) =
~1, 3k<t<3k+1

for all nonnegative integers k. Let U be uniformly distributed on [0, 3].
Then {V(t) : t > 0} = {(Vi(t + U),V2(t + U)) : t > 0} is a stationary
process on the positive half line, so that X (¢) = ng(u)du is a net input
process with stationary increments. It is easy to see that the content process
associated with @ = 0 never hits the origin after time 0, and yet for § < 1/2
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it has a proper steady-state distribution. Indeed, eventually Z(t) follows the
deterministic trajectory with Z(3k — U) = (26,0), Z(3k +1 —U) = (0,9)
and Z(3k +2—U) = (4,26). This steady-state trajectory is reached for

max{Z'(0), ZQ(O)})
1—-26 )

t23<1+

By an appropriate choice of units, the limiting trajectory falls outside any
neighborhood of the origin.

We can also modify Example 8.9.1 to construct two stable content pro-
cesses which differ only in their initial conditions but do not couple in finite
time.

Example 8.9.2. Fuailure to couple in finite time. We modify Example 8.9.1
by letting Qiz = P2t,1 = efor 0 < e < §. The content process now approaches
the deterministic trajectory with Z(3k—U) = (20—e+¢€',0), Z(3k+1-U) =
(0,6—e+€)and Z(3k+2-U) = (6,20 —e+¢€'), where € = (202 —¢6)/(1+6).
However, unlike Example 8.9.1, the content process typically does not reach
this cycle in finite time. Suppose one of the two content processes starts
above another, where they have the same net input process X. They move
together until they hit a boundary. However, when the lower process is on
a boundary and the other is not, the other coordinate of the two processes
moves away from each other at rate e. Hence the processes cannot couple
on any boundary, although they do get closer in an appropriate metric as
they hit the boundaries.

Since many of the limiting net-input processes X will be Lévy processes
(i.e., will have stationary independent increments), we now add the inde-
pendent increments property.

Theorem 8.9.6. (existence and uniqueness for Lévy net-input processes
with independent coordinate processes) Suppose that X = (X',..., X*) has
mutually independent marginal processes X*, 1 < i < k, each with stationary
and independent increments, X (0) is proper and condition (9.7) holds. Then
the limit (9.2) holds and the limit has the same distribution as the limit Z,(0)
associated with X (0) = 0.

As mentioned in the beginning of this section, Theorem 8.9.6 applies to
the limit process in Section 8.6 when the scaled versions of the exogenous
arrival process C converge to a Lévy process with mutually independent
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coordinate processes, because the only stochastic component in the net-
input process X is C*. However, in general, Theorem 8.9.6 does not apply
to the heavy-traffic limits for the queueing network in Section 8.7. It does
in the special case in which the coordinate limit process X’ depends only
on the limit of the scaled process associated with the i*" coordinate arrival
process.

It remains to establish more general conditions under which the assump-
tions of Theorems 8.9.4 and 8.9.5 are satisfied. It also remains to find use-
ful expressions for the limiting distributions. Explicit expressions for the
Laplace transforms of non-product-form two-dimensional stationary buffer-
content distributions of stochastic fluid networks with Lévy exogenous in-
put processes have been determined by Kella and Whitt (1992a) and Kella
(1993).

8.9.2. Proofs

We now provide the missing proofs for the results above. We first estab-
lish some bounds and inequalities to be used in the proofs. Let Df be the

subset of nonnegative nonincreasing functions in D¥. As before, let Df be
the subset of nonnegative nondecreasing functions in D,

Theorem 8.9.7. (bounds and inequalities for the reflection map) Assume
that x1,20 € D with o — x1 € D’T“, z3=z1+ (I — Q)¢Y(x2) and w > 0 in
RE. Then

(i) d(z2) > d(z1),
(ii) p(z1) — (z2) € DE,
(i) P(x1) —p(z2) < (I — Q)™ (z2 — 1),
(iv) P(w3) = 1p(z1) — P(z2),
(v) 0< (I —Q)"(h(z2) — ¢a1)) < (I - Q)" (z2 — 1),
(vi) 0 < 1((z2) — ¢(z1)) < Lz2 — 71),
(vii) (I —Q) ! (d(z1 +w) — ¢(21)) € D,

(viii) 1(¢(z1 +w) — ¢(x1)) € D},
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Proof. Parts (i) and (ii) follow for 21,29 € D, by induction from Corollary
14.3.2 and Lemma 14.3.3 in the book. They then follow for x1,z9 € D by
taking limits: Given z1,z9 € D with 9 —z1 € Dy, it is possible to find 1,
and z9,, € D, with 29, — 21, € D4 for all n and ||z, —z;|| = 0 as n — oo
for j = 1,2. Part (iii) follows from Theorem 14.2.4 in the book because

m(ze —z1) =29 —x21 for zo—x1 €Dy .
Turning to (iv), note that

0 < ¢(z3) = 21 + (I — Q)(P(22) + Pp(x3)) (9-15)

and

0 < ¢z1) = w3 + (I — Q)(Y(x1) — (a2)) - (9.16)

From (9.15) and minimality of ¥(z1), it follows that ¥ (z1) < ¥(z2) + ¥ (z3)
for any choice of 1 and z2. From (9.16) and minimality of ¥ (z3), it follows
that ¥ (z3) < ¥(z1) — ¥(z2). Hence we must have 9(z3) = (z1) + ¥(z2
as claimed. Parts (v) —(viii) follow from the relations (I — Q)~'¢(z) =
(I —Q)"'z +4(z) and 1(I — Q) > 0, and Theorem 14.2.4 in the book. =

We now apply Theorem 8.9.7 to determine the shape of several mean
values as a function of time.

Corollary 8.9.3. (concavity of mean values) If X has stationary incre-
ments with X (0) = 0, then the functions (I — Q) *E¢(X)(t))¢, Ev*(X)(t)
and 1E¢(X)(t) are concave functions of t for each i.

Proof. Apply parts (vii), (ii) and (viii) of Theorem 8.9.7, respectively. We
will only prove the first result because the three proofs are essentially the
same. It suffices to show that

(I = Q)" E[H(X)(t + 5) — H(X)(s)])’

is nonincreasing in s for all ¢, but that follows from Theorem 8.9.7(vii),
because ¢(X)(t + s) is distributed as the reflection of X (t) = X (s +t) —
X (s) starting at ¢(X)(s) evaluated at ¢, while ¢(X)(s) is distributed as
the reflection of X, starting at 0 evaluated at ¢, since the law of X is
independent of s. =

We say that a real-valued function f on R, is subadditive if

fty+t2) < ft1) + f(t2)
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for all ¢, € R, . We say that an RF-valued stochastic process { X () : t >
0} is stochastically increasing and subadditive (SIS) if

Ef(X(t1 + 1)) < Ef(X(t1)) + Ef (X (22))

for all nondecreasing subadditive real-valued functions f on R¥.

Corollary 8.9.4. (SIS property) If X has stationary increments with X (0) =
0, then (I — Q)™'Z and 1Z are stochastically increasing and subadditive
stochastic processes.

Proof. Since the two results are proved similarly, we only prove the first.
Let

281,52“) = -Q)'Z(t)
with Z having initial value Z(s1) and net input X, (t) = X (s9 +1t) — X (s2),
t > 0, where 0 < 57 < s9. By Theorem 8.9.7(vii),

Zs,s(t) - ZO,s(t) < Zs,s(o) - ZO,S(O) = Zs,s(o)

for all s,t > 0, or

ZO,O(S + t) = Zs,s(t) < ZO,s(t) + Zs,s(O) ,
so that, for any subadditive function

s
Elf(Zoo(s+1) < E[f(Zos (t)+Zs,s(0))~]
E[f(Z0,s(t))] + E[f (Zs,5(0))]
Elf(Zoo(t))] + Elf (Zo,0(s))] 5

with the last line holding because there is equality in distribution for the
respective terms. =

A key to establishing the important Theorems 14.8.1 and 14.8.6 in the
book is the following stochastic increasing property, which we deduce from
Theorem 8.9.7.

IN N

Theorem 8.9.8. (stochastic increasing starting empty) If X has stationary
increments and X (0) = 0, then the family of processes {Zs : s > 0} in (9.3)
is stochastically increasing in s, i.e.,

Ef(Zs,) < Ef(Zs,)

for 0 < s1 < s9 and all bounded measurable nondecreasing real-valued func-
tions f on D = D([0,00),R¥), using the componentwise order on D.
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Proof. Let Z,(t) (Z(t)) be the content with Z(0) = 0 (Z(0) = Z(s))
and input increments from X in equation (14.8.6) in the book. Then, for
0 S s1 < 52,

A

Zsysi(s1+1) < Zsy 5,(s1+t) forall t>0 w.p.l,

by Theorem 8.9.7 because Z,,_,,(0) = 0 < Z,,_,,(0) = Z(so — s1) and both
processes have the common input increments from X;. Hence,

A~

Ef(Zsy—51) S Ef(Zs,-s51)

for all nondecreasing bounded measurable real-valued functions f on D,

using the usual componentwise order. However, since X 4x ,
(Zg—o(s1+8) 1t >0} S {Z(s1 +1) : t >0} = Z,,

and
{Zsy—s,(s1+1t):t >0} ={Z(s2+1t):t >0} = Zs, .

These last three relations combine to establish the desired conclusion. =
We use the following result to establish Theorem 14.8.3 in the book.

Theorem 8.9.9. (tightness solidarity) Suppose that X has stationary in-
crements. Then {Z(t) : t > 0} is tight for all proper distributions of X (0) if
and only if it is tight for any one.

Proof. Note that {Z(¢) : ¢t > 0} is tight if and only if {(I — Q) *Z(¢) : t >
0} is tight. By Theorem 8.9.7, the processes (I — Q) 1 Z(t) starting at X (0)
and 0, with common increments from X, differ by at most (I —Q)~!|| X (0)]|.
Hence they are tight or non-tight together. Hence, the tightness of the
process with one proper initial condition implies the tightness of the process
starting at 0. Then the tightness of the process starting at 0 implies the
tightness of any other process with another initial condition. =

The key to our tightness results, and thus also our convergence re-
sults, is our ability to bound the marginal processes Z¢ associated with
a k-dimensional reflected process Z = (Z1,..., Z*) by related well-studied
and well-understood one-dimensional reflections. For that purpose, we have
the following bounds.

Theorem 8.9.10. (one-dimensional reflection bounds) For any € D* and
QeQ,
(T = Q)7'2) <(@) < (T- Q) ') (9.17)
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and
$1((I-Q)7'2) S (I - Q) 'p(z) < (I - Q) u(a) , (9.18)
where (11, ¢1) : DF — D% with

W1(2)', $1(2)) = 1 (a%), d1(a”), 1<i<k,
and (1&1,651) : D — D? being the one-dimensional reflection map, i.e.,
$1(z") = 2’ + 11 (a)) (9.19)

and

~

P (zh) = —OiSI;fSt{wi(s)_}, t>0. (9.20)

Proof. For the upper bounds, note that

$1(z) =z + () =2+ (I - Q) — Q) 4u(z) .
By the minimality of ¢ (z) in the definition of (1, ¢),

P(z) < - Q) () -

Therefore,

(I-Q)™'(z) = (I-Q)"'z+y(z) < (I-Q)'z+(I-Q) " 1(z) = (I-Q) "1 ().

Similarly, for the lower bound,

$1((I-Q)'z) = (I - Q) la+9u((I - Q) 'x) (9-21)

and

I-Q) 7 '¢(z) = (I~ Q) 'z +4(a).
Since (I — Q) '¢(x) > 0, we can apply the minimality of v in (9.21) to
deduce that

P1((I - Q) 'z) < 4(x)

and

P((I-Q)7'2) < (I -Q) () . =

In order to apply the one-dimensional reflection bounds in Theorem

8.9.10, we need to have a net input process X with negative drift in each
coordinate. However, from (9.7), we only have X such that (I — Q)~!X
has negative drift in each coordinate. We now show that, given X such
that (I — Q) !X has negative drift, we can bound (I — Q) '¢(X) above by
(I -Q) '¢(X,), where X, (t) = X(t) — yt, t > 0 and X, has negative drift
in each coordinate.
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Theorem 8.9.11. (upper bound with negative drift) Let X be a random
element of D* with stationary increments such that

E[X(1)-X0)] =2 and (I-Q) 'z)f<0, 1<i<k.

For any y € R* with y* > z' and (I — Q)" 'y)' < 0, 1 < i < k (there
necessarily is one), let

Xy(t)=X(t) —yt, t>0.
Then X, has stationary increments (and ergodic increments if X does) with
EX,(1) - X, (0 =2"-y' <0, 1<i<k,
and

(I-Q)7'¢(X) < (I- Q) '¢(X,) . (9.22)

Proof. Only the final conclusion (9.22) requires discussion. Let e be the
identity map, i.e., e(t) =t, t > 0. Recall that

X)) = X(@)+ T -Qp(X)()
p(Xy)(t) = X(@) —yt+ (T - Q)p(Xy) ()
Plye)(t) = yt+ (I —Q)p(ye)(t), t=0.

First, since (I — Q)™ 'y < 0, it is easy to see that
)

$(ye)(t) =0 and y(ye)(t) = —(I - Q)" 'yt .
Then

P(Xy)(t) = p(Xy)(8) + Pye) (1) = X(2) + (I — Q) (P(Xy)(¢) + 1(ye)(?)) -
By the minimality of ¥ (X),

P(X) < p(Xy) + 9(ye)

and

I-Q7'¢(X) = (I-Q7'X +9(X)

(I - Q7' X +9(Xy) +9(ye) = (I - Q)T'¢(X,). =
We now state the classical one-dimensional result, which depends on

the fact that the reflected content ¢(X)(¢) has the same distribution as the

supremum of the time-reversed net-input process for each ¢ (but not for
multiple t).

IN
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Theorem 8.9.12. (classical one-dimensional result) If X is a real-valued
stochastic process with stationary increments such that

X, (t) = —X(—t) & —o0

as t — oo and X (0) is proper, then there exists a proper random variable L
such that
HX)t)=L in R as t— oo.

Proof. First assume that X(0) = 0. Given the time reversed process
X,(t) = —X(—t), t > 0, note that

(X)) L X1(t) foreach t>0.
Since X, (t) > —oc0 as t — o0 and X, € D,
XI(t) = X/ (c0) <00 ast— oo w.p.l.

Hence the desired conclusion holds with the proper limit L 4 xt (00). Now
suppose that X (0) # 0. Since X (t) — —oo w.p.1, the processes Z (t) starting
at 0 and X (0), with common net input process X, couple w.p.1. Hence we
can invoke Theorem 8.9.5. =

We now provide the missing proofs of theorems earlier in this section.

Proof of Theorem 8.9.1. By Theorem 8.9.8, the family of processes Z; in
(9.3) are stochastically increasing in s. Consequently, the finite-dimensional
distributions of Z; are stochastically increasing in s. The cumulative dis-
tribution functions (cdf’s) of (Zs(t1),..., Zs(t)) in RE¥™ thus converge as
s — oo to a possibly improper cdf; e.g., see Chapter VIII of Feller (1971).
It thus suffices to show that {Z(t) : t > 0} is tight for each 4, for which it
suffices to show that {((I — Q)~'Z(¢))* : t > 0} is tight for each i. (The
tightness implies that the limiting cdf is proper.) By Theorem 8.9.11, we can
bound (I — Q) '¢(X) above by (I — Q) *¢(X,), where X, (t) = X (t) — yt
for appropriate y € R¥ and

—oo < B[Xj(1) — X}(0)] <0 forall i. (9.23)

By (9.18) in Theorem 8.9.10, we can bound (I — Q)~'¢(X,) above by
(I—Q)~'¢1(X,), where ¢; is the vector of one-dimensional reflection maps.

Hence it suffices to show that {¢; (Xi(t) : t > 0} is tight for each i, where
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$1 is the one-dimensional reflection map in (9.19). However, ¢ (X;)(t) con-
verges to a proper limit by Theorem 8.9.12. The condition —X (—t) — —o0
in Theorem 8.9.12 holds for X, by virtue of (9.23) and that fact that
{—=X(t)} is a process with stationary ergodic increments (Stationarity and
metric transitivity are invariant under time reversal, and ergodicity is equiv-
alent to metric transitivity.) The assumptions imply that

_1 > - .
—t7 X} (~t) > E[X}(1) — X}(0)] as t—oco w.p.l

for each 7, which implies that —X;(—t) — —oo w.p.1 ast — oc foreach i. =

Proof of Theorem 8.9.3. By Theorem 8.9.1, we have convergence to a
proper limit L for the process {Zy(t) : t > 0} starting from the origin. By
the continuous mapping theorem,

I—-Q) 'Zyt) = T —-Q) 'L as t— 0.
If X(0) is proper, then so is X (0)* = (X!(0)*,...,X*(0)*). Then, from
Theorem 8.9.7(i) and (v),
0< (I-Q) ' Zx()(t) < (I-Q) ™' Zx(o)+(t) < (I-Q) ™' Zo(t)+(I-Q) ' X (0) 7,

where here Z,,(t) denotes the process governed by X with initial position
w. Hence

P(((I = Q)" Zx()(1))'| > 2K) < P([(I = Q)™ Zo(1))'| > K)
+P(I(I-Q)7'X(0))| > K),
so that the tightness holds by the results above. =

Proof of Corollary 8.9.2. We can combine Prohorov’s theorem (Theo-
rem 11.6.1 in the book) with monotonicity. By Theorem 8.9.7,

Z() (t) S ZX(O) (t) for all ¢. (924:)

Since Zy(t) = Z,(0) by Theorem 8.9.1, (9.12) must hold. (Stochastic order
on R* is preserved under weak convergence.) =

Proof of Theorem 8.9.4. Since (9.24) holds and
(I-Q) " (Zx, — %) € D} ,
by Theorem 8.9.7(vii),
0<(I—Q) " (Zxw)(t) — Zo(t)) (I — Q) '1le forall t>T..

Since Zy(t) = L as t — oo by Theorem 8.9.1 and ¢ is arbitrary, we must
have Zx(o)(t) = L too. =
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Proof of Theorem 8.9.5. The processes starting at 0, X (0) or Z,(0) can
all be given a common net input process X (t) — X (0), ¢ > 0. Hence, they all
must couple when the process starting at Z(0) vV Z*(0) first hits the origin. =

In preparation for the proof of Theorem 8.9.6, we now establish a prop-
erty of the limiting distribution in the one-dimensional case when X is a
Lévy process.

Theorem 8.9.13. (mass near the origin) If, in addition to the assumptions
of Theorem 8.9.12, the one-dimensional net-input process X has independent
increments, then

P(L<e)>0 forall €>0,

where L is the limiting random variable.

Proof. Consider the time reversed process X, defined in Theorem 8.9.12.
Tt suffices to show that P(X](c0) < €) > 0. Suppose not. Then P(X;(c0) >
€) = 1, which implies that P(7T, < o) = 1, where

Te =inf{t > 0: X, (t) > €} .

Using the regeneration property associated with the stationary independent
increments, that in turn implies that

limsup X, (t) = +o0 w.p.1,
t—o0
which contradicts the limit X,(f) — —oo w.p.l. Hence we must have
P(X](c0) <€) >0 for all € > 0 as claimed. =

Proof of Theorem 8.9.6. The conditions allow us to apply Theorem
8.9.4. Theorems 8.9.10 and 8.9.11 allow us to bound the process (I —
Q)"1¢(X)(t) above by (I—Q)1¢1(X,)(t), as in the proof of Theorem 8.9.1.
However, ¢;(X,) has mutually independent coordinate processes. Let L' be
the limit random variable for the one-dimensional process associated with
$1(Xy) and coordinate i. Since, for any e > 0,

P(L'<e,...,LF<e)=J[P(L'<e)>0
=1

by the independence and Theorem 8.9.13 we must have P(7, < oco) =1 for
the random time 7T in Theorem 8.9.4. =
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As mentioned earlier, Theorem 8.9.6 applies to the limit process in Sec-
tion 14.6 in the book when the scaled versions of the exogenous arrival pro-
cess C converge to a Lévy process with mutually independent coordinate
processes, because the only stochastic component in the net-input process
X* is C". However, in general, Theorem 8.9.6 does not apply to the heavy-
traffic limits for the queueing network in Section 14.7 of the book. It does
in the special case in which the coordinate limit process X¢ depends only
on the limit of the scaled process associated with the i*! coordinate arrival
process.
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