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Abstract

This paper presents some new perspectives on the time-dependent behavior of the M/M /1
queue. The factorial moments of the queue length as functions of time when the queue starts
empty have interesting structure, which facilitates developing approximations. Simple ex-
ponential and hyperexponential approximations for the first two moment functions help show
how the queue approaches steady state as time evolves. These formulas also help determine if
steady-state descriptions are reasonable when the arrival and service rates are.nearly constant
over some interval but the process does not start in steady state.
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1. Introduction

This paper describes the evolution of the classical M/M/1 queue. Of course
the M/M /1 model has been studied extensively and much is known about its
time-dependent or transient behavior, e.g., chapter I1.2 of Cohen [5] and sect. 1.2
- of Prabhu [23], but we believe that there is more to discover. Our goal is to obtain
simple approximations and structural theorems that expose the essential nature
of the transient behavior.

We focus on Q(t), the queue length (including the customer in service) at time
t in the M/M/1 queue. This is a birth-and-death process on the nonnegative
integers with constant arrival (birth) rate A and constant service (death) rate p.
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We fix the measuring units for time by setting p= 1. Then the traffic intensity
p=A/p is just A. We assume that p <1, so that the system is stable; i.e., Q(¢)
converges in distribution as ¢ — ¢ to a random variable Q{c0) with a geometric
distribution, i.e., P(Q(o0)=k)=(1—p)p*, k>0. We want to understand how
Q(t) approaches this steady-state limit; e.g., we want to describe the moments of
Q(¢) as functions of time.

One way that has been proposed to obtain more easily comprehensible
descriptions of the transient behavior is to consider limit theorems describing the
asymptotic behavior as ¢ — oo. This approach is typically discussed under the
name relaxation times; see Blanc [4], Cohen [5], Keilson [15] and references cited
there. One of our goals is to investigate the quality of these asymptotic approxi-
mations, While these approximations do give a rough idea about the transient
behavior, unfortunately they do not seem to be very accurate. Roth [24], Odoni
and Roth [22], Lee [17] and Lee and Roth [18] have done empirical investigations
of the transient behavior of various GI/G/1 queues, which indicate that the
limit theorems related to the relaxation time provide only crude lower bounds on
the rate of approach to steady state. Our analysis supports their conclusion.

In this paper, we consider the stochastic process {Q(¢):t= 0} under the
special initial condition Q(0)=0. We are primarily interested in the conditional
moments m,(2)=m,(¢, 0) = E(Q(¢)* | Q(0) =0) as functions of time. We are
mostly interested in the case k=1, but we also consider general k to some
extent. We want to understand how these moments approach their steady-state
limits. For example, we want a relatively simple expression for the time required
for m,(¢, 0) to reach 99% of the steady-state limit m,(co0) = E(Q(c0)*).

Restricting attention {o the special case @(0) = 0 is important because m,(z, 0)
is increasing in t. In contrast, it not difficult to prove that m,(¢, n)=
E(Q()|Q(0) = n) is initially decreasing in t for all n > 0; see Kelton and Law
[16] for typical numerical values. In fact, there are three possible shapes for the
first-moment function m, (¢, n). First, m,(¢, n) is increasing in ¢ for all ¢ if and
only if n=0. Second, for sufficiently large n (depending on p), the function
m, (¢, n) is decreasing in ¢ for all z. Otherwise, m;(¢, n) is initially decreasing
and then increasing in ¢. We call the smallest » such that m (¢, n) is decreasing
in ¢ for all ¢ the critical damping level and denote it by n,. The various
possibilities are described in fig. 1. Note that n4 > m;(00); i.e., m;(¢, n) can start
above the steady-state limit m,(c0), fall below it and then approach it from
below. (In sect. 8 of Abate and Whitt [3] we apply results in van Doorn [28] to
prove that m (¢, n) has this shape.)

In order to understand the moment functions with the general initial condition
Q(0) = n, it is useful to decompose the moment function into two parts

my (2, 1) = my(t, 0) + [mi(t, ) —my(z, 0)] (1.1)
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Fig. 1. E{Q(¢)|Q(0) = n) as a function of » and ¢.

because for k=1 and 2 (but not &k > 3) formula (1.1) represents m (¢, n) as the
sum of two monotone functions. This is established in theorems 7.2 and 11.3 of
Abate and Whitt [2] and in sects. 5 and 6 of Abate and Whitt [3]). We thus can
apply similar techniques to approximate both parts. We treat the case of a
general initial condition in Abate and Whitt [3]; here we focus on the case
Q(0)=0.

This paper is related to Abate and Whitt [1,2], in which we describe the
transient behavior of regulated Brownian motion (RBM). The results here for the
M/M/1 queue are discrete analogs of our RBM results. In turn, the RBM results
can be obtained from the M/M/1 results in the limit as the traffic intensity p
approaches 1. The results here will also be applied in a subsequent paper to
develop approximate descriptions of the transient behavior of other GI/G/1
queues. For the GI/G/1 queue, we apply heavy-traffic limit theorems in Iglehart
and Whitt [13] establishing convergence of the normahized GI/G /1 queue-length
process to RBM as the traffic intensity p approaches the critical value 1. We
could then, in the spirit of Gaver [10], directly apply descriptions of the transient
behavior of RBM in Abate and Whitt [1,2], but instead we apply the heavy-traffic
limit theorem twice, first to approximate the GI/G/1 queue-length process by
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RBM and, second, to approximate RBM by the M/M /1 queue-length process
studied here. The general interarrival-time and service-time distributions of the
original GI/G/1 model enter in the approximations omnly via their first two
moments. The second moments alter the M/M /1 approximations only by
producing a transformation of the time scale, consistent with the empirically
derived relaxation time (9) of Odoni and Roth [22].

The rest of this paper is organized as follows. In sect. 2 we develop our
approximations and in sect. 3 we establish supporting theory. In sect. 3 we
consider the normalized factorial moments of (Q(t)| Q(0)= 0). Recall that, for
any positive integer r, the r™ factorial moment of random variable X is
E[X(X-1)---(X—r+1)]; we denote it by ¢.( X). Of course, the first factorial
moment is just the ordinary first moment; the factorial moments become
significant when r>2. When Q(0) =0, it turns out that the normalized r®
factorial moment

H,(1) = $.(2(2)10(0) = 0)/4,(Q(e0)), =0, (12)
is increasing in £, so that we can regard H,(¢) as a cdf for each r. As we saw for -
RBM in Abate and Whitt [1], this probabilistic view pays handsome dividends. In
theorem 3.1 we show that the factorial-moment cdf’s can be identified with
negative-binomial mixtures of convolutions of the M /M /1 busy-period cdf. The
first-moment cdf H,(z) thus coincides with the equilibrium residual-life distribu-
tion associated with the M /M /1 busy-period cdf. In theorem 3.2 we show that
the r'® factorial-moment cdf H,(¢) is the r-fold convolution of the first-factorial
moment cdf H;(¢). As a consequence, we see that the (r + 1)* factorial moment
approaches steady state more slowly than the r™ factorial moment for each r.
We also easily obtain the moments of the factorial-moment ¢df’s H, (¢), so that
we can approximate these factorial-moment cdf’s by other cdf’'s by simply
matching moments.

We conclude in sect. 4 by briefly discussing approximations for second and
higher moments. Since the ™ factorial-moment cdf H,(z) is the r-fold convolu-
tion of the first-moment cdf H;(¢), we can approximate H () by the r-fold
convolution of the cdf used to approximate H;(#). We show that this procedure
works pretty well for H,(¢) in the range of ¢ of primary interest, but a direct
hyperexponential fit to the first three moments of H,(t) performs even better.

2. Approximations

21. A SIMPLE EXPONENTIAL APPROXIMATION

We propose a simple exponential approximation for the first-moment func-
tion, namely, '

my(00) — my (1) = EQ(s0) — E(Q(2) | ©(0) = 0) = b(p) e™/=® (2.1)
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for ¢ sufficiently large, where
a(p) =2 —-p)"c(p),  b(p)=p(1—p) A +2c(p))”’

c(p) = (2—:—‘0)(1 + [1 - (.ijzr_p)z]l/z) _2+p+[5— (14— p)5+0)'
(2:2)

(Later we will discuss the further simplifications c(p)= (1 + 0?)2/(2 + 0/*)
and c{p) = (1 + p/2)*/3 for p not too small.) Approximation (2.1) is appropriate
if ¢ and p are not too small. For example, (2.1) tends to be good if p > 0.50 and
1>2(1—p) 2

Let 1,=1,(p) be the time required for E(Q(z)|Q(0)=0) to first be (and
remain) within 100p% of the steady-state limit m,(o0). From (2.1), we obtain
b(p)e~‘ra(p) = pmy(o0), so that

t,(p) =a(p) log[(1 - p)b{p)/pp] =2(1~p) “[c(p) log(1/[ p(1+ 2¢(p)])]
23)

for p sufficiently small, e.g., p <0.20. The term a(p) in (2.1)-(2.3) is our
proposed approximate relaxation time.

Approximation (2.3) is especially convenient for quickly seeing how f,(p)
depends on the parameters p and p. We can easily see the notorious increase of
t,(p) as p increases. For example, from (2.2) and (2.3), we obtain ¢(0.5) =1.00
and ?£4;(0.5) = 28, but ¢(0.9) = 1.25 and- #,;(0.9) = 838. The first-order behavior
is captured by the time-scaling 2(1 — p)~2, which assumes the values 8 and 200
for p=10.5 and 0.9. Formula (2.3) provides a refinement.

Approximations (2.1) and (2.2) agree closely with approximations proposed by
Odoni and Roth [22] and Lee and Roth [18], based on statistical analysis of data
obtained from an algorithm to solve the state equations (the Runge-Kutta
method) in order to describe transient behavior of various GI/G/1 queues with
Markovian structure (e.g., M/E,/1, E,/M/1 and M/H,/1). The interest here
thus is largely in the approach, which 1s very different. We obtain (2.1) theoreti-
cally without reference to data or numerical methods. It is of course important
that the results match the data. Moreover, given that the Odomni-Roth-Lee
approximations fit the data, it is appropriate that our approximations are similar.
Note, however, that Odoni, Roth and Lee focus on the number in queue
excluding the customer in service, instead of the number in system. We believe
that the number in system is more appropriate for direct approximation because
then m;(o0) — m;(¢) is log-convex; see corollary 3.3.2; otherwise, it is not. In a
forthcoming paper we generate an approximation for the probability of emptin-
ess, Pyy(t) which can be combined with (2.1) to yield an approximation for the
expected number in queue, m,;(#) — 1 + Pyy(¢). We also include a proof there that
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the expected number in queue, excluding the customer in service, is not log-con-
vex for all p sufficiently small. (This follows easily from corollary 4.2.3 of Abate
and Whitt [3].)

2.2, SCALING SPACE AND TIME

A useful initial step is to scale space and time to identify and isolate the
extreme limiting behavior as p—> 1 and as p — 0. Obviously, EQ(c0) = o0 as
p—1and EQ(o0)— 0 as p — 0. A good way to scale space and time is in a way
so that nondegenerate limits occur as p — 1 and as p — 0. In particular, we scale
space and time so that canonical RBM (with drift coefficient —1 and diffusion
coefficient 1) treated in Abate and Whitt [1] is obtained in the limit as p — 1.
From Stone [25] or Iglehart and Whitt [13], it is known that the family of
stochastic processes {27(1 — p)Q(¢2(1 — p)~?): ¢= 0} indexed by p converges
in distribution to canonical RBM as p — 1. In particular, the dominant effect of
p in the approach to steady state when p is near 1 is captured by this
heavy-traffic limit theorem. This effect is represented by the time scaling
2(1 — p)~2 and the space scaling 2(1 — p)~'. Thus, we express the relaxation time
a(p)in (2.2) as a(p) = 2(1 — p) " 2c(p), so that it only remains to determine c(p).
It can be seen that ¢(p) is increasing in p with ¢(0) =90.50 and ¢(1) = 1.31. (See
table 4.) To exploit this scaling, we define the moment cdf’s (cumulative distribu-
tion functions)

E(9(2(1-p)")")
E(Q()")

The criterion of convergence to canonical RBM as p — 1 and the normalization
by the steady-state limits lead to well-defined unique scalings of space and time
int (2.4). The scaling yields nondegenerate cdf’s both as p — 1 and as p — 0. (Both
limits are established with transforms in corollary 5.2.2 of Abate and Whitt {3].)
For related discussions of scaling, see sect. 3.5 of Mori [19] and sect. 5.2 of
Newell [21]. Just as with RBM, E(Q(¢)*|Q(0)=0) is increasing in 7, so that
H,,(t) is a legitimate cdf for each k. (See theorem 1.2 of Abate and Whitt [1] or
corollarly 3.1.1 here.)

‘After the normalization in (2.4), the exponential approximation (2.1) for the
first moment becomes

1—Hy(e) = (1+2¢(p)) " e77/®, 121, (2.5) .

. for ¢(p) in (2.2). (In scaled time, the term 2(1 — p) 2 is omitted from (2.3).) The
function c¢(p) in (2.2) and (2.5) is the approximate scaled relaxation time. For
p =1, (2.5) reduces to the simple exponential approximation for canonical RBM
in (1.3) of Abate and Whitt [1]. '

t=0. (2.4)

H,.(1)=
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2.3. AN H, FIT USING THREE MOMENTS

We obtain the simple exponential approximations (2.1) and (2.5) by fitting an
H, (hyperexponential) cdf to the first three moments of the cdf H,;(¢). The
complementary cdf of an H, distribution has the form

1—H(t)=p,e “/1+p,e /™, (20, (2.6)

where p; + p, =1 and 7, <7,. The second exponential component with mean =,
is dominant for large ¢ since 7; <T,. This general moment-fitting approach is
appropriate when we want to obtain a good fit for relatively large #, which is our
goal here. The full A, approximating complementary cdf 1 — ﬁpl(t) we obtain is

Hy(1) =2¢(p)[1 +2¢(p)] te %@ 1+ [1+2¢(p)] ! eV, (2.7)

(Note that ¢(p) = 1/4c(p), so that the second term is dominant for large ¢.) This
H, approximation tends to be pretty good for all p when ¢ > 0.25. We obtain the
simple exponential approximation (2.6) from (2.7) by simply ignoring the first
term in (2.7). The H, approximation (2.7) is in general uniformly more accurate
than the simplification (2.5); (2.5) is introduced only to obtain a simple easily
comprehensible description, e.g., (2.3). If p is not too small, then (2.5) and (2.7)
are nearly equivalent for ¢ > 1 because then the first exponential term in (2.7)
tends to be negligible. However, as p — 0, c(p) — 0.50 and 1/4¢(p) — 0.50, so
that the two component means coincide. Thus the reduction of the H, cdf to one
component exponential by simply eliminating the other component will not work
when p is too small. Then we propose the exponential approximation 1 — H,(¢)
=e /P As p—0, the relaxation time is still described by c(p), but the
appropriate multiplier changes. As p decreases, the multiplier should increase
from [1 + 2¢(p)] ™! to 1.

To carry out this procedure, of course we must be able to determine the first
three moments of H, (f) in (2.4) and fit these moments to the standard H,
parameters. It is significant that we not only obtain the numerical values of the
H, cdf for each p, but we also obtain the moments and the H, parameters in
closed form as explicit functions of p. We apply the method described in sect. 5
of Abate and Whitt [1]. The second H, fitting method in (5.7) there is especially
useful, because for the M /M /1 model here the parameter y there turns out to be
2, independent of p.

In support of the exponential approximation (2.5) and the H2 approximation
(2.7), we prove that the first-moment cdf H,(¢) in (2.4) is actually a mixture of
exponentials. (See corollary 3.3.1.) This guarantees that an H, fit is possible and
shows that it should perform reasonably well. It is obviously significant that, in
addition to having the same first three moments, the actual moment cdf H, (¢) in
(2.4) has a shape similar to the H, approximation in (2.7).
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2.4. NUMERICAL COMPARISONS

We do numerical comparisons by inverting the Laplace transform for the
scaled M/M /1 queue, as described in sect. 4.4 of Abate and Whit {1]. Numerical
comparisons appear in tables 1-3. Table 1 displays the actual complementary cdf
1-— H,(t) in (2.4); table 2 displays the approximating complementary H, cdf
1—H,(¢) in (2.7); and table 3 displays the simple exponential approximation

Table 1
Numerical values for the first-moment complementary cdf 1— H,;(¢) defined in (2.4), obtained by
Laplace transform inversion. (Time has been scaled.)

Time Traffic intensity

! p=0 p=0.50 p=075 p=090 p =1.00
0.5 0.368 0.306 0.291 0.284 0.280
10 0.135 0.144 0.148 0.150 0.151
15 0.050 0.077 0.084 0.088 0.090
2.0 0.018 0.043 0.051 0.055 0.057
3.0 0.025 0.0151 0.0202 0.0230 0.0247
4.0 0.00034 0.0057 0.0087 0.0104 0.0115
70 © 0.00000 0.00032 0.00078 0.00113 0.00146
Table 2

Numerical values for the H, approximation 1— ﬁpl(t) in (2.7) of the first-moment complementary
cdf 1— H,;{r) in (2.4). (Time has been scaled.)

Time Traffic intensity

t p=0 p=005 p=050 p=075 p=090 =100
0.5 0.368 0.366 0.292 0.265 0.250 0.241
1.0 0.135 0.141 0.135 0.134 0.133 0.132
1.5 0.050 0.058 0.076 0.083 0.087 0.088
2.0 0.018 0.024 0.045 0.054 0.058 0.060
3.0 0.0025 0.0048 0.0166 0.0226 0.0259 0.0279
4.0 0.00034  0.00099 0.0061 0.0095 0.0117 0.0130
70 0.00000  0.00001 0.00030 . 0.00072 0.00106 0.00131
HZ

Parameters p=0 p=10.05 p =050 p=075 p=090 p=1.00
P 0.50 0.556 0.667 0.698 0.714 0.724
P2 0.50 0.444 0.333 0.302 0.286 0.276

n 0.50 0.400 0.250 0.216 0.200 0.191

™ 0.50 - 0.625 1.000 1.159 1.250 1.309
my 0.50 0.50 0.50 0.50 0.50 0.50

c? 1.00 1.10 2.00 2.50 2.80 3.00

r 0.500 0.444 0.333 0.302 0.286 0.276
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Table 3
Numerical values for the simple exponential approximation (2.5) of the first-moment complementary
cdf 1— H,(¢) in (2.4). (Time has been scaled.)

Time Traffic intensity

d p=0 p =005 p=05 p=07 p=09 p=10
0.5 0.184 0.200 0.202 0.196 0.192 0.188
1.0 0.068 0.090 0.123 0.127 0.129 0.129
1.5 0.025 0.040 0.074 0.083 0.086 0.088
2.0 0.0091 0.018 0.045 0.054 0.058 0.060
3.0 0.0012 0.0037 0.0166 0.0226 0.0259 0.0279
4.0 0.00017 0.00074 0.0061 0.0095 0.0117 0.0130
7.0 0.00000 0.00001 0.00030 0.00072 0.00106 0.00131

(2.5). (As we indicated above, better approximations for small p are possible with.
e~ /%) instead of (2.5).)

The case p =1 in table 1 provides the exact values for RBM, as in table 1 of
Abate and Whitt [1]. With the normalization in (2.4), the complementary cdf for
RBM (p=1) is a pretty good approximation for the other cases when p is not
very small and ¢ is not very large, e.g., for p > 0.75 and ¢ < 2.0.

As indicated above, the simple exponential approximation (2.5) is essentlally
the same as the H, approximation (2.7) for ¢> 1, providing that p is not too
small. In fact, both the true cdf (2.4) and the H, approximation in (2.7) approach
a simple exponential with mean 1/2 as p — 0, so that the H, approximation (2.7)
is asymptotically correct as p — 0. The values for p =0 in table 3 are exactly
one-half of the values for p =0 in table 2 because only one of the two identical
exponential components is counted in table 3. (The H, approximation is
meaningful and nontrivial as p — 0 because the scaling leads to a nondegenerate
limit.)

In addition to the numerical values for the A, approximation, table 2 displays
the H, parameters. (We determine all moments of H,;(¢) in (2.4) for all k in sec.
3; see corollaries 3.1.3 and 3.2.2.) For the i® component exponential, the mean is
7, and the probability is p,. Also given are the overall mean m, =1/2, the
squared coefficient of variation (the variance divided by the square of the mean)
c?=1+2p, and the parameter r=p,7,/(p;7 + p,7) giving the proportion of
the mean in the component with the smaller mean. In this case, r turns out to be
just p,. The parameters m,, ¢* and r are the exact values for H,,(t) determined
by the first three moments; see sect. 5 of Abate and Whtt [1].

From the numerical values in tables 1-3, we see that the simple exponential
approximation (2.5) when p is not too small and the H, approximation (2.7)
more generally provide satisfactory descriptions of the approach to steady state
for times of primary interest, in particular, for : > 1 or H, () = 0.85. However,
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Table 4

A comparison of the scaled relaxation time c(p) in (2.2) with other candidate expressions.

Traffic 3-moment Asymptotic Odoni and Newell Gaverand Proposed

intensity H, fit relaxation time  Roth [22] [21] Jacobs simplification

P Cohen [5] [11] of e(p)
e(p) 1++/p 2 1+ ? 1+ 1+/p z
in (2.2) ( ;/— ) ( zf) 2 £ Ja+e) ‘("—\/1;)‘“

(2+077)

0.0 0.50 0.50 0.36 0.50 141 0.50

0.1 0.69 0.87 0.62 0.55 1.48 0.68

02 0.78 1.05 0.75 0.60 1.55 0.79

03 0.86 1.20 0.86 0.65 1.61 0.38

04 0.93 1.33 0.95 0.70 1.67 0.95

0.5 1.00 1.46 1.04 0.75 1.73 1.03

0.6 1.07 1.57 112 0.80 1.79 1.09

0.7 1.13 1.69 1.20 0.85 1.84 1.16

0.8 1.19 1.79 1.28 (.90 1.90 1.22

0.9 1.25 1.90 1.36 0.95 1.95 1.28

1.0 1.31 2.00 1.43 1.00 . 2.00 1.33

the approximate scaled relaxation time ¢(p) in (2.2) has the drawback that it is a
rather complex expression. It would be nice if ¢(p) could be replaced by a simple
function of p related to the relaxation time arising in the asymptotic theory, as on
p. 180 of Cohen [5]. Since the unscaled relaxation time in Cohen (1982) is
(1 —/p) 7%, the associated scaled relaxation time is (1 +/p)?/2. (Recall that
(1 —/p)* (A +/p)* = (1 — p)*.) Similarly, the approximate scaled relaxation time
of Odoni and Roth [22] for the expected number in queue is (1 + /p )2/2.8. As a

- simple approximation of this kind, we propose c(p) = (1 + 1/3 )2 /(2 + p*) or,
for p not too smail, (1 +/p)?/3. (The Odoni and Roth [22] value is apparently
somewhat larger because they are aiming for an approximate upper bound. They
are also treating a different process.) The various candidates are compared in
table 4. One additional candidate (1 + p)/2 comes form (5.6) on p. 151 of Newell
[21]. Another y2(1 + p) comes from (3.10) of Gaver and Jacobs [11]. The value p
itself is suggested in (1) of Morse [20]. Note that the differences here only
concern the factor c(p). All methods agree on the dominant factor (1 —p)~?2
used in the scaling (2.4). In other words, when we focus on ¢(p), we are looking
for a second-order refinement.

As long as p is not too small, we conclude, in agreement with Odoni and Roth
[22], that the real relaxation time for times of primary interest is about 2 /3 of the
relaxation time from the asymptotic theory. Equivalently, in the regions of
primary interest the first moment approaches steady state at a rate about 1.5
times faster than predicted by the inverse of the asymptotic relaxation time. We
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Table 5

A comparison of approximations of the complementary cdf 1— H;(¢) in (2.4) for the case p = 0.8.

Time Exact Hyperexponentials Asymptotic

¢ 2.4) y=—8 =2 v = 0.67 ast—oo
@mn 2.8)

0.00 1.000 1.060 1.000 1.000

0.25 0.444 0.421 0.454 0.528

0.50 0.289 0.31% 0.260 0.292

1.00 0.149 0.183 0.134 0.110 0.87

2.00 0.052 0.060 0.055 0.037 0.176

3.00 0.0212 0.0198 0.0238 0.0198 0.055

4.00 0.0092 0.0065 0.0103 00114 0.0204

5.00 0.0042 0.0021 0.0044 0.0066 0.0084

6.00 0.0019 0.0007 0.0019 0.0038 0.0036

7.00 0.0009 0.0002 0.0008 0.0022 0.0017

have related our approximate scaled relaxation time - c¢(p) to the asyIﬁptotic
approximation 7=7(p)=(1+ ,/; Y2/2 in Cohen [5]. For the scaled M/M/1
system, the full limit as £ — oo is

1—-H,(r)~ 72(2wp3/2t2)_1/2 e /T (2.8)

where f(z)~ g(¢) means f{(¢)/g(t)—>1 as t— o0. As p—1, this limit ap-
proaches the limit for RBM in the corollary 1.1.2(a) of Abate and Whitt [1].
Numerical comparisons for the case p=1 are contained in table 3 there.
Numerical comparisons for the case p =0.8 are contained in table 5 here. As
before, the H, approximation (2.7) and the exponential simplification (2.5)
provide an order-of-magnitude improvement over (2.8) in the quality of the
approximation (Also included in table 5 is a comparison with other H, ap-
proximations having the same first two moments but different parameter y from
(5.7) of Abate and Whitt [1]. This shows that the three-moment fit is important.
In fact, using two-moment H, fits, the approximate relaxation time (dominant
exponential mean) can assume any value greater than 1 when p =1 by choosing
an appropriate third moment.

3. Factorial-moment CDFs

In this section we present the probabilistic characterization of the normalized
factorial-moment function H,(¢) in (1.2) and describe some consequences. (Note
that in this section we are not using the scaling (2.4).) Our results are discrete
analogs of corresponding results for RBM in Abate and Whitt [1].
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REMARK 3.1

Related results can be obtained for the moments of the work in system at time
t, say W(t), using the relation W(¢) = %%y, where v, are the exponential service
times; e.g.,
EW(t) = EQ(¢) and E[W(:)] = E[Q(+)"] + EQ(2).

For the M /M /1 queue, the pmf (probability mass function) of the steady-state

queue length Q(oo) is geometric. The r-fold convolution of this geometric
distribution is negative binomial. It has density

g () ="k a-p) s, k=012, (3.1)

In a sequence of Bernoulli trials with probability 1 — p of success, the probability
that the r® failure occurs at trial k + r + 1is g,(k); see pp. 164, 268 of Feller [9].

As is commonly done with discrete distributions, we work with factorial
moments. Let ¢.(X)=¢ (p) denote the r® factorial moment of a random
variable X with pmf p on the nonnegative integers defined by

qbr(X):E[X(X—l)'(X_r-l_l)] Z (k r)|pk (32)

Factorial moments are obtained directly by differentiating the probability gener-
ating function

Yx(s)=E(s¥)= kéoskP(X= k).

In particular, if ¥{7(s) denotes the r* derivative of i (s), then ${”(1) = ¢.( X).
We also work with the tail probability function associated with a pmf p,
defined by

ﬁk=Pk+1+Pk+2+ Tty k=0’ 1: 25--- . (33)
Since the probability generating functions
’ o0 ) oo
4’5(-5') = Z Sk-ﬁk and ‘Pp(s) = E SkPk
k=0 k=0

are related by ¢;(s) =[1 — ¢,(s)1/(1 — s5), the factorial moments of p and p are
related by

oo ) k!
- 3 34
Z (k r)'pk er:—l (k—l"l'].)lpk’ ( )
€8
[¢a]
Z kpy = E Py and 2 k(k—1)p,=2 Z kD
=1 k=0 k=2 k=1

see p. 265 of Feller {9].
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It is also convenient that the factorial moments of the geometric pmf have a
very simple form, namely,

. (Q(00)) = Z (1—p)p =rp(1-p)" (3.5)

see (14) on p. 126 of Johnson and Kotz [14].
Let T; be the first passage time to 0 from state / in the M /M /1 queue, which
has the distribution of the i-fold convolution of the busy period T;.

THEOREM 3.1

For each positive integer r, the normalized r® factorial moment of
(Q(2)| () =0) in (1.2) can be represented as a negative-binomial mixture of
first-passage-time cdf’s; in particular,

_s(0(1e©=0) _ & 3
Hr(t) - ¢,-(Q(00)) kgogr(k)P(Tk+r—r) (36)

where g, (k) is the negative binomial pmf in (3.1), ¢.(Q{c0)) is the r™ factorial
moment of the geometric distribution in (3.5) and 7, is the first passage time
from k to 0, which is distributed as the k-fold convolution of the distribution of
the M /M /1 busy period T3.

Proof
By (3.4),

t 0)=j)= _—
for all positive integers r and j. Under the special case Q(0) =0, Q(¢) is equal in
distribution to M(¢), the maximum of the unrestricted birth-and-death process
. on the integers with birth rates A, = A and death rates p, = pu for all n, say X(z);
i.e., for each ¢,

Q(r) & M(r) =max{ X(s):0<s<1t), (3.8)

where < means equal in distribution; p. 11 of Prabhu [23]. Let T;, be the
first-passage time to j from i in the unrestricted process X(¢). By the familiar
inverse relation between M(¢) and T;, P(M(t)=j)=P(T,;<t) for all non-
negative ¢ and j. Finally, by the reversibility of birth-and-death processes,

P(Ty<t)=pP(Tn<1t) (3.9)

P(Q(1) > k10(0) =) (3.7)

for all nonnegative j and ¢, as shown in theorem 1.4 of Abate and Whitt [1],
following Doney [8]. (Note that the first-passage time T, for the unrestricted
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process is identical to the first passage time 7; defined previously for the
restricted process.) Combining these relations, we obtain

¢;(Q(I)IQ(O)=0)—fk=r_lmP(M(f)>k+1)
o0 k!
=rk=¥_1 (k"'r+1)'P(T6k+1<t)
=r 3 ""—“IL'"—P!CHP(TkH,GSt)

so that, by (3.5),

_¢r(Q(t)|Q(0)=O)= ad F k—r+l <
B =S = 2 E)am e (T,=)

= Z ("+r_ )(1 pY O'P(T,r0<1)
with the last step based on a change of variables n=k—r+1. O

COROLLARY 3.1.1
For each r, ¢.(Q(2) | Q(0) = 0) is nondecreasing in 7.

The ordinary r™ moment E[Q(r)"] can be expressed as a linear combination
of the first r factorial moments with nonnegative coefficients, namely, the
Stirling numbers of the second kind; p. 4 of Johnson and Kotz [14]. Conse-
quently, we have an analog of corollary 3.1.1 for the ordinary moments. (This is
also a consequence of stochastic order results in van Doorn [28].)

COROLLARY 3.1.2
For each r, E[Q(¢)"] is nondecreasing in ¢.

Theorem 3.1 takes a particularly simple form when r=1. Since the first
factorial moment is just the first moment, we also refer to H,(t) as the
first-moment cdf. Let B,(¢) be the equilibrium-excess or stationary-residual-life
cdf associated with the busy period cdf B(¢) = P(T; <t), defined as usual by

B()=[ T1-B(u)] duy f “[1- B(u)] du=(1-p) fo‘[l ~ B(u)] du; (3.10)

(p. 28 of Cox [6]).
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COROLLARY 3.1.3

The first-moment cdf H,(¢) in (1.2) coincides with the cdf of the equlibrium
time to emptiness conditional on not starting empty, i.e., the first passage time to
0 starting in steady state conditional on a positive starting state, which in turn

coincides with the busy-period equilibrium-excess cdf, i.e.,
o0

Hy(2) = kgP(Q(OO) =k|Q(0) >0} P(T <t) =B (t), 20

As a consequence of corollary 3.1.3, we can express the moments of H,(¢) in
terms of the moments of the busy-perod cdf B(z), e.g., p. 149 of Cox and Smith
[7]- Let m,(G) be the n'® moment of a cdf G. We use the fact that for any cdf G
on [0, c0) :
m,(G,) =m, .1 (G)/m(G)(n+1); (3.11)
see p. 64 of Cox [6]. The n'™® moment of B(¢) for any # is easily obtained from
Riordan’s recursion in theorem 3.2 of Abate and Whitt [3].

COROLLARY 3.14

For the M/M /1 queue, m,(H,(£))= (1 — p}m,(B(¢))/(n +1).

We can also relate the higher factorial-moment c¢df’s H,(¢) to the first-moment
cdf H;(t) is a simple way.

THEOREM 3.2
For each r, the r'® factorial-moment cdf H.(z) in (3.6) is the r-fold convolu-
tion of H,(?).

Proof
Since g, (k) is the r-fold convolution of g;(k) and P(7,,, <t) is the convolu-
tion of P(T, <t) and P(7, <t), the convolution of H,(¢) and H,(?) is

_/.OIHr(f_S) dH,(s)= _/:ki g (k)P(Tpy, <t —5) éogl(j) dP(T1+jS-5')

™8

= ¥ T (0)a() [P (T, <t - 5) dP(T1s;<5)

J

X
I

o
[==]

0
©0
=)

I
™8

Eogr(k)gl(j)P(Tk*‘j'*'r*'l <t)

J

b
I
=)

Ms i M8

Eogr(m )& (NPT <t)

grar(m)P(T i 1 <) =H,py(t). O
o )

3
l
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The representation in theorem 3.2 is convenient for comparing the approach to
steady state of the factorial moments ¢,(Q(¢)|Q(0)=0) for different r. Intui-
tively, we would expect that higher factorial moments approach steady state more
slowly than lower factorial moments. Theorem 3.2 makes this property easy to
express and establish. We use the notion of stochastic order; Stoyan [26].

COROLLARY 3.2.1
For all r>1 and t>0, H.(t) > H,,,(?); i.e., the r™ factorial-moment cdf’s
are stochastically increasing in r.

Theorems 3.1 and 3.2 also facilitate calculating the moments of the factorial-
moment cdf’s.

COROLLARY 3.2.2
The factorial-moment cdf moments are

m,;= mj(Hr(t)) = Lmtj dHr(t) = kgogr(k)E(Té"'f); (312)
.8
mr1=—r_2= m,= r2+r(2p-:1)
(1—p) (1-p)
= rl6p*+12p +2] + 31‘62(2,0 +1)+r3 ‘ (3.13)
(1-p)
Proof
Note that
ma= T (K77 0) o (e r) /(1)
=0

=1/ =) (rp/(L=p) +r) =r/(1 - p)*.

For j =2, start with r=1. By theorem 3.1,

gy = gogl(k)E(TﬁH) = é(l — p)p*(Var(Tp11) + [ E(Tia)]?)

o0

= X (@-o)([k+ 11E(72) + (ie+ D] EET)
_E(T7) . 2[E(T)]” 2 L2 _20 +p)

-0 (a-pY (-0 @-p) @a-p)*
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so that
2_2(1+p)_ 1 _ 2p+1

mp, =mp, = .
1-9)* (@1-p)' (@-p)
By theorem 3.2,

r(2p+1
=y =201
(1—p)
so that
r(2p+1) r _r +r(2p+1)

e a-et | (-e)

For j>3, we work with the cumulants (or semi-invariants) because the ;j

curmulant of a k-fold convolution of a distribution is just kX times the j™

cumulant of the distribution; p. 20 of Johnson and Kotz [14]. Let 8;(T") be the

j * cumulant of T and let B,; be the j™ cumulant of the cdf H, (1) with moments
.. We apply known relations connecting the moments to the cumulants. (The

sccond and third cumulants are just the second and third central moments [about

the mean] ) By theorem 3.1,

g gl(k)E(Tk+1)
f: (1= )8 (B5(Teer) + (T )BTes) + [BulTe)])
éo(l = o) ([k+ 11B(T3) + 306+ 1V B(T)B(T)
+(k+1)°[ BU(T)])
Bs(Ty) | 3(p+1) (p*+4p+1)
= 31 132 1 - 3 B1 1
. (TA(T) + 25—~ [T
_ E(1) —3E(TYE(T) + 2 E()]’
- =
L Ge+EM) (E(T)—[E(Tl)]) (02 +4p+1)[ e
| 1-p)* 1-p)’
=6+6p—6(1—p)+2(1—p) Gp+3)2-(1-p)) A p'+4p+1
1-p)° 1-p)° 1-p)°

_6(p*+3p+1)

(1-p)°
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so that
— 3
B13 =my3 — 3mymyy + 2my;

_6p°+180+6 3(1+(2p+1)) L2
(1-p)° 1-p)° 1-p)°

_6p"+12p+2
- % -
(1—p)

Hence,

_ r[60® +12p + 2]
(1—p)°

Br3

and
m.; = Br3 + 3Brl r2 + r31

_ r[6p> +12p + 2] L3 r’+r(2p0+1)—r? + r’

1-p)" 1-p) 1-p) 1-p)
_r[6p? +120+2] +3r2(2p +1) +1°
1-p) '

From corollary 3.2.2 we obtain the first three moments of H,(¢) in (1.2) by
setting r=1. Since cj=(my,—m¥)/mi;=1+2p>1 and myymy/mi, =
B/2A +[p/(1 +p)]) = 3/2, it is always possible to fit an H, distribution to the
first three moments of H,(z); see sect. 5 of Abate and Whitt [1]. (Since
c2 = (m,, —m3)/m3, =p+1/2 by corollary 3.2.2, this is not the case for the
second-factorial-moment cdf H,(7) for all p.)

We can also use corollary 3.2.2 to calculate the moments of the time-scaled
ordinary-moment cdf’s H ,(¢) in (2.4). For example it is easy to see that

H,(e)=al(12(1 - p) %)+ (1 —a) By (21— p) %) (3.14)
where a= EQ(0)/E[Q(0)?]=(1—-p)/(1 +p). As a consequence of (3.14),

note that H,,{(¢) coincides with H, (¢) when p=0 and sz(t) coincides with
H,(t2(1 — p)~?) when p=1.
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COROLLARY 323
The k™ moment m,,; of H,,(¢) in (2.4) is 27%(1 — p)**[amy; + (1 — a)my,]
for a = (1 —p/(1 + p); e.g., the first three moments are

- _(1+3p) - _ (1+6p+3p%) " _ 3(1+10p +14p* + 3p°)
P21 a1 +p)” TP 2(1+p) ~° % 41+p)

From corollary 3.2.3, we see that unlike H,(?), H,,(¢) admits a hyperexponen-
tial match to its first three moments, because

My — m§21 _ (1+8p+ 90° +6p°) -1 (3.15)
mgn (1 -+ 6p + 9.02) - ’

3
>3 (3.16)

(1+12p+ 42p° +36p° + 9*)

Mpp3Mpn (g) (1 + 13p + 44p% + 45p + 9p4)
2

2
YY)

Forp=1, cgz =3/2 and (m,3;m /mf;,_z) =42 /25 in agreement with previous
results for RBM in corollary 1.3.4 of Abate and Whitt [1]. Similarly, the moments
m,y, match the RBM results after introducing the space scaling. For p =0, the
moments match a simple exponential. Corollary 5.2.7 of Abate and Whitt [3]
establishes that H,,(¢) in fact comverges in distribution to this exponential as
p—0.

From theorem 1.7 of Abate and Whitt [1], we know that H,,(¢) is a mixture of
exponentials, i.e., has a completely monotone density A ,,(f), for k=1 and 2 (but
not k=3) when p=1. (Recall that a density h(¢) is completely monotone if
derivatives A(¢) exist and (—1)A(¢) = 0 for all n and ¢; see p. 66 of Keilson
[15]. This 1s equivalent to h(¢) being a mixture of exponential densities). Such
complete monotonicity clearly also holds when p=0. We now investigate the
remaining cases 0 < p <1. From (3.15) and (3.16), we expect similar positive
results for all p, but surprisingly a negative result for the case k =2 is provided
by the following corollary.

COROLLARY 3.2.4
Ast—0(,

2t 2(3~-2p)f?
L+e  (a+p)a-p)

H,,(t) ~



60 J. Abate and W. Whitt / Transient behavior of the M / M /1 queue

and
4(1—2p)t
(1+p)1—p)"
so that derivative of the density satisfies h;z(O) >0forl/2<p<1.

2
hpZ(t)~ 1+p_

Proof

Let I-?pz(s), H:(s) and k,(s) be the Laplace transforms of the time-scaled
complementary cdf's 1—H ,(¢) and 1— H,(z2(1 ~p)"?) and the associated
density, respectively. From (3.14),

Ay (s) = 2 A5(s) + L1~ (hy(o))]

where 8 = (1 —p)/2 and w = (1 + p)/2. Applying corollary 3.1.4, we can expand
these transforms in powers of s for s near 0 to obtain

Fe . 1 1 3
Hl(s)_;_ai+ IR +o(s?)
and

o 1 1

hl(S) = E —_ 2035.2 + O(Sz).

Thus

A 1 1 1-2p 3
H,(s)= Fi + YT +o0(s?)

from which we obtain our first asymptotic relation by inverting. O
We have shown that 4,,(¢) is not completely monotone for 1/2 <p <1. We
have not determined what happens for 0 < p <1/2.

CONJECTURE 3.1
h,,(t) is completely monotone for 0 < p <1/2.

We now prove that H;(z) in (1.2) 1s actually a mixture of exponentials. We
first establish this property for the M /M /1 busy-period distribution. This is in
fact a general result for first passage times to neighboring states in birth-and-death
processes; see pp. 40, 67 of Keilson [15]; we give a direct proof.

THEOREM 3.3
The M /M /1 busy-period density b(¢) is completely monotone.
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Proof
Use the representation of b(¢) in terms of a gamma density, (36) or p. 116 of
Takécs [27] or (4) of Heyman {12}, giving

b()= % (n) 7 e (pt)" g, (1 1), t20, (3.17)
n=1

where

g, (t; a)=at" e ¥/ (n—1), t>0,

which is equivalent to

b(t) = i a,8.(t; 1+p) (3.18)

n=1
for a,=p""' /(1 + p)"n! > 0. Differentiating with respect to ¢ in (3.18) yields
b'(£) = X a.g.(t; 1+p)

n=1

where a,=[—(1+ p)+ p/(n+ 1)]a,. Hence, by induction, the n™ derivative
satisfies

B(ty= Y [~ +p)+p/(n+1)]"a,g,(t; 1+p).
n=1
Since —(1+p)+p/(n+1)<0, (—1)"p™(r)>0forall » and z. O

We apply corollary 3.1.3 to obtain the following desired conclusion from
theorem 3.3.

COROLLARY 3.3.1

The first-moment cdf H;(¢) in (1.2), which coincides with the M/M/1
busy-period stationary-excess cdf B,(¢) in (3.10), has a completely monotone
density.

Proof

Note that B**2(£) = —(1 — p)b™)(¢), where the subscript indicates the order
of the denvative. 0O

The complete monotonicity implies other important' structure.

COROLLARY 3.3.2 _ s
The complementary cdf 1 — H;(¢) and the density 4,(z) are log-convex.
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4. Approximations for higher moments

Let H,(¢) and H,,(¢) denote approximations for the r™ factorial moment cdf
H,(#) in (1.2) and the 7™ moment cdf H, (¢) in (2.4), respectively. Recall that
H(t)=H, (1), t=0, for all r when p=1 and for all p when r=1, but not
otherwise.

Since H,(?) is the r-fold convolution of H,(¢) by theorem 3.2, we can use the
r-fold convolution of H,(¢) in (2.7), say H,(2), to approximate H,(¢) for r = 2.
Since H, (¢) has the same first three moments as H; (1), obviously H,(r) has the
same first three moments as H,(¢). Moreover, since H,,(¢) coincides with H ()
for p=0, H,(2) also coincides with H, (¢) for p=0. Since H,(¢) is exponential
when p =0, H,(¢) is Erlang ( E,), the r-fold convolution of an exponential, when
p=0.

In the case =2, we easily obtain the approximating convolution cdf H,(r)
from (2.7). We then apply (3.14) to convert it into an approximation ﬁpz(t) for
the ordinary second-moment function:

1= H,5(6) = [A(p) + B(p)r] e™*® + [1~A(p) + D(p)1] & /°®  (4.1)

where

16c(p)* — 4c(p)” — 4c(p)
A = 4.2
() = Loe(a)* + 16c(p)’ — 4c(p) 1 (42)

B(p) =16¢(p)’ and D(p) = [c(p)(1 +2¢(p)*)]

Numerical comparisons with exact values of H,,(¢) for the cases p=0.5 and
p = 1.0 are contained in tables 6 and 7. For p <1, the exact values come from
Laplace transform inversion as in sect. 2.4. For p = 1, the exact values come from
theorem 1.1 and table 5 of Abate and Whitt [1]. For ¢ of primary interest, e.g.,
2 <t <9 where 0.001 <1 — H,(¢) <0.15, approximation (4.1) performs well. In
fact, paralleling (2.1) and (2.5), the second component [1 — A(p) + D(p)t] e~ /(@
alone performs well in this region. As expected, for small ¢ approximation (4.1)
does not perform well.

Because of its superior performance for small ¢ and its more elementary form,
the direct hyperexponential approximation for H,(¢) when p =1 in Abate and
Whitt [1] seems clearly preferred for RBM. However, for small p even a
two-moment hyperexponential approximation is not available for the second-fac-
torial-moment cdf H,(f) because as noted after corollary 3.2.2 c?=p+1/2,
which can be less than one.

However, as indicated after corollary 3.2.3, it is possible to fit a hyperexponen-
tial (H,) to the first three moments of the ordinary second-moment cdf H,,(¢) in

-1

(4.3)
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Table 6
A comparison of approximations for the complementary second-moment cdf 1— H,,(¢) in (2.4} in
the case p = 0.50 with exact values obtained from Laplace transform inversion.

Time Exact by Convolution ~ Direct 3-moment fit

t numerical of H,(t) hyperexponential
Pransff)rm Two terms One term Two terms One term
IRVEIs1on

0.01 0.987 0.990 - 0.986 -

0.1 0.871 0.893 - 0.871 -

0.5 0.512 0.511 0.374 0.515 0.318

1.0 0.284 0.270 0.241 0.282 0.206

1.5 Q0.163 0.160 0.154 0.163 0.133

2.0 0.099 0.100 0.098 0.098 0.086

3.0 0.038 0.040 0.040 0.038 0.036

4.0 0.015 0.016 0.016 0.015 0.015

5.0 0.0062 0.0063 0.0063 0.0064 0.0064

6.0 0.0027 0.0025 0.0025 0.0027 0.0027

7.0 0.0011 0.0010 0.0010 0.0011 0.0011

9.0 0.00022 0.00015 0.00015 0.00020 0.0002¢

(2.4). By.corollary 5.2.7 of Abate and Whitt [3], the cdf Hy,(¢) for p=0 is
exponential, so that the H, approximation for H,,(¢} is also exact for p = 0. Thus
we have two candidate approximations for the second-moment cdf H,,(¢), which

Table 7
A comparison of approximations for the complementary second-moment cdf 1 H,,(t) in (2.4) in
the case p =1.0 with exact values based on theorem 1.1(b) of Abate and Whitt [1].

Time Exact from Convolution Direct 3-moment fit

t table 5 of of H,,(1) hyperexponential
Sl])ate and Whitt Two terms One term Two terms One term

0.01 0.982 0.9992 0.5406- 0.980 0.497

0.1 0.858 0.941 0.509 0.819 0.468

0.5 0.540 0.525 0.392 0.542 0.358

1.0 0.333 0.298 0.281 0.324 0.257

1.5 0.216 0.203 0.201 0.209 0.184

20 0.144 0.144 0.144 0.141 0.132

30 0.068 0.073 0.073 0.069 0.068

4.0 0.033 0.037 0.037 0.035 0.035

50 0.016 0.018 0.018 0.018 0.018

6.0 0.0090 0.0091 0.0091 0.0092 0.0092 -

7.0 0.0045 0.0045 0.0045 0.0047 0.0047

9.0 0.0011 0.0011 0.0011 0.0012 0.0012 .
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agree at the end points p=0 (exact) and p=1. For the case p=1/2, both
approximations are given in table 6. From (5.7) of Abate and Whitt [1], the direct
H, fit has parameters d° =8.532, y=19.6, « = 0.0191, r =0.3225, p, = 0.5095,
A71=0.5275 and A;'=1.151. (A useful sanity check for these calculations is
AT+ AT =m; (2 + vy Y[¢* —1]).) Unlike (2.1) and (4.1), we did not obtain the
H, parameters as explicit expressions of p.

The numerical evidence indicates that both approximations perform very well,
with the direct hyperexponential fit performing better than the convolution
approximation; see table 6. In fact, as previously observed for RBM, unlike the
approximations for H;(¢), both approximations for H,,(¢) perform well for all
t> 0.
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