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server queue with a time-varying arrival-rate function. We apply this TVRQ to develop approximations

for (i) the time-varying expected workload in models with a general time-varying arrival-rate function and

(ii) for the periodic steady-state expected workload in models with a periodic arrival-rate function. We

apply simulation and asymptotic methods to examine the performance of periodic TVRQ (PRQ). We find
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and heavy-traffic diffusion limits for long cycles.
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1. Introduction

Queueing has long played a prominent role in operations research applications. For example, early

OR studies include traffic delays at tool booths by Edie (1954), letter delays at post offices by

Oliver and Samuel (1962), airplane landing delays at airports by Koopman (1972) and dispatching

delays for police patrol cars by Kolesar et al. (1975). As in many other OR applications, the arrival

processes in these applications all have time-varying (TV) arrival rates. Thus, the natural queue-
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ing models require simulation or nonstandard analysis techniques beyond elementary stochastic

textbooks.

Those four OR studies also illustrate two of the most important analytical techniques for analyz-

ing TV queueing models. First, the papers by Edie (1954) and Oliver and Samuel (1962) illustrate

that a relatively simple deterministic analysis can be employed when the TV arrival rate tends to

dominate the randomness. The other papers by Koopman (1972) and Kolesar et al. (1975) illus-

trate how numerical methods for systems of TV ordinary differential equations (ODE’s) can be

applied to calculate TV performance measures for the TV Markovian Mt/Mt/st queueing model,

which has a nonhomogeneous Poisson process (NHPP, the Mt) as its arrival process, and possibly

a TV service rate and number of servers as well, because the number of customers in the system

evolves as a TV birth-and-death process, so that its TV transition probability density function

evolves according to a system of ODE’s, often called the Kolmogorov forward equations.

The ODE approach to the TV Mt/Mt/st queueing model has become the accepted analytical

approach. The ODE approach is complicated by the fact that there are infinitely many ODE’s in

the system of equations, but that difficulty can be circumvented by truncating to a finite system,

as was done by Koopman (1972) and Kolesar et al. (1975). Improved computer power has made

this approach easier to apply.

Further progress with the ODE approach has also been made by introducing other approxi-

mations. Much more efficient ODE algorithms for the TV mean and variance were subsequently

obtained by Rothkopf and Oren (1979) by employing closure approximations to dramatically reduce

the number of equations; also see Taaffe and Ong (1987), Ong and Taaffe (1989) and others.

Despite the successes of the ODE approach to TV queues, there are two deficiencies. First, the

ODE approach only applies to TV Markov processes. Second, just like computer simulation and

some other numerical approaches, such as the numerical-transform-inversion algorithm of Choud-

hury et al. (1997a), the ODE approach yields the numerical values of performance measures, but

it does not otherwise provide any structural insight.
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This second deficiency has recently been addressed by Massey and Pender (2013) and Pender

and Massey (2017) by developing closure approximations for the Mt/Mt/s model and more general

TV Markovian systems in the context of many-server heavy-traffic (MSHT) limits as in Mandel-

baum et al. (1998), which yield deterministic fluid and stochastic diffusion approximations. They

use the closure approximation to greatly improve the numerical accuracy of the MSHT diffusion

approximations.

However, no such link has yet been provided between numerical algorithms and the very different

conventional heavy-traffic (HT) limits for single-server models. In fact, the HT limits for TV single-

server queues tend to be quite intractable themselves, as can be seen from Mandelbaum and Massey

(1995) and Whitt (2014, 2016), so that we need new tractable approximation methods.

In this paper, we introduce a time-varying robust queueing (TVRQ) approach to single-server

queueing systems that addresses the two deficiencies mentioned above. In particular, we develop a

TVRQ algorithm to approximate the TV mean workload in the non-Markov Gt/Gt/1 single-server

queue. Like Rothkopf and Oren (1979), we focus on the special case of the dynamic steady-state

behavior of a system with a periodic arrival rate. In doing so, we establish new periodic TVRQ

(PRQ). We establish asymptotic results for PRQ and make connections to corresponding asymp-

totic results for the original stochastic model. In particular, we establish a long-cycle fluid limit

(Theorem 2) and a heavy-traffic limit (Theorem 4) for PRQ and compare them to the associated

limits for the original queueing model.

Given that PRQ deviates from the original stochastic model, it should not be surprising that

the asymptotic behavior of PRQ and the original model do not always coincide, but we find that

they sometimes do. In particular, we show that the long-cycle fluid limit for PRQ and the original

model coincide. We also find that the HT limits of PRQ and the original model do coincide in some

cases.

Finally, we report results of extensive simulation experiments to evaluate the performance of

PRQ. These show that PRQ yields useful approximations.
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1.1. Related Literature

There is a substantial literature on TV single-server queues, which can be divided into three main

categories: (i) structural results (e.g., definition and existence of processes), illustrated by Harrison

and Lemoine (1977), Heyman and Whitt (1984), Lemoine (1981, 1989) and Rolski (1989), (ii)

numerical algorithms, as discussed above, and (iii) asymptotic methods and approximations by

Newell (1968a,b,c), Massey (1981), Keller (1982), Massey (1985), Mandelbaum and Massey (1995)

and Whitt (2014, 2016). The present paper falls in the last two categories.

Robust optimization is a relatively new approach to difficult stochastic models. As in Bertsimas

et al. (2011a), Ben-Tal et al. (2009), Beyer and Sendhoff (2007); the main idea is to replace a difficult

stochastic model by a tractable optimization problem. We replace an “average-case” expected value

by a “worst-case” optimization, where stochastic process sample paths are constrained to belong

to uncertainty sets. From a pure-optimization-centric view of the operations research landscape,

robust optimization might be viewed as a way to replace stochastic modeling entirely. However,

we think of robust optimization as a useful tool that supplements existing tools in our stochastic

toolkit. Accordingly, much of this paper is devoted to establishing connections between PRQ and

established queueing theory.

Our work on TVRQ builds on our previous paper, Whitt and You (2016), which developed robust

queueing (RQ) algorithms to approximate the expected steady-state waiting-time and workload

in stationary single-server queues, aiming especially to capture the impact of dependence among

interarrival times and service times. In turn that paper builds on the RQ formulation of Bandi

et al. (2015), which has precedents in earlier work such as Bertsimas and Thiele (2006), Bertsimas

et al. (2011b) and references cited there. The principal difference here is that we focus on the TV

performance of a TV model instead of the steady-state performance of a stationary model.

Bandi et al. (2014) have also developed an RQ formulation for the transient behavior of station-

ary models, which tends to be a quite different (but still challenging) problem (and for which there

is a large literature, which we do not review here). We remark that the performance of a queue-

ing model with time-varying arrival-rate function can be approximated by the iterative transient
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analysis of the associated model with a piecewise-constant arrival-rate function, but that approach

introduces another level of approximation and is not easy to implement. Indeed, the iterative tran-

sient approach to TV queues has evidently has been attempted only once, by Choudhury et al.

(1997a).

As in our previous paper, Whitt and You (2016), we not only formulate the new PRQ, but

we also study its performance compared to the original stochastic model. For that purpose, we

establish new asymptotic results, including a HT limit. For that HT limit, we use the new HT

scaling introduced in Whitt (2014, 2016).

1.2. Main Contributions

1. In this paper, we present what we believe is the first application of robust optimization to

study the performance of a queueing model with time-varying arrival rates. We focus especially on

the periodic steady-state performance of a single-server queue with a periodic arrival-rate function,

yielding what we call periodic robust queueing (PRQ).

2. In contrast to the prevalent ODE methods, our TVRQ and PRQ apply to the non-Markovian

Gt/G/1 model as well as the Markovian special cases, with extension to Gt/Gt/1 models, see

Remark 1. Both the TVRQ and PRQ formulations and the HT limits provide remarkably tractable

approximations; see (6) and (16) for TVRQ and (21), (56) and (EC.14) for PRQ.

3. As in Whitt and You (2016), we exploit the index of dispersion for work (IDW) to represent

the variability of the total input of work over time, independent of its mean. We use the IDW to

develop TVRQ and PRQ for models with stochastic dependence as well as a time-varying arrival-

rate function. The IDW is convenient for separately characterizing these two important causes of

congestion.

4. For periodic queues, we establish long-cycle fluid limits for both the original queueing system

and the PRQ approximation and we prove that those limits coincide (Theorems 1 and 2).

5. We establish new HT limits for PRQ in the Gt/G/1 model, which generalize nicely to cover

the Gt/Gt/1 model, see Remark 7 and §EC.5. These new HT limits exploit the new HT scaling
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introduced in Whitt (2014, 2016), and so go beyond the earlier HT literature. In particular, time

scaling is used within the deterministic arrival-rate function, so that the length of the periodic cycle

grows with the traffic intensity ρ. We show that the HT limits for PRQ and the original model do

not coincide in general, but they do in special cases.

6. We show that the HT limits can be usefully combined with the long-cycle perspective to

obtain further insight into the TV behavior of periodic queues. We show that it is important

to consider three cases for the instantaneous arrival-rate function ρ(t). Letting ρ↑ ≡ supt≥0 ρ(t).

We identify three important cases, called: underloaded (ρ↑ < 1), overloaded (ρ↑ > 1) and critically

loaded (ρ↑ = 1). We establish results for each case (with slightly different notation) in §4. We find

that the HT limits for PRQ coincide with the pointwise-stationary approximation for the original

model in both the underloaded case (Theorem 5) and overloaded case (Theorem 6). We find that

the scaling in the critically loaded case agrees with the scaling in Whitt (2016).

7. We show that the detailed structure of the objective function in the PRQ provides insight into

the structure of the mean and quantiles of the periodic workload; e.g., see §5.1 and §EC.6.3. Thus,

we expose a promising way to obtain new insight into the “physics” of TV single-server queues,

paralleling Eick et al. (1993) for many-server queues.

2. Time-Varying Robust Queueing (TVRQ): Basic Formulation

Our TVRQ builds on a reverse-time representation of the continuous-time workload process in the

single-server queue. Just as in Bandi et al. (2015) and Whitt and You (2016), we use the reverse-

time construction to represent the performance measure of interest as a supremum, thus providing

a basis for the RQ optimization.

2.1. A Reverse-Time Construction of the Workload Process

We consider the standard single-server queue with unlimited waiting space, where customers are

served in order of arrival. Throughout this section, we assume that the system starts out empty at

time 0, but that condition can easily be relaxed to consider other initial conditions; e.g., see §13.5
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of Whitt (2002b). Let {(Uk, Vk)} be the sequence of ordered pairs of nonnegative random variables

representing the interarrival times and service times. Let an arrival counting process be defined on

the positive halfline by A(t)≡max{k ≥ 1 :U1 + · · ·+Uk ≤ t} for t≥U1 and A(t)≡ 0 for 0≤ t < U1,

and let the total input of work over the interval [0, t] be the random sum

Y (t)≡
A(t)
∑

k=1

Vk, t≥ 0, (1)

Then the workload (the remaining work in service time) at time t, starting empty at time 0, can

be represented using the reflection map as W (t) = Ψ(Y − e)(t), where e is the identity map, i.e.,

e(t)≡ t, t≥ 0. Hence,

W (t) = Ψ(Y − e)(t)≡ Y (t)− t− inf
0≤s≤t

{Y (s)− s}

= sup
0≤s≤t

{Y (t)−Y (s)− (t− s)}= sup
0≤s≤t

{Yt(s)− s}, t≥ 0, (2)

where

Yt(s)≡ Y (t)−Y (t− s) =

A(t)
∑

k=A(t−s)+1

Vk, 0≤ s≤ t, t≥ 0, (3)

is the cumulative input over the interval (t− s, t].

2.2. A TVRQ Formulation for the Time-Varying Workload

Our RQ optimization problem performs the maximization in (2) subject to deterministic constraints

placed on the input process Y (t) in (1). These constraints convert the stochastic process W (t) in

(2) into a deterministic approximation as the solution of a deterministic optimization problem. In

our simulation experiments we will compare this deterministic approximation to the mean E[W (t)]

estimated from multiple independent replications of the model.

In particular, to formulate the deterministic TVRQ approximation for the time-varying workload

W (t) for any t > 0, we let

W ∗(t)≡ sup
Xt∈Ut

sup
0≤s≤t

{Xt(s)}, (4)
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where Ut is the deterministic uncertainty set, i.e., the set of allowed sample paths {Xt(s) : 0≤ s≤ t},

which we define as

Ut ≡ {Xt(s)∈R :Xt(s)≤E[Yt(s)− s] + bSD(Yt(s)− s), 0≤ s≤ t}

= {Xt(s)∈R :Xt(s)≤E[Yt(s)]− s+ bSD(Yt(s))), 0≤ s≤ t} , (5)

with SD being the standard deviation. This uncertainty set requires that the sample path of the

reverse-time net-input process Xt(s)≡ Yt(s)− s remain within b standard deviations of its mean

at all times s, 0≤ s≤ t.

The uncertainty set in (5) is a natural time-varying generalization of the uncertainty sets in our

previous paper, which are similar to the ones used in Bandi et al. (2015). Nevertheless, providing

convincing support for this uncertainty set, even in the stationary setting, is somewhat complicated.

Thus the choice may ultimately be justified by its utility, which is demonstrated by establishing

connections to the performance of the original queueing model. We refer readers to §EC.3 and

§EC.4. in Whitt and You (2016) for further discussion of the motivation and justification.

The general idea is that (5) can be based on a Gaussian approximation, which in turn is supported

by central limit theorem (CLT) for Yt(s) under customary regularity conditions. (The basis for

the CLT in the non-stationary setting is more obvious in the setting of the next section, which

we follow for the rest of this paper.) Of course, the CLT only supports a Gaussian approximation

for suitably large t. Thus, it is significant that the deterministic optimization tends to attain its

supremum at an intermediate value, which is neither extremely small not extremely large. The

CLT for the input process is also the theoretical basis for heavy-traffic limits, so that heavy-traffic

limits provide support for the uncertainty set as well. For additional discussion of the CLT in

the stationary and nonstationary settings, see §EC.5 of Whitt and You (2016) and Whitt (2014),

respectively.

To ensure a finite supremum, we assume that E[Y (t)2]<∞ for all t. Then, since Yt(s)≥ 0 for all t

and s, necessarily 0≤W ∗(t)<∞ for all t. As a consequence, we have the final TVRQ optimization

W ∗(t) = sup
0≤s≤t

sup
Xt∈Ut

{Xt(s)}= sup
0≤s≤t

{E[Yt(s)]− s+ bSD(Yt(s))} , t≥ 0. (6)
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It should be noted that the optimization problem in (6) is tractable, whereas the original stochastic

model is complicated.

2.3. An Alternative Representation of the Workload Process for the Gt/G/1 Special Case

For the rest of this paper, we focus on a large class of Gt/G/1 models in which the arrival process

takes the form of

A(t) =N(Λ(t)), t≥ 0, (7)

where the underlying process N is assumed to be a general stationary point process, by which we

mean that it has stationary increments. We assume thatN is a unit rate process with E[N(t)2]<∞

for all t. The cumulative arrival-rate function is defined as

Λ(t)≡
∫ t

0

λ(s)ds, t≥ 0, (8)

where the arrival-rate function λ is an element of D as in Whitt (2002b), i.e., is a right-continuous

function with left limits, satisfying

0<λ(s)≤ λbd <∞ for all s > 0, (9)

where λbd is a bound. In addition, the service times is a stationary sequence and independent of

the arrival process with Vk distributed as V with mean E[V ] = 1 and finite variance σ2
s ≡ V ar(V ).

When we introduce additional scaling, it is in the context of this model.

Given this model structure, we have

{Yt(s) : 0≤ s≤ t} d
=

{

N(Λt(s))
∑

k=1

Vk : 0≤ s≤ t

}

for all t≥ 0, (10)

where
d
= denotes equality in distribution, which here in (10) we mean as stochastic processes, and

Λt(s)≡Λ(t)−Λ(t− s), 0≤ s≤ t, t≥ 0. (11)

As a consequence of assumption (9), Λt(s) is strictly increasing and continuous as a function of s

with Λt(0) = 0 for each t, so it has a continuous strictly increasing inverse Λ−1
t (s) as a function of

s with Λt(0) = 0 for each t.
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Hence, we can combine (2) and (10) to obtain the alternative representation of the workload as

W (t) = sup
0≤s≤t

{

N(Λt(s))
∑

k=1

Vk − s

}

= sup
0≤s≤Λ(t)

{

N(s)
∑

k=1

Vk −Λ−1
t (s)

}

, (12)

where Λt(s) is defined in (11), with Λt(t) =Λ(t)−Λ(0) = Λ(t) and Λt(0) = 0 . The second expression

in (12) was first discovered by Lemoine (1981) for the case of the Mt/G/1 model. The extended

Lemoine representation of the workload for the Gt/G/1 queue here is appealing because it has all

the stochastic variability in the first term within the supremum but all determinstic variability in

the arrival-rate function in the second term within the supremum. It was also exploited to develop

a rare-event simulation algorithm for periodic GIt/GI/1 queues in Ma and Whitt (2016). For the

Mt/GI/1 model, the underlying total input process
{

∑N(s)

k=1 Vk : s≥ 0
}

is a stationary compound

Poisson process whose variance is readily available.

2.4. An Alternative Uncertainty Set Using the Index of Disperion for Work

In this section, drawing on §4.1 of Whitt and You (2016), we give alternative representations for the

uncertainty set in (5) and the final TVRQ algorithm in (6) using the index of dispersion for work

(IDW). The IDW, denoted by Iw(t), was introduced in Fendick and Whitt (1989) to characterize

the variability of the total input of work Y (t) over the time interval [0, t], independent of its mean.

The idea is the same as the squared coefficient of variance (scv, variance divided by the square of

the mean), which represents the variability of a single random variable independent of scale.

For the base total input process Ỹ (t)≡∑N(s)

k=1 Vk, the IDW is defined as

Iw(t)≡
V ar(Ỹ (t))

E[V ]E[Ỹ (t)]
, t≥ 0; (13)

see (1) of Fendick and Whitt (1989). In our setting with mean-1 service times and a rate-1 base

process N , the IDW becomes

Iw(t)≡
V ar(Ỹ (t))

E[Ỹ (t)]
=

V ar(Ỹ (t))

t
, t≥ 0, (14)

which is just a scaled version of the variance function. For the M/GI/1 model, we have Iw(t) =

c2a + c2s = 1 + c2s with c2a and c2s being the coefficient of variation of the interarrival and service
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distribution, respectively. We assume that IDW as a function of time is bounded, which is to be

anticipated.

As a consequence, the uncertainty set (5) in the TVRQ can be written as

Ut =











X(t) :X(s)≤E

[

N(s)
∑

k=1

Vk

]

−Λ−1
t (s)+ b

√

√

√

√Var

(

N(s)
∑

k=1

Vk

)

,0≤ s≤Λ(t)











=
{

X(t) :X(s)≤ s−Λ−1
t (s)+ b

√

sIw(s),0≤ s≤Λ(t)
}

=
{

X(t) :X(s)≤Λt(s)− s+ b
√

Λt(s)Iw (Λt(s)),0≤ s≤ t
}

. (15)

Combining (4) and (15), we have the tractable TVRQ optimization for the Gt/G/1 model

W ∗(t) = sup
0≤s≤t

{

Λt(s)− s+ b
√

Λt(s)Iw (Λt(s))
}

, t≥ 0, (16)

with the final expression in (16) providing a convenient expression for a computational algorithm

because Λt(s) is usually readily available, whereas Λ−1
t (s) in the first expression may not be. We

emphasize that (15) and (16) are just alternative expressions for the uncertainty set in (5) and the

final expression in (6), but they are convenient for separately characterizing and understanding the

performance impact of the stochastic dependence and time-varying arrival rate function.

Remark 1. (a time-varying service rate) Our TVRQ is easily extended to cover a time-varying

service rate, where we separate the service requirements Vk from the rate that service is provided,

as in Whitt (2015). To treat the familiar Mt service model, let the service requirements be i.i.d.

mean-1 exponential random variables. In general, suppose that the server is operating at a deter-

ministic time-varying rate µ(t) at time t instead of the constant rate of 1. Let M(t) =
∫ t

0
µ(u)du

be the cumulative service rate. Define Mt(s)≡M(t)−M(t− s) as in (11). The extended Lemoine

representations of the workload for variable service rate model is obtained by replacing s in (12)

with Mt(s), yielding

W (t) = sup
0≤s≤t

{

N(Λt(s))
∑

k=1

Vk −Mt(s)

}

= sup
0≤s≤Λt(t)

{

N(s)
∑

k=1

Vk −Mt

(

Λ−1
t (s)

)

}

. (17)
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Following the logic of (14)-(16), from the first expression we see that the TVRQ optimization for

the Gt/Gt/1 model is

W ∗(t) = sup
0≤s≤t

{

Λt(s)−Mt(s)+ b
√

Λt(s)Iw (Λt(s))
}

, t≥ 0. (18)

In §EC.6.4, we report a simulation study to show the PRQ performance for Gt/Gt/1 models.

2.5. A Deterministic Fluid Model

A deterministic fluid model is obtained by assuming that the cumulative input of work Y (t) in (1)

is a deterministic nondecreasing function, which we take to be E[Y (t)] in an associated stochastic

model. To capture the usual idea of a fluid, we also assume that Y (t) is a continuous function of t,

which we take to coincide with Λ(t). The workload at time t is then defined just as in (2). In this

case, the associated TVRQ is defined just as in §2.2, but now we have SD(Yt(s)) = 0 in (5) because

of the deterministic property. Thus, for the deterministic fluid model, the TVRQ is necessarily

exact. Moreover, when we formulate a fluid limit for the stochastic model, where the stochastic

workload process converges to a deterministic fluid model, then the TVRQ will be asymptotically

correct, under regularity conditions. We will illustrate for periodic TVRQ in §3.

3. Periodic Robust Queueing (PRQ) and the Fluid Approximation

We now consider periodic models and look at the periodic steady state workload as a function

of the place y within a periodic cycle. We will develop a periodic RQ (PRQ) and show that it is

asymptotically correct in a long-cycle limit.

3.1. The Periodic Steady-State Workload

If the arrival process and workload process are periodic over the entire real line with period c, then

we can obtain an expression for the periodic steady-state workload at time t within the interval [0, c)

by letting the system start empty in the distant past. For this periodic steady-state distribution

to be well defined, we require that the average arrival rate satisfy

ρ= λ̄≡Λ(c)/c< 1, (19)
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to ensure that the average arrival rate is less than the maximum possible service rate µ≡ 1/E[V ]≡

1. We assume that a proper periodic steady-state exists.

Instead of (2) for the transient workload, we have the periodic steady-state workload represented

as a supremum over the entire real line. In particular, for a fixed position y within a cycle, we have

Wy = sup
s≥0

{Yy(s)− s} , 0≤ y < c, (20)

where Yy is defined as in (3).

For the periodic case, starting empty in the distant past, we consider y ∈ [0, c). Then periodic

RQ (PRQ) for the steady-state workload is just TVRQ in (6) except that s is allowed to range over

the interval [0,∞) and that Yt(s) is replaced by Yy(t) to emphasize the focus on a fixed location

in a cycle. As a consequence, we have the final PRQ optimization

W ∗
y = sup

s≥0

{E[Yy(s)]− s+ bSD(Yy(s))}

= sup
s≥0

{

Λy(s)− s+ b
√

Λy(s)Iw (Λy(s))

}

, 0≤ y < c. (21)

3.2. A Periodic Deterministic Fluid Model

In §2.5 we briefly introduced a deterministic fluid model and observed that the workload is defined

just as in (2). Now we consider the periodic case. In the next section we will establish a fluid limit

for the periodic Gt/GI/1 model as the cycle lengths grow. To avoid confusion about notation, we

append an extra subscript f for the fluid quantities.

We start with the arrival-rate function λf(t) satisfying the properties in §2.3, but now we assume

as well that the arrival-rate function is periodic with period c and satisfies (19). In order for the

fluid model to be interesting, we also assume that

λ↑

f ≡ sup
0≤s<c

{λf (s)}> 1. (22)

Condition (22) ensures that there will be positive workload at some time. If condition (22) did

not hold, then the net rate in at each time would be negative, so that there never would be any

workload.
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To obtain the deterministic fluid model, we simply let

Yf (t)≡Λf (t), t≥ 0. (23)

Notice that Yf(t) for the fluid model coincide with the expected values of their stochastic counter-

parts in the Mt/GI/1 special case. Now the main quantity we focus on is

Yf,y(s) = Λf,y(s)≡Λf (y)−Λf(y− s), s≥ 0, 0≤ y < c. (24)

We now observe that the fluid workload at time y is determined by the input over the cycle ending

at time y. The proof appears in §EC.2 along with the other proofs of key results in this section.

Proposition 1. For the deterministic fluid model, the workload at time y within the cycle [0, c)

defined in (20) with Yf,y in (24) reduces to the supremum over one cycle, i.e.,

Wf,y = sup
0≤u≤c

{Yf,y(u)−u}, 0≤ y < c. (25)

We now consider a common special case in which, if we start the periodic cycle at an appropriate

point, then we can express the arrival-rate function so that the net input rate is positive on an

initial subinterval and then negative thereafter. That is, we assume that there exists δ, 0< δ < c,

such that

λf (t)− 1≥ 0, 0≤ t < δ, and λf (t)− 1≤ 0, δ≤ t < 1. (26)

Often we may require a time shift to satisfy condition (26). In this setting it is easy to determine

the periodic fluid Wy, 0≤ y ≤ c.

Proposition 2. If conditions (19), (22) and (26) hold, then there exists one and only one δ∗

with 0 < δ < δ∗ < c such that Λf (δ
∗) = δ∗. Moreover, Λf (y) − y is nondecreasing over [0, δ] and

nonincreasing over [δ, c], so that

Wf,y =Λf (y)− y, 0≤ y ≤ δ∗, and Wf,y = 0, δ∗ ≤ y ≤ c, (27)

and

W ↑

f ≡ sup
0≤y≤c

{Wf,y}=Wf,δ =Λf (δ)− δ > 0. (28)
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We now apply Proposition 2 to two special cases. The easiest case appears to be the piecewise-

constant case with two pieces.

Corollary 1. (piecewise-constant case) If, in addition to the conditions of Proposition 2, λf(t) =

a1[0,δ)(t)+ b1[δ,c)(t), where a> 1> b> 0, then

Wf,y = (a− 1)y, 0≤ y ≤ δ, W ↑

f =Wf,δ = (a− 1)δ, (29)

and

Wf,y = (a− 1)δ− (1− b)(y− δ), δ ≤ y ≤ δ∗ ≡ (a− b)δ/(1− b) and Wf,y = 0, δ∗ ≤ y ≤ c. (30)

The following corollary shows that, for a sinusoidal arrival rate function, the maximum workload

is attained shortly before the middle of the arrival-rate cycle.

Corollary 2. (sinusoidal case) If, in addition to the conditions of Proposition 2, λf (t) = ρ +

β sin (2πt) and t0 = arcsin ((1− ρ)/β)/2π, then λf (t0+ t)) satisfies condition (26) and δ = 0.5−2t0,

so that (in terms of the original Λf )

W ↑

f =Λf(0.5− t0)−Λf(t0)− 0.5+2t0. (31)

As ρ ↑ 1, t0 ≡ t0(ρ) ↓ 0, δ(ρ) ↑ 0.5 and W ↑

f →Λ(0.5)− 0.5.

3.3. A Long-Cycle Fluid Limit

For periodic queues, it is helpful to consider the case of long cycles relative to a fixed service-

time distribution. (This case is equivalent to letting the service times become short relative to a

fixed arrival rate function.) We now consider a family of periodic Gt/GI/1 stochastic models with

growing cycle length indexed by the parameter γ. We assume that model γ has arrival-rate function

λγ(t)≡ λf (γt), t≥ 0, (32)

for the base arrival-rate function λf in the fluid model, satisfying (19) and (22). Thus, the arrival

rate in model γ is periodic with cycle length cγ ≡ c/γ. We will let γ ↓ 0, so that cγ →∞.
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In the stochastic model we can also let the cumulative arrival-rate function be defined in terms

of the base cumulative arrival-rate function Λf in the fluid model. In particular, we let

Λγ(t)≡ γ−1Λf (γt) and Λγ,y(t)≡Λγ(γ
−1y)−Λγ(γ

−1y− t), 0≤ y < c, (33)

so that the associated arrival-rate function is as in (32). The periodic structure with (19) and (22)

implies the following bound.

Lemma 1. In the setting above with (19) and (22),

max{Λf (t),Λf,y(t)}≤ ρt+λ↑c and max{Λγ(t),Λγ,y(t)}≤ ρt+λ↑c/γ for all t≥ 0. (34)

Let Aγ(t) and Yγ(t) be the associated arrival and cumulative input processes in the Gt/GI/1

model, defined as in (1) and (7) by

Aγ(t)≡N(Λγ(t)) and Yγ(t)≡
Aγ(t)
∑

k=1

Vk, t≥ 0, (35)

where N is a rate-1 stochastic process and {Vk} is the i.i.d. sequence of service times with E[Vk ] = 1

independent of N and thus of Aγ .

As regularity conditions for N , we assume that

t−1N(t)→ 1 as t→∞ w.p.1 (36)

and, for all ǫ > 0, there exists t0 ≡ t0(ǫ) such that

|t−1N(t)− 1|< ǫ for all t≥ t0 w.p.1. (37)

Condition (36) is a strong law of large numbers (SLLN), which is equivalent to the stronger func-

tions SLLN (FSLLN), see §3.2 of Whitt (2002a), while condition (37) is implied by refinements

such as the law of the iterated logarithm. Condition (37), together with Lemma 1, is needed for

Theorem 1 to guarantee that a supremum over the entire real line is attained over a bounded

subinterval, which allows us to apply a continuous mapping argument. Both conditions hold when

N is a Poisson process and can be anticipated more generally.

The basis for the fluid limit is a functional law of large numbers for Aγ and Yγ after introducing

extra time and space scaling. We give the proof in §EC.2.
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Lemma 2. For the periodic Gt/GI/1 model under condition (36),

γAγ(γ
−1(t))→Λf (t) and γYγ(γ

−1(t))→Λf (t) as γ ↓ 0 w.p.1 (38)

Let Wγ,y be the periodic steady-state workload at time y/γ for 0≤ y < c in Gt/GI/1 model γ

with arrival rate function λγ(t), defined as in (20), i.e.,

Wγ,y = sup
s≥0

{Yγ,y(s)− s}, (39)

where

Yγ,y(t)≡ Yγ(yγ
−1)−Yγ(yγ

−1 − t), t≥ 0, 0≤ y < c, (40)

for Yγ in (35). We get a fluid limit for Wγ,y, again after scaling. The proof appears in §EC.2.

Theorem 1. (long-cycle fluid limit) For the periodic Gt/GI/1 model under conditions (36) and

(37),

γWγ,y →Wf,y as γ ↓ 0 w.p.1, (41)

where Wf,y is the fluid workload at time y within a cycle of length c.

Let W ∗
γ,y be the PRQ workload at time y/γ for 0≤ y < c, i.e., W ∗

γ,y is the solution to the PRQ

problem (21) at time y/γ with Yγ(t) defined in (35).

Theorem 2. (PRQ is asymptotically correct in the long-cycle fluid limit) For the periodic Gt/GI/1

model, PRQ with any b, 0< b<∞, is asymptotically exact as γ ↓ 0, i.e.,

γW ∗
γ,y →Wf,y as γ ↓ 0, (42)

where Wf,y is the fluid workload at time y within a cycle of length c, so that

|γW ∗
γ,y − γWγ,y| → 0 as γ ↓ 0 w.p.1. (43)

4. Heavy-Traffic Limits for Periodic Robust Queueing

We now consider a family of periodic Gt/G/1 single-server models indexed by the traffic intensity

ρ defined in (19) together with the specified time-scaling factor γ. Before introducing this new

scaling, we start with the model defined in §2.3. We scale the models consistently with the heavy-

traffic scaling in Whitt (2014). In §4.2 we will show that PRQ has a proper heavy-traffic limit in

this scaling. First, in §4.1 we review the heavy-traffic limit for the workload process itself.
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4.1. Heavy-Traffic Limit for the Workload Process in the Stochastic Model

We consider a family of models indexed by the long-run average traffic intensity ρ in (19). To

avoid notational confusion, we add a subscript d to the diffusion quantities. We let the cumulative

arrival-rate function in model ρ be

Λγ,ρ(t)≡ ρt+(1− ρ)−1Λd,γ((1− ρ)2t), t≥ 0, (44)

so that the associated arrival-rate function is

λγ,ρ(t)≡ ρ+(1− ρ)λd,γ((1− ρ)2t), t≥ 0, (45)

where

Λd,γ(t)≡
∫ t

0

λd,γ(s)ds, λd,γ(t)≡ h(γt), and

∫ 1

0

h(t)dt= 0 (46)

with h(t) being a periodic function with period 1. As a consequence, λd,γ(t) is a periodic function

with period cγ = 1/γ and λγ,ρ(t) is a periodic function with period cγ,ρ = 1/γ(1− ρ)2. To ensure

that λγ,ρ is nonnegative, we assume that

h(t)≥−ρ/(1− ρ), 0≤ t < 1, (47)

which will be satisfied for all ρ sufficiently close to the critical value 1 provided that h is bounded

below. In fact, we directly assume that

−∞<h↓ ≡ inf
0≤t≤1

{h(t)}< sup
0≤t≤1

{h(t)}≡ h↑ <∞. (48)

There are two primary cases of interest h↑ < 1 and h↑ > 1. When h↑ < 1, the instantaneous traffic

intensity, which is λγ,ρ(t), satisfies λγ,ρ(t) < 1 for all t and ρ. On the other hand, when h↑ > 1,

λγ,ρ(t)> 1 for some t. When λγ,ρ(t)> 1 for some t, the workload can reach very high values when

time is scaled, because the cycles are very long. That takes us into the setting of Choudhury et al.

(1997b).

Theorem 3.2 of Whitt (2014) and Theorem 2 of Ma and Whitt (2016) provide a heavy-traffic

limit as ρ ↑ 1 when h↑ < 1. for the workload at time t starting empty at time 0, which we denote by
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Wγ,ρ(t), in the periodic Gt/GI/1 model. This heavy-traffic limit is for the time-varying behavior

starting empty, but it also applies to the periodic steady-state distribution except for the usual

problem of interchanging the order of the limits as ρ ↑ 1 and as t ↑∞. We use the periodic steady-

state of the limit to approximate the periodic steady-state of the periodic Gt/GI/1 queue.

To express the heavy-traffic limits, we use (44) and let

Aγ,ρ(t)≡N (Λγ,ρ(t)) , Yγ,ρ(t)≡
Aγ,ρ(t)
∑

k=1

Vk, and Xγ,ρ(t)≡ Yγ,ρ(t)− t, t≥ 0. (49)

Then Xγ,ρ(t) is the net-input process and Wγ,ρ(t) is the workload process, which is the image of

Xγ,ρ under the reflection map Ψ, i.e.,

Wγ,ρ(t) =Ψ(Xγ,ρ)(t) = sup
0≤s≤t

{Xγ,ρ(t)−Xγ,ρ(t− s)}. (50)

For the heavy-traffic functional central limit theorem (FCLT), we introduce the scaled processes

N̂n(t) ≡ n−1/2[N (nt)−nt], Âγ,ρ(t)≡ (1− ρ)[Aγ,ρ

(

(1− ρ)−2t
)

− (1− ρ)2t],

X̂γ,ρ(t) ≡ (1− ρ)Xγ,ρ

(

(1− ρ)−2t
)

and Ŵγ,ρ(t)≡ (1− ρ)Wγ,ρ

(

(1− ρ)−2t
)

, t≥ 0. (51)

Let Dk be the k-fold product space of the function space D. Again let e be the identity map in

D, i.e., e(t)≡ t, t≥ 0. Recall that g(x) = o(x) as x→ 0 if g(x)/x→ 0 as x→ 0.

Theorem 3. (heavy-traffic FCLT, Theorem 3.2 of Whitt (2014) and Theorem 2 of Ma and Whitt

(2016)) For the family of Gt/GI/1 models indexed by (γ, ρ) with cumulative arrival-rate functions

in (44), if N̂n ⇒ caBa as n→∞, where Ba is a standard Brownian motion, then

(Âγ,ρ, X̂γ,ρ, Ŵγ,ρ)⇒ (Âγ , X̂γ, Ŵγ) in D as ρ ↑ 1, (52)

where

(Âγ, X̂γ , Ŵγ)≡ (caBa +Λd,γ − e, Âγ + csBs,Ψ(X̂γ)), (53)

Ψ is the reflection map in (50), Λd,γ is defined in (46), and Ba and Bs are two independent standard

(mean 0 variance 1) Brownian motions; i.e., Ŵγ is reflected periodic Brownian motion (RPBM)

with

Ŵγ =Ψ(caBa + csBs +Λd,γ − e)
d
=Ψ(cxB+Λd,γ − e), (54)

where c2x = c2a+ c2s. The result remains valid if a term of order o(1− ρ) is added to Λγ,ρ in (44).
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Remark 2. (need for an approximation of the periodic heavy-traffic limit) We emphasize that the

limit Ŵγ for the workload process in Theorem 3 is a RPBM, which is much less tractable than the

familiar RBM that arises in the stationary case. Thus, PRQ can be helpful to approximate RPBM

as well as the queue.

Remark 3. (a parametric PRQ stemming from the diffusion approximation) We can obtain an

alternative simplified parametric PRQ if we apply the PRQ logic after approximating the net-input

process by the net-input of the diffusion process arising in the heavy-traffic limit. We explain in

detail in §EC.4.

4.2. The Heavy-Traffic Limit for PRQ

We now establish a heavy-traffic limit for PRQ. Again, we add a subscript y to indicate the place

in the cycle. In particular, the workload at fixed place y within a cycle for a system which started

empty and has run for t time units is

Wγ,ρ,y(t)
d
= sup

0≤s≤t







Aγ,ρ,y(t)
∑

k=1

Vk − s







, (55)

where Aγ,ρ,y(t)≡Aγ,ρ(y)−Aγ,ρ(y− t), Aγ,ρ(t) is defined in (49) and Vk is a generic service time.

Under the Gt/G/1 setting in §2.3, we immediately get the PRQ optimization problem from (16)

by replacing Λt(s) with Λγ,y,ρ(s)

W ∗
γ,ρ,y = sup

s≥0

{

Λγ,ρ,y(s)− s+ b
√

Λγ,ρ,y(s)Iw (Λγ,ρ,y(s))

}

. (56)

For the convenience of further analysis, we note that

Λγ,ρ,y(s) ≡ Λγ,ρ((k+ y)cγ,ρ)−Λγ,ρ((k+ y)cγ,ρ− s) = Λγ,ρ(ycγ,ρ)−Λγ,ρ(ycγ,ρ− s)

= ρs+(1− ρ)−1

∫ y/γ

y/γ−(1−ρ)2s

h(γt)dt= ρs+
1

γ(1− ρ)

∫ y

y−c−1
γ,ρs

h(t)dt

= ρs+
1

γ(1− ρ)
Hγ,ρ,y(s), (57)

where cγ,ρ = 1/γ(1− ρ)2 is the cycle length of Λγ,ρ,y(s) and

Hγ,ρ,y(s)≡
∫ y

y−c−1
γ,ρs

h(t)dt. (58)
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To express the heavy-traffic limit, we define two functions. The first function

f(t)≡−t+2
√
t (59)

is a variant of the function to be optimized with the stationary M/GI/1 model, as can be seen

from Theorem 1 of Whitt and You (2016). The second function

gγ,ρ,y(t)≡
4

b2c2xγρ
2
Hγ,ρ,y

(

b2c2xρ

4(1− ρ)2
t

)

=
4

b2c2xγρ
2

∫ y

y−
b2c2xγρ

4
t

h(s)ds (60)

is a periodic function that captures the time-varying part of the arrival rate function. The period of

gγ,ρ,y(t) is 4/b
2c2xγρ. When the arrival-rate function is constant, gγ,ρ,y(t) = 0 because h(t) = 0. The

following lemma presents some basic limits for gγ,ρ,y(t). Almost all proofs in this section appear in

§EC.3.

Lemma 3. Let h be a differentiable 1-periodic function whose integral over one period is 0. Assume

that h satisfies (48), then

(a). lim(γ,ρ)→(0,1) gγ,ρ,y(t) = h(y)t uniformly for t in bounded intervals;

(b). limγ→0 gγ,ρ,y(t) = h(y)t/ρ uniformly for t in bounded intervals;

(c). limγ→∞ gγ,ρ,y(t) = 0 uniformly for t over [0,∞);

(d). limρ→1 gγ,ρ,y(t) = gγ,1,y(t) uniformly for t in bounded intervals.

With the two functions defined above, we present a more tractable and intuitive alternate repre-

sentation to (56), which exposes the three components of the function to be optimized. We remark

that the expression is inspired by the classical Kingman’s bound and approximation of the relax-

ation time for GI/G/1 model, which brings both the relaxation time and workload back to the

scale of O(1).

Lemma 4. With f and gγ,ρ,y defined in (59) and (60), we have

W ∗
γ,ρ,y =

b2

2
· ρc2x
2(1− ρ)

· sup
t≥0

{

f(t)+ ρgγ,ρ,y(t)+ 2

(

√

(t+(1− ρ)gγ,ρ,y(t))Cγ,ρ,y(t)−
√
t

)}

, (61)

where

Cγ,ρ,y(t)≡
1

c2x
· Iw

(

b2c2xρ
2

4(1− ρ)2
(t+(1− ρ)gγ,ρ,y(t))

)

.
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We remark that the constant ρc2x/2(1 − ρ) is the exact steady-state mean waiting time in a

M/GI/1 model, f(t) attains maximum value of 1 at t= 1, gγ,ρ,y is a periodic function fluctuating

around 0 with limits in Lemma 3 and that the third component in (EC.14) is typically small,

especially when ρ≈ 1. Furthermore, we have

lim
ρ↑1

Cγ,ρ,y(t) = lim
t→∞

Iw(t)/c
2
x = 1

uniformly for t bounded away from 0, where the second equation holds under regularity conditions,

see §IV.A of Fendick and Whitt (1989).

Now, we present the heavy traffic limit for PRQ; the proof appears in §EC.3.

Theorem 4. (heavy traffic limit for PRQ) The heavy traffic limit of the PRQ problem in (56) for

the Gt/G/1 model is

lim
ρ↑1

2

b2
· 2(1− ρ)

ρc2x
·W ∗

γ,ρ,y = sup
t≥0

{f(t)+ gγ,1,y(t)} . (62)

We immediately obtain an upper bound for the PRQ solution for the system with sinusoidal

arrival rate, which reveals the essential shape of the solution as we shall see in §5.

Corollary 3. Suppose h(x) = β sin(2πx), then

lim
ρ↑1

2

b2
· 2(1− ρ)

ρc2x
W ∗

γ,ρ,y ≤ lim
ρ↑1

f(t)+ lim
ρ↑1

gγ,ρ,y(t)≤ 1+
2β

πb2c2xγ
(1− cos(2πy)), 0≤ y < 1. (63)

Remark 4. (The heavy traffic limits do not coincide in this case.) From the statements of Theo-

rems 3 and 4, it is not obvious if the deterministic heavy-traffic limit for PRQ agrees with the mean

value of the steady-state distribution of the heavy-traffic limit of the original stochastic model, par-

alleling the strong results we obtained for the stationary model in Whitt and You (2016). However,

our numerical experiments show that these two do not coincide in general.

4.3. Long-Cycle Limits for PRQ in Heavy Traffic

For useful approximations of periodic queues, it is helpful to combine the heavy-traffic perspective

with the long-cycle perspective considered in §3.3. When we let the cycles get long in heavy-

traffic, we see that there are three very different cases, depending on the instantaneous arrival rate
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function. Since the average arrival rate satisfies (19), the model is necessarily stable for each ρ < 1

with a proper steady-state distribution, but the local behavior depends on the instantaneous traffic

intensity ρ(y). In the heavy-traffic setting of §4-4.2, the three cases are the underloaded case in

which h↑ < 1, the overloaded case in which h↑ > 1 and the critically loaded case in which h↑ = 1.

In the underloaded case, there will be no times at which the net input rate is positive. For fixed

ρ, the system will be stochastically bounded above by a system with the maximum arrival rate,

for which there will be a proper steady-state distribution. In that setting, the arrival rate will stay

flat for long enough that the system will approach the steady state for that approximately fixed

arrival rate. Thus, in that situation, it is appropriate to approximate the time-varying distribution

at each time by the steady-state distribution of the model with the arrival rate at that time, which

is known as a pointwise stationary approximation (PSA); see Green and Kolesar (1991), Whitt

(1991) and Massey and Whitt (1997). We will show that if we let the cycles get long for PRQ in

an underloaded model, PRQ is asymptotically consistent with PSA.

The overloaded case is very different. In the overloaded case, there will be times at which the net

input rate is positive. Hence, with long cycles, there will be long stretches of time over which the

workload will build up. This will lead to limits with new scaling, as in Choudhury et al. (1997b).

Finally, there is the more complicated critically loaded case. We consider these cases in turns.

4.3.1. Underloaded Queues For an underloaded queue, we have the following heavy-traffic

double limit.

Theorem 5. (long-cycle heavy-traffic limit for PRQ in an underloaded queue) Assume that h is

continuously differentiable with h↑ < 1, then the PRQ problem in (56) for the Gt/G/1 model admits

the double limit

lim
γ↓0
ρ↑1

2

b2
· 2(1− ρ)

ρc2x
·W ∗

γ,ρ,y =
1

1−h(y)
, (64)

so that PRQ is asymptotically consistent with PSA, i.e., the instantaneous traffic intensity is ρ(y) =

ρ+(1− ρ)h(y), so that

W ∗
y =

b2

2
· ρ(y)c2x
2(1− ρ(y))

+ o(1− ρ). (65)
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Remark 5. (asymptotic validity of PSA) We remark that the double limit in Theorem 5 is stronger

than a natural iterated limit, which has been established for the Mt/M/1 queue and should hold

more generally. In particular, PSA has been proved to be asymptotically correct as γ ↓ 0 for the

Mt/M/1 model in Whitt (1991). Then RQ has been shown to be asymptotically correct for the

stationary model as ρ ↑ 1 in Whitt and You (2016).

4.3.2. Overloaded Queues The overloaded case is quite different from the underloaded

because the instantaneous arrival rate will be higher than the service rate at some time. The longer

the cycle, the longer the time the system is overloaded, which will lead to a larger workload. The

following limit holds more generally, as γ(1− ρ) ↓ 0.

Theorem 6. (long-cycle limit for PRQ in an overloaded queue) The PRQ problem in (56) for the

Gt/G/1 model with the heavy-traffic scaling in (44) and h↑ > 1 admits the long-cycle limit

(1− ρ) lim
γ↓0

γ ·W ∗
γ,ρ,y = sup

t≥0

{

−t+

∫ y

y−t

h(s)ds

}

, 0≤ ρ < 1. (66)

Remark 6. (the space scaling) When the queue is not overloaded, Theorem 6 yields the trivial

limit 0, as does Theorem 2. That implies that the scaling constant γ in (66) then becomes too

much to generate an interesting limit. For underloaded queues, we saw in §4.3.1 that the long-cycle

scaling constant γ is not needed. For critically loaded queues, the long-cycle scaling is much more

interesting; we discuss that case next in §4.3.3.

4.3.3. Critically Loaded Queues The critically loaded case is more complex in terms of

space scaling. Though the space scaling does involve the cycle length parameter γ, it will depend

on the detailed structure of the arrival rate function instead of a simple γ we see in Theorem 6.

The following theorem reveals the relationship between the space scaling and γ.

Theorem 7. (long-cycle heavy-traffic limit for PRQ in a critically loaded queue) Assume that h(t)

satisfies

h(t) = 1− ctp + o(tp), as t→ 0, (67)
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for some positive real numbers c and p. Then the long-cycle heavy-traffic limit of the PRQ solution

for the Gt/G/1 model at the critical point y= 0 is in the order of O(γ−p/(2p+1)(1−ρ)−1) as (ρ, γ)→

(1,0).

The scaling in Theorem 7 coincides with the scaling in the heavy-traffic FCLT in Theorem 4.1

of Whitt (2016), where the space scaling needed at an isolated critical point is investigated. It is

shown there that the space scaling of the heavy traffic limit depends on the detailed structure of

the arrival-rate function, which turned out to be the same as the PRQ version considered here.

Hence, the scaling in PRQ is asymptotically correct in this regime. This is confirmed in §5.1.3,

where we present comparisons between simulation and PRQ values for critically loaded queue.

Remark 7. (Heavy-Traffic and long-cycle limits in the Gt/Gt/1 case) From (17), we have the

following equivalent representation of the steady-state workload

W = sup
s≥0











N(Λt(M−1
t (s)))

∑

k=1

Vk − s











,

which can be viewed as an equivalent system with alternative arrival-rate function Λt

(

M−1
t (s)

)

.

One would expect that all the heavy-traffic and long-cycle results for both the stochastic model

and the PRQ would generalize to the case where service rate is variable. This is indeed true, which

we shall discuss in §EC.5.

5. Simulation Comparisons for the Sinusoidal Gt/GI/1 Queue

In this section, we present results of several simulation experiments conducted to evaluate the

performance of PRQ. These experiments confirm Theorem 2 showing that PRQ is asymptotically

correct in long-cycle limit and show that PRQ provides a useful approximation for the mean

workload under moderate to heavy loads.

For these simulations, we consider the Gt/GI/1 model with various rate-1 base processes N in

(7), all having sinusoidal arrival-rate functions, and various mean-1 service-time distributions. The

arrival processes are all time-transformed renewal processes with mean-1 interarrival times. The
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arrival processes and service-time distributions are further specified by the scv of the mean-1 ran-

dom variables. Our examples use Erlang (Ek), hyperexponential (H2, mixture of two exponentials

with balanced means, p. 137 of Whitt (1982)) and lognormal distributions, with the scv appearing

in parentheses. Our base case is (H2(4))t/LN(1)/1. We vary the arrival process and service-time

distribution in order to demonstrate the robustness of our PRQ algorithm and to show how it

can be used to expose and separate the impact of the stochastic variability and the impact of the

deterministic time-variability.

For the PRQ algorithm applied to the Gt/G/1 model in (56), we primarily use the parameter

b =
√
2. As explained in Whitt and You (2016), this choice of b makes RQ exact for the mean

steady-state workload in the M/GI/1 special case. For numerical calculation of the PRQ solution,

we create a finite mesh over [0, T ], where

T =max

{

cγ,ρ,
b2Mρ

4(1− ρ)2

}

,

and M = supt≥0 Iw(t). This choice of T ensures that the maximum is obtained in [0, T ] as we see

from Lemma 4 and the fact that f(t) achieves maximum at t∗ = 1. Then we choose a mesh fine

enough such that the error is negligible.

5.1. Heavy Traffic and Long Cycles limits

5.1.1. Underloaded Queues We start with the double limit for underloaded queues in §4.3.1.

We consider a special case of arrival-rate functions in (45),

λγ,ρ(t) = ρ+(1− ρ)β sin
(

2πγ(1− ρ)2t
)

. (68)

In particular, Figure 1 compares the solution to the PRQ problem in (56) as a function of the posi-

tion y within a cycle to simulation estimates of the normalized mean workload 2(1−ρ)E [Wγ,ρ,y]/ρ

for Wγ,ρ,y in (55) and the limit in Theorem 5 in the underloaded (H2(4)t/LN(1)/1 model with

arrival-rate function in (68), in various cases.

Figure 1 confirms Theorem 5 for the underloaded case, where h↑ = β = 0.8< 1. We observe that

(i) both the simulation values and the PRQ solutions converge to the theoretical limit as (γ, ρ)→
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Figure 1 A comparison of the solution to the PRQ problem in (56) as a function of the position y within a cycle

to simulation estimations of the normalized mean workload 2(1− ρ)E [Wγ,ρ,y]/ρ for Wγ,ρ,y in (55) and

the limit in Theorem 5 in the underloaded (H2(4)t/LN(1)/1 model with arrival-rate function in (68)

for (γ, ρ)∈ {(0.7,10−2), (0.9,10−3), (0.95,10−4)} (left), for three different arrival processes (middle) and

for three different service-time distributions (right).

(0,1); (ii) PRQ captures the essential shape of the simulated mean workload; (iii) PRQ serves as

a good approximation for the steady-state mean workload even for moderate traffic intensity and

moderate cycle length and across various time-varying arrival processes and service distributions.

Figure 1 (middle) and (right) show the impact of changing variability in the arrival process and

the service-time distribution. Consistent with the stationary model, increased variability in either

the arrival process or the service process tends to increase congestion. We remark that the story

is different from the impact of the service-time distribution on the blocking in the time-varying

Mt/GI/n/0 loss model; see Davis et al. (1995).

5.1.2. Overloaded Queues Next, we keep the same arrival rate function in (68), but raise

the h↑ above the critical point of 1, which yields an overloaded queue. Theorem 6 shows that there

is a proper long-cycle limit for PRQ, which depends on ρ through a simple scaling of (1− ρ).

Figure 2 (left) shows that both simulated values and PRQ approximations converge to the

theoretical limit calculated from Proposition 1, confirming Theorem 2 and 6, while Figure 2 (right)

demonstrates that the scaling constant (1 − ρ) also appears in the simulated mean workload.

Overall, Figure 2 shows that PRQ serves as a reasonable approximation for the overloaded queues

even in moderate cycle length and traffic intensities.
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Figure 2 A comparison of the solution to the PRQ problem in (56) as a function of the position y within a cycle

to simulation estimations of the normalized mean workload γ(1− ρ)E [Wγ,ρ,y ] for Wγ,ρ,y in (55) and

the limit in Theorem 6 in the overloaded Gt/LN(1)/1 model with arrival-rate function in (68) for three

values of γ (left) and three values of ρ (right).

5.1.3. Critically Loaded Queues In this experiment, we look at the critically loaded cases,

where the arrival rate function (68) with h↑ = 1 is used. To relate to Theorem 7, we perform Taylor’s

expansion to the sinusoidal arrival rate function around the critical point of y=0.25. The relevant

parameter in (67) is then p= 2, resulting in a space scaling proportional to γ2/5. As discussed in

§4.3.3, both the stochastic queues and PRQ approximations exhibit a space scaling of γ−2/5.

Theorem 7 is confirmed by Figure 3 (left), where we scaled both the estimated mean workload and

PRQ approximation with γ−2/5(1− ρ). The extra scaling of (1− ρ) is often seen in classical results

for stationary queueing models, e.g. in the Kingman’s bound. Although the PRQ approximation

does not always converge to the mean workload in long-cycle or heavy traffic limits, we can see that

it is still a useful approximation. We observe that PRQ predicts the timing of the peak congestion

and the sudden drop remarkably well.

Figure 3 (middle) shows that the simulated mean workload depends on the traffic intensity

approximately through constant (1− ρ). This is not exact in contrast to the overloaded case. This

shows that the critically loaded queue is more complicated. Still, the PRQ algorithm captures this

feature.
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Figure 3 A comparison of the solution to the PRQ problem in (56) as a function of the position y within a cycle

to simulation estimations of the normalized mean workload γ2/5(1−ρ)E [Wγ,ρ,y] for Wγ,ρ,y in (55) and

the limit in Theorem 7 in the critically loaded Gt/LN(1)/1 model with arrival-rate function in (68) and

underlying stationary point process specified in figure titles, for three choices of γ (left) and for three

choices of ρ (middle). The PRQ objective function for the case of (ρ,h↑) = (0.7,10−2,1) and LN(0.25)

renewal as underlying process is shown on the right.

Figure 3 (right) shows the PRQ objective functions in (56) for y= 0.45 and y=0.5 for the case

of (ρ,h↑) = (0.7,10−2,1) and LN(0.25) renewal as underlying process. Figure 3 (right) explains

that the sharp turning is caused by the optimal point switching from one mode to another. This

illustrates how plotting the TVRQ objective function can provide useful insight.

6. Conclusions

In this paper, we have developed a time-varying robust queueing (TVRQ) algorithm to approximate

the time-varying mean (and quantiles; see §EC.6.3) of the workload in a general Gt/Gt/1 single-

server queue with time-varying arrival-rate and service-rate functions. Exploiting a reverse-time

construction of the workload process in §2.1, we developed a general TVRQ representation of the

workload at time t, starting empty at time 0, as the supremum of an approximating reverse-time

net input process in (6). Exploiting the composition representation of the arrival counting process

in (7), we obtained the explicit representation in terms of the reverse time cumulative rate functions

Λt and Mt for the Gt/G/1 queue in (16) and the Gt/Gt/1 queue in (18).

The rest of the paper focused on the special case of periodic RQ (PRQ). In that case we focus on

the periodic steady-state workload at place y within a periodic cycle. The general representation of



Whitt and You: Time-Varying Robust Queueing

30 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

the PRQ workload as a function of y appears in (21). After developing a deterministic fluid model

for the periodic queue in §2.5 and §3.2, we established long-cycle limits for both the actual periodic

workload and the PRQ that showed the both converge to the same fluid workload, implying that

PRQ is asymptotically correct in that limit.

In §4 we established heavy-traffic limits as the long-run average traffic intensity ρ in (19) increases

toward 1 for both the actual periodic workload and the PRQ, using the scaling in Whitt (2014),

but in general these limits do not agree. In §4.3 we established double limits as the traffic intensity

increases and the cycle length increases. These limits expose three important cases: First, for

underloaded models in which the maximum instantaneous traffic intensity remains less than 1, the

limit for PRQ is the same as the pointwise stationary approximation (PSA) version of the heavy-

traffic limit for the stationary model, which has been shown to be asymptotically correct in Whitt

and You (2016). Second, for the overloaded case, we obtain limits with very different scaling that

captures the long periods of overloading, just as in Choudhury et al. (1997b). Third, for critically

loaded cases, we obtained the limit for PRQ in Theorem 7, consistent with Whitt (2016). Finally,

we reported results of simulation experiments that confirm the limit theorems and show that PRQ

can provide helpful insight into complex time-varying models.
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e-companion

EC.1. Overview

This is an online e-companion to the main paper. It has six sections. First, in §EC.2 we provide the

proofs for §3. In §EC.3 we provide the proofs for §4. In §EC.4 we describe the simplified parametric

PRQ that follows from applying the heavy-traffic limit to approximate the net-input process by a

diffusion process, as mentioned in Remark 3. In §EC.5 we elaborate on Remark 1 about TVRQ for

a time-varying service rate. In particular, we extend some of the asymptotic results to the Gt/Gt/1

model with TV service as well as TV arrival-rate function Finally, in §EC.6 we present five more

simulation examples that demonstrate the effectiveness of PRQ.

.

EC.2. Proofs for Results on PRQ and the Fluid Approximation in §3

Proof of Proposition 1. Let s= kc+ y, 0≤ y < c and k≥ 0. Then

Wf,y = sup
0≤s≤∞

{Yf,y(s)− s}, 0≤ y < c,

= sup
0≤u≤c, k≥0

{Yf,y(kc+u)− (kc+u)}, 0≤ y < c,

= sup
0≤u≤c, k≥0

{(Yf,y(kc+u)−Yf,y(u)− kc)+ (Yf,y(u)−u)}, 0≤ y < c,

= sup
0≤u≤c, k≥0

{−(1− ρ)kc+(Yf,y(u)−u)}, 0≤ y < c,

= sup
0≤u≤c

{Yf,y(u)−u}, 0≤ y < c, (EC.1)

because the function inside the supremum is strictly decreasing in k.

Proof of Lemma 2. Observe that

γAγ(γ
−1t) = γN(Λγ(γ

−1t)) = γN(γ−1Λf(γ(γ
−1t)))

= γN(γ−1Λf (t))→Λf (t) as γ ↓ 0 w.p.1 (EC.2)

because γN(γ−1t)→ t uniformly over bounded intervals w.p.1 by the FSLLN in (36). A further

application of the composition mapping yields the corresponding limit for Yγ in (35):

γYγ(γ
−1t) = γ

γ−1(γAγ(γ
−1t))

∑

k=1

Vk →Λf (t) as γ ↓ 0 w.p.1,
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because

γ

γ−1t
∑

k=1

Vk → t as γ ↓ 0 w.p.1

uniformly over bounded intervals w.p.1 by the FSLLN.

Proof of Theorem 1. From (39) and (40),

γWγ,y = sup
s≥0

{γYγ,y(γ
−1s)− s}→ sup

s≥0

{Λf,y(s)− s}=Wf,y as γ ↓ 0 w.p.1, (EC.3)

where Wf,y is the periodic workload in the periodic fluid model by virtue of Lemma 2 and a

further continuity argument. Lemma 2 and condition (37) guarantee that it suffices to consider the

supremum over a bounded interval, so that the supremum is continuous.

Proof of Theorem 2. Observe that

γW ∗
γ,y = sup

s≥0

{γΛγ,y(γ
−1s)− s+ γ

√

b2Λγ,y(γ−1s)Iw(Λγ,y(γ−1s))}

= sup
s≥0

{Λf,y(s)− s+
√

b2γΛf,y(s)Iw(Λγ,y(γ−1s))}

→ sup
s≥0

{Λf,y(s)− s}=Wf,y as γ ↓ 0, (EC.4)

where Λγ,y(t) is defined in (33) and again Wf,y is the workload in the periodic deterministic fluid

model. To justify (EC.4), we apply Lemma 1 to see that, b2γΛf,y(s)Iw(Λγ,y(γ
−1s))≤ b2γI↑w[ρs+

λ↑c] ≤ γ(K1s + K2) for constants I↑w = supt Iw(t), K1 and K2 and , so that
√

2b2γΛf,y(s) ≤
√

γ(K1s+K2) → 0 uniformly over bounded interval as γ ↓ 0. Hence, it suffices to consider the

supremum in (EC.4) over a bounded interval, because the function is negative outside that interval

for all sufficiently small γ. Since the limit Wf,y is the same as in Theorem 1, PRQ has been shown

to be asymptotically correct as γ ↓ 0.

EC.3. Proofs of Heavy-Traffic Results from §4

Proof of Lemma 3. (c) and (d) are trivial corollaries of the definition of gγ,ρ,y(·). For (a) and (b),

note that

|gγ,ρ,y(t)−h(y)t/ρ| ≤ 4

b2c2xγρ
2

∫ y

y−
b2c2xγρ

4
t

|h(s)−h(y)|ds= 4

b2c2xγρ
2

∫ y

y−
b2c2xγρ

4
t

|h′(ξ)(s− y)|ds

≤ 4M

b2c2xγρ
2

∫ y

y−
b2c2xγρ

4
t

|s− y|ds= 4M

b2c2xγρ
2
· 1
2

(

b2c2xγρ

4
t

)2

=Nγt2, (EC.5)
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where N ≡Mb2c2x/8. Note that the second line requires h(·) to be differentiable. (b) follows directly

from (EC.5). To prove (a), we note that |gγ,ρ,y(t)−h(y)t| ≤ |gγ,ρ,y(t)−h(y)t/ρ|+ |h(y)t|(1−ρ−1).

Proof of Lemma 4. We write

W ∗
γ,ρ,y = sup

s≥0

{

(ρs− s+ bcx
√
ρs)+ (Λγ,y,ρ(s)− ρs)+ bcx

(
√

Λγ,y,ρ(s)
Iw (Λγ,ρ,y(s))

c2x
−√

ρs

)}

.

Together with (59) and (60), the change of variable s= b2c2xρt/4(1− ρ)2 yields the desired expres-

sion.

Proof of Theorem 4. First, for any small ε > 0, there exist δ > 0 such that

ρgγ,ρ,y(t)+ 2

(

√

(t+(1− ρ)gγ,ρ,y(t))Cγ,ρ,y(t)−
√
t

)

< ε

for all t < δ and ρ > δ. Recall that f(t) attains its maximum at t= 1, it suffices to consider the

maximization over interval t∈ [δ,∞) instead. Since limρ↑1Cγ,ρ,y(t) = 1 uniformly for all t bounded

away from 0, gγ,ρ,y(t) and Cγ,ρ,y(t) are bounded, we have

lim
ρ↑1

√

(t+(1− ρ)gγ,ρ,y(t))Cγ,ρ,y(t)−
√
t= 0

uniformly over t∈ [δ,∞).

Apply Lemma 4, and note that

sup
x
{f(x)}+ inf

x
{g(x)} ≤ sup

x
{f(x)+ g(x)}≤ sup

x
{f(x)}+sup

x
{g(x)}

for any function f(x) and g(x), we have

lim
ρ↑1

2

b2
· 2(1− ρ)

ρc2x
W ∗

γ,ρ,y = lim
ρ↑1

sup
t≥0

{f(t)+ ρgγ,ρ,y(t))} .

Now, we need only consider a bounded interval of t, becasuse gγ,ρ,y(·) is uniformly bounded by

definition (60) and thus the objective function in the supremum will be negative outside a bounded

interval. The result then follows from part (d) of Lemma 3.
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Proof of Theorem 5. From Lemma 4, we have

2

b2
· 2(1− ρ)

ρc2x
·W ∗

γ,ρ,y = sup
t≥0

{

f(t)+ ρgγ,ρ,y(t)+ 2

(

√

(t+(1− ρ)gγ,ρ,y(t))Cγ,ρ,y(t)−
√
t

)}

.

Now, let Fγ,ρ,y(t)≡ f(t)+ρgγ,ρ,y(t)+2
(

√

(t+(1− ρ)gγ,ρ,y(t))Cγ,ρ,y(t)−
√
t
)

. For the same reason

as discussed in the proof of Theorem 4, we can consider only the t’s bounded away from 0. Further-

more, since Fγ,ρ,y(·) is negative outside a bounded interval and that supt≥0{−(1−h(y))t+2
√
t}=

1/(1− h(y)), it suffices to prove that Fγ,ρ,y(t) converges uniformly to −(1− h(y))t+ 2
√
t over all

bounded interval of t as (γ, ρ)→ (0,1). To this end, we write

∣

∣

∣
Fγ,ρ,y(t)−

(

−(1−h(y))t+2
√
t
)
∣

∣

∣
=

∣

∣

∣

∣

ρgγ,ρ,y(t)−h(x)t+2

(

√

(t+(1− ρ)gγ,ρ,y(t))Cγ,ρ,y(t)−
√
t

)∣

∣

∣

∣

≤ |gγ,ρ,y(t)−h(x)t|+(1− ρ)|gγ,ρ,y(t)|+2
√

t|Cγ,ρ,y(t)− 1|

+2
√

(1− ρ)|gγ,ρ,y(t)|Cγ,ρ,y(t),

where we used the concavity of the square root function. The result then follows from Lemma 3

and the fact that limρ↑1Cγ,ρ,y(t) = 1 uniformly for t∈ [δ,∞] for any positive δ.

To see that this limit coincides with PSA, note that by (64), we have

W ∗
y ≈ b2

2
· ρc2x
2(1− ρ)(1−h(y))

=
b2

2
· ρc2x
2(1− (ρ+(1− ρ)h(y)))

=
b2

2
· ρc2x
2(1− ρ(y))

which is asymptotically correct up to o(1− ρ) in the limit.

Proof of Theorem 6. Note from (56) that

W ∗
γ,ρ,y = sup

s≥0

{

Λγ,ρ,y(s)− s+ b
√

Λγ,ρ,y(s)Iw(Λγ,ρ,y(s))

}

= sup
s≥0

{

− (1− ρ)s+
1

γ(1− ρ)

∫ y

y−c−1
γ,ρs

h(u)du+ b
√

Λγ,ρ,y(s)Iw(Λγ,ρ,y(s))

}

=
1

γ(1− ρ)
· sup
t≥0

{

−t+

∫ y

y−t

h(u)du+ γ(1− ρ)bcx

√

Λγ,ρ,y(cγ,ρt)Iw(Λγ,ρ,y(cγ,ρt))

}

, (EC.6)

where we applied a change of variable cγ,ρt= s in the third line. The result follows from the fact

that Iw(t) is bounded and that Λγ,ρ,y(cγ,ρt) is in the order of ρcγ,ρt= ρt/(γ(1− ρ)2) when γ → 0.

Then the third term in the curly brace will be O
(

γ1/2
)

and converges to 0 uniformly over bounded

intervals of t. Note also that the function in the supremum is negative for all t sufficiently large,

we need only consider a bounded interval for t.
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Proof of Theorem 7. By (67), we have

gγ,ρ,0(t) =
4

b2c2xγρ
2

∫ 0

−
b2c2xγρ

4
t

h(s)ds= ρ−1

(

1− c

p+1

(

b2c2xγρ

4

)p

tp+1 + o(γptp+1)

)

= ρ−1
(

t−Mγptp+1 + o(γptp+1)
)

as γ ↓ 0 for fixed t, where M = c (b2c2xρ)
p
/(4p(p+1)). Applying Theorem 4 yields

2

b2
· 2(1− ρ)

ρc2x
·W ∗

γ,1,0 = sup
t≥0

{f(t)+ gγ,1,0(t)}= sup
t≥0

{

2
√
t−Mγptp+1 + o(γp)

}

, as γ ↓ 0,

where the tp+1 is removed from the little-o expression by noting that it suffices to consider a

bounded interval of t from the proof of Theorem 4. The supremum is then achieved at

t∗ =

(

γ−p

(M + o(1))(p+1)

)2/(2p+1)

,

with maximum value

(2− 1/(p+1))

(

1

(M + o(1))(p+1)

)1/(2p+1)

γ−
p

2p+1

as γ ↓ 0.

EC.4. A Parametric PRQ Based on the Heavy-Traffic Diffusion Approximation

We now provide the details supporting Remark 3. In particular, we now show that a simplified

version of the PRQ can be derived from the heavy-traffic FCLT in Theorem 3.With the heavy-traffic

scaling in (51) and the heavy-traffic limit in (52), we have the diffusion approximation of the original

stochastic process. In particular, we can start with the following heavy-traffic approximation of the

net-input process of the original queueing model

(1− ρ)−1X̂γ,ρ((1− ρ)2t)≈ (1− ρ)−1
(

cxB((1− ρ)2t)+Λd,γ((1− ρ)2t)− (1− ρ)2t
)

d
= cxB̃(t)+ (1− ρ)−1Λd,γ((1− ρ)2t)− (1− ρ)t

= cxB̃(t)+Λγ,ρ(t)− t

where Λγ,ρ is defined in (44) and B̃ is again a standard Brownian motion. For slightly more

generality, we assume that the periodic arrival-rate function start from a position y ∈ [0,1) within
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a cycle, i.e., move the origin to ycγ,ρ = y/γ(1− ρ)2 in (44). Applying the reverse-time construction

of the workload in §2.1, we have

W̃γ,ρ,y ≈ sup
s≥0

{

cxB̃(s)+Λγ,ρ,y(s)− s
}

(EC.7)

as an diffusion approximation of the steady-state mean workload in the system parametrized by

(γ, ρ, y), where Λγ,ρ,y(s)≡ Λγ,ρ((k+ y)cγ,ρ)−Λγ,ρ((k+ y)cγ,ρ− s). By replacing B̃ by its standard

deviation, we immediately obtain a robust queueing approximation of (EC.7)

W̃ ∗
γ,ρ,y ≡ sup

s≥0

{

Λγ,ρ,y(s)− s+ cx
√
s
}

. (EC.8)

As in Whitt and You (2016), we call the formulation in (EC.8) a parametric PRQ because we

quantify the level of variability by the single parameter c2x, which is based on the heavy-traffic limit

for the net input process. The parametric PRQ in (EC.8) is in contrast to the functional PRQ

using Iw as in (16) and (21). In §EC.6.2, we compare the diffusion approximation in (EC.7), the

parametric PRQ in (EC.8) and the functional PRQ in (21).

EC.5. Heavy-Traffic and Long-Cycle Limits in the Gt/Gt/1 model

In this section, we elaborate on Remark 1 by presenting heavy-traffic and long-cycle limits for the

periodic Gt/Gt/1 model with sketches of the proofs. We follow the framework for variable service

rate introduced in Remark 1, the heavy-traffic scaling in §4.1 and the periodic queueing setup in

§4.2. In particular, we focus on the the steady-state workload at a fixed location y within a cycle

Wγ,ρ,y = sup
s≥0







Aγ,ρ,y(s)
∑

k=1

Vk −Mγ,ρ,y(s)







as in (17), where Aγ,ρ,y (s)≡N (Λγ,ρ,y (s)). The corresponding PRQ problem is

W ∗
γ,ρ,y = sup

s≥0

{

Λγ,ρ,y(s)−Mγ,ρ,y(s)+ b
√

Λγ,ρ,y(s)Iw (Λγ,ρ,y(s))

}

(EC.9)

as in (18). Here, we keep the same reverse-time cumulative arrival-rate function

Λγ,ρ,y(s)≡Λγ,ρ(ycγ,ρ)−Λγ,ρ(ycγ,ρ− s)
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for Λγ,ρ in (44) and cγ,ρ = 1/γ(1− ρ)2. Similarly, we define

Mγ,ρ,y(s)≡Mγ,ρ(ycγ,ρ)−Mγ,ρ(ycγ,ρ− s)

with

Mγ,ρ(t)≡ t+(1− ρ)−1Md,γ((1− ρ)2t), t≥ 0 (EC.10)

so that the associated service-rate function is

µγ,ρ(t)≡ 1+ (1− ρ)µd,γ((1− ρ)2t), t≥ 0,

where

Md,γ(t)≡
∫ t

0

µd,γ(s)ds, µd,γ(t)≡ r(γt), and

∫ 1

0

r(t)dt= 0 (EC.11)

for a continuous function r with a cycle length of 1.

With the same heavy-traffic scalings as in (49), we generalize Theorem 3 as follows.

Theorem EC.1. (heavy-traffic FCLT for the Gt/GIt/1 model) For the family of Gt/GIt/1 models

indexed by (γ, ρ) with cumulative arrival-rate functions in (44) and cumulative service-rate function

in (EC.10), if N̂n ⇒ caBa as n→∞, where Ba is a standard Brownian motion, then

(Âγ,ρ, X̂γ,ρ, Ŵγ,ρ)⇒ (Âγ , X̂γ, Ŵγ) in D as ρ ↑ 1,

where

(Âγ, X̂γ, Ŵγ)≡ (caBa +Λd,γ − e, Âγ + csBs −Md,γ,Ψ(X̂γ)),

Ψ is the reflection map in (50), and Ba and Bs are two independent standard (mean 0 variance 1)

Brownian motions.

Proof. By definition, we have

X̂γ,ρ(t) = (1− ρ)Xγ,ρ

(

(1− ρ)−2t
)

= (1− ρ)

Aγ,ρ((1−ρ)−2t)
∑

k=1

Vk − (1− ρ)Mγ,ρ

(

(1− ρ)−2t
)

= (1− ρ)

Aγ,ρ((1−ρ)−2t)
∑

k=1

Vk − (1− ρ)−1t−Md,γ (t)

≡Ξγ,ρ(t)−Md,γ (t) .
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where Ξγ,ρ(t) denotes the quantity X̂γ,ρ(t) exacly as it appears in Theorem 3, so the result follows.

We remark that this generalized FCLT can be viewed as if we replace Λd,γ by Λ̃d,γ ≡Λd,γ −Md,γ

in a Gt/GI/1 model, or equivalently, replace h by h̃≡ h− r for h in (47) and r in (EC.11).

Next, we generalize the limit theorems for the PRQ problem in (EC.9). As preparation, we

re-write Mγ,ρ,y exactly the same as (57)

Mγ,ρ,y(s) ≡ Mγ,ρ((k+ y)cγ,ρ)−Mγ,ρ((k+ y)cγ,ρ− s) =Mγ,ρ(ycγ,ρ)−Mγ,ρ(ycγ,ρ− s)

= s+(1− ρ)−1

∫ y/γ

y/γ−(1−ρ)2s

r(γt)dt= s+
1

γ(1− ρ)

∫ y

y−c−1
γ,ρs

r(t)dt

= s+
1

γ(1− ρ)
Rγ,ρ,y(s), (EC.12)

where cγ,ρ = 1/γ(1− ρ)2 is the cycle length of Mγ,ρ,y and Rγ,ρ,y(s)≡
∫ y

y−c−1
γ,ρs

r(t)dt. Similar to (60),

we define

g̃γ,ρ,y(t)≡
4

b2c2xγρ
2

∫ y

y−
b2c2xγρ

4
t

(h(s)− r(s))ds (EC.13)

All generalizations are trivial in the way that we need only replace gγ,ρ,y in the original limits

by g̃γ,ρ,y here in appropriate places. Equivalently, this can be done by replacing h by h̃ ≡ h− r

appropriately as we observed in the generalized FCLT. We demonstrate this idea by proving a

generalized version of Lemma 4.

Lemma EC.1. With f , gγ,ρ,y and g̃γ,ρ,y defined in (59), (60) and (EC.13), we have

W ∗
γ,ρ,y =

b2

2
· ρc2x
2(1− ρ)

·sup
t≥0

{

f(t)+ ρg̃γ,ρ,y(t)+ 2

(

√

(t+(1− ρ)gγ,ρ,y(t))Cγ,ρ,y(t)−
√
t

)}

, (EC.14)

where

Cγ,ρ,y(t)≡
1

c2x
· Iw

(

b2c2xρ
2

4(1− ρ)2
(t+(1− ρ)gγ,ρ,y(t))

)

.

Proof. From (EC.9), we write

W ∗
γ,ρ,y = sup

s≥0

{(ρs− s+ bcx
√
ρs)+ ((Λγ,y,ρ(s)−Mγ,y,ρ(s)+ s)− ρs)

+bcx

(

√

Λγ,y,ρ(s)Iw (Λγ,ρ,y(s))/c2x−
√
ρs

)}

.
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Together with (59), (60) and (EC.13), the change of variable s= b2c2xρt/4(1−ρ)2 yields the desired

expression.

Hence, we immediately obtain

Theorem EC.2. (heavy traffic limit for PRQ) The heavy traffic limit of the PRQ problem in

(EC.9) for the Gt/Gt/1 model is

lim
ρ↑1

2

b2
· 2(1− ρ)

ρc2x
·W ∗

γ,ρ,y = sup
t≥0

{f(t)+ g̃γ,1,y(t)} . (EC.15)

Before presenting the long-cycle heavy-traffic limits, we need to adjust the concept of under-

loaded, critically loaded and overloaded queues. In the case of a Gt/Gt/1 queue, the instantaneous

traffic intensity becomes

ρ̃(y) =
ρ+(1− ρ)h(y)

1+ (1− ρ)r(y)
(EC.16)

We now distinguish the three cases by the value of ρ̃↑ ≡ supy{ρ̃(y)}. So ρ̃↑ < 1, ρ̃↑ = 1 and ρ̃↑ > 1

corresponds to the underloaded, critically loaded and overloaded case, separately. Equivalently,

we can also use h̃↑ as the criteria, where h̃ = h− r. Using h̃↑ is preferred because (i) it is more

consistent with the notation in §4.3; (ii) it is consistent with our observation of replacing h by h̃

when generalizing to the case of Gt/Gt/1 models, as we discussed above.

The rest of the generalizations share the similar idea, and only minor adjustments are needed

for the proofs. We list them below.

Theorem EC.3. (long-cycle heavy-traffic limit for PRQ in an underloaded queue) Assume that h

is continuously differentiable with h̃↑ < 1, then the PRQ problem in (EC.9) for the Gt/Gt/1 model

admits the double limit

lim
γ↓0
ρ↑1

2

b2
· 2(1− ρ)

ρc2x
·W ∗

γ,ρ,y =
1

1− h̃(y)
, (EC.17)

so that PRQ is asymptotically consistent with PSA, i.e.,

W ∗
y =

b2

2
· ρ̃(y)c2x
2(1− ρ̃(y))

+ o(1− ρ). (EC.18)

where ρ̃(y) is the instantaneous traffic intensity in (EC.16)
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Theorem EC.4. (long-cycle limit for PRQ in an overloaded queue) The PRQ problem in (EC.9)

for the Gt/Gt/1 model with the heavy-traffic scaling in (44) and h̃↑ > 1 admits the long-cycle limit

(1− ρ) lim
γ↓0

γ ·W ∗
γ,ρ,y = sup

t≥0

{

−t+

∫ y

y−t

h̃(s)ds

}

, 0≤ ρ < 1. (EC.19)

Theorem EC.5. (long-cycle heavy-traffic limit for PRQ in a critically loaded queue) Assume that

h̃(t) satisfies

h̃(t) = 1− ctp + o(tp), as t→ 0, (EC.20)

for some positive real numbers c and p. Then the long-cycle heavy-traffic limit of the PRQ solution

for the Gt/Gt/1 model at the critical point y = 0 is in the order of O(γ−p/(2p+1)(1 − ρ)−1) as

(ρ, γ)→ (1,0).

EC.6. Additional Simulation Examples

EC.6.1. Confirming the Long-Cycle Limit

For the long-cycle fluid limit, we look at a sequence of models indexed by the cycle-length parameter

γ. For model γ, we let the arrival-rate function be

λγ(t) = ρ+β sin(2πγt), (EC.21)

which is a special case of (32). Because the long-cycle limit in Theorem 2 does not require heavy

traffic, we let ρ=0.75. For the overloaded case, we choose β = 0.5 so that λ↑

f = 1.25 in (22).

Figure EC.1 compares PRQ to simulation estimates of the mean workload and the heavy-traffic

limit for three values of γ: γ = 10−k for k = 2,3,4. Figure EC.1 shows that both the simulation

results and the solutions to PRQ problem (21) converge to the fluid limit calculated from Propo-

sition 1, confirming Theorem 2.

The estimation in Figure EC.1 is done over a grid of 100 values, evenly spaced between 0 and 1.

For each position y, the expected workload is estimated by the time average of the workload in all

intervals of form [(y+ k)γ−1, (y+0.01+ k)γ−1), where γ−1 is the cycle length and k is a positive

integer. The statistical precision is shown in Figure EC.1 (right) in the form of 95% confidence

interval. Since the cycle length grows with respect to the decrease of γ, we choose a simulation

time proportional to γ−1 in order to maintain similar statistical precision.
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Figure EC.1 A comparison of the solution to the PRQ problem in (56) as a function of the position y within a

cycle to simulation estimates of the normalized mean workload γE[Wγ,y] in (41) and the theoretical

limit in Theorem 1 in the Mt/H2/1 model with arrival-rate function in (EC.21) for ρ= 0.75, β = 0.5

and γ =10−k for k= 2,3,4 (on the left). On the right is shown the 95% CI for γ = 10−2.

EC.6.2. Comparing the diffusion approximation and the PRQ

In Remark 3, we compared the diffusion approximation (EC.7) derived from the heavy-traffic FCLT

with the parametric and functional PRQ in (EC.8) and (56), separately. In this section, we conduct

simulation study on various stochastic models to demonstrate the performance of all three methods

and discuss their differences.

From the discussion in §4.2 and §5, we know that the (functional) PRQ performs well under

all traffic intensities, especially for system with long arrival cycles, as in Figure EC.2 (left). As a

simplified version, the parametric PRQ utilizes only a single parameter to capture the dependence

structure of the original system. Under heavy-traffic, the parametric PRQ is asymptotically the

same as the functional version, since Iw(∞) = c2x under mild conditions. But for moderate to low

traffic intensities, we do not expect the parametric PRQ to outperform the functional one, since

the former one uses partial information to capture the transient dependence structure. We shall

use the functional PRQ over its parametric version whenever possible.

On the other hand, the diffusion approximation will have excellent performance under heavy

traffic by design. In fact, it works very well for systems with simple input such as renewal processes
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even for moderate traffic intensities, where the IDW converges to the asymptotic variability param-

eter c2x faster. This is demonstrated in Figure EC.2 (right), where the diffusion approximation

outperforms both parametric and functional PRQ.
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Figure EC.2 A comparison of the diffusion approximation in (EC.7), the solution to the parametric PRQ problem

in (EC.8) and the functional PRQ in (56), as functions of the position y within a cycle to simulation

estimates of the normalized mean workload 2(1− ρ)E[Wy]/ρ for three models.

However, the diffusion approximation may break down in cases with more complex arrival pro-

cesses such as superposition arrivals. The reason is that it lacks the flexibility to distinguish systems

with the same c2x but different transient variability, or the cases where the workload depends heav-

ily on the transient variability. In contrast, the functional PRQ has a more robust performance in

complex situations.

In Figure EC.3, we present such a case where PRQ is more helpful. Consider a (
∑

iGi)t/GI/1

queue with the time-varying superposition arrival process of 10 i.i.d. LN(16) renewal process and

H2(4) service distribution. We consider a underloaded queue with moderate traffic intensity of ρ=

0.6 and a cycle length parameter γ = 0.01. For the superposition of n i.i.d. point processes, the IDC

turned out to be a simple time scaling version of the IDC of a single stream, i.e., Ia,n(t) = Ia(t/n).

Recall that Ia(0) = 1, the superposition process acts like a Poisson process in the short run, whose

variability is very low. But in the long run, the variability converges to that of a single stream. In
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the case here, the asymptotic variability of the superposition arrival process is c2a = 16≫ 1. Figure

EC.3 (left) shows the IDC for the superposition arrival process as well as the LN(16) renewal

process.

In this case, both the parametric PRQ and the diffusion approximation uses c2x = c2a + c2s =

20 to characterize such a complex arrival process. Figure EC.3 (right) shows that both of them

overestimate the congestion in the system, while the functional PRQ still provides a reasonable

prediction of the mean workload.
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Figure EC.3 A comparison of the diffusion approximation in (EC.7), the solution to the parametric PRQ problem

in (EC.8) and the functional PRQ in (56), as functions of the position y within a cycle to simulation

estimates of the normalized mean workload 2(1−ρ)E[Wy ]/ρ for three models. On the left is shown

the IDC of the superposition process and a individual stream.

EC.6.3. TVRQ Approximation of the Quantiles

Looking back at the intuition behind the uncertainty set defined in (15), one can easily obtain

approximations of the quantile process of the workload by defining the uncertainty set as if we

replace the net input process by its quantile process. Assuming a Normal approximation of the net

input process, we may use the TVRQ solution with b=Φ(p) as approximation of the p-th quantile

of the workload, where Φ is the Normal cumulative distribution function.
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Figure EC.4 A comparison of the PRQ solutions for different values of the parameter b and the corresponding

empirical quantile of the simulated values for the critically loaded Mt/LN(1)/1 model.

Figure EC.4 shows the impact of the parameter b on the PRQ solution, together with the

corresponding quantiles of the simulated values for the critically loaded Mt/LN(1)/1 model. The

figure shows that the shape of the PRQ solution matches the shape of the quantile process very

well, and serves as an reasonable approximation.

EC.6.4. Time-Varying Service Rate

In Remark 1, we introduced the generalization of our TVRQ algorithm for the Gt/Gt/1 general

model, where the service is delivered at a time-varying rate µ(t) at time t. In particular, we obtained

the TVRQ problem in (18). In this section, we present a simulation experiment on a specific

Gt/Gt/1 model, where we have the service rate function

µ(t) = 1+ (1− ρ)α sin(6πγ(1− ρ)2t). (EC.22)

We keep the same arrival rate function as in (68), so the cycle length of the arrival rate function

is 3 times that of the service rate function. For the base arrival process N , we use the interarrival

times with H2(4) distribution, while the service requiremnts are i.i.d. LN(2) random variables, so

we have the (H2(4)t/(LN(2))t/1 model with TV arrival rate and service rate as specified above.

Figure EC.5 shows simulation comparisons for different set of parameters. The instantaneous

traffic intensity ρ(t) ≡ λ(t)/µ(t) is also displayed in Figure EC.5 (left). Figure EC.5 (left) shows
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Figure EC.5 A comparison of the PRQ solutions for the (H2(4)t/(LN(2))t/1 model and the simulated mean

workload for different set of parameters.

that (i) the PRQ approximation performs very well even for moderate traffic intensity ρ=0.7 and

cycle length parameter γ = 10−2, which gives a practical cycle length of 1/(γ(1− ρ)2)≈ 103, and

(ii) PRQ accurately predicted the timing of three peak congestion, which are delayed in compare to

the peak traffic intensity. Figure EC.5 (right) shows that the accuracy improves when we consider

a slightly more congested system with longer cycle length.


