Chapter 7

Useful Functions

7.1. Introduction

This chapter contains proofs omitted from Chapter 13 of the book, with
the same title. As before, the theorems to be proved are restated here. The
section and theorem numbers parallel Chapter 13 in the book, so that the
proofs should be easy to find.

We counsider four basic functions introduced in Section 3.5 of the book:
composition, supremum, reflection and inverse. Another basic function is
addition, but it has already been treated in Sections 12.6, 12.7 and 12.11
of the book. Our treatment of useful functions follows Whitt (1980), but
the emphasis there was on the J; topology, even though the M; topology
was used in places. In contrast, here the emphasis is on the M; and M-
topologies.

Here is how this chapter is organized: We start in Section 7.2 by con-
sidering the composition map, which plays an important role in establishing
FCLTs involving a random time change. We consider composition without
centering in Section 7.2; then we consider composition with centering in
Section 7.3.

In Section 7.4 we study the supremum function, both with and without
centering. In Section 7.5 we apply the supremum results to treat the (one-
sided one-dimensional) reflection map, which arises in queueing applications.

We start studying the inverse function in Section 7.6. We study the
inverse map without centering in Section 7.6 and with centering in Section
7.7. In Section 7.8 we apply the results for inverse functions to obtain
corresponding results for closely related counting functions.

In Section 7.9 we apply the previously established convergence-preservation
results for the composition and inverse maps to establish stochastic-process
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164 CHAPTER 7. USEFUL FUNCTIONS

limits for renewal-reward stochastic processes. When the times between the
renewals in the renewal counting process have a heavy-tailed distribution,
we need the M; topology.

In Chapter 3 of the Internet Supplement we discuss pointwise conver-
gence and its preservation under mappings. The prservation of pointwise
convergence focuses on relations for inidvidual sample paths, as in the queue-
ing book by El-Taha and Stidham (1999). There we see that a function-space
setting is not required for all convergence preservation.

7.2. Composition

This section is devoted to the composition function, mapping (z,y) into
x oy, where

(zoy)(t) ==z(y(t)) forall ¢.

The composition map is useful to treat random sums and, more generally,
processes modified by a random time change; e.g., see Section 13.9 of the
book on renewal-reward processes.

Henceforth in this chapter, unless stipulated otherwise, when D = DF,
so that the range of functions is R¥, we let D be endowed with the strong
version of the Ji, M; or My topology, and simply write Ji, Mj or My. It
will be evident that most results also hold with the corresponding weaker
product topology.

7.2.1. Preliminary Results

To ensure that zoy € D, we will assume that y is also nondecreasing. We
begin by defining subsets of D = D¥ = D([0, o), R*) that we will consider.
Let Dy be the subset of all z € D with z%(0) > 0 for all i. Let D and Dyt be
the subsets of functions in Dy that are nondecreasing and strictly increasing
in each coordinate. Let D,, be the subset of functions x in Dy for which
the coordinate functions z* are monotone (either increasing or decreasing)
for each i. Let Cp, C4, C4 and Cp, be the corresponding subsets of C; i.e.,
Cy =CnN Dy, CTECQDT, CTT:CHDTT’ and Cy,,, = C N Dy,.

It is important that all of these subsets are measurable subsets of D
with the Borel o-fields associated with the non-uniform Skorohod topologies,
which all coincide with the Kolmogorov o-field generated by the projection
maps; see Theorems 11.5.2 and 11.5.3 in the book.

Returning to the composition map, we state the condition for zoy € D
as a lemma.
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Lemma 7.2.1. (criterion for z oy to be in D) For each z € D([0, 00), R¥)
and y € D+([0,00),R), z oy € D([0,00), RF).

A basic result, from pp. 145, 232 of Billingsley (1968), is the follow-
ing. The continuity part involves the topology of uniform convergence on
compact intervals.

Theorem 7.2.1. (continuity of composition at continuous limits) The com-
position map from DF x D% to D* is measurable and continuous at (z,y) €

k 1
C xC'T.

Our goal now is to obtain additional positive continuity results under
extra conditions. We use the following elementary lemma.

Lemma 7.2.2. Ify(t) € Disc(x) and y is strictly increasing and continuous
at t, then t € Disc(z oy).

The following is the Ji result.

Theorem 7.2.2. (Ji-continuity of composition) The composition map from
DF x D% to D* taking (z,y) into (zoy) is continuous at (z,y) € (CF x D%)U
(D* x CTIT) using the Ji topology throughout.

Proof. First suppose that (z,,y,) — (z,y) in DF x D% with (z,y) €

C* x D;. Choose t; € Disc(y)®. Then y, — y for the restrictions to [0,];
i.e., there exist A\, € A([0,%1]) such that |lyn —y o A\plle, V ||An —elly, = 0.
Choose t, such that y(t;) < tg and y,,(t;) < t5 for all n > 1. Since z € C¥,
lzn — z||t, — 0. By the triangle inequality,

lznoyn —zoyoAullty < l|Tpoyn —zoyullty +|Toyn —zoyoAnlly - (2.1)

The first term on the right in (2.1) converges to 0 because ||z, — z||s, — 0
and the range of y, is contained in [0,%2]. The second term on the right
in (2.1) converges to 0 because z is uniformly continuous over [0,%] and
|Yyn —y o Anllt, — 0.

Next suppose that (z,,y,) — (z,9) in D¥ x D% with (z,y) € D x Cy.
By Lemma 7.2.2 below, y(t) € Disc(x)€ for each ¢t € Disc(z o y)¢. However,
for each t' € Disc(z)¢, we have local uniform convergence of z, to z, i.e.,

lim lim v(zy,z,t,6) =0; (2.2)

0 nooo
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see Section 12.4 in the book. Since y,(t) — y(¢) as n — oo, as a consequence
of (2.2), we have (zy o y,)(t) = (z o y)(t) for each t € Disc(z o y)¢. Now
we show that the closure of the sequence {z, oy, : » > 1} is compact
in the J; topology. Since (z, o y,)(t) — (z o y)(¢) for ¢ in a countable
dense subset, all limits of convergent subsequences must coincide with z oy.
Since all convergent subsequences have the same limit, compactness implies
that the sequence itself must converge; i.e., z, oy, — z oy (J1). Hence it
suffices to show that the closure of {z, oy, } is compact, for which we apply
Theorem 14.4 of Billingsley (1968). For an arbitrary ¢, choose to > y(t1)
with to € Disc(z)¢. Then, for all sufficiently large n, y,(t1) < to and z, — =
for the restrictions in D([0,2], R¥). Tt is easy to see that condition (14.49)
and (14.50) in Billingsley (1968) hold. First, (14.49) holds because

sup |2y o yn(s)|| < sup |[lz,) < oo, (2.3)
0<s<t 0<s<ty
n>1 n>1

since z, —  in D([0, %], R¥, J;). Next (14.50) holds because the oscillation
functions for z,, oy, over [0, ¢1] be bounded above by the oscillation functions
of z, over [0,1;]; e.g., since y € C4 and |y, — y|lt, — 0, for any o there

n

exists ng and d; such that wwnoyn(él) <wj (02) foralln >ng. =

7.2.2. M-Topology Results

We have a different result for the M topologies.

Theorem 7.2.3. (M-continuity of composition) If (zn,yn) — (z,y) in
DF x D% and (z,y) € (D* x CTlT) U (Ck x D%), then zp oy, — oy in
DE, where the topology throughout is My or Ms.

In most applications we have (x,7y) € D¥ x CTIT’ as is illustrated by the
next section. That part of the M conditions is the same as for J;. The
mode of convergence in Theorem 7.2.3 for y, — y does not matter, because
on D%, convergence in the M; and My topologies coincides with pointwise
convergence on a dense subset of [0, 00), including 0; see Corollary ?7.

It is easy to see that composition cannot in general yield convergence in
a stronger topology, because £ oy = z and z, oy, = z,, n > 1, when y,, =
y = e, where e(t) = t, t > 0. Unlike for the J; topology, the composition
map is in general not continuous at (z,y) € C x D% in the M topologies.

We actually prove a more general continuity result, which covers Theo-
rem 7.2.3 as a special case.
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Theorem 7.2.4. (more general M-continuity of composition) Suppose that
(Tn,yn) = (z,y) in D* x D%. If (i) y is continuous and strictly increasing
at t whenever y(t) € Disc(z) and (ii) x is monotone on [y(t—),y(t)] and
y(t—),y(t) € Disc(z) whenever t € Disc(y), then x, oy, — z oy in D*,
where the topology throughout is My or Ms.

Theorem 7.2.3 follows easily from Theorem 7.2.4: First, on DF x C’Tl, 1y is
continuous, so only condition (i) need be considered; it is satisfied because
1y is continuous and strictly increasing everywhere. Second on Cfn X D%, T
is continuous so only condition (ii) need be considered; it is satisfied be-
cause z is monotone everywhere. Hence it suffices to prove Theorem 7.2.4,
which is done in Section 1.8 of the Internet Supplement. The general idea in
our proof of Theorem 7.2.4 is to work with the characterization of conver-
gence using oscillation functions evaluated at single arguments, exploiting
Theorems 6.5.1 (v), 6.5.2 (iv), 6.11.1 (v) and 6.11.2 (iv).

We obtain a stronger result (M; convergence of z, oy, given only My
convergence of z,) if we do not need to invoke condition (i) in Theorem
7.2.4. A sufficient condition is for = to be continuous.

Theorem 7.2.5. (obtaining SM; convergence from W M, convergence) If
the conditions of Theorem 7.2.4 hold with y(t) ¢ Disc(x) for all t, then
Tp o Yp — x oy in (D*,SM;) even if z, — = only in (D*, W M,).

Proof. Apply Lemmas 7.2.4, 7.2.5 and 7.2.8 below. =
We prove Theorem 7.2.4 by identifying four different cases, with each
either having t € Disc(z o y) or not.

Proof of Theorem 7.2.4. We will establish the appropriate characteri-
zation of convergence x, oy, — x oy at each ¢ separately, using Theorems
12.5.1 (v), 12.5.2 (iv), 12.11.1 (v) and 12.11.2 (iv) in the book.

There are four cases to consider:

(i) t & Disc(y) and y(t) € Disc(z), so that t € Disc(z o y);

(if) ¢ € Disc(y), z(u) = z(y(t—)) = =(y(t)) for all u € [y(i—),y(t)] and
y(t—), y(t) € Disc(x), under which t € Disc(z o y);

(iii) ¢t € Disc(y), z(y(t—)) # z(y(t)), = is monotone on [y(t—),y(t)] and
y(t—),y(t) & Disc(x), under which ¢ € Disc(z o y);

(iv) y(t) € Disc(z) and y is continuous and strictly increasing at ¢ so that
t € Disc(z o y).
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In case (ii) we have t ¢ Disc(z o y) even though ¢ € Disc(y). The
regularity conditions in case (ii) follow from condition (ii); since z(y(t—)) =
z(y(t)), monotonicity reduces to a constant value over the subinterval. Case
(iii) differs from case (ii) by having z(y(t—)) # z(y(¢)), which makes ¢ &
Disc(zoy). The regularity conditions in case (iii) again follow from condition
(ii). The regularity conditions in case (iv) when y(t) € Disc(z) follow from
condition (i). We use Lemma 7.2.2 in case (iv). In each case we know
whether or not ¢t € Disc(x o y). The four cases are covered by subsequent
lemmas as follows: Case (i) by Lemmas 7.2.3-7.2.4; case (ii) by Lemma
7.2.5; case (iii) by Lemmas 7.2.6-7.2.8; and case (iv) by Lemma 7.2.10. =

We now establish several lemmas in order to complete the proof of The-
orem 7.2.4. Throughout, we assume that (z,,y,), n > 1, and (z,y) are
elements of D¥ x D%. Refer to Section 12.4 of the book for the oscillation
functions.

Lemma 7.2.3. If v(yn,y,t,01) < d2 in D%, then
u(fEn O Yn,TOY,t, 51) < ’U(Ilfn,.T,y(t), 52) + Il_}(x °oy,t, 51)

for v in (12.4.2), u in (12.4.1) and v in (12.4.3), all in Section 12.4 of the
book.

Proof. By the condition, |y,(t1) — y(t)| < d2 provided that 0V (t — d1) <
t1 < (t+ 61) AT. Hence, for ¢; in that range,

[@noyn)(t1) = (o)) < llznlyn(tr) — 2(y(@))]]
Hlz(y(2) = z(y(E)

—
< v(zp,z,y(t),02) +v(xoy,t,b1) . =

Lemma 7.2.4. Ift ¢ Disc(y), y(t) & Disc(x),

lim lim v(yn,y,t,6) =0 24
TR 2.0
and o
lim lim v(zy,,z,y(t),0) =0, (2.5)
0 nooo
then o
lim lim v(z,oyn,zo0y,t,d)=0. (2.6)

R
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Proof. Since t ¢ Disc(y) and y(t) & Disc(z), t ¢ Disc(x oy) and 9(z o
y,t,01) = 0 as 81 — 0. We apply Lemma 7.2.3: For € > 0 given, choose d,
and ni so that

(T, z,y(t),02) < €/2 for n>mn;.
Then choose ¢; and ny > ny so that v(zoy,t,d1) < €/2 and
V(Yn,y,t,01) <o for n>ng.
By Lemma 7.2.3,
w(zp o yp,x0y,t,01) <e for n>ngy.
Since € was arbitrary, we have shown that

lim Lim u(z,oyn,z0y,t,6) =0,
00 pyoo

which is equivalent to (2.6) by Theorem 12.4.1 in the book. =
Recall the my, is the product metric inducing the W M> topology.

Lemma 7.2.5. Suppose that t € Disc(y) but y(t) ¢ Disc(z), y(t—) ¢
Disc(z) and z(y(t)) = z(y(t—)) so that t ¢ Disc(x o y), i.e., case (ii)
in Theorem 7.2.4. If my(yn,y) — 0 and my(z,,z) — 0 as n — oo, and
z(u) = z(y(t)) for all u € [y(t—),y(t)], then (2.6) holds.

Proof. Since u & Disc(z) for all u € [y(t—),y(t)] and my(z,,z) = 0 as
n — oo, for € > 0 given, we can choose §; and ng so that

sup {llzn(u) —2(u)] <€ (2.7)
OV(y(t—=)—81)<u<(y(t)+81)AT
for all n > ng by Lemma 12.4.2 in the book. Since z(u) = z(y(t)) for
y(t—) < u < y(t) and z is continuous at y(t—) and y(t), from (2.7) we can
obtain d9 such that
sup {llzn(u) —2(y(@)I} < 2e (2.8)

OV (y(t—)—d2) <u<(y(£)+62) AT

for n > ng. By right continuity and the existence of left limits, we can
choose t1 < t < ty such that

y(t) <y(t—) <y(t1) +062/2, (2.9)
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y(t) <ylta) <y(t) +62/2, (2.10)
[z o y)(t;) — (zoy)(t)]| <€, (2.11)

and t; ¢ Disc(y) for j = 1,2. Applying (2.4), we can choose d3 > 0 and
n1 > ng so that

U(yn,yatja53) < 52/2 (212)
for all n > ny and j = 1,2. Combining (2.9)—(2.12), and using the mono-
tonicity of y, and y, we have for 0V (t — d3) < t/, t" < (t+83) AT,
lyn (') = {y(t=), y(®)}| < J2. Thus, by (2.8),

20 0 yn(t) =z oyt < llznoyn(t) —zoy(B)l| +llzoy(t) —zoy(t”)|| < 3e.

Since € was arbitrary, we have established (2.6). =
We now turn to case (iii). We first show how we can exploit the mono-
tonicity condition.

Lemma 7.2.6. (characterization of My convergence at a monotone limit)
Suppose that x is monotone on [a,b]. Then z, — = in D([a,b],RE, W My) if
and only if x,, — = pointwise on a dense subset of [a,b] and

nli)lgo w*(zn,[a,b]) =0, (2.13)
where
w'(z,[a,0]) = sup  {|lz(tz) — [z(t1), z(L3)][} - (2.14)
a<t; <t2<t3<b

These imply that x, = = as n — o in SMy as well.

Proof. Clearly ws(z,d) < w*(z, [a,b]) on D([a,b],R*) for all § > 0, where

ws(z,0) = sup ws(z,t,0)
a<t<b

for wg(z,t,d) in equation (12.4.4) of the book, so that (2.13) plus the point-
wise convergence implies that z, — z as n — oo in SM;, by the basic
characterization of SM; convergence, which in turn implies convergence in
W Ms,. To go the other way, suppose that w*(zy,[a,b]) /4 0 as n — oo.
Then there exist € > 0 and subsequences {ny}, {t,, ;} for j = 1,2 and 3
such that n; — oo and

||‘T’nk (tnk,Q) - [‘T"k (tnkyl)’xnk (tnk,?»)]H > € (2'15)



7.2. COMPOSITION 171

for all ng. There are thus further subsequences {n}}, {t;, ,} for j = 1,2,
and 3 so that t;lk,j — t; as nj, — oo for each j, where ¢; < to < ¢3. Assuming

that z, — z as n — oo in WM,, we have z,y (t;, ) — [[z(t;—), z(¢;)] as

nj, — 00, by the characterization of WM, convergence. This, with (2.15)
and the monotonicity of z, implies that

llgiagﬁgc{llﬁﬂi(tz—) —[z'(t1-), 2 (W)l Nl (t) — [2*(t1—), 2" (ta)]ll > O,

which is impossible because z! is monotone for each i. Hence, (2.13) must
hold when x,, >z asn — oo in WM. =

We will also apply the following elementary lemma, for which we omit
the proof. We use the oscillation functions w; in (12.4.4) and ¥ in (12.4.3)
of the book.

Lemma 7.2.7. If
y(t—) = 82 < yn(t1) < yn(tz) < y(t) + 62
whenever 0 <t — 6§ <t1 <ty <t+ 61, then
Ws(Zn © Yns t,01) < B(2n, y(t), 02) + 0(2n, y(t—), 02) + w* (zn, [y(t—), y(1)])
for w* in (2.14).
We apply Lemmas 7.2.6 and 7.2.7 to establish the following.

Lemma 7.2.8. In case (i), with t € Disc(y), y(t—), y(t) € Disc(x) and
x monotone on [y(t—),y(t)], if (Tn,yn) = (z,7y) in DF(W My) x D%(WMQ),
then

lim lim wg(z, o yn,t,0) =0 .
300 e s(Tn © Yn )

Proof. For any d3 > 0 given, we can find §; so that
y(t—) —02/2 < y(t1) < y(t2) < y(t) + 62/2

for OV (t —61) < t; <ty <t+ d§. By choosing continuity points of y, we
can choose ny > nq so that

y(t—) — 02 < yn(t1) < ynlte) <y(t) + 02
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for all n > ns. Hence we can apply Lemmas 7.2.6 and 7.2.7. By Lemma
7.2.6, w*(zp, [y(t—),y(t)]) — 0 as n — oco. Since z, — z and y(t—), y(t) &
Disc(x),

lim Lim %(zn,y(t),6) =0

010 nooo

and o
lim lim 9(zy,y(t—),0) =0.

00 noeo

An application of Lemma, 7.2.7 completes the proof. =
We now turn to case (iv). We first establish a preliminary result of
independent interest, but which we do not directly need.

Lemma 7.2.9. Suppose that my(zp,z) — 0 in D and m(y,,y) — 0 in
D%, but that y(t) € Disc(x). If y is strictly increasing and continuous in a
neighborhood of t, then (xn 0 yn)(tl) — (zoy)(t') for allt' in a dense subset
of neighborhood of t and all sequences {t}} with t,, — t'.

Proof. In the neighborhood of y(t), there are at most countably many
discontinuities of x. Since y is strictly increasing and continuous in a neigh-
borhood of ¢, y is invertible there. Hence, for suitably small J, and all but
countably many ¢’ in (¢ — do,t + d2), we simultaneously have y continuous
at ¢ and x continuous at y(t'). At all such ¢, we have y,(t,) — y(t') and
Zn(yn(t")) — z(y(t')) whenever t,, — t', because my,-convergence implies
local uniform convergence at continuity points, by virtue of Theorem 12.4.1
in the book.

Corollary 7.2.1. Ify is strictly increasing and continuous whenever y(t) €
Disc(z) and (zp,yn) — (z,y) in D%(Ml) X D%(Ml), then z, oy, — T oy

Proof. By Lemma 7.2.6, My convergence on D% coincides with pointwise
convergence on a dense subset. Apply Lemma 7.2.9. =

Lemma 7.2.10. If m(yn,y) — 0 in D%, where y is continuous and strictly
increasing at t, then for any 6 > 0, we can find §1 > 0 such that, for all n
sufficiently large,

Wy (xn, y(t)a 5) )
Way (.In, y(t)’ 5) ’

ws(-'I»'n © Yn, t, 51)

ww(xn ° Yp, 1, 51)
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II‘T}S(:EWA,'/E,:l/(t)’<S )
ww(mn,x,y(t), 6) .

U_)s(mn OYn, T OY, ta 51)

<
ws($n°yna$°yata51) S

Proof. Since y is continuous at ¢, we can find 1 < t < %2 such that y is
continuous at ¢; and t3 and |y(t) — y(t;)| < 6/2 for j = 1,2. Since y, = y
we can find ng such that |y,(t;) — y(¢;)| < §/2 for n > ny and j = 1,2.
By the triangle inequality, |yn(t;) — y(t)| < d for n > ng and j = 1,2. Let
01 = min{|t—t1], |t—t2|}. Since y, and y are nondecreasing, |y, (t')—y(t)| < &
whenever [t' —t| < d;. Hence

ws(xn ° Yn, L, 61) < ws(x”,y(t), 5)
and
ww(wn O Yn, t, 51) < ww(m'n,y(t), 6) .

Moreover, since y is continuous and strictly increasing, z(y(t)—) = z(y(t—))-
Hence

'Ujs(xn O Yn, T O y,t,él) < "Ds(wml'ay(t)’é)

and
Wy (T © Yn, T 0 Y,1,01) < Wy (T, z,y(t),0) . =
7.3. Composition with Centering

This section considers the composition map with centering. Nothing was
omitted from the book here.

7.4. Supremum

In this section we consider the supremum function, mapping D = D([0,7T], R)
into itself according to

#'(t) = sup z(s), 0<t<T. (4.1)
0<s<t

7.4.1. The Supremum without Centering

The following elementary result is stated without proof.
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Theorem 7.4.1. (Lipschitz property of the supremum function) For any
x1,T2 € D([O,T], ]R),

dJ1(wIaxg) < dj ($1,:L‘2) )
dar, (551,353) < day (21, 22)
sz(wIawg) < dM2(.’E1,£E2) .

The conclusion in Theorem 7.4.1 can be recast in terms of pointwise
convergence: Since z! is nondecreasing, convergence zh — 2! in the M
topologies is equivalent to pointwise convergence at continuity points of z',
because on D+ the M; and M topologies coincide with pointwise conver-
gence on a dense subset of R including 0; see Corollary 12.5.1 in the book.
Thus the M topologies have not contributed much so far. We obtain more
useful convergence-preservation results for the supremum map with the M
topologies when we combine supremum with centering. As before, let e be
the identity map, i.e., e(t) =¢, 0 <t <T.

7.4.2. The Supremum with Centering

The following is the main result stated as Theorem 13.4.2 in the book.
Our object here is to prove it.

Theorem 7.4.2. (convergence preservation with the supremum function
and centering) Suppose that c,(x, —€) =y as n — oo in D([0,T],R) with
one of the topologies Ji, My or My, where ¢, — 0.
(a) If the topology is My or Mo, then cn(a:g—e) — y in the same topology.
(b) If the topology is Ji, then cn(xz —e) — y if and only if y has no
negative jumps.

Before proving Theorem 7.4.2, we establish some preliminary lemmas.
We first give an alternative expression for the result, in the form of a con-
tinuous mapping theorem. Let y, = ¢, (z, — e). Then s,(y,) = cn(zg —e),
where

sn(y) = (y+cne)l —cpe for yeD. (4.2)

Thus the conclusion of Theorem 7.4.2 can be expressed as sy, (yn) — s(y) =y
when y, — y, with the appropriate topology.

Note that, for z € D and sy, in (4.2), sp(z) cannot have any negative
jumps. For any x € D, we can characterize s,(z) as the majorant which
decreases by at most slope ¢, at any time; i.e.,

sp(z) =inf{y € D :y >z, y(t2) —y(t1) > —cu(te —t1)}, (4.3)
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where we allow 0 < t; <ty <T.

Lemma 7.4.1. For any = € D, s,(z) defined by (4.2) satisfies (4.3).

Proof. First note that s,(z) > z. Next note that

sn(z)(t2) — su(z)(t1) = (x4 cne)(t2) — (= + cne) (t1) — cnlte — t1)
> —cu(ta —t).

Finally, suppose that y > z and y(t2) —y(t1) > —cnp(te —t1) forall 0 < ¢; <
to < T. Then s,(y) = y. Since y >z, s,(y) > sp(z). Hence y > sp(z). =

We can also bound s, (z) above for sufficiently large n by another majo-
rant. Let the left-local-majorant of z € ([0,T],R) be

sj(z)(t) = 0v(t§u)z <tx(s), 0<t<T. (4.4)

It is obvious that z < sj(x) for all z and € > 0. Moreover sj(z)(t) is
nonincreasing as € | 0. We now show that sf(z) — z in (D, M>) as € | 0.

Lemma 7.4.2. For any x € D and € > 0, there exists 6 > 0 such that

sz(.’II,S?(ZE)) <e. (4.5)

Proof. First, for z and € given, apply Theorem 12.2.2 in the book to choose
z. € D, such that ||z — z.|| < €/3. For z, it is evident that there exists ¢
with 0 < § < €/3 such that

dury (58 (), ) < 6 < €/3 and ||sd(zc) — 9 (z)|| < €¢/3.
Hence,
dir, (2,57 (2)) < |l& = zcll + dor, (zc, 57 (2)) + 157 () — 5] (@) < e w (4.6)

We now show that s, (z) — = as n — oo in the M, topology, uniformly
over a large class of functions .

Lemma 7.4.3. Let s, be as in (4.2), where ¢, — 0o. For any M and € > 0,
there is an ng such that

dar, (sn(2),2) <€ n2=ng, (4.7)

for all x with ||z|| < M.
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Proof. Let ¢, M and z be given with ||z|| < M. Apply Lemma 7.4.2 to
find ¢ such that m(s?(z),z) < § < e. Choose ng so that c,d > 2M for
n > ng. Then, for n > nyg,

z(8) + cns — cpt < z(t) (4.8)
forall s, 0 < s<t—9,0<t<T, because under those conditions
z(s)+epns—cent <M — ¢, < —M < z(t). (4.9)

Hence, for n > ny,
z < sp(x) < 9 (x), (4.10)

so that, by Lemma 7.4.2, s,,(z) is contained in an M e-neighborhood of z;
ie., (4.7) holds. =
Next, for the J; results we need the following.

Lemma 7.4.4. If z € D([0,T],R) and z has no negative jumps, then for
any € > 0 there is a 6 > 0 such that

v (z,0)= sup {z(')—=z(t)} <e. (4.11)
oV (t—8)<t/ <t
0<t<T

Proof. Under the condition, for any € > 0 and all ¢ € (0,7, there is a §(¢)
such that 0 < ¢t — 6(t) < ¢t and

z(t') <z(t) +e forall t' e (t—4§(t),t). (4.12)

By the right continuity of z at 0, there is a 6(0) such that ||z(¢') —z(0)]| < €
for 0 < ¢’ < §(0). The intervals [0,46(0)), (t — d(t),t), 0 < t < T, form an
open cover of the compact set [0,7]. Hence there is a finite subcover. Let the
subcover be chosen (modified) so that each ¢ is in at most two subintervals.
Let 0 be the minimum length of the overlapping intervals, i.e.,

6 = min{|ts + 0(ti+1) — tisa]} A 6(0). (4.13)

Then, if ¢ is any point in [0, 7], it either belongs to the subinterval [0, 4(0))
or it is at least § away from the left endpoint of one of its subintervals.
Hence property (4.11) holds for § in (4.13). =
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Proof of Theorem 7.4.2. (a) We will show that s,(z,) — = whenever
Zn — z, for s, in (4.2). First consider the My topology. Let M be a
constant so that ||z|| < M/2. Since da, (zn,z) — 0, there is an ng such that
|zn|| < M for all n > ngy. By the condition and Lemma 7.4.3, for any € > 0
there is an ny > ng such that das, (25, z) < €/2 and dag, (sn(zn), ) < €/2
for n > ni. Hence, by the triangle inequality, for n > nq,

sy (sn(2n), ) < day (s(Tn); 2n) + dasy (0, 7) <€

Next consider the My topology. Since M convergence implies My con-
vergence, we have dy, (sp(zy),z) — 0 by the proof above. It thus suffices
to strengthen convergence from Ms to M. In particular, we can apply part
(v) of Theorem 12.5.1 in the book. By Theorem 12.4.1 in the book, the M,
convergence implies the local uniform convergence at continuity points in
condition (12.5.4) in the book, so it only remains to establish the oscillation
function limit at discontinuity points in condition (12.5.5) in the book; i.e.,

lim lim ws(sy(zn),t,6) =0 . (4.14)

0 pnsoo

We show that if (4.14) fails, then necessarily we cannot have

lim lim wy(zy,,t,0) =0, (4.15)

00 pnooo

so that =, /4 = (Mi), which is a contradiction. If (4.14) fails, then there
must exist € > 0, ; | 0 and ny 1 co such that

ws(sp, (Tn, ), t,0x) > € forall k. (4.16)

Let yn, = Sn,(zn,). Given (4.16), there are two cases: In the first case,
there exist ¢y, 1, t5, 2 and t,, 3 such that

ov (t — (Sk) Stpy,1 <tpgo <tppz < (t + (Sk) AT, (4.17)

Yy (tnk, ) > Yny, (tnk 1)+eand Yny, (tnk 2) > Yny, (tnk 3)+e. However, Yny, (tnk,Q) >
Yny (tng,1) + € implies that there must exist ¢, 2 With 2n, 1 < tnk 9 < tng2
and zp, (tnk,2) 2 Yny, (tnk,Z) Since Yny (tnk 1) > Ly, (tnk, ) and yn, (tnk,3) >
Zn, (tn,,3), we then must have ws(zy, ,t, 6;) > €, which contradicts (4.15).

In the second case, there exist t,, 1, tn, 2 and t, 3 such that (4.17)
holds, yn, (tny,2) < Yng(tng,1) — € and yn, (tn, 2) < Yn,(tn,,3) — €. By the

last inequality, there must exist ¢/, o3 With #n, 0 < tnk 3 < ty, 3 such that
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',I"nk (t{ﬂk,f}) 2 ynk (tnk,?)) — €. Since L, S y’n7 J"nk (tnk,2) S ynk (tﬂk,Q)' Fina‘lly’
since {zy, } is uniformly bounded, there is §; where ¢) | 0 as k — oo, and
the1 With OV (¢ — (0 + ) < 1, 1 < b1 With @, (8, 1) > Yng (Bny1)-
Hence, we must have

Wy (T, t, 0k +0;) > € forall k. (4.18)

Since 0y + 6}, | 0 as k — oo, (4.18) again contradicts (4.15) and thus z,, — =
(My). Thus, dar, (sp(zn),z) — 0 as claimed.

(b) We now turn to the J; result. Given c,(x, —e) — y (J1), there exists
An € A such that |cp(zn, —€) —yo Ap|| = 0 as n — co. We want to show
that ||c,(zh — €) — y 0 An|| = 0. Since @}, > z,, it suffices to show, for any
€ > 0, that there is ny such that

cntn(s) —cns <y(Ap(s)) +e for 0<s' <s<T (4.19)

for n > ny. Choose ng such that ||c,(z, —€) —y o || < €/2 for n > nyg.
From (4.19), we see that it suffices to show that there is ny > ng such that

YA (s) SyAn(s)) +en(s —s') +€/2 for 0<s' <s<T. (4.20)

Since y has no negative jumps, we can apply Lemma 7.4.4 to conclude
that there is a ¢ such that v~ (y,d) < €/2 for v~ (y,0) in (4.11). Then
choose ny > ng such that |\, —e|| < d and ¢,0 > ||y|| for n > ny, and we
obtain (4.20). Finally, recall that the maximum negative jump function is
continuous, e.g., see p. 301 of Jacod and Shiryaev (1987); i.e.,

J_(z) = Os<1t11<)1{x(t—) —z(t)} . (4.21)

Clearly, J_(cn(zh — €)) = 0, so that if co(zh — ) — y (J1), then y must
have no negative jumps. =

We now obtain joint convergence in the stronger topologies on D([0, 7], R?)
under the condition that the limit function have no negative jumps.

Theorem 7.4.3. (criterion for joint convergence) Suppose that c,(z,—e) —
y as n — oo in D([0,T],R) with one of the J1, My or My topologies, where
¢, — oo. If, in addition, y has no negative jumps, then

cn(zn —e,z) —e) = (y,y) as n— oo (4.22)

in D([0,T),R?) with the strong version of the same topology, i.e., with SJi,
SMl or SM2
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Proof. For the SM; and SM> topologies, we will work with paramet-
ric representations, using the parametric representation ((u,u),r) for (y,y).
Given that (¢, (z,—e) — vy, there exist parametric representations (uy,r,) €
s(cn(zn—e)) and (u,r) € H(y) such that ||u, —u|V|r,—7r] = 0asn — co.
We construct the desired parametric representations from these. Note that
(¢ up 4 Tny ) € () and (), 70) € M (cn(zh — €)) for

up, = cn((cglun + 7)) = 7) = (un + carn)’ — - (4.23)

Note that z), has the jumps up of z,, while o} is continuous when Ty has

a jump down. Thus ((up,ul),m) € Us(yn,yl,) for y, = cp(z, —€) and

Yy = cp(zh —e). Of course ((u,u),r) € I;((y,y)). Thus it remains to show
that

| (U, uly) — (u,w)|| V|jrn — 7] =0 as n — oo. (4.24)

Given that |Jup, —ul| V ||r, — || = 0, it suffices to show that |lu], — u|| — 0.
Clearly, u!, > u, for all n, so that it suffices to show that, for all € > 0, there
exist ny such that u!,(s) < u(s)+efor alln > nj and s € [0, 1]. Equivalently,
by (4.23), it suffices to show that

un(s') + en(rn(s’) —mn(s)) <u(s) +e 0<s <s<1, (4.25)

for all n > n;. However, if we assume that the limit y has no negative
jumps, then Lemma, 7.4.4 implies that there is a 6 > 0 such that

u(s’) < wu(s) +€/2 (4.26)
for all s,s" with 0 < s’ <s <1 and r(s) —r(s'") <. Choose ng so that
lup —ul|| V|rn =7l < (0 A€)/4 for n>mnyg.
Choose n1 > ng so that
cnd/4>2||z|| for n>n. (4.27)

There are two cases: (i) 7,(s) — rn(s') < 6/4 and (ii) r,(s) — rp(s") > 6/4.
In case (i), r(s) — r(s’) < 4, so that by (4.26)

un(8") + en(rn(s) —rn(s)) < un(s) <u(s') +¢/4 <u(s) +e, (4.28)

so that (4.25) holds. In case (ii), by (4.27),
un(s') + en(rn(s’) —m(s)) < u(s’) +€/2 —cpd/4
< u(s) 4+ 2||u|| —cnd/4 +€/2
< u(s) +e, (4.29)
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so that again (4.25) holds. Turning to Ji, we note that the result already fol-
lows from the proof of Theorem 7.4.2 (ii) because the same homeomorphims
An € A were used for both ¢, (2, —€) = y and cp(zh —€) > y. =

Corollary 7.4.1. Under the conditions of Theorem 7.4.3,

lea(z) —2z,)| =0 as n— oco.

Proof. Apply subtraction to get
cn(Tn — mﬁ) =cp(zp —€) — cn(ml —e) >z —xz(Mo) .

Since the limit is continuous, the convergence holds in the uniform topol-
ogy. =

We next give an elementary result about the supremum function when
the centering is in the other direction, so that x,, must be rapidly decreasing.
Convergence z;,(t) — z(0) as n — oo is to be expected, but that conclusion
can not be drawn if the My convergence in the condition is replaced by

pointwise convergence.

Theorem 7.4.4. (convergence preservation with the supremum function
when the centering is in the other direction) Suppose that ¢, — oo and
T, + cpe = y in D([0,T), R, Ms). Then

||le —zy)|| =0 as n— oo,
where z(y)(t) = y(0), 0 <t < T.

Proof. The assumed M> convergence implies local uniform convergence at
the origin: For any € > 0, there is a § and an ng such that

sup |-'L'n(t) + cnt — y(0)| < ’U(xn,y,o, 5) <e
0<t<6

for n > ng, where v(z1,x2,t,6) is the modulus of continuity in (4.2) in
Section 6.4. Hence, z,(t) < y(0)+e€ forallt, 0 <t < §, and n > ny. Use the
conditions to find n; > ng such that ||z, + cpel| < ||y|| + € and ¢, 8 > 2||y||
for n > nq. Then, for t > § and n > nq,

Tn(t) = —cpd+zn(t) +cnd < —cpd+||zn+cne|| < —cnd+||yll+€ < y(0)+e.

Hence, mﬁ(t) <y(0)+eforallt,0 <t<T,and n > n;. On the other hand,
for all ¢, z),(t) > 2,(0) = y(0) as n — co. =
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7.5. One-Dimensional Reflection

Closely related to the supremum function is the one-dimensional (one-
sided) reflection mapping, which we have used to construct queueing pro-
cesses. Indeed, the reflection mapping can be defined in terms of the supre-
mum mapping as

dx)=z+ (—zVv0)T;
ie.,
d(z)(t) = z(t) — (inf{z(s) : 0 < s <t} A0), 0<t<T, (5.1)

as in equation (2.5) in Section 5.2 of the book.

The Lipschitz property for the supremum function with the uniform
topology in Lemma ?? immediately implies a corresponding result for the
reflection map ¢ in (5.1).

Unfortunately, however, the Lipschitz property for the reflection map ¢
with the uniform topology does not even imply continuity in all the Skorohod
topologies. In particular, ¢ is not continuous in the M, topology.

We do obtain positive results with the J; and M; topologies. As before,
let dj, and djs, be the metrics in equations 3.2 and 3.4 in Section 3.3 of the
book. For the J; result, we use the following elementary lemma.

Lemma 7.5.1. For any x € D and )\ € A,
B() o A=z o)) .

For the M; result, we use the following lemma. A fundamental difficulty
for treating the more general multidimensional reflection map is that Lemma
7.5.2 below does not extend to the multidimensional reflection map; see
Chapter 8.

Lemma 7.5.2. (preservation of parametric representations under reflec-
tions) For any xz € D, if (u,r) € II(z), then (¢(u),r) € II(¢p(z)).
Proof. In book. =

Theorem 7.5.1. (Lipschitz property with the J; and M; metrics) For any
T1,T2 € D([Oa T]a R);

d (¢(1), p(z2)) < 2dy, (71, 72)
and
dur, (d(21), d(22)) < 2dps (71, 72))

where ¢ is the reflection map in (5.1).
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Proof. In book. =

Theorem 7.5.1 covers the standard heavy-traffic regime for one single-
server queue when p = 1, where p is the traffic intensity. The next result
covers the other cases: p < 1 and p > 1. We use the following elementary
lemma in the easy case of the uniform metric.

Lemma 7.5.3. Let d be the metric for the U, Ji, M1 or M topology. Let
zVa:D— D be defined by

(zVa)(t)=z({t)Va, 0<t<T. (5.2)
Then, for any x1,x2 € D,
d(z Va(z1),zVa(ze)) < d(z1,z2) -

Theorem 7.5.2. (convergence preservation with centering) Suppose that
Ty —cpe =y in D([0,T],R) with the U, Ji, My or My topology.

(a) If ¢, » +o0, then

d(zn) —cne > y+y(y) as n—oo in D
with the same topology, where
() () = (—y(0)) VO =—(y(0) AO), 0<t<T.
(b) If ¢, = —o0, y(0) <0 and y has no positive jumps, then
l¢(zn) —Oe|| =0 as n—o00 in D,

where e(t) =1, 0 <t <T.

Proof. (a) Note that
() — cpe = T — cpe+ (—z, VO,
where (—z, V0)" = (—z,)" v 0. By assumption, =, — c,e — y. By Theorem

7.4.4,
||(—a:n)T —2(-y))| =0 as mn— o0

where z(—y)(t) = —y(0), 0 <t < T. By Lemma 7.5.3,

[(=2,)" VO —2(—y) VO] =0 as n— oo.
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We obtain the desired convergence by adding, using the fact that the second
term has a continuous limit.

(b) Apply the argument of Theorem 7.4.4 to show that, for all € > 0,
there exists n1 such that —z,(t) > —y(0) —e for all ¢, 0 < ¢t < T, and all
n > ny. Since y(0) < 0, —z,(t) > —e for all ¢, 0 < ¢ < T, and all n > n4.
Thus,

(_xn + cpe, (_wn) VO + cne) — (_y7 _y)

in D([0,T],R?) with the appropriate strong topology. Then, by Theorem
7.4.3,

(= + cne, (—22) VO + cpe, (=2 VO + cre) = (—y,—y,—y)  (5.3)

in D([0,T],R3) with the appropriate strong topology. Then, by applying
subtraction to the first and third terms in (5.3), we get

d(rn) = zp+(—zpV O)T
[(—zn V 0)" + cpe] — [~z + cne]
—- —y+y=20e (5.4)

as n — Q. [ ]

7.6. Inverse

We now consider the inverse map.. It is convenient to consider the inverse
map on the subset D,, of z in D = D([0,00),R) that are unbounded above
and satisfy z(0) > 0. For z € D,,, let the inverse of = be

z () =inf{s >0:z(s) >t}, t>0. (6.1)

As before, let Dy be the subset of 2 in D with z(0) > 0, and let D4 and
D4+ be the subsets of nondecreasing and strictly increasing functions in D.
Let DuT =D, N DT and DUTT =D, N DTT Clearly,

Dy CDyCD,CDy.

7.6.1. The M, Topology

Even for the M; topology, there are complications at the left endpoint
of the domain [0, 00).
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Example 7.6.1. Complications at the left endpoint of the domain. To see
that the inverse map from (D4, U) to (D4, My) is in general not continuous,
let z(t) =0,0<t<1,and z(t) = ¢, t > 1; Let z, = t/n, 0 <t <1 and
Ty(t) =t,t > 1. Then ||z, —2z|oo =n~' = 0, but z;1(0) =0 A 1 = z71(0),
so that z;1 4 7! (M;). =

To avoid the problem in Example 7.6.1, we can require that z~1(0) = 0.
To develop an equivalent condition, let DeT be the subset of functions z in
D, such that z(t) =0 for 0 <t <e.
Then let
D: = ﬁ?LO:I(Du,n—l)c : (6.2)

Lemma 7.6.1. (measurability of D}) With the J;, My or My topology, D},
in (6.2) is a G5 subset of Dy, and

D} ={z € D, :z"'(0) =0} . (6.3)

Let DZT = Dy N Dy, A key property of DZ,T’ not shared by D, + because
of the complication at the origin, is that parametric representation (u,r) for
x directly serve as parametric representations for ! when we switch the
roles of the components u and 7.

Lemma 7.6.2. (switching the roles of u and r) For z € Dy, +, the graph
Ty serves as the graph of T'y-1 with the azes switched. Thus, (u,r) € II(x)
if and only if (r,u) € I(z~'), where II(x) is the set of My parametric
representations.

Corollary 7.6.1. (continuity on (D}, My)) The inverse map from (D}, M)
to (Dyp, M) is continuous.

Proof. First apply Theorem 7.4.1 for the supremum. Then apply Lemma
7.6.2. =

We now generalize Corollary 7.6.1 by only requiring that the limit be in
D;.

Theorem 7.6.1. (measurability and continuity at limits in D) The inverse
map in (6.1) from (Dy, Mz) to (Dy+, M1) is measurable and continuous at
x € D}, i.e., for which z71(0) = 0.
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Proof. First, recalling that the Borel o-field on D coincides with the Kol-
mogorov o-field generated by the projections, measurability follows from
Lemma ?7?; it suffices to show that {z : z7!(¢) < a} is measurable. How-
ever,

{z:27'(t) <a} N721 Nz {z:27Y((t+7 ")) <a+Ek'}
M2, N {o o ((E+57Y) S at k1)

= RN {oiaa+ k) 24 Y, (6.4)
which is measurable. Next we turn to continuity. For any = € D, ! =
(zM) ™1, so it suffices to start from z}, — zT. By Theorem 7.4.1, the assumed
convergence , — x in (D,,, M) implies that zh — 2zt in (D4, M3). How-
ever, the M; and M> topologies coincide in Dy. So xib — zTin (D4, My).
Since * € D, z' € DZ,T' However, we need not have :L‘IL € DZ,?' We
could directly apply Lemma 7.6.2 if o) € D? for all sufficiently large n.

Hence suppose that is not the case. Then there exists a subsequence {wﬁk}

with xlbk ¢ D, ; for all ny. Necessarily, then, zILk(O) = 0 for all ng. Since

zh — z', we can conclude that z7(0) = 0. Since z is right continuous and

zt € D;, ;, for any € > 0, there exists §, 0 < § < /2, such that § € Disc(z1)®
and 0 < z'(0) < ¢/2. Let ng then be such that \acIL(O) —zT(0)] < ¢/2
and |w£(5) — z1(0)] < €/2 for all n > ngy. Hence, for n > ngy, we can
define an approximation to a:gk which belongs to D] ;. In particular, let

z, (0) = x%k (0) = 0 and let z;, (t) = w%k(t) for all t > ¢ and let z;, be
defined by linear interpolation in [0,6]. Then z;, € Dy ., ||lz;, — ah, |l < e
and ||(acj;k)_1 - x;le < ¢ for all n > ng. For n > ng such that z}, € Dy

let z; = ). Since € was arbitrary, we can choose z} such that z} — z'

(M), ||z — z)| = 0 and |(z)~t =z ! = 0 as n — co. By Lemma 7.6.2,
(zx)~t — 27! (My). Since ||(z2) "t =zt = 0, 2z, — =7 (M) as well. =

Corollary 7.6.2. . (continuity at strictly increasing functions) The inverse
map from (Dy, Ms) to (Dy4,U) is continuous at € Dy 4.

Proof. First, D, C DZ,T’ so that we can apply Theorem 7.6.1 to get
z,' = 27! in (Dy4, M;). However, by Lemma ??, 27! € C when z €
Dy, ++. Hence the M convergence z,;1 — 271 actually holds in the stronger
topology of uniform convergence over compact subsets. =
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7.6.2. The M| Topology

For cases in which the condition z71(0) = 0 in Theorem 7.6.1 is not
satisfied, we can modify the M; and M> topologies to obtain convergence,
following Puhalskii and Whitt (1997). With these new weaker topologies,
which we call M| and M}, we do not require that z,(0) — z(0) when z,, — z.
We construct the new topologies by extending the graph of each function z
by appending the segment [0,2(0)] = {a0+ (1 — @)z(0) : 0 < a < 1}. Let
the new graph of x € D be

I = {(z,t) € R¥ x[0,00) : 2z = az(t) + (1 — @)z(t—)
for 0 < a<1andt>0}, (6.5)

where 2(0—) = 0. Let II'(z) and II%(z) be the sets of all M; and My
parametric representations of I, , defined just as before. We say that z, — z
in (D, M) if there exist parametric representations (up,r,) € II'(zy,) and
(u,r) € I'(z), where IT' is the set of M| and M parametric representations,
such that

llun — ||t V]rn—rllt =0 as n— oo foreach ¢>0. (6.6)

With the M| topologies, we obtain a cleaner statement than Lemma
7.6.2.

Lemma 7.6.3. (graphs of the inverse with the M{ topology) For x € D, 1,
the graph T, serves as the graph T _, with the azes switched, so that (u,r) €
Il'(z) (My(x)) if and only if (r,u) € '(z™") (My(z~")).

Thus we get an alternative to Theorem 7.6.1.

Theorem 7.6.2. (continuity in the M, topology) The inverse map in (6.1)
from (Dy, M3) to (Dy 4, M) is continuous.

Proof. By the M) analog of Theorem 7.4.1, if z, — =z in (D,, M),
then z}, — 2! in (D,4, M}). Since the M} topology coincides with the
M topology on D;, we get zh — 2! in (Dy+, M{). By Lemma 7.6.3, we
get (zh)~! = (M)~ in (Dy,M{). That gives the desired result because
(e =z 'forallz € D,. =

An alternative approach to the difficulty at the origin besides M] topol-
ogy on D,([0,00),R) is the ordinary M; topology on D,((0,00),R). The
difficulty at the origin goes away if we ignore it entirely, which we can do by
making the function domain (0, c0) for the image of the inverse functions.

In particular, Theorem 7.6.2 implies the following corollary.
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Corollary 7.6.3. (continuity when the origin is removed from the domain)
The inverse map in (6.1) from D,([0,00), Ms) to D, +((0,00), M) is con-
tinuous.

Proof. Since the M} topology is weaker than My, if z,, —  in D, ([0, 00), M3),
then z, — z in D,([0,00), M}). Apply Theorem 7.6.2 to get z,' —
! in Dy4([0,00), M]). That implies z,! — z~! for the restrictions
in D4y([t1,t2], M1) for all ti,ty € Disc(z™!)¢, which in turn implies that
z;' = 27 in Dy 1((0,00),M1). =

However, in general we cannot work with the inverse on D, ((0,0),R).
We can obtain positive results if all the functions are required to be mono-
tone. The following result is elementary.

Theorem 7.6.3. (equivalent characterizations of convergence for monotone
functions) For z,, n > 1, z € Dy +([0,00),R), the following are equivalent:

Tp = in Dy4((0,00),R, M) ; (6.7)

Tp =z in Dy +([0,00), R, M7) ; (6.8)

Zn(t) = z(t) for all t in a dense subset of (0,00) ; (6.9)
r,' -2 ' in D((0,00),R, M) ; (6.10)

o' w27 in D([0,00),R, M) ; (6.11)

' (t) = 27 (t) for all t in a dense subset of (0,00). (6.12)

Proof. Theorem 7.6.2 implies the equivalence of (6.8) and (6.11). Clearly,
(6.8)—(6.7)—(6.9), so that (6.11)—(6.10)—(6.12). It thus suffices to show
that (6.9)—(6.8). For any € > 0, we can find ¢ and ny such that 0 < ¢ <,
t € Disc(z) and |z,(t) — z(t)] < € for n > ng. Let ny > ng be such
that dyy (zn,7) < € for the restrictions to [t,#'] for any ¢ > ¢ with ' €
Disc(z)¢. Since z,, and z are nondecreasing and nonnegative, the bounds
dpg (Tn, ) < € over [t,'] and |z, () — z(t)| < e imply that dpg(zn,z) <€
for the restrictions over[0,¢']. Since € and t' were arbitrary, z,, — z in
D4([0,0), R, M), but the M) and M| topologies are equivalent on Dy. =

In general, convergence in D([0, 00), R, M7 ) provides stronger control of
the behavior at the origin than convergence in D((0,00),R, M;). Nothing
more is omitted from Section 13.6 of the book.
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7.7. Inverse with Centering

We continue considering the inverse map, but now with centering. We
start by considering linear centering. In particular, we consider when a limit
for ¢, (x, — e) implies a limit for ¢, (z; ! —e) when z,, € D, = Dy([0,0), R)
and ¢, — oo. By considering the behavior at one ¢, it is natural to anticipate
that we should have c,(z,;! —e) — —y when ¢, (z, —e) — y. A first step for
the M topologies is to apply Theorem 7.4.2, which yields limits for cn(azil—e).
Thus for the M topologies, it suffices to assume that z, € D;.

Now we state the main limit theorem for inverse functions with centering.

Theorem 7.7.1. Suppose that c,(z, —e) = y as n — oo in D([0,00), R)
with one of the topologies Ms, My or Ji, where x, € Dy, ¢, — o and
y(0) = 0.

(a) If the topology is My or My, then c,(x,* —e) — —y as n — oo with
the same topology.

(b) If the topology is J, and if y has no positive jumps, then c,(z,'—e) —
—y as n — o0o.

Proof. (a) The proof is easy for the M; topologies when z, € D for
all sufficiently large n. First, given c,(z, —e) — y (M;), we can apply
Theorem 7.4.2 (a) to conclude that c,(zh —€) — y (M;). Hence we can
assume that z,, € DY. Thus there exist parametric representations (uy,r,) €
I(cn(zn —€)) and (u,r) € II(z) of the appropriate type such that |u, —
ully V|rn —rllt = 0 as n — oo for all ¢ > 0. Then (ul,,r,) € II(z,) for
Uy, = €'ty + 1. Since z, € D} for n sufficiently large, (ry,u;,) € T(z,")
and (cp(ry — ), ul) € M(cy(z,! — e)) for sufficiently large n. However,
en(rn —ul) = —uy, (7.1)
and
|lut, — |l = 0 asn — oo forallt >0, (7.2)

so that ¢, (7, —e) = —y (M;) as n — oo. However, in general we need not
have z,, € D;, for all sufficiently large n. So, suppose that we do not. We
then only have z,, € D, for all n. As before, we can apply Theorem 7.4.2 to
show that it suffices to assume that z,, € D for all n. We now show that
we can approximate z, € Dy by zj, € D; for all n sufficiently large, so that

collZn — i =0 and cpllz;t — (z5)7H =0 as n—oo. (7.3)
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The limits in (7.3) plus the triangle inequality imply that
d(cp(zy, —€),y) <d(cn(zn —e),y) +cullzn — || =0 as n— oo (7.4)
and

d(cn(l"gl - 6)7 _y)
< llen(an® = (23) "M +dleal(zy) ™" —€),—y) =0 (7.5)

as n — oo, where d is the M; metric. Thus, the remaining problem is to
construct z;, € D} satisfying (7.3). Since y(0) =0 and y € D, for all € > 0,
there exists d; such that v(y,0,d1) < €/2. Since cn(zn — €) = y (Mz), there
exists ng and dy such that v(cy (2, —€),9,0,0/2) < €/2 for all n > ngy. Thus

t—cle<an(t) <t4c,le (7.6)
for alln > ng and ¢t with 0 <t < § = §; A d2. By Lemma 77,
t+e,le>x, (t—)>t—c,le (7.7)

foralln > ngand t with 0 <t < § — c;le. Now choose n; > ng so that
c;le < §/4 for all n > ny. Then, by (7.6), for n > ny,

0 < 2n(8/4) < 6/2 (7.8)

and (7.7) holds for 0 <t < 36/4. Hence, if n > n; and z,, ¢ D3, we can
construct 7 € D} by letting z7,(0) = z,(0) = 0, z3(t) = zn(t), t > §/4,
and letting z} be defined by linear interpolation for ¢ in [0, d/4]. By (7.8),
zy, € D}. Since z7, is defined by linear interpolation over [0, d/4], for n > n,

llen (7, — €)lls/a = max{cn(zn — €)(0), cn(zn —e)(0/4)} <€, (7.9)
so that
len(zh — zn) |l < llen(@n — €)lls/a + llen(zr, — €)llsja < 2€. (7.10)

Similarly, (z3)~!(t) = z,,;}(¢) for t < z,(6/4) < §/2 and n > ny, so that by
(7.7)

llen((25) ™ =z )l < llen(an™ = e)llogz + llen((z5) ™ = €)llsja < 2¢. (7.11)

Since € was arbitrary, (7.10) and (7.11) imply (7.3), as required.
(b) Since cp(zy, —e€) = y (J1) and ¢, — o0, ||z, —€|lt = 0 as n — oo
for all + > 0. By Corollary 7.6.2, |lz,' —¢|; — 0 as n — oc for each
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t > 0. By Theorem 7.2.2, we can apply the composition map to obtain
cn(zpoz,t—x; ) — y (J1). Hence it suffices to show that c, ||z 0z, —el|; —
0 as n — oo for all ¢ > 0. However, by Corollary ?7,

cnllzn o :B,_ll —ely < anxgl(t)(:vn)

= Joi (en(zn —€)), (7.12)

where Ji(x) is the maximum jump of z over [0, ¢], treating z(0—) as 0. Since
cn(zn —e) = y, y(0) = 0 and y has no positive jumps, Ji(c,(z, —€)) — 0
as n — oo for all £ > 0, which implies the desired conclusion. =

Nothing else is omitted from Section 13.7 of the book.

7.8. Counting Functions

Inverse functions or first-passage-time functions are closely related to
counting functions. A counting function is defined in terms of a sequence
{sp : m > 0} of nondecreasing nonnegative real numbers with s = 0. We
can think of s, as the partial sum

Sp=x1+--+xTH, n>1, (8.1)

by simply writing z; = s; — s;_1, ¢ > 1. The associated counting function
{c(t) : t > 0} is defined by

ct) =max{k>0:s,<t}, t>0. (8.2)

To have c(t) finite for all ¢ > 0, we assume that s, — oo as n — co. We can
reconstruct the sequence {s,} from {c(¢) : ¢ > 0} by

Sp=inf{t >0:¢(t) >n}, n>0. (8.3)

The sequence {s,} and the associated function {c(¢) : ¢ > 0} can serve
as sample paths for a stochastic point process on the nonnegative real line.
Then there are (countably) infinitely many points with the n'® point being
located at s,. The summands z, are then the intervals between successive
points. The most familiar case is when the sequence {z,, : n > 1} constitutes
the possible values from a sequence {X,, : n > 1} of i.i.d. random variables
with values in R, . Then the counting function {c(¢) : ¢ > 0} constitutes a
possible sample path of an associated renewal counting process {C(t) : t >
0}; see Section 7.3 of the book.

Paralleling Lemma 13.6.3 in the book, we have the following basic inverse
relation for counting functions.
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Lemma 7.8.1. For any nonnegative integer n and nonnegative real number
2
sp <t if and only if c(t) >n. (8.4)

We can put counting functions in the setting of inverse functions on D4
by letting
y(t) =s;4,t20. (8.5)

To have y € D4, we use the assumption that s, — oo as n — oo. if all the
summands are strictly positive then

y_l(t) =c(t)+1, t>0, (8.6)

where y~!

is the image of the inverse map in (6.1) applied to y in (8.5). With
(8.6), limits for counting functions can be obtained by applying results in
the previous two sections.

The connection to the inverse map can also be made when the summands
x; are only nonnegative. To do so, we observe that the counting function c is
a time-transformation of y~!. both are right-continuous, but c(t) < y~(¢).

In particular, ¢ and y can be expressed in terms of each other.

Lemma 7.8.2. (relation between counting functions and inverse functions)
For y in (8.5) and ¢ in (8.2),

ct) = vyl -)-), t20, (8.7)
c(t) = y t(t=) forall te Disc(c)= Disc(y '), (8.8)
y 1) = c(cHe(t), t>0. (8.9)

The three functions y, ¥y~ ' and c are depicted for a typical initial segment
of a sequence {sp, : n > 0} in Figure 13.1 of the book. We can apply (8.7)—-
(8.9) in Lemma 7.8.1 to show that limits for scaled counting functions with
centering, are equivalent to limits for scaled inverse functions. We use the
fact that the M topologies are not altered by changing to the left limits,
because the graph is unchanged. We first consider the case of no centering;
afterwards we consider the case of centering. When there is no centering,
the M; and M5 topologies coincide and reduce to pointwise convergence on
a dense subset of R, including 0.

Consider a sequence of counting functions {{c,(t) : ¢ > 0} : n > 1} with
associated processes

Yo' (1) = calen ' (ea(?), 20, (8.10)
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Yn = (y, 1) "!. Form scaled functions by setting
cn(t) =n tep(ant) and yu(t) = a, yn(nt), t>0, (8.11)
where a,, are positive real numbers with a,, = oco. Note that

¢, (t) =ay'c; (nt) and y,'(t) =n lya(ant), t>0.  (8.12)

Theorem 7.8.1. (asymptotic equivalence of limits for scaled processes)
Suppose that y, € Dys, n > 1, for y, in (8.11). Then any one of the
limits yn = 4, Yo' =y L e =yt or eyt =y in D4([0,00),R) with
the My (= My) topology, for y, ', c, and c;* in (8.11) and (8.12), implies
the others.

Proof. The equivalence between y,, — y and y,;! — y~!, and between

¢, =y Yandc,! — y follow from Theorem 7.6.1. We can relate the limits
¢, =y~ ! and y, — y by applying (8.6), after modifying the summands zy, ;
in the sequences {s, j : k > 0} to make them strictly positive. We can show
that the limits are unaltered by adding suitably small positive values to the
summands. Given € > 0 and {z,, : n > 1}, let

Th=x,+e2 " n>1, (8.13)

and let ), =z +---+ 2z}, n> 1, and ¢'(t) = max{k > 0: s, <t},t > 0.
Then
sn<s,<s,+e n>0, (8.14)

and
c((t—e)Vv0) <) <c(t), t>0. (8.15)

The actual limits we want to consider involve a sequence of sequences {{s,, j :
k > 0},n > 1} with s,9 = 0 for each n. Let {{c,(t) : ¢ > 0}} be the
associated sequence of counting functions. Let x%,k s;,k, ny (t), si, and n/,

be associated quantities defined by the modification in (8.7), i.e., by letting
Ty = Tnp+ 2%, k>1. (8.16)

Given that scaled processes are formed as in (8.11) and (8.12). It is elemen-
tary that

||Y71 - Y;LHOO < 6n/an -0 (817)
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so that, for appropriate choice of €,, e.g., €, = €, €,/a, — 0. The bound in
(8.15) enables us to conclude that ¢, — ¢ (My) if and only if ¢, — ¢ (M2)
by applying Corollary 12.11.6 in the book. Hence it suffices to assume that
the sequences {s,, 1 : K > 0} are strictly increasing, which implies that (8.6)
holds. Then, after scaling as in (8.11) and (8.12),

||Yr71 —¢pllc <1/n—0,

which completes the proof. =

We now apply the results for inverse maps with centering in Section 7.7
to obtain limits for counting functions with centering. Consider a sequence
of counting functions {{c,(t) : ¢ > 0} : n > 1} associated with a sequence
of nondecreasing sequences of nonnegative numbers {{s, , : £ > 0} : n > 1}
defined as in (8.2). Let the scaled functions ¢y, yn, ¢, and y;; ! be defined
as in (8.10)—(8.12).

Theorem 7.8.2. (asymptotic equivalence of counting and inverse functions
with centering) Suppose that y, € Dy, n > 1, by, — 0o and y(0) = 0. Then
any one of the limits by(y, —€) — y, bu(cn —e) = —y, bu(y, ! —€) = —y
or by(c,! —e) = y in D([0,00),R) with the My or My topology, for yn,
cn, and y,; ! and ;' in (8.11) and (8.12), implies the others with the same
topology.

Proof. The equivalence between b, (y, —e) — y and b, (y,;' —e) = —y is
contained in Theorem 7.7.1. Similarly, the equivalence between b, (c,, —e) —
—y and b,(c,;! —e) — y is contained in Theorem 7.7.1. Let the topology be
fixed at either My or My. Given b,(y; ! —e) — —y, we have |ly;! —e¢|; — 0
and ||y, —e|lt = 0 as n — oo for each ¢t > 0. For any = € D, let Z denote the
associated left-limit function; i.e., #(t) = z(t—). Then ¢, = ¥, oy, 0y, .
Given b,(y,! —e) — —y, we have y,1 — e, ¥, — e, bu(y,,} —¢) —
—y and b,(y, — e) — vy, because the graphs are unchanged. Now we can
apply the composition map to get b, (¥, oy oy, —¥noy,!) = —y and
bo(Fnoyn' —yn') — y. Hence, by Proposition ??, for each t € Disc(y)¢,
we have

bu(cn —€)(t) = (I oFnoy, —e)(t)
= bn(ygl oyno y;l —¥no y;l)(t)
+bn(Fnoy,' =¥, (@) +baly,' —e)t)
= —y(t) +y(t) —yt) = —y(t). (8.18)
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Now we apply Theorems 6.5.1 (iv) and 6.11.1 (iv). Let w(z,d) be the
M; oscillation function over the interval [0,¢]. By (8.8), the oscillations
of b,(c, — €) coincide with the oscillations of b,(y,; ' — €) at discontinu-
ity points of ¢, and y;!. Moreover, in between such discontinuity points,
they have identical maximum oscillations. Hence, for any interval [0, ¢] with
t € Disc(y)®,

w(bp(cy —€),8) < wbn(y,' —e),0) . (8.19)

Since by, (y;,! —e) — —y by assumption,

lim Tim w(b,(y,' —e),8) =0 (8.20)
00 pooo

Consequently, o
lim lim w(b,(c, —€),d) =0. (8.21)
00 oo

Hence, we can conclude that by(c, —e) — —y.

To go the other way, suppose that b,(c, —e) = —y. Applying Theorem
7.7.1, we have b,(c,! —e) = vy, ¢, — e and c,' — e. Then, paralleling
(8.18), we can apply (8.9) to obtain

bn(ygl —e)(t) = bplcpo c;l ocy, —e)(t)
= balenoc,' ocy —cyl ocy)()
+bn(c;1 0 Cp — cn)(t) + bn(cn - e) (t)
= —y(t) +y(t) —y@) = —y(?) (8.22)

for each t € Disc(y)¢. Now let w(z,d,t) denote the M; oscillation function
over the interval [0, ¢] as a function of the right endpoint ¢. Then, paralleling
(8.19), by (8.8), for all t; € Disc(y)¢, there exists to > t1 with to € Disc(y)®
such that

w(bp(y, ' —€),0,t1) < w(bp(c, —€),d,t2) (8.23)

for all n sufficiently large. Hence we can use the previous oscillation argu-
ment to conclude that b,(y,! —e) - —y. =

7.9. Renewal-Reward Processes

Nothing was omitted from Section 13.9 in the book.



