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We develop a time-varying robust-queueing (TVRQ) algorithm for the continuous-time workload in a single-

server queue with a time-varying arrival-rate function. We apply this TVRQ to develop approximations for

(i) the time-varying expected workload in models with a general time-varying arrival-rate function and (ii)

for the periodic steady-state expected workload in models with a periodic arrival-rate function. We apply

simulation to examine the performance of periodic TVRQ (PRQ). We find that PRQ predicts the timing of

peak congestion remarkably well. We show that the PRQ converges to a proper limit in appropriate long-

cycle and heavy-traffic regimes, and coincides with long-cycle fluid limits and heavy-traffic diffusion limits

for long cycles.
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1. Introduction

Many queueing systems in operations research applications have time-varying arrival-rate func-

tions, but this feature is rarely captured in modeling, because there are few helpful analysis tools

except simulation for most of the relevant queueing models when we include time-varying arrival-

rate functions. Even the Markovian Mt/M/1 model with a nonhomgeneous Poisson arrival process

(NHPP, the Mt) is relatively hard to analyze. Over the years, supporting asymptotic approxima-

tions have been developed for the single-server queue with a time-varying arrival-rate function, e.g.,
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see Newell (1968a,b,c), Massey (1981), Keller (1982), Massey (1985), Mandelbaum and Massey

(1995) and Whitt (2014), but the limit processes remain difficult to analyze. A way around this

impasse has been provided by robust optimization, as in Bertsimas et al. (2011), Ben-Tal et al.

(2009), Beyer and Sendhoff (2007); the main idea is to replace a difficult stochastic model by a

tractable optimization problem. We apply this approach to develop tractable performance descrip-

tions for the time-varying performance of a single-server queue with a time-varying arrival-rate

function.

This paper is a sequel to Bandi et al. (2015) and Whitt and You (2016), which developed robust

queueing (RQ) algorithms to approximate the expected steady-state waiting-time and workload

in stationary single-server queues. The present paper extends RQ to time-varying RQ (TVRQ) by

developing approximations for the time-varying expected steady-state workload in a nonstationary

single-server queue, having a time-varying arrival-rate function. This paper is intended to serve

as a basis for developing approximations for associated time-varying networks of queues. Bandi

et al. (2014) have previously focused on the transient behavior of queues and networks of queues,

but they focus on the time-varying behavior of a stationary model, whereas we focus on the time-

varying behavior of a nonstationary model. We also focus on the periodic steady state of a periodic

model, which can also be viewed as a stationary model under appropriate initial conditions. For

the periodic case, we develop a periodic RQ (PRQ). We show that PRQ is effective by establishing

heavy-traffic limits and making comparisons with simulations for the special case of the Mt/GI/1

model, where the arrival process is a nonhomogeneous Poisson process and the service times are

i.i.d. and independent of the arrival process.

From a pure-optimization-centric view of the operations research landscape, robust optimization

might be viewed as a way to replace stochastic modeling entirely. However, we take a broader view.

We think of robust optimization as a useful tool that supplements existing tools in our toolkit.

Accordingly, we think that it is important to establish connections between RQ and established

queueing theory. Much of this paper and Whitt and You (2016) is devoted to that aim.
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2. Time-Varying Robust Queueing (TVRQ): Basic Formulation

Our TVRQ builds on a reverse-time representation of the continuous-time workload process in the

single-server queue. Just as in Bandi et al. (2015) and Whitt and You (2016), we use the reverse-

time construction to represent the workload as a supremum, thus providing a basis for the RQ

optimization.

2.1. A Reverse-Time Contruction of the Workload Process

We consider the standard single-server queue with unlimited waiting space, where customers are

served in order of arrival. Throughout this section, we assume that the system starts out empty at

time 0. Let {(Uk, Vk)} be the sequence of ordered pairs of nonnegative random variables representing

the interarrival times and service times. Let an arrival counting process be defined on the positive

halfline by A(t)≡max{k ≥ 1 :U1 + · · ·+Uk ≤ t} for t≥U1 and A(t)≡ 0 for 0≤ t < U1, and let the

total input of work over the interval [0, t] be the random sum

Y (t)≡
A(t)
∑

k=1

Vk, t≥ 0, (1)

Then the workload (the remaining work in service time) at time t, starting empty at time 0, can

be represented using the reflection map as W (t) = Ψ(Y − e)(t), where e is the identity map, i.e.,

e(t)≡ t, t≥ 0. Hence,

W (t) = Ψ(Y − e)(t)≡ Y (t)− t− inf
0≤s≤t

{Y (s)− s}

= sup
0≤s≤t

{Y (t)−Y (s)− (t− s)}= sup
0≤s≤t

{Yt(s)− s}, t≥ 0, (2)

where

Yt(s)≡ Y (t)−Y (t− s) =

A(t)
∑

k=A(t−s)+1

Vk, 0≤ s≤ t, t≥ 0, (3)

is the cumulative input over the interval (t− s, t].
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2.2. A TVRQ Formulation for the Time-Varying Workload

Our RQ optimization problem performs the maximization in (2) subject to deterministic constraints

placed on the input process Y (t) in (1). These constraints convert the random variable W (t) in (2)

into a deterministic approximaton as the solution of a deterministic optimization problem. In our

simulation experiments we will comparing this deterministic approximation to the mean E[W (t)].

In particular, to formulate the deterministic TVRQ approximation for the time-varying workload

W (t), we let

W ∗(t)≡ sup
Xt∈Ut

sup
0≤s≤t

{Xt(s)}, (4)

where Ut is the deterministic time-varying uncertainty set, which we define as

Ut ≡ {Xt(s)∈R :Xt(s)≤E[Yt(s)− s] + bSD(Yt(s)− s), 0≤ s≤ t}

= {Xt(s)∈R :Xt(s)≤E[Yt(s)]− s+ bSD(Yt(s))), 0≤ s≤ t} , (5)

with SD being the standard deviation. Just as in Bandi et al. (2015) and Whitt and You (2016),

the uncertainty set in (5) is based on a Gaussian approximation, which is supported by a central

limit theorem (CLT) for Yt(s) under customary regularity conditions.

To ensure a finite supremum, we assume that E[Y (t)2]<∞ for all t. Then, since Yt(s)≥ 0 for all t

and s, necessarily 0≤W ∗(t)<∞ for all t. As a consequence, we have the final TVRQ optimization

W ∗(t) = sup
0≤s≤t

sup
Xt∈Ut

{Xt(s)}= sup
0≤s≤t

{E[Yt(s)]− s+ bSD(Yt(s))} , t≥ 0. (6)

It should be noted that the optimization problem in (4) is tractable, whereas the original stochastic

model is complicated.

2.3. The Gt/G/1 Special Case

We now focus on a large class of Gt/G/1 models in which the arrival process takes the form of

A(t) =N(Λ(t)), t≥ 0, (7)
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where the underlying process N is assumed to be a general stationary point process, by which we

mean that it has stationary increments. We assume thatN is a unit rate process with E[N(t)2]<∞

for all t. The cumulative arrival-rate fucntion is defined as

Λ(t)≡
∫ t

0

λ(s)ds, t≥ 0, (8)

where the arrival-rate function λ is an element of D as in Whitt (2002b), i.e., is a right-continuous

function with left limits, satisfying

0<λ(s)≤ λbd(t)<∞ for all 0≤ s≤ t, t > 0. (9)

In addition, the service times is a stationary sequence and independent of the arrival process with

Vk distributed as V with mean E[V ] = 1 and finite variance σ2
s ≡ V ar(V ).

Given this model structure, we have

{Yt(s) : 0≤ s≤ t} d
=

{

N(Λt(s))
∑

k=1

Vk : 0≤ s≤ t

}

for all t≥ 0, (10)

where
d
= denotes equality in distribution, which here in (10) we mean as stochastic processes, and

Λt(s)≡Λ(t)−Λ(t− s), 0≤ s≤ t, t≥ 0. (11)

As a consequence of assumption (9), Λt(s) is strictly increasing and continuous as a function of s

with Λt(0) = 0 for each t, so it has a continuous strictly increasing inverse Λ−1
t (s) as a function of

s with Λt(0) = 0 for each t.

Hence, we can combine (2) and (10) to obtain the alternative representation of the workload as

W (t) = sup
0≤s≤t

{

N(Λt(s))
∑

k=1

Vk − s

}

= sup
0≤s≤Λ(t)

{

N(s)
∑

k=1

Vk −Λ−1
t (s)

}

, (12)

where Λt(s) is defined in (11). The second expression in (12) is appealing because it has all the

stochastic variability in the first term inside the supremum. For theMt/GI/1 model, the underlying

total input process
{

∑N(s)

k=1 Vk : s≥ 0
}

is a stationary compound Poisson process whose variance is

readily avaliable. The second expression in (12) was exploited to develop a rare-event simulation

algorithm for periodic queues in Ma and Whitt (2016).
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Under this setting, the standard deviation of the random sum
∑N(t)

k=1 Vk used in (5) is a compli-

cated function of t. Following Fendick and Whitt (1989) and Whitt and You (2016), to approxi-

mately characterize the variability of the input of work over the time interval [0, t], independent

of its mean, we use the index of dispersion for work (IDW), denoted by Iw(t). In our setting, the

IDW is defined by

Iw(t)≡ V ar

(

N(t)
∑

k=1

Vk

)/

E

[

N(t)
∑

k=1

Vk

]

. (13)

We assume that IDW is finite, which holds true under the setting here and can be anticipated more

generally. We remark that under assumptions in Theorem 2 in Whitt and You (2016), the limiting

IDW, Iw(∞)≡ limt→∞ Iw(t), coincides with the variability parameter in the Brownian limit for the

total input process. See Corollary 4 in Whitt and You (2016).

As a consequence, the uncertainty set (5) in the TVRQ can be written as

Ut =











X(t) :X(s)≤E

[

N(s)
∑

k=1

Vk

]

−Λ−1
t (s)+ b

√

√

√

√Var

(

N(s)
∑

k=1

Vk

)

,0≤ s≤Λ(t)











=
{

X(t) :X(s)≤ s−Λ−1
t (s)+ b

√

sIw(s),0≤ s≤Λ(t)
}

=
{

X(t) :X(s)≤Λt(s)− s+ b
√

Λt(s)Iw (Λt(s)),0≤ s≤ t
}

. (14)

Combining (4) and (14), we have the tractable TVRQ optimization for Gt/G/1 model

W ∗(t) = sup
0≤s≤t

{

Λt(s)− s+ b
√

Λt(s)Iw (Λt(s))
}

, t≥ 0, (15)

with the final expression in (15) providing a convenient expression for a computational algorithm

because Λt(s) is usually readily available, whereas Λ−1
t (s) in the first expression may not be. This

extension provides a way to consider models with stochastic dependence as in Whitt and You

(2016) as well as time-varying arrival rate function.

To conclude, we remark that theMt/GI/1 is a special case where Iw(t)≡ c2x = c2a+c2s = 1+c2s with

cs and ca being the coefficient of variation of the interarrival and service distribution, respectively.
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2.4. A Deterministic Fluid Model

A deterministic fluid model is obtained by assuming that the cumulative input of work Y (t) in (1)

is a deterministic nondecreasing function, which we take to be E[Y (t)] in an associated stochastic

model. To capture the usual idea of a fluid, we also assume that Y (t) is a continuous function of t,

which we take to coincide with Λ(t). The workload at time t is then defined just as in (2). In this

case, the associated TVRQ is defined just as in §2.2, but now we have SD(Yt(s)) = 0 in (5) because

of the deterministic property. Thus, for the deterministic fluid model, the TVRQ is necessarily

exact. Moreover, when we formulate a fluid limit for the stochastic model, where the stochastic

workload process converges to a deterministic fluid model, then the TVRQ will be asymptotically

correct, under regularity conditions. We will illustrate for periodic TVRQ in §3.

3. Periodic Robust Queueing (PRQ) and the Fluid Approximation

We now consider periodic models and look at the periodic steady state workload as a function

of the place y within a periodic cycle. We will develop a periodic RQ (PRQ) and show that it is

asymptotically correct in a long-cycle limit.

3.1. The Periodic Steady-State Workload

If the arrival process and workload process are periodic over the entire real line with period c, then

we can obtain an expression for the periodic steady-state workload at time t within the interval [0, c)

by letting the system start empty in the distant past. For this periodic steady-state distribution

to be well defined, we require that the average arrival rate satisfy

ρ= λ̄≡Λ(c)/c< 1, (16)

to ensure that the average arrival rate is less than the maximum possible service rate µ≡ 1/E[V ]≡

1. We assume that a proper periodic steady-state exists.

Instead of (2) for the transient workload, we have the periodic steady-state workload represented

as a supremum over the entire real line. In particular, for a fixed position y within a cycle, we have

Wy = sup
s≥0

{Yy(s)− s} , 0≤ y < c, (17)
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where Yy is defined as in (3).

For the periodic case, starting empty in the distant past, we consider y ∈ [0, c). Then periodic

RQ (PRQ) for the steady-state workload is just TVRQ in (6) except that s is allowed to range over

the interval [0,∞) and that Yt(s) is replaced by Yy(t) to emphasize the focus on a fixed location

in a cycle. As a consequence, we have the final PRQ optimization

W ∗
y = sup

s≥0

{E[Yy(s)]− s+ bSD(Yy(s))} , 0≤ y < c. (18)

3.2. A Periodic Deterministic Fluid Model

In §2.4 we briefly introduced a deterministic fluid model and observed that the workload is defined

just as in (2). Now we consider the periodic case. In the next section we will establish a fluid limit

for the periodic Gt/GI/1 model as the cycle lengths grow. To avoid confusion about notation, we

append an extra subscript f for the fluid quantities.

We start with the arrival-rate function λf(t) satisfying the properties in §2.3, but now we assume

as well that the arrival-rate function is periodic with period c and satisfies (16). In order for the

fluid model to be interesting, we also assume that

λ↑

f ≡ sup
0≤s<c

{λf (s)}> 1. (19)

Condition (19) ensures that there will be positive workload at some time. If condition (19) did

not hold, then the net rate in at each time would be negative, so that there never would be any

workload.

To obtain the deterministic fluid model, we simply let

Yf (t)≡Λf (t), t≥ 0. (20)

Notice that Yf(t) for the fluid model coincide with the expected values of their stochastic counter-

parts in the Mt/GI/1 special case. Now the main quantity we focus on is

Yf,y(s) = Λf,y(s)≡Λf (y)−Λf(y− s), s≥ 0, 0≤ y < c. (21)

We now observe that the fluid workload at time y is determined by the input over the cycle ending

at time y.
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Proposition 1. For the deterministic fluid model, the workload at time y within the cycle [0, c)

defined in (17) with Yf,y in (21) reduces to the supremum over one cycle, i.e.,

Wf,y = sup
0≤u≤c

{Yf,y(u)−u}, 0≤ y < c. (22)

Proof. Let s= kc+ y, 0≤ y < c and k≥ 0. Then

Wf,y = sup
0≤s≤∞

{Yf,y(s)− s}, 0≤ y < c,

= sup
0≤u≤c, k≥0

{Yf,y(kc+u)− (kc+u)}, 0≤ y < c,

= sup
0≤u≤c, k≥0

{(Yf,y(kc+u)−Yf,y(u)− kc)+ (Yf,y(u)−u)}, 0≤ y < c,

= sup
0≤u≤c, k≥0

{−(1− ρ)kc+(Yf,y(u)−u)}, 0≤ y < c,

= sup
0≤u≤c

{Yf,y(u)−u}, 0≤ y < c, (23)

because the function inside the supremum is strictly decreasing in k.

We now consider a common special case in which, if we start the periodic cycle at an appropriate

point, then we can express the arrival-rate function so that the net input rate is positive on an

initial subinterval and then negative thereafter. That is, we assume that there exists δ, 0< δ < c,

such that

λf (t)− 1≥ 0, 0≤ t < δ, and λf (t)− 1≤ 0, δ≤ t < 1. (24)

Often we may require a time shift to satisfy condition (24). In this setting it is easy to determine

the periodic fluid Wy, 0≤ y ≤ c.

Proposition 2. If conditions (16), (19) and (24) hold, then there exists one and only one δ∗

with 0 < δ < δ∗ < c such that Λf (δ
∗) = δ∗. Moreover, Λf (y) − y is nondecreasing over [0, δ] and

nonincreasing over [δ, c], so that

Wf,y =Λf (y)− y, 0≤ y ≤ δ∗, and Wf,y = 0, δ∗ ≤ y ≤ c, (25)

and

W ↑

f ≡ sup
0≤y≤c

{Wf,y}=Wf,δ =Λf (δ)− δ > 0. (26)
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We now apply Proposition 2 to two special cases. The easiest case appears to be the piecewise-

constant case with two pieces.

Corollary 1. (piecewise-constant case) If, in addition to the conditions of Proposition 2, λf(t) =

a1[0,δ)(t)+ b1[δ,c)(t), where a> 1> b> 0, then

Wf,y = (a− 1)y, 0≤ y ≤ δ, W ↑

f =Wf,δ = (a− 1)δ, (27)

and

Wf,y = (a− 1)δ− (1− b)(y− δ), 0≤ y≤ y∗ ≡ (a− b)δ/(1− b) and Wf,y = 0, y∗ ≤ y ≤ c. (28)

The following corollary shows that, for a sinusoidal arrival rate function, the maximum workload

is attained shortly before the middle of the arrival-rate cycle.

Corollary 2. (sinusoidal case) If, in addition to the conditions of Proposition 2, λf (t) = ρ(1 +

β sin (t/γ)) and t0 = γ arcsin ((1− ρ)/ρβ), then λf(t0 + t)) satisfies condition (24) and δ = (π/γ)−

2t0, so that (in terms of the original Λ)

W ↑

f =Λ((π/γ)− t0)−Λ(t0)− (π/γ)+ 2t0. (29)

As ρ ↑ 1, t0 ≡ t0(ρ) ↓ 0, δ(ρ) ↑ π/γ and W ↑

f →Λ(π/γ)−π/γ.

3.3. A Long-Cycle Fluid Limit

For periodic queues, it is helpful to consider the case of long cycles relative to a fixed service-

time distribution. (This case is equivalent to letting the service times become short relative to a

fixed arrival rate function.) We now consider a family of periodic Gt/GI/1 stochastic models with

growing cycle length indexed by the parameter γ. We assume that model γ has arrival-rate function

λγ(t)≡ λf (γt), t≥ 0, (30)

for the base arrival-rate function λf in the fluid model, satisfying (16) and (19). Thus, the arrival

rate in model γ is periodic with cycle length cγ ≡ c/γ. We will let γ ↓ 0, so that cγ →∞.
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In the stochastic model we can also let the cumulative arrival-rate function be defined in terms

of the base cumulative arrival-rate function Λf in the fluid model. In particular, we let

Λγ(t)≡ γ−1Λf (γt) and Λγ,y(t)≡Λγ(γ
−1y)−Λγ(γ

−1y− t), 0≤ y < c, (31)

so that the associated arrival-rate function is as in (30). The periodic structure with (16) and (19)

implies the following bound.

Lemma 1. In the setting above with (16) and (19),

max{Λf (t),Λf,y(t)}≤ ρt+λ↑c and max{Λγ(t),Λγ,y(t)}≤ ρt+λ↑c/γ for all t≥ 0. (32)

Let Aγ(t) and Yγ(t) be the associated arrival and cumulative input processes in the Gt/GI/1

model, defined as in (1) and (7) by

Aγ(t)≡N(Λγ(t)) and Yγ(t)≡
Aγ(t)
∑

k=1

Vk, t≥ 0, (33)

where N is a rate-1 stochastic process and {Vk} is the i.i.d. sequence of service times with E[Vk ] = 1

independent of N and thus of Aγ .

As regularity conditions for N , we assume that

t−1N(t)→ 1 as t→∞ w.p.1 (34)

and, for all ǫ > 0, there exists t0 ≡ t0(ǫ) such that

|t−1N(t)− 1|< ǫ for all t≥ t0 w.p.1. (35)

Condition (34) is a strong law of large numbers (SLLN), which is equivalent to the stronger func-

tions SLLN (FSLLN), see §3.2 of Whitt (2002a), while condition (35) is implied by refinements

such as the law of the iterated logarithm. Condition (35), together with Lemma 1, is needed for

Theorem 1 to guarantee that a supremum over the entire real line is attained over a bounded

subinterval, which allows us to apply a continuous mapping argument. Both conditions hold when

N is a Poisson process and can be anticipated more generally.

The basis for the fluid limit is a functional law of large numbers for Aγ and Yγ after introducing

extra time and space scaling.
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Lemma 2. For the periodic Gt/GI/1 model under condition (34),

γAγ(γ
−1(t))→Λf (t) and γYγ(γ

−1(t))→Λf (t) as γ ↓ 0 w.p.1 (36)

Proof. Observe that

γAγ(γ
−1t) = γN(Λγ(γ

−1t)) = γN(γ−1Λf(γ(γ
−1t)))

= γN(γ−1Λf (t))→Λf (t) as γ ↓ 0 w.p.1 (37)

because γN(γ−1t)→ t uniformly over bounded intervals w.p.1 by the FSLLN in (34). A further

application of the composition mapping yields the corresponding limit for Yγ in (33):

γYγ(γ
−1t) = γ

γ−1(γAγ(γ
−1t))

∑

k=1

Vk →Λf (t) as γ ↓ 0 w.p.1,

because

γ

γ−1t
∑

k=1

Vk → t as γ ↓ 0 w.p.1

uniformly over bounded intervals w.p.1 by the FSLLN.

Let Wγ,y be the periodic steady-state workload at time y/γ for 0≤ y < c in Gt/GI/1 model γ

with arrival rate function λγ(t), defined as in (17), i.e.,

Wγ,y = sup
s≥0

{Yγ,y(s)− s}, (38)

where

Yγ,y(t)≡ Yγ(yγ
−1)−Yγ(yγ

−1 − t), t≥ 0, 0≤ y < c, (39)

for Yγ in (33). We get a fluid limit for Wγ,y, again after scaling.

Theorem 1. (long-cycle fluid limit) For the periodic Gt/GI/1 model under conditions (34) and

(35),

γWγ,y →Wf,y as γ ↓ 0 w.p.1, (40)

where Wf,y is the fluid workload at time y within a cycle of length c.
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Proof. From (38) and (39),

γWγ,y = sup
s≥0

{γYγ,y(γ
−1s)− s}→ sup

s≥0

{Λf,y(s)− s}=Wf,y as γ ↓ 0 w.p.1, (41)

where Wf,y is the periodic workload in the periodic fluid model by virtue of Lemma 2 and a

further continuity argument. Lemma 2 and condition (35) guarantee that it suffices to consider the

supremum over a bounded interval, so that the supremum is continuous.

Let W ∗
γ,y be the PRQ workload at time y/γ for 0≤ y < c, i.e., W ∗

γ,y is the solution to the PRQ

problem (18) at time y/γ with Yγ(t) defined in (33).

Theorem 2. (PRQ is asymptotically correct in the long-cycle fluid limit) For the periodic Gt/GI/1

model, PRQ with any b, 0< b<∞, is asymptotically exact as γ ↓ 0, i.e.,

γW ∗
γ,y →Wf,y as γ ↓ 0, (42)

where Wf,y is the fluid workload at time y within a cycle of length c, so that

|γW ∗
γ,y − γWγ,y| → 0 as γ ↓ 0 w.p.1. (43)

Proof. Observe that

γW ∗
γ,y = sup

s≥0

{γΛγ,y(γ
−1s)− s+ γ

√

2b2Λγ,y(γ−1s)}

= sup
s≥0

{Λf,y(s)− s+
√

2b2γΛf,y(s)}

→ sup
s≥0

{Λf,y(s)− s}=Wf,y as γ ↓ 0, (44)

where Λγ,y(t) is defined in (31) and again Wf,y is the workload in the periodic deterministic fluid

model. To justify (44), we apply Lemma 1 to see that, 2b2γΛf,y(s)≤ 2b2γ[ρs+λ↑c]≤ γ(K1s+K2)

for constants K1 and K2, so that
√

2b2γΛf,y(s) ≤
√

γ(K1s+K2) → 0 uniformly over bounded

interval as γ ↓ 0. Hence, it suffices to consider the supremum in (44) over a bounded interval,

because the function is negative outside that interval for all sufficiently small γ. Since the limit

Wf,y is the same as in Theorem 1, PRQ has been shown to be asymptotically correct as γ ↓ 0.
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4. Heavy-Traffic Limits for Periodic Robust Queueing

We now consider a family of periodic Gt/GI/1 single-server models indexed by the traffic intensity

ρ defined in (16) together with the specified time-scaling factor γ. We scale the models consistently

with the heavy-traffic scaling in Whitt (2014). In §4.2 we will show that PRQ has a proper heavy-

traffic limit in this scaling. First, in §4.1 we establish heavy-traffic limits for the workload process

itself.

4.1. Heavy-Traffic Limits for the Workload Process

We consider a family of models indexed by the long-run average traffic intensity ρ in (16). To

avoid notational confusion, we add a subscript d to the diffusion quantities. We let the cumulative

arrival-rate function in model ρ be

Λγ,ρ(t)≡ ρt+(1− ρ)−1Λd,γ((1− ρ)2t), t≥ 0, (45)

so that the associated arrival-rate function is

λγ,ρ(t)≡ ρ+(1− ρ)λd,γ((1− ρ)2t), t≥ 0, (46)

where

Λd,γ(t)≡
∫ t

0

λd,γ(s)ds, λd,γ(t)≡ h(γt), and

∫ 1

0

h(t)dt= 0 (47)

with h(t) being a periodic function with period 1. As a consequence, λd,γ(t) is a periodic function

with period cγ = 1/γ and λγ,ρ(t) is a periodic function with period cγ,ρ = 1/γ(1− ρ)2. To ensure

that λγ,ρ is nonnegative, we assume that

h(t)≥−ρ/(1− ρ), 0≤ t < 1, (48)

which will be satisfied for all ρ sufficiently close to the critical value 1 provided that h is bounded

below. In fact, we directly assume that

−∞<h↓ ≡ inf
0≤t≤1

{h(t)}< sup
0≤t≤1

{h(t)}≡ h↑ <∞. (49)
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There are two cases of interest h↑ < 1 and h↑ > 1. When h↑ < 1, the instantaneous traffic intensity,

which is λγ,ρ(t), satisfies λγ,ρ(t)< 1 for all t and ρ. On the other hand, when h↑ > 1, λγ,ρ(t)> 1 for

some t. When λγ,ρ(t)> 1 for some t, the workload can reach very high values when time is scaled,

so that the cycles are very long.

By essentially the same reasoning as for Theorem 3.2 in Whitt (2014), we obtain a heavy-traffic

limit as ρ ↑ 1 for the workload at time t starting empty at time 0, which we denote by Wγ,ρ(t),

in the periodic Gt/GI/1 model. Theorem 3.2 of Whitt (2014) is expressed for the queue-length

process or number in the system, but it is well known that there are corresponding heavy-traffic

limits for the workload process, e.g., see Theorem 9.3.4 of Whitt (2002b). This heavy-traffic limit

is for the time-varying behavior starting empty. It applies to the periodic steady-state distribution

except for the usual problem of interchanging the order of the limits as ρ ↑ 1 and as t ↑ ∞. We

use the periodic steady-state of the limit to approximate the periodic steady-state of the periodic

Gt/GI/1 queue.

To express the heavy-traffic limits, we use (45) and let

Aγ,ρ(t)≡N (Λγ,ρ(t)) , Yγ,ρ(t)≡
Aγ,ρ(t)
∑

k=1

Vk, and Xγ,ρ(t)≡ Yγ,ρ(t)− t, t≥ 0. (50)

Then Xγ,ρ(t) is the net-input process and Wγ,ρ(t) is the workload process, which is the image of

Xγ,ρ under the reflection map Ψ, i.e.,

Wγ,ρ(t) =Ψ(Xγ,ρ)(t) = sup
0≤s≤t

{Xγ,ρ(t)−Xγ,ρ(t− s)}. (51)

For the heavy-traffic functional central limit theorem (FCLT), we introduce the scaled processes

N̂n(t) ≡ n−1/2[N (nt)−nt], Âγ,ρ(t)≡ (1− ρ)[Aγ,ρ

(

(1− ρ)−2t
)

− (1− ρ)2t],

X̂γ,ρ(t) ≡ (1− ρ)Xγ,ρ

(

(1− ρ)−2t
)

and Ŵγ,ρ(t)≡ (1− ρ)Wγ,ρ

(

(1− ρ)−2t
)

, t≥ 0. (52)

Let Dk be the k-fold product space of the function space D. Reccall that g(x) = o(x) as x→ 0 if

g(x)/x→ 0 as x→ 0.
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Theorem 3. (heavy-traffic FCLT for the workload) For the family of Gt/GI/1 models indexed

by (γ, ρ) with cumulative arrival-rate functions in (45), if N̂n ⇒ caBa as n→∞, where Ba is a

standard Brownian motion, then

(Âγ,ρ, X̂γ,ρ, Ŵγ,ρ)⇒ (Âγ , X̂γ, Ŵγ) in D as ρ ↑ 1, (53)

where

(Âγ, X̂γ , Ŵγ)≡ (caBa +Λd,γ − e, Âγ + csBs,Ψ(X̂γ)), (54)

Ψ is the reflection map in (51), Λd,γ is defined in (47), and Ba and Bs are two independent standard

(mean 0 variance 1) Brownian motions; i.e., Ŵγ is reflected periodic Brownian motion (RPBM)

with

Ŵγ =Ψ(caBa + csBs +Λd,γ − e)
d
=Ψ(cxB+Λd,γ − e). (55)

where c2x = c2a+ c2s. The result remains valid if a term of order o(1− ρ) is added to Λγ,ρ in (45).

Proof. The limit for Âγ,ρ is part of Theorem 3.2 of Whitt (2014). The limit for X̂γ,ρ is by the

preservation of convergence for random sums with centering terms, exploiting the composition map

with centering as in §13.3 and Theorem 7.4.1 of Whitt (2002b). (A detailed proof is given in the

appendix.) The limit for The limit for Ŵγ,ρ follows from the continuity of the reflection map; see

§14.5 of Whitt (2002b). The final limit in (55) is the same as for the number in system in Theorem

3.2 of Whitt (2014).

We conclude this section by making some remarks. First, simplification occurs in (55) in common

special cases: For the Mt/GI/1 model, ca = 1; for the Gt/M/1 model, cs =1. However, even for the

Mt/M/1 model, the limiting RPBM is complicated, so that PRQ can provide valuable assistance.

Second, we do not state a heavy-traffic law of large numbers analogous to Theorem 3.1 of Whitt

(2014), because it is implied by Theorem 1 here.
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4.2. The Heavy-Traffic Limit for PRQ

We now establish a heavy-traffic limit for PRQ. Again, we add a subscript y to indicate the place

in the cycle. In particular, the workload at fixed place y within a cycle for a system which started

empty and has run for t time units is

Wγ,ρ,y(t)
d
= sup

0≤s≤t







Aγ,ρ,y(t)
∑

k=1

Vk − s







, (56)

where Aγ,ρ,y(t)≡Aγ,ρ(y)−Aγ,ρ(y− t), Aγ,ρ(t) is defined in (50) and Vk is a generic service time.

Under the Gt/GI/1 setting in §2.3, we immediately get the PRQ optimization problem from (15)

by replacing Λt(s) with Λγ,y,ρ(s).

Now, we will focus on the Mt/GI/1 model, in which case we have Iw(s) = 1 + c2s ≡ c2x with

c2s ≡ V ar(Vk)/E[Vk]
2. Then (15) becomes

W ∗
γ,ρ,y = sup

s≥0

{

Λγ,y,ρ(s)− s+ bcx

√

Λγ,ρ,y(s)

}

. (57)

For further analysis, we note that

Λγ,ρ,y(s) ≡ Λγ,ρ((k+ y)cρ)−Λγ,ρ((k+ y)cγ,ρ− s) = Λγ,ρ(ycγ,ρ)−Λγ,ρ(ycγ,ρ− s)

= ρs+(1− ρ)−1

∫ y/γ

y/γ−(1−ρ)2s

h(γt)dt= ρs+
1

γ(1− ρ)

∫ y

y−c−1
γ,ρs

h(t)dt

= ρs+
1

γ(1− ρ)
Iγ,ρ,y(s), (58)

where cγ,ρ = 1/γ(1− ρ)2 is the cycle length of Λγ,ρ,y(s) and

Iγ,ρ,y(s)≡
∫ y

y−c−1
γ,ρs

h(t)dt. (59)

To express the heavy-traffic limit, we define two functions. The first function

f(t)≡−t+2
√
t (60)

is a variant of the function to be optimized with the stationary M/GI/1 model, as can be seen

from Theorem 1 of Whitt and You (2016). The second function

gγ,ρ,y(t) =
4

b2c2xγρ
2
Iγ,ρ,y

(

b2c2xρ

4(1− ρ)2
t

)

=
4

b2c2xγρ
2

∫ y

y−
b2c2xγρ

4
t

h(s)ds (61)
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is a periodic function that captures the time-varying part of the arrival rate function. The period

of gγ,ρ,y(t) is 4/b2c2xγρ. When the arrival-rate function is constant, gγ,ρ,y(t) = 0 because h(t) = 0.

The following lemma presents some basic limits for gγ,ρ,y(t).

Lemma 3. Let h(·) be a differentiable 1-periodic function whose integral over one period is 0.

Assume that h(·) satisfies (49), then

(a). lim(γ,ρ)→(0,1) gγ,ρ,y(t) = h(y)t uniformly for t in bounded intervals;

(b). limγ→0 gγ,ρ,y(t) = h(y)t/ρ uniformly for t in bounded intervals;

(c). limγ→∞ gγ,ρ,y(t) = 0 uniformly for t over [0,∞);

(d). limρ→1 gγ,ρ,y(t) = gγ,1,y(t) uniformly for t in bounded intervals.

Proof. (c) and (d) are trivial corollaries of the definition of gγ,ρ,y(·). For (a) and (b), note that

|gγ,ρ,y(t)−h(y)t/ρ| ≤ 4

b2c2xγρ
2

∫ y

y−
b2c2xγρ

4
t

|h(s)−h(y)|ds= 4

b2c2xγρ
2

∫ y

y−
b2c2xγρ

4
t

|h′(ξ)(s− y)|ds

≤ 4M

b2c2xγρ
2

∫ y

y−
b2c2xγρ

4
t

|s− y|ds= 4M

b2c2xγρ
2
· 1
2

(

b2c2xγρ

4
t

)2

=Nγt2, (62)

where N ≡Mb2c2x/8. Note that the second line require h(·) to be differentiable. (b) follows directly

from (62). To prove (a), we note that |gγ,ρ,y(t)−h(y)t| ≤ |gγ,ρ,y(t)−h(y)t/ρ|+ |h(y)t|(1− ρ−1).

With the two functions defined above, we have a more tractable and intuitive alternate repre-

sentation to (57).

Lemma 4. With h(·) and gγ,ρ,y(·) defined in (60) and (61), we have

W ∗
γ,ρ,y =

b2

2
· ρc2x
2(1− ρ)

· sup
t≥0

{

f(t)+ ρgγ,ρ,y(t)+ 2

(

√

t+(1− ρ)gγ,ρ,y(t)−
√
t

)}

(63)

Proof. To expose the three components of the function to be optimized, we provide an alternate

representation to (57), in particular,

W ∗
γ,ρ,y = sup

s≥0

{

(ρs− s+ bcx
√
ρs)+ (Λγ,y,ρ(s)− ρs)+ bcx

(

√

Λγ,y,ρ(s)−
√
ρs

)}

. (64)

Now perform the change of variables

b2c2xρ

4(1− ρ)2
t= s. (65)
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With (60), (61) and this change of variables, we see that

W ∗
γ,ρ,y =

b2

2
· ρc2x
2(1− ρ)

· sup
t≥0

{

(

−t+2
√
t
)

+
4

b2c2xγρ
Iγ,ρ,y

(

b2c2xρ

4(1− ρ)2
t

)

+

2

(
√

t+
4(1− ρ)

b2c2xγρ
2
Iγ,ρ,y

(

b2c2xρ

4(1− ρ)2
t

)

−
√
t

)}

=
b2

2
· ρc2x
2(1− ρ)

· sup
t≥0

{

f(t)+ ρgγ,ρ,y(t)+ 2

(

√

t+(1− ρ)gγ,ρ,y(t)−
√
t

)}

.

We remark that the constant ρc2x/2(1−ρ) is the exact steady-state mean waiting time in a M/GI/1

model, f(t) attains maximum value of 1 at t= 1, gγ,ρ,y is a periodic function fluctuating around 0

with limits in Lamma 3 and the third component in (63) is typically small, especially when ρ≈ 1.

Now, we present the heavy traffic limit for PRQ.

Theorem 4. (heavy traffic limit for PRQ) For the PRQ problem in (57), the heavy traffic limit is

lim
ρ↑1

2

b2
· 2(1− ρ)

ρc2x
·W ∗

γ,ρ,y = sup
s≥0

{f(t)+ gγ,1,y(t)} . (66)

Proof. First, note that

sup
x

{f(x)}+ inf
x
{g(x)} ≤ sup

x

{f(x)+ g(x)}≤ sup
x

{f(x)}+sup
x

{g(x)},

and that
√

t+(1− ρ)gγ,ρ,y(t)−
√
t converges to 0 uniformly over [0,∞) as ρ ↑ 1. Apply Lemma 4,

we then have

lim
ρ↑1

2

b2
· 2(1− ρ)

ρc2x
W ∗

γ,ρ,y = lim
ρ↑1

sup
t≥0

{f(t)+ ρgγ,ρ,y(t))} .

Now, we need only consider a bounded interval of t, becasuse gγ,ρ,y(·) is uniformly bounded by

definition (61) and thus the objective function in the supremum will be negative outside a bounded

interval. The result then follows from part (d) of Lemma 3.

We immediately obtain an upper bound for the PRQ solution for the system with sinusoidal

arrival rate, which reveals the essential shape of the solution as we shall see in §5.

Corollary 3. Suppose h(x) = β sin(2πx), then

lim
ρ↑1

2

b2
· 2(1− ρ)

ρc2x
W ∗

γ,ρ,y ≤ lim
ρ↑1

f(t)+ lim
ρ↑1

gγ,ρ,y(t)≤ 1+
2β

πb2c2xγ
(1− cos(2πy)), 0≤ y < 1. (67)
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4.3. Long-Cycle Limits for PRQ in Heavy Traffic

For useful approximations of periodic queues, it is helpful to combine the heavy-traffic perspective

with the long-cycle perspective considered in §3.3. When we let the cycles get long in heavy-

traffic, we see that there are three very different cases, depending on the instantaneous arrival rate

function. Since the average arrival rate satisfies (16), the model is necessarily stable for each ρ < 1

with a proper steady-state distribution, but the local behavior depends on the instantaneous traffic

intensity ρ(y). In the heavy-traffic setting of §4-4.2, the three cases are the underloaded case in

which h↑ < 1, the overloaded case in which h↑ > 1 and the critically loaded case in which h↑ = 1.

In the underloaded case, there will be no times at which the net input rate is positive. For fixed

ρ, the system will be stochastically bounded above by a system with the maximum arrival rate,

for which there will be a proper steady-state distribution. In that setting, the arrival rate will stay

flat for long enough that the system will approach the steady state for that approximately fixed

arrival rate. Thus, in that situation, it is appropriate to approximate the time-varying distribution

at each time by the steady-state distribution of the model with the arrival rate at that time, which

is known as a pointwise stationary approximation (PSA); see Green and Kolesar (1991), Whitt

(1991) and Massey and Whitt (1997). We will show that if we let the cycles get long for PRQ in

an underloaded model, PRQ is asymptotically consistent with PSA.

The overloaded case is very different. In the overloaded case, there will be times at which the

net input rate is positive. Hence, with long cycles, there will be long stretches of time over which

the workload will build up. This will lead to limits with new scaling, as in Choudhury et al. (1997).

Finally, there is the more complicated critically loaded case. We consider these cases in turn.

4.3.1. Underloaded queues For an underloaded queue, we have the following heavy-traffic

double limit.

Theorem 5. (long-cycle heavy-traffic limit for PRQ in an underloaded queue) For the PRQ prob-

lem in (57), if h is continuously differentiable with h↑ < 1, then we have the double limit

lim
γ↓0
ρ↑1

2

b2
· 2(1− ρ)

ρc2x
·W ∗

γ,ρ,y =
1

1−h(y)
, (68)
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so that PRQ is asymptotically consistent with PSA, i.e., the instantaneous traffic intensity is ρ(y) =

ρ+(1− ρ)h(y), so that

W ∗
y =

b2

2
· ρ(y)c2x
2(1− ρ(y))

+ o(1− ρ). (69)

Proof. From Lemma 4, we have

2

b2
· 2(1− ρ)

ρc2x
·W ∗

γ,ρ,y = sup
t≥0

{

f(t)+ ρgγ,ρ,y(t)+ 2

(

√

t+(1− ρ)gγ,ρ,y(t)−
√
t

)}

= sup
t≥0

{Fγ,ρ,y(t)}, (70)

where Fγ,ρ,y(t) ≡ f(t) + ρgγ,ρ,y(t) + 2
(

√

t+(1− ρ)gγ,ρ,y(t)−
√
t
)

. Note that Fγ,ρ,y(·) is negative

outside a bounded interval and that supt≥0{−(1−h(y))t+2
√
t}= 1/(1−h(y)), it suffices to prove

that Fγ,ρ,y(t) converges uniformly to −(1−h(y))t+2
√
t over all bounded interval of t as (γ, ρ)→

(0,1). To this end, we write

∣

∣

∣
Fγ,ρ,y(t)−

(

−(1−h(y))t+2
√
t
)
∣

∣

∣
=

∣

∣

∣

∣

ρgγ,ρ,y(t)−h(x)t+2

(

√

t+(1− ρ)gγ,ρ,y(t)−
√
t

)
∣

∣

∣

∣

≤ |gγ,ρ,y(t)−h(x)t|+(1− ρ)|gγ,ρ,y(t)|+2

(

√

(1− ρ)gγ,ρ,y(t)

)

,

where we used the concavity of the square root function. The result then follows from Lemma 3.

To see that this limit coincides with PSA, note that by (68), we have

W ∗
y ≈ b2

2
· ρc2x
2(1− ρ)(1−h(y))

=
b2

2
· ρc2x
2(1− (ρ+(1− ρ)h(y)))

=
b2

2
· ρc2x
2(1− ρ(y))

which is asymptotically correct up to o(1− ρ) in the limit.

Corollary 4. the the Mt/M/1 model, the double limit of PRQ agrees with the iterated limit of

the actual expected workload as first γ ↓ 0 and then ρ ↑ 1.

Proof. First, Whitt (1991) has proved that PSA is asymptotically correct as γ ↓ 0 for theMt/M/1

model. Second, RQ has been shown to be asymptotically correct for the stationary model as ρ ↑ 1

in Whitt and You (2016).
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4.3.2. Overloaded queues The overloaded case is quite different from the underloaded

because the instantaneous arrival rate will be higher than the service rate at some time. The longer

the cycle, the longer the time the system is overloaded, which will lead to a larger workload. The

following limit holds more generally, as γ(1− ρ) ↓ 0.

Theorem 6. (long-cycle heavy-traffic limit for PRQ in an overloaded queue) For the PRQ problem

in (57) with with the heavy-traffic scaling in (45) and h↑ > 1, we have the limit

lim
γ↓0
ρ↑1

γ(1− ρ) ·W ∗
γ,ρ,y = sup

t≥0

{

−t+

∫ y

y−t

h(s)ds

}

, 0≤ ρ < 1. (71)

Proof. Note from (57) that

W ∗
γ,ρ,y = sup

s≥0

{

Λγ,ρ,y(s)− s+ bcx

√

Λγ,ρ,y(s)

}

= sup
s≥0

{

− (1− ρ)s+
1

γ(1− ρ)

∫ y

y−c−1
γ,ρs

h(u)du+ bcx

√

Λγ,ρ,y(s)

}

=
1

γ(1− ρ)
· sup
t≥0

{

−t+

∫ y

y−t

h(u)du+ γ(1− ρ)bcx

√

Λγ,ρ,y(cγ,ρt)

}

, (72)

where we applied a change of variable cγ,ρt= s in the third line. The result follows from the fact

that Λγ,ρ,y(cγ,ρt) is in the order of ρcγ,ρt= ρt/(γ(1− ρ)2) when γ → 0. Then the third term in the

curly brace will be O
(

γ1/2
)

and converges to 0 uniformly over bounded intervals of t. Note also

that the function in the supremum is negative for all t sufficiently large, we need only consider a

bounded interval for t.

4.3.3. critically loaded queues The critically loaded case is more complex in terms of space

scaling. Though the space scaling does involve the cycle length parameter γ, it will depend on

the detailed structure of the arrival rate function instead of a simple γ we see in Theorem 6. The

following theorem reveals the relationship between the space scaling and γ.

Theorem 7. (long-cycle heavy-traffic limit for PRQ in an critically loaded queue) Assume that

h(t) satisfies

h(t) = 1− ctp, (73)

for some real numbers p ≥ 0. Then the long-cycle heavy-traffic limit of the PRQ solution at the

critical point y=0 is in the order of O(γ−p/(2p+1)).
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Proof. By (73), we have

gγ,ρ,0(t) =
4

b2c2xγρ
2

∫ 0

−
b2c2xγρ

4
t

h(s)ds= ρ−1

(

1− c

p+1

(

b2c2xγρ

4

)p

tp+1

)

= ρ−1
(

t−Mγptp+1
)

,

where M = c (b2c2xρ)
p
/(4p(p+1)). Plugging it into Theorem 4, we have

2

b2
· 2(1− ρ)

ρc2x
·W ∗

γ,1,0 = sup
t≥0

{f(t)+ gγ,1,0(t)}= sup
t≥0

{

2
√
t−Mγptp+1

}

,

where the supremum is achieved at

t∗ =

(

γ−p

M(p+1)

)2/(2p+1)

,

with maximum value

(2− 1/(p+1))

(

1

M(p+1)

)1/(2p+1)

γ−
p

2p+1

as γ → 0.

The scaling in Theorem 7 coincides with the scaling in the heavy-traffic FCLT in Theorem 4.1

of Whitt (2016), where the space scaling needed at an isolated critical point is investigated. Hence,

the scaling in PRQ is asymptotically correct in this regime. This is confirmed in §5.3.1, where we

present comparisons between simulation and PRQ values for critically loaded queue.

5. Simulation Comparisons for the Sinusoidal Mt/GI/1 Queue

In this section, we present results of several simulation experiments conducted to evaluate the

performance of PRQ. These experiments confirm Theorem 2 showing that PRQ is asymptotically

correct in long-cycle limit and show that PRQ provides a useful approximation for the mean

workload under heavy loads. For these simulations, we consider theMt/H2/1 model with sinusoidal

arrival-rate functions. The service times are i.i.d random variables drawn from a hyperexponential

H2 distribution with mean 1, c2s = 2 and balanced means, as on p. 137 of Whitt (1982).

For the PRQ algorithm applied to the Mt/GI/1 model in (57), we primarily use the parameter

b=
√
2, just as in Whitt and You (2016). For numerical calculation of the PRQ solution, we create

a finite mesh over [0, T ], where

T =max

{

cγ,ρ,
b2c2xρ

4(1− ρ)2

}

.
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This choice of T ensures that the maximum is obtained in [0, T ] as we see from Lemma 4 and the

fact that f(t) achieves maximum at t∗ = 1. Then we simply choose a mesh fine enough such that

the error is tolerable.

5.1. Confirming the Long-Cycle Limit

For the long-cycle fluid limit, we look at a sequence of models indexed by the cycle-length parameter

γ. For model γ, we let the arrival-rate function be

λγ(t) = ρ+β sin(2πγt), (74)

which is a special case of (30). Because the long-cycle limit in Theorem 2 does not require heavy

traffic, we let ρ=0.75. For the overloaded case, we choose β = 0.5 so that λ↑

f = 1.25 in (19).
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Figure 1 A comparison of the solution to the PRQ problem in (57) as a function of the position y within a cycle

to simulation estimates of the normalized mean workload γE[Wγ,y] in (40) and the theoretical limit in

Theorem 1 in the Mt/H2/1 model with arrival-rate function in (74) for ρ=0.75, β = 0.5 and γ = 10−k

for k=2,3,4 (on the left). On the right is shown the 95% CI for γ =10−2.

Figure 1 compares PRQ to simulation estimates of the mean workload and the heavy-traffic

limit for three values of γ: γ =10−k for k=2,3,4. Figure 1 shows that both the simulation results

and the solutions to PRQ problem (18) converge to the fluid limit calculated from Proposition 1,

confirming Theorem 2.
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The estimation in Figure 1 is done over a grid of 100 values, evenly spaced between 0 and

1. For each position y, the expected workload is estimated by the time average of the workload

in all intervals of form [(y+ k)γ−1, (y+0.01+ k)γ−1), where γ−1 is the cycle length and k is a

positive integer. The statistical precision is shown in Figure 1 (right) in the form of 95% confidence

interval. Since the cycle length grows with respect to the decrease of γ, we choose a simulation

time proportional to γ−1 in order to maintain similar statistical precision.

5.2. Experiments for Heavy Traffic and Long Cycles

We now turn to experiments investigating the heavy traffic limits in §4.2. We consider a special

case of arrival-rate functions in (46),

λγ,ρ(t) = ρ+(1− ρ)β sin
(

(1− ρ)2γt
)

. (75)

Figure 2 (left) confirms Theorem 5 for the underloaded case, where h↑ = β = 0.8< 1. We observe

that (i) PRQ captures the essential shape of the simulation value and (ii) both simulation values

and PRQ solutions converges to the theoretical limit as (γ, ρ)→ (0,1).
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Figure 2 A comparison of the solution to the PRQ problem in (57) as a function of the position y within a cycle

to simulation estimates of the mean of the normalized workload 2(1− ρ)E [Wγ,ρ,y]/ρc
2
x for Wγ,ρ,y in

(56) and the limit in Theorem 5 in the Mt/H2/1 model with arrival-rate function in (75) for three pairs

of (γ, ρ) (left). On the right is shown the absolute and relative errors for (γ, ρ) = (0.01,0.75).
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Figure 2 (right) shows the absolute and relative errors, from which we conclude that PRQ serves

as a good approximation for the steady-state mean workload even for moderate traffic intensity

and moderate cycle length.

5.3. PRQ Capturing Main Features of the Time-Varying Mean

Simulation studies in previous sections confirmed that PRQ is asymptotically correct for both the

long-cycle limit and heavy-traffic long-cycle limit in both underloaded and overloaded queues. In

this section we look at several features that PRQ captures even for moderate cycle length and

traffic intensities.

5.3.1. The space scaling and the quantiles For the critically loaded case, Whitt (2016)

showed that the space scaling of the heavy traffic limit depends on the detailed structure of the

arrival-rate function and we observed in Theorem 7 that the PRQ solution yields the same space

scaling. To show that TVRQ successfully captures this feature, we now present simulation studies

for the critically loaded case with arrival rate function in (75), where h↑ = β =1.
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Figure 3 A comparison of the solution to the PRQ problem in (57) as a function of the position y within a cycle to

simulation estimates of the mean workload in a critically loaded queue with arrival-rate function in (75)

for γ = 10−k, k= 2,3,5 (left). The space scaling parameter is γ2/5 instead of γ for the overloaded case.

On the right is shown PRQ solutions for the different parameter b’s and the corresponding empirical

quantile of the simulated values.
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To relate to Theorem 7, we perform Taylor’s expansion to the sinusoidal arrival rate function

around the critical point of y=0.25. Hence, the relevant parameter in (73) will be p= 2, resulting

in a space scaling proportional to γ2/5. Figure 3 (left) confirms Theorem 7; i.e., PRQ successfully

captures the space scaling for critically loaded queues, which generally depends on the detailed

structure of the arrival-rate function. We observe that PRQ predicts the timing of the peak con-

gestion remarkably well.

Figure 3 (right) shows the impact of the parameter b on the PRQ solution, together with the

corresponding quantiles of the simulated values. The correspondence comes from a normal approx-

imation and the intuition that the uncertainty set is defined as if we replace the net input process

by its quantile process. The figure shows that the shape of the PRQ solution matches the shape of

the quantile very well, which in turns give a good approximation of the mean value.

5.3.2. Location of the peak and the steep drop When the we do not scale the cycle

length parameter γ, PRQ may not be asymptotically correct in heavy traffic but still serve as a

good approximation, as we see in Figure 2. In fact, for the overloaded queue, traffic intensities

almost have no impact on the simulation value beyond a constant scaling of (1− ρ). This feature

also appears in the heavy traffic limit theorem for PRQ, i.e., Theorem 6. From (72) there, we see

that the long cycle limit for PRQ depends on ρ only through a constant scaling of (1− ρ).

Figure 4 (left) shows PRQ and simulation estimates of the normalized mean workload normalized

with a factor of γ(1 − ρ) for fixed γ = 0.01 but increasingly larger traffic intensity. We observe

that both the PRQ soulution and the simulation values are almost independent of ρ after scaling.

In addition, PRQ successfully captures the qualitative changes of the simulation as a function of

position y, e.g., the mode around y = 0.4 and the sharp turning around y = 0.7. Figure 4 (right)

shows the PRQ objective functions in (57) for y=0.65 and y= 0.7, which explains that the sharp

turning is caused by the optimal point switching from one mode to another.
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Figure 4 A comparison between the PRQ solutions in (57), as a function of the position y of a cycle, and

simulation values for three set of parameters (left). On the right is shown the PRQ objective function

over the first cycle t ∈ [0, cγ,ρ] in (57) for two different position parameters y, under parameter triple

(γ, ρ,h↑) = (0.01,0.75,2).

6. Conclusions

In this paper have developed a time-varying robust queueing (TVRQ) algorithm to approximate

the time-varying mean (and quantiles; see §5.3.1) of the workload in a general Gt/G/1 single-

server queue with time-varying arrival rate function. Exploiting a reverse-time construction of the

workload process in §2.1, we developed a general TVRQ representation of the workload at time t,

starting empty at time 0, as the supremum of an approximating reverse-time net input process in

(6). Exploiting the composition representation of the arrival counting process in (7), we obtained

the explicit representation in terms of the cumulative arrival rate function Λ for the Gt/G/1 queue

in (15).

The rest of the paper focused on the special case of periodic RQ (PRQ). In that case we focus on

the periodic steady-state workload at place y within a periodic cycle. The general representation of

the PRQ workload as a function of y appears in (18). After developing a deterministic fluid model

for the periodic queue in §2.4 and §3.2, we established long-cycle limits for both the actual periodic

workload and the PRQ that showed the both converge to the same fluid workload, implying that

PRQ is asymptotically correct in that limit.
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In §4 we established heavy-traffic limits as the long-run average traffic intensity ρ in (16) increases

toward 1 for both the for both the actual periodic workload and the PRQ, using the scaling in

Whitt (2014), but in general these limits do not agree. In §4.3 we established double limits as the

traffic intensity increases and the cycle length increases. These limits expose three important cases:

First, for underloaded models in which the maximum instantaneous traffic intensity remains less

than 1, the limit for PRQ is the same as the pointwise stationary approximation (PSA) version of

the heavy-traffic limit for the stationary model, which has been shown to be asymptotically correct

in Whitt and You (2016). Second, for the overloaded case, we obtain limits with very different

scaling that captures the long periods of overloading, just as in Choudhury et al. (1997). Third, for

critically loaded cases, we obtained the limit for PRQ in Theorem 7, consistent with Whitt (2016).

Finally, we reported results of simulation experiments that confirm the limit theorems and show

that PRQ can be helpful for these complex time-varying models.
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