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Abstract

This is a supplement to our recent paper, “The Advantage of Indices of Dispersion in Queue-
ing Approximations,” in Whitt and You (2018c). We review robust queueing approximations
from Bandi et al. (2015) and Whitt and You (2018b,a) for the mean steady-state waiting time at
a GI/GI/1 queue and at each queue in a GI/GI/1 → GI/1 → . . .→ GI/1 series (tandem) open
queueing network. We review the asymptotic method and the stationary-interval method for
approximately characterizing the variability of a point process, and their application to depar-
ture processes. Then we discuss alternative versions of the robust queueing approximations. We
observe that the robust queueing network analyzer from Bandi et al. (2015) employs a variant of
the asymptotic method to approximately characterize the variability of the total arrival process
to each queue. Moreover, the version discussed in §7.2 of Bandi et al. (2015) coincides with
the asymptotic method for each queue together with the Kingman upper bound from Kingman
(1962) at that queue.

Keywords: queueing network analyzer, heavy-traffic bottleneck phenomenon, robust queueing,

heavy traffic
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1 Introduction

This is a supplement to our recent paper, “The Advantage of Indices of Dispersion in Queueing

Approximations,” in Whitt and You (2018c). In this supplement we review recent robust queueing

(RQ) approximations from Bandi et al. (2015) and Whitt and You (2018b,a) for the mean steady-

state waiting time E[W ] in both a single GI/GI/1 queue and at each queue in a series network of

such queues, i.e., in a GI/GI/1 → GI/1 → . . .→ GI/1 series (or tandem) open queueing network

(OQN). Table 2 here provides a detailed comparison of alternative methods for the series-queue

example in Tables 2 and 3 of Whitt and You (2018c). Thus we expose weaknesses of alternative

two-parameter methods.

We first give background on one GI/GI/1 queue in §2. Then we give background on the basic

robust queueing (RQ) approximations for the mean waiting time E[W ] and the mean workload

E[Z] at one queue. Afterwards, we discuss the RQ approximations for a series OQN.

2 Background on One GI/GI/1 Queue

In this section we provide background on the classical GI/GI/1 queue. The GI/GI/1 model has

a sequence of independent and identically distributed (i.i.d.) interarrival times {Un : n ≥ 1} each

distributed as U , which is independent of a sequence of i.i.d. service times {Vn : n ≥ 1}, each

distributed as V . Let an interarrival time U have mean E[U ] ≡ λ−1 and squared coefficient of

variation (scv, variance divided by the square of the mean) c2a; let a service time V have mean

E[V ] ≡ τ and scv c2s. Assume that the second moments, and thus the scv’s c2a and c2s, are finite,

which implies that the means are finite as well. Assume that ρ ≡ λτ < 1, so that the model is

stable.

We use the representation of the waiting time (before receiving service) in a general single-

server queue with unlimited waiting space and the first-come first-served (FCFS) service discipline,

without imposing any stochastic assumptions. The waiting time of arrival n satisfies the Lindley

(1952) recursion

Wn = (Wn−1 + Vn−1 − Un−1)
+ ≡ max {Wn−1 + Vn−1 − Un−1, 0}, (2.1)

where Vn−1 is the service time of arrival n− 1, Un−1 is the interarrival time between arrivals n− 1

and n, and ≡ denotes equality by definition. If we initialize the system by having an arrival 0

finding an empty system, then Wn can be represented as the maximum of a sequence of partial
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sums, using the Loynes (1962) reverse-time construction; i.e.,

Wn =Mn ≡ max
0≤k≤n

{Sk}, n ≥ 1, (2.2)

using reverse-time indexing with Sk ≡ X1+ · · ·+Xk and Xk ≡ Vn−k−Un−k, 1 ≤ k ≤ n and S0 ≡ 0.

(Bandi et al. (2015) actually look at the system time, which is the sum of an arrival’s waiting time

and service time. These representations are essentially equivalent.)

If we extend the reverse-time construction indefinitely into the past from a fixed present state,

then Wn ↑ W ≡ supk≥0 {Sk} with probability 1 as n → ∞, allowing for the possibility that W

might be infinite. For the stable stationary G/G/1 stochastic model with E[Uk] < ∞, E[Vk] < ∞
and ρ ≡ E[Vk]/E[Uk] < 1, P (W <∞) = 1; e.g., see Loynes (1962) or §6.2 of Sigman (1995).

Let W be the steady-state waiting time. It is known that W is a proper random variable with

a finite mean. Specifically, the mean can be expressed as

E[W ] =

∞
∑

k=1

E[S+
k ]

k
<∞, (2.3)

where x+ ≡ max {x, 0}, Sk ≡ X1+· · ·+Xk andXk ≡ Vk−Uk, k ≥ 1; e.g., see §§X.1-X.2 of Asmussen

(2003) or (13) in §8.5 of Chung (2001). It should be evident that it is not straightforward to use

(2.3) to calculate numerical values.

3 Robust Queueing Approximations for One Queue

Robust queueing (RQ) approximations are primarily intended for more complex queueing systems,

but as a special case they apply to the general stationary G/G/1 queue (where W is assumed to

be well defined) and the GI/GI/1 special case. In particular, RQ approximations for E[W ] appear

in Bandi et al. (2015) and Whitt and You (2018b).

3.1 The Basic RQ Approximations for E[W ] in the GI/GI/1 Model

3.1.1 The Original Approach in Bandi et al. (2015)

Bandi et al. (2015) proposed an RQ approximation for the steady-state waiting time W by per-

forming a deterministic optimization in (2.2) subject to deterministic constraints, where we can

ignore the time reversal. Treating the partial sums Sa
k of the interarrival times Uk and the partial

sums Ss
k of the service times Vk separately leads to the two uncertainty sets (for W )

Ua ≡ {Ũ ∈ R
∞ : Sa

k ≥ kma − ba
√
k, k ≥ 0} and
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Us ≡ {Ṽ ∈ R
∞ : Ss

k ≤ kms + bs
√
k, k ≥ 0}, (3.1)

where Ũ ≡ {Uk : k ≥ 1} and Ṽ ≡ {Vk : k ≥ 1} are arbitrary sequences of real numbers in R
∞,

Sa
k ≡ U1 + · · · + Uk and Ss

k ≡ V1 + · · · + Vk, k ≥ 1, S0 ≡ 0, and ma, ms, ba and bs are parameters

to be specified. The constraints in (3.1) are one sided because that is what is required to bound

the waiting times above, as we can see from (2.1) and (2.2). Thus, the RQ optimization can be

expressed as

W ∗ ≡ sup
Ũ∈Ua

sup
Ṽ ∈Us

sup
k≥0

{Ss
k − Sa

k}. (3.2)

where Sa
k (Ss

k) is a function of Ũ (Ṽ ) specified above.

Bandi et al. (2015) also provided an extension to cover the heavy-tailed case, where finite

variances might not exist; then
√
k in (3.1) is replaced by k1/α for 0 < α ≤ 2, as we would expect

from §§4.5, 8.5 and 9.7 of Whitt (2002), but we will not discuss that extension here.

3.1.2 The Single-Uncertainty-Set Version in Whitt and You (2018b)

From (2.1), it is evident that the waiting times depend on the service times and interarrival times

only through their difference Xn. Thus, instead of the two uncertainty sets in (3.1), we can cnsider

the single uncertainty set (for each n)

Ux ≡ {X̃ ∈ R
∞ : Sx

k ≤ −mk + bx
√
k, k ≥ 0}, (3.3)

where X̃ ≡ {Xk : k ≥ 1} ∈ R
∞, Sx

k ≡ X1 + · · · + Xk, k ≥ 1 and S0 ≡ 0, while m and bx are

constant parameters to be specified. To avoid excessively strong constraints for small values of

k, not justified by the CLT, we could replace k in the constraint bounds on the right in (3.3) by

max {k, kL}, but that lower bound kL has no impact if chosen appropriately. Combining (2.2) and

(3.3), we obtain the alternative RQ optimization

W ∗ ≡ sup
X̃∈Ux

sup
k≥0

{Sx
k}. (3.4)

where Sx
k is the function of X̃ specified above.

We comment that the two uncertainty sets instead of only one evidently were introduced in

Bandi et al. (2015) to facilitate RQ approximations for open networks of queues (which we discuss

later).

The following is Theorem 1 of Whitt and You (2018b), which is a variant of Theorem 2 of

Bandi et al. (2015) to include the new RQ formulation in (3.4). The final statement involves an

interchange of suprema, e.g., see Lemma EC.1 of Whitt and You (2018b).
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Theorem 3.1 (RQ solutions for the steady-state waiting time) The RQ optimizations (3.2) with

ma > ms > 0 and (3.4) with m > 0 have the solution

W ∗ = sup
k≥0

{−mk + b
√
k}

≤ sup
x≥0

{−mx+ b
√
x} = −mx∗ + b

√
x∗ =

b2

4m

for x∗ =
b2

4m2
, (3.5)

where m = ma −ms > 0. For (3.2), b ≡ bs + ba; for (3.4), b ≡ bx. In (3.5), W ∗ is maximized at

one of the integers immediately above or below x∗.

3.1.3 Functional and Parametric RQ

As noted in Remark 2 of Whitt and You (2018b), the RQ approaches above are examples of a

parametric RQ, because the variability of the arrival and service processes or their difference is

characterized by a single parameter. To capture the impact of dependence in the queues of a

queueing network, it can be important to allow a more general functional characterization of the

variability.

We can expose the impact of dependence among the interarrival times and service times on the

steady-state waiting time in the general stationary G/G/1 model (now relaxing the i.i.d. condtions

of the GI/GI/1 model) as a function of the traffic intensity ρ by introducing a new functional

RQ formulation. (With the G/G/1 model, we assume stationarity, so that there is a well defined

steady state, but we allow dependence among the interarrival times and service times.) To treat

the G/G/1 model, we replace the uncertainty set in (3.4) by

Ux
f ≡ {X̃ : Sx

k ≤ E[Sx
k ] + b′x

√

V ar(Sx
k ), k ≥ 0}. (3.6)

and similarly for the two constraints in (3.2).

For the GI/GI/1 model, the new uncertainty set (3.6) is essentially equivalent to the previous

one in (3.3), but they can be very different with dependence. It is significant that there are CLT’s

to motivate the form of the constraints in (3.6), just as there are in the i.i.d. case underlying (3.3).

These supporting CLT’s are reviewed in §EC.5 of Whitt and You (2018b). The CLT supports the

spatial scaling by
√

V ar(Sk) instead of
√
k, as shown in §EC.5.3 of Whitt and You (2018b). Of

course, the functional RQ produces a more complicated optimization problem, but it is potentially

more useful, in part because it too can be analyzed.
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3.1.4 Relations Between Performance Measures

Approximations for the mean steady-state waiting time E[W ] in the GI/GI/1 model follow directly

from Theorem 3.1. They also follow from the subsequent approximations for the mean steady-state

workload, denoted by E[Z], developed in §3 and §4 of Whitt and You (2018b) and Brumelle’s

theorem, which relates E[Z] to E[W ] in great generality, which we here discuss in §3.3
The steady-state mean values E[Z] to E[W ] and other steady-state performance measures are

related as a consequence of Little’s law L = λW and its generalization H = λG; e.g., see Whitt

(1991) and Chapter X of Asmussen (2003) for the GI/GI/1 special case. Let W,Q and N be the

steady-state waiting time, queue length and the number in system (including the one in service,

if any, at an arbitrary time). Assume that the mean service time is τ = 1 and the arrival rate is

λ = ρ < 1. By Little’s law,

E[Q] = λE[W ] = ρE[W ] and

E[N ] = E[Q] + ρ = ρ(E[W ] + 1). (3.7)

By Brumelle’s formula Brumelle (1971) or H = λG, (6.20) of Whitt (1991), in the G/G/1 model

with service times distributed as V ,

E[Z] = λE[WV ] + λ
E[V 2]

2
. (3.8)

In the G/GI/1 model with i.i.d. service times distributed as V (having mean 1 and variance c2s)

that are independent of the arrival process,

E[Z] = ρE[W ] + ρ
(c2s + 1)

2
, (3.9)

For the simple formula in (3.9), it is important that the service times be independent of the waiting

times. That property breaks down when there is customer feedback in a queueing network.

Given an approximation Z∗ for E[Z], we can use the approximations

E[W ] ≈ max{0, Z∗/ρ− (c2s + 1)/2µ} and

E[Q] ≈ λE[W ]. (3.10)

3.2 Direct RQ Approximations for the Mean Waiting Time

As can be seen from Theorem 3.1, the RQ approximations for the mean waiting time in theGI/GI/1

queue from Bandi et al. (2015) has two free parameters that need to be specified, while the RQ
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approximation from Whitt and You (2018b) has one free parameter that needs to be specified. This

can the basis of corrections or adjustments in applications, which leaves the overall approximation

unspecified, but it is also natural to specify that free parameter so that the formula coincides with

standard cases for which the exact formula is known. That has been done in Bandi et al. (2015)

and Whitt and You (2018b). We will discuss in more detail here.

3.2.1 The New RQ Approximation from Whitt and You (2018b).

First, for the GI/GI/1 queue with parameter vector (λ, c2a, τ, c
2
s) = (1, c2a, ρ, c

2
s), Theorem 3.1 yields

E[W ] ≈
(

ρ

1− ρ

)(

b2

4

)

(3.11)

for

b ≡ bx, (3.12)

where bx is the single variability in the single uncertainty set in (3.3).

The next issue then is how to specify bx. By the motivation for the uncertainty set in terms of

the central limit theorem (in the classical case of i.i.d random variables with finite second moments),

we should have

bx ≡ β
√

V ar(X), (3.13)

for some constant β.

As indicated in Corollary 1 of Whitt and You (2018b), if we let

b ≡ bx ≡ β
√

V ar(X) and β ≡
√
2, (3.14)

i.e., if we let b ≡
√

2V ar(X) =
√

2(c2a + ρ2c2s), then

E[W ] ≈
(

ρ2

1− ρ

)(

c2s + (c2a/ρ
2)

2

)

, (3.15)

which coincides with the Kingman upper bound in Kingman (1962) when we set τ = ρ. Hence, as

stated in Corollary 1 of Whitt and You (2018b), their new RQ approximation coincides with the

Kingman bound and so is asymptotically correct in heavy traffic.

Unfortunately, the Kingman upper bound tends to be too large away from heavy traffic, as can

be seen from the tables in Chen and Whitt (2018). Thus, the approximation in (3.15) is actually

not so good away from heavy traffic. Fortunately, the alternative RQ approximation based on the

continuous-time workload process developed in §3 of Whitt and You (2018b) tends to be more

accurate; see §3.3 here. Thus, we apply (3.9) to obtain E[W ] from E[Z] in the G/GI/1 model via

(3.10).
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3.2.2 The Original RQ Approximation from Bandi et al. (2015).

On the other hand, the RQ approximation in Bandi et al. (2015) also yields (3.11), but now with

b ≡ ba + bs, (3.16)

where ba and bs are the variability parameters in the two uncertainty sets in (3) of Whitt and You

(2018b). However, the details are somewhat different, so a careful comparison may be confusing.

First, they focus on the mean system time, but that is just the mean waiting time plus the mean

service time. That additional mean service time gives an extra term. Nevertheless, it is reasonable

to arrive at the same formula as (3.11) for Bandi et al. (2015) except we have (3.16) instead of

(3.14) and (3.13).

Given the two separate uncertainty sets for the arrival process and the service process, it is

natural to apply the CLT reasoning to each process separately, but it is not necessary to do so.

Indeed, in §7 of Bandi et al. (2015) they take a different approach, which we will discuss later.

For now, assume that we do indeed apply the CLT reasoning to each parameter separately.

That leads to the definitions

ba ≡ βa
√

V ar(U) and bs ≡ βs
√

V ar(V ), (3.17)

which still leaves two parameters to specify. We reduce these parameters to only one by assuming

that we treat the service times and interarrival times the same way; i.e., we assume that

βa = βs = β, (3.18)

which leaves only the single unspecified parameter β. (This seems natural, but is not actually done

in Bandi et al. (2015).)

Combining these assumptions yields (3.11), but now with

b ≡ ba + bs = β(
√

V ar(U) +
√

V ar(V )) = β(ca + ρcs), (3.19)

so that

E[W ] ≈
(

ρ2

1− ρ

)(

β2

4

)

(

c2s + (c2a/ρ
2) + 2(csca/ρ)

)

. (3.20)

The problems with this approach are described in Corollary 1 of Whitt and You (2018b), but

again we emphasize that this natural approach is not followed in Bandi et al. (2015).
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If we again use approximation β ≡
√
2, as in (3.14) above, then formula (3.20) coincides with

formula (3.15) for both the D/GI/1 model (when c2a = 0) and the GI/D/1 model (when c2s = 0).

More generally, if we let β ≡
√
2, then we obtain

E[W ] ≈
(

ρ2

1− ρ

)(

c2s + (c2a/ρ
2) + 2(csca/ρ)

2

)

. (3.21)

Clearly, the only difference between formula (3.21) and formula (3.15) is the final term 2(csca/ρ),

which disappears if and only if the model is D/GI/1 or GI/D/1.

We have observed that the approximation (3.15) proposed in Whitt and You (2018b) coincides

with the Kingman upper bound (and so already is too large), but the approximation from (3.21)

is even larger. For the special case of c2a = c2s, the ratio of the two approximations is

E[W ;RQ(BBY 15)]

E[W ;RQ(WY 18)]
=

1 + ρ2 + 2ρ

1 + ρ2
, (3.22)

which is increasing in ρ, going from 1 at ρ = 0 up to 2 as ρ increases toward 1.

3.2.3 An M/M/1-tuned RQ approximation starting from Bandi et al. (2015).

Clearly our parameter choice for the original RQ approximation in Bandi et al. (2015) is not good,

because it is consistently too large. A simple way to do better, at least in some cases, is to choose the

parameters so that the approximation is exact for the M/M/1 model. Then we have c2a = c2s = 1.

In that case, (3.20) becomes correct if, instead of letting β ≡
√
2, we let

(

β2

4

)

(

1 + (1/ρ2) + (2/ρ)
)

≡ 1 (3.23)

in (3.20) or, equivalently, if

β ≡ 2ρ

1 + ρ
(3.24)

Combining (3.24) and (3.20), the overall GI/GI/1 approximation becomes

E[W ] ≈
(

ρ2

1− ρ

)(

ρ2

(1 + ρ)2

)

(

c2s + (c2a/ρ
2) + 2(csca/ρ)

)

. (3.25)

To check (3.25), we see that it agrees with the M/M/1 exact formula when c2a = c2s = 1.

Note that the new M/M/1-tuned approximation in (3.25) is smaller than the approximation in

(3.21) by a factor of

ψ(ρ) ≡ 2ρ2

(1 + ρ)2
. (3.26)

which approaches 1/2 as ρ increases toward 1.
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3.2.4 The RQ Approximation in §7 of Bandi et al. (2015)

No doubt, the difficulties above were noticed by the authors of Bandi et al. (2015). Thus, they

chose their parameters in a different way that circumvents many of these difficulties. In particular,

in §7.2 they choose

Γa ≡ σa, (3.27)

which is quite natural, but in their function f introduced on p. 696 below Table 1 they circumvent

this choice by making Γs a complex function of the arrival and service parameters, in particular,

they let

Γs ≡
√

θ0 + θ1σ2s + θ2σ2aρ
2 − σa. (3.28)

This step effectively reduces the number of parameters to one instead of two.

The subtraction in (3.28) acts to cancel out the definition in (3.27). They discuss applying

regression with examples to fit the three parameters θi, but do not discuss in detail. However, it

seems natural to choose θ0 ≡ 0 and θ1 ≡ θ2 ≡ 1, which yields

Γs ≡
√

σ2s + σ2aρ
2 − σa. (3.29)

Then

Γ2 = (Γa + Γs)
2 = σ2s + σ2aρ

2, (3.30)

so that the difficulty observed in Corollary 1 of Whitt and You (2018b) is avoided. In particular,

for β ≡
√
2, then the bound in Bandi et al. (2015) coincides with the Kingman upper bound in

Kingman (1962) and (5) in Chen and Whitt (2018); i.e., if we let the arrival rate be 1 and the mean

service time be ρ, then

E[W ] ≈ ρ2([c2a/ρ
2] + c2s)

2(1 − ρ)
=

σ2a + σ2s
2(E[U ] − E[V ])

. (3.31)

3.3 The RQ Approximation for the Mean Workload E[Z]

Whitt and You (2018b) found that it was advantageous to approach the RQ approximation via the

continuous-time workload process. Hence, they primarily focus on the RQ approximation for the

mean workload E[Z].

The basic continuous-time processes are the arrival counting process, defined by

A(t) ≡ max {k ≥ 1 : U1 + · · ·+ Uk ≤ t} for t ≥ U1 (3.32)
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with A(t) ≡ 0 for 0 ≤ t < U1, the total input of work over [0, t] and the net-input process,

respectively,

Y (t) ≡
A(t)
∑

k=1

Vk and N(t) ≡ Y (t)− t, t ≥ 0, (3.33)

while the workload (the remaining workload) at time t, starting empty at time 0, is the reflection

map Ψ applied to N , i.e.,

Z(t) = Ψ(N)(t) ≡ N(t)− inf
0≤s≤t

{N(s)}, t ≥ 0; (3.34)

e.g., see §13.5 of Whitt (2002).

As in §6.3 of Sigman (1995), we again use a reverse-time construction to represent the workload

in a single-server queue as a supremum, so that the RQ optimization problem becomes a maxi-

mization over constraints expressed in an uncertainty set, just as before, but now it is a continuous

optimization problem. Using the same notation, but with a new meaning, let Z(t) be the workload

at time 0 of a system that started empty at time −t. Then Z(t) can be represented as

Z(t) ≡ sup
0≤s≤t

{N(s)}, t ≥ 0, (3.35)

where N is defined in terms of Y as before, but Y is interpreted as the total work in service time to

enter over the interval [−s, 0]. That is achieved by letting Vk be the kth service time indexed going

backwards from time 0 and A(s) counting the number of arrivals in the interval [−s, 0]. Paralleling
the waiting time in §3, Z(t) increases monotonically to Z as t → ∞. For the stable stationary

G/G/1 stochastic queue, Z corresponds to the steady-state workload and satisfies P (Z <∞) = 1;

see §6.3 of Sigman (1995).

In continuous time, we work with continuous-time stationarity instead of discrete-time sta-

tionarity; e.g., see Sigman (1995). Hence, we assume that there is a base stationary process

{(A(t), Y (t)) : t ≥ 0} with E[A(t)] = E[Y (t)] = t for all t ≥ 0 and introduce ρ by simple scaling via

Aρ(t) ≡ A(ρt) and Yρ(t) ≡ Y (ρt), t ≥ 0 and 0 < ρ < 1, (3.36)

which implies that E[Aρ(t)] = E[Yρ(t)] = ρt for all t ≥ 0. Then Nρ(t) ≡ Yρ(t) − t and Zρ(t) =

Ψ(Yρ)(t), t ≥ 0. With the reverse-time construction Zρ(t) can be expressed as a supremum over

the interval [0, t], just as in (3.35).

Within that scaling framework, the natural parametric and functional (see §3.1.3) uncertainty

sets for the steady-state workload are, respectively,

Up
ρ ≡

{

Ñρ : R
+ → R : Ñρ(s) ≤ −(1− ρ)s+ bp

√
s, s ≥ 0

}

and
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Uρ ≡ Uf
ρ ≡

{

Ñρ : R+ → R : Ñρ(s) ≤ E[Nρ(s)] + bf

√

V ar(Nρ(s)), s ≥ 0

}

,

=

{

Ñρ : R+ → R : Ñρ(s) ≤ −(1− ρ)s + bf

√

V ar(Nρ(s)), s ≥ 0

}

, (3.37)

where we regard Ñρ ≡ {Ñρ(s) : 0 ≤ s ≤ t} as an arbitrary real-valued function on R
+ ≡ [0,∞),

while we regard {Nρ(s) : s ≥ 0} as the underlying stochastic process, and {V ar(Nρ(s)) : s ≥ 0} =

{V ar(Yρ(s)) : s ≥ 0} as its variance-time function, which can either be calculated for a stochastic

model or estimated from simulation or system data. In (3.37), bp and bf are parameters to be

specified.

To apply this RQ formulation for the mean workload, Whitt and You (2018b) apply the IDC

and the associated index of dispersion for work (IDW) associated with the rate-1 cumulative input

process Y by

Iw(t) ≡
V ar(Y (t))

E[V1]E[Y (t)]
=
V (t)

t
, t ≥ 0. (3.38)

The IDW was introduced in Fendick and Whitt (1989). Clearly, these indices of dispersion are

just scaled versions of the associated variance functions, but they are important for understanding,

because they expose the variability over time, independent of the scale.

For the G/GI/1 model, where the arrival process is general but independent of an i.i.d. sequence

of service times, the IDW is related to the IDC by

Iw(t) = Ic(t) + c2s, t ≥ 0; (3.39)

see §4.3.1 of Whitt and You (2018b)

Given the IDW, the RQ approximation for the mean workload from (28) in §4.1 of Whitt and

You (2018b) is simply

Z∗
ρ = sup

x≥0

{

−(1− ρ)x/ρ+ bf
√

xIw(x)
}

. (3.40)

Strong positive results for the RQ approximation for the mean workload E[Z] in the G/GI/1

queue in Theorems 2-5 of Whitt and You (2018b). Theorem 2 states it is exact for the M/GI/1

queue, while Theorem 5 states that it is asymptotically correct in both light and heavy traffic.

Finally, we observe that this approximation for the mean workload also provides an approxi-

mation for the mean waiting time by applying the exact relation in (3.8).

4 The Series Queue Model

We are now ready to consider approximations for the mean steady-state waiting time at each queue

in a GI/GI/1 → GI/1 → . . . → GI/1 tandem open queueing network. We start by reviewing
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the basic asymptotic and stationary-interval methods for approximating a point process and its

application to departure processes, which constitute the arrival processes at the following queues.

Afterwards, we consider alternative methods, including ones stemming from the heavy-traffic and

RQ literature.

4.1 The Asymptotic and Stationary-Interval Methods

The asymptotic and stationary-interval methods for approximating a point process are discussed

in Whitt (1982), while their application to queues in series is discussed in Whitt (1984). The

stationary-interval method is used in the QNA approximation, as indicated in §4.5 of Whitt (1983a).

These methods partially characterize the variability of a stationary point process by a single vari-

ability parameter, chosen to be independent of the rate of the point process. The idea of the

asymptotic method is to match the asymptotic variability parameter in the CLT, while the idea of

the stationary-interval method is to match the scv of the stationary interval between points. Thus,

these are two extreme perspectives on the variability. The asymptotic method yields the large-time

perspective, while the stationary-interval method yields the short-time (or local) perspective. One

might also take the perspective directly as seen by a queue, as discussed in Whitt (1981) and Whitt

(1983b).

As indicated above, QNA exploits the stationary-interval method. In particular, the approxi-

mating scv for a renewal process approximation for the departure process from a GI/GI/1 queue

is taken to be c2d, defined as the following convex combination of the scv’s of the service time and

interarrival time

c2d ≈ ρ2c2s + (1− ρ2)c2a; (4.1)

see (37) in §4.5 of Whitt (1983a). This is based on the analysis in §2 of Whitt (1984) and references

cited there.

The asymptotic method would just approximate the departure process by the arrival process,

as indicated in §1 of Whitt (1984). Instead of (4.1), that yields

c2d ≈ c2a. (4.2)

It is known that the asymptotic method is asymptotically correct for the arrival process at a queue

in heavy traffic. That follows from Theorem 1 of Iglehart and Whitt (1970). The heavy-traffic

limit for a general queue depends on the CLT of the arrival process. Moreover, the parameters of
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the limiting reflected Brownian motion (RBM) depend on the arrival process beyond its rate only

through its CLT, i.e, through the asymptotic-method variability parameter of the arrival process.

For two queues in series, this result implies that the asymptotic method is asymptotically correct

for the arrival process at the second queue (the departure process from the first queue) if the second

queue is in heavy traffic, while the first queue is not. However, early experiments leading to QNA in

Whitt (1983a) showed that the stationary-interval method usually is far better than the asymptotic

method. We will illustrate the difficulties associated with the asymptotic method in our simulation

examples.

This discussion is highly relevant when considering alternative approximations, because the

sequential bottleneck decomposition (SBD) approximation in Dai et al. (1994) in the case of a

single bottleneck node and the robust queueing approach in Bandi et al. (2015) both use the

asymptotic method (although that is not discussed). The RQ algorithm in Bandi et al. (2015) uses

the asymptotic method because their approach makes the uncertainty set for a departure process

coincide with the uncertainty set of the arrival process.

Overall, the stationary-interval method and the asymptotic method are quite different perspec-

tives that often lead to different conclusions. Neither of these simple methods works well in all

cases.

4.2 The Heavy-Traffic Bottleneck Phenomenon

Challenges in approximating departure processes and queues in series were exposed in the paper

Suresh and Whitt (1990), which discusses the heavy-traffic bottleneck phenomenon. The QNA

approximation based on the stationary-interval method in (4.1) makes gradual changes in the scv

of each departure process in passing through a series of identical queues. The HT bottleneck ap-

proximation shows that, even after passing through a large number of queues with low-to-moderate

traffic intensity, the behavior at a later queue with a much higher traffic intensity can be determined

by the asymptotic method; i.e., the behavior at the later queue in heavy traffic is as if all the im-

mediate queues were not there. This phenomenon is a result of complicated long-range dependence

embedded in the arrival processes, introduced by flowing through a queue (the departure processes).

This example was introduced to show the limitation of traditional decomposition methods, e.g. the

QNA algorithm, and is often used as a benchmark for different approximation methods, see §3.3 of

Dai et al. (1994).

Ways to address those problems have been discussed by Fendick and Whitt (1989), Harrison
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and Nguyen (1990), Reiman (1990), Dai et al. (1994), Whitt (1995) and Whitt and You (2018a,c).

We shall use these examples to illustrate the RQ algorithms.

4.3 Comparisons with Simulation

In this section, we compare the performance of various approximations for the mean waiting time

at each queue for the example with 9 queues in series considered by Suresh and Whitt (1990).

This section supplements §5 of Whitt and You (2018c), which compares the new RQ algorithms

in Whitt and You (2018b,a) to previous methods. Here we focus on basic methods, especially the

variants of RQ from Bandi et al. (2015).

We compare several methods to simulation estimates from Suresh and Whitt (1990). We start

by comparing the M/M/1 model, which ignores the variability parameters, i.e., sets c2a = c2s = 1.

Then we compare QNA from Whitt (1983a), which coincides with the stationary-interval method,

to simulation. Then we consider the modification of QNA with the arrival process at each queue

approximated by the asymptotic method, which approximate the scv of the arrival process by the

scv of the external arrival process, but otherwise using the standard GI/GI/1 approximation in

E[W ] ≡ E[W (ρ, c2a, c
2
s)] ≈

ρ2(c2a + c2s)

2(1 − ρ)
. (4.3)

for the case with arrival rate 1 and mean service time ρ.

As discussed in Suresh and Whitt (1990), we see that the stationary-interval method does far

better than the asymptotic method at queues 2 − 8, but not at the final queue 9 with high traffic

intensity. We then display the approximations resulting from three variants of the RQ algorithm

in Bandi et al. (2015). In particular, we use the asymptotic method with (i) (3.20) in §3.2.2, (ii)
the M/M/1-tuned method in (3.25) in §3.2.3 and (iii) the Kingman upper bound from §7 of Bandi

et al. (2015) discussed here in §3.2.4. We find that all these methods fail to produce consistently

good approximations.

In particular, we consider an OQN with 9 stations in tandem, each with i.i.d. exponential

service times. Station 1 has the only external arrival process, which is a rate-1 general renewal

process. The traffic intensities at the first 8 queues are set to ρi = 0.6 for 1 ≤ i ≤ 8, while the last

queue has the significantly higher traffic intensity ρ9 = 0.9. As in Suresh and Whitt (1990), two

specific external renewal arrival processes are considered: (i) deterministic (D) interarrival times

with c2a0 = 0; and (ii) highly variable H2 interarrival times with c2a0 = 8 (and balanced means).
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4.3.1 Basic Approximations

Table 1 (for low variability) and Table 2 (for high variability) compare the various approximations

of the mean steady-state waiting time at each station, as well as the total waiting time in the

system, to simulation estimates.

Table 1: A comparison of six approximation methods to simulation for 9 exponential (M) queues in
series with ρi = 0.6, 1 ≤ i ≤ 8, and ρ9 = 0.9 fed by a deterministic arrival process with c2a = 0. The
two columns for QNA are for the stationary interval method (SI, actually used) and the asymptotic
method (AM). The last two columns contain the three versions of RQ from Bandi et al. (2015) in
§3.2.2- §3.2.4, but two coincide in this case. All use the asymptotic method. The final column is
the Kingman upper bound combined with the asymptotic method, as in §7 of Bandi et al. (2015).

Method QNA Whitt (1983a) RQ, Bandi et. al.
node Sim M/M/1 SI AM (3.21) and (3.31) (3.25)

1 0.290 (2.41%) 0.90 0.45 (55.2%) 0.45 (55.2%) 0.45 (55.17%) 0.13
2 0.491 (1.43%) 0.90 0.61 (24.2%) 0.45 (-8.4%) 0.45 (-8.4%) 0.13
3 0.607 (1.32%) 0.90 0.72 (18.6%) 0.45 (-25.9%) 0.45 (-25.9%) 0.13
4 0.666 (1.20%) 0.90 0.78 (17.1%) 0.45 (-32.4%) 0.45 (-32.4%) 0.13
5 0.706 (1.42%) 0.90 0.83 (17.6%) 0.45 (-36.3%) 0.45 (-36.3%) 0.13
6 0.731 (1.78%) 0.90 0.85 (16.3%) 0.45 (-38.4%) 0.45 (-38.4%) 0.13
7 0.748 (1.34%) 0.90 0.87 (16.3%) 0.45 (-39.8%) 0.45 (-39.8%) 0.13
8 0.775 (1.68%) 0.90 0.88 (13.6%) 0.45 (-41.9%) 0.45 (-41.9%) 0.13
9 5.031 (4.31%) 8.10 7.99 (58.8%) 4.05 (-19.5%) 4.05 (-19.5%) 1.82

Total 10.05 15.30 13.97 (39.00%) 7.65 (-23.8%) 7.65 (-23.8%) 2.86

First, we display the simple M/M/1 approximation, which ignores the variability parameters

entirely (acts as if c2a = c2s = 1). Next we present the QNA algorithm from Whitt (1983a), which

uses the stationary-interval method, which means that the arrival process variability parameters

are computed recursively via (4.1) and then the mean waiting time E[W ] is computed from (4.3).

Second, the asymptotic method differs by letting the arrival-process variability parameter at each

queue be identical to the given external arrival process variability parameter. Hence, for the

asymptotic method the approximation is identical for queues 1-8, but different for the final queue

9.

The last three columns show results for the two RQ algorithms from §3.2.2-§3.2.4, based on

Bandi et al. (2015). The first version (3.21) is the same as approximation (9) in Whitt and You

(2018c) for the D/GI/1 and GI/D/1 models, so we see that the third and fourth columns of Table

1 coincide. Since the departure uncertainty set is made equal to the arrival uncertainty set, this

corresponds to the asymptotic method in column 3. Since RQ from Bandi et al. (2015) makes the

departure uncertainty set agree with the arrival uncertainty set, the approximations for queues 1-8
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are all identical, just as with QNA with the asymptotic method. However, the RQ approximations

in (3.21) and (3.25) are remarkably inaccurate for c2a = 8. Table 2 is to be contrasted with Tables

2 and 3 in Whitt and You (2018c).

Table 2: A comparison of six approximation methods to simulation for 9 exponential (M) queues
in series with ρi = 0.6, 1 ≤ i ≤ 8, and ρ9 = 0.9 fed by a highly-variable H2 rate-1 renewal arrival
process with c2a = 8 and the third parameter specified by balanced means. The two columns for
QNA are for the stationary interval method (SI, actually used) and the asymptotic method (AM).
The last three columns contain the three versions of RQ from Bandi et al. (2015) in §3.2.2- §3.2.4.
The final column is the Kingman upper bound combined with the asymptotic method, as in §7 of
Bandi et al. (2015).

method QNA RQ Bandi et al.
node Sim M/M/1 (SI) (AM) (3.21) (3.25) (3.31)

1 3.284 (3.50%) 0.90 4.05 (23.3%) 4.05 (23.3%) 22.3 6.3 10.4
2 2.321 (4.18%) 0.90 2.92 (25.8%) 4.05 (74.5%) 22.3 6.3 10.4
3 1.914 (3.40%) 0.90 2.19 (14.4%) 4.05 (112%) 22.3 6.3 10.4
4 1.719 (4.07%) 0.90 1.73 (0.6%) 4.05 (135%) 22.3 6.3 10.4
5 1.598 (3.69%) 0.90 1.43 (-10.5%) 4.05 (153%) 22.3 6.3 10.4
6 1.478 (4.13%) 0.90 1.24 (-16.1%) 4.05 (174%) 22.3 6.3 10.4
7 1.423 (3.23%) 0.90 1.12 (-21.3%) 4.05 (185%) 22.3 6.3 10.4
8 1.413 (4.67%) 0.90 1.04 (-26.4%) 4.05 (189%) 22.3 6.3 10.4
9 30.12 (16.8%) 8.10 8.90 (-70.5%) 41.0 (36%) 115.7 51.8 44.05

Total 45.27 15.30 24.60 (-45.7%) 73.4 (62.1%) 294 102.2 127.2
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