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TRANSIENT BEHAVIOR OF REGULATED BROWNIAN
MOTION, II: NON-ZERO INITIAL CONDITIONS

JOSEPH ABATE* AND
WARD WHITT,** AT & T Bell Laboratories

Abstract

This paper continues an investigation of the time-dependent behavior of
regulated or reflecting Brownian motion (RBM). Part I focused on RBM
starting at the origin; Part II focuses on RBM starting at a fixed positive state.
The first two moments of RBM as functions of time are analyzed by
representing them as the difference of two increasing functions, one of which
is the moment function starting at the origin studied in Part I. By appropriate
normalization, the two monotone components can be converted into cumula-
tive distribution functions that can be analyzed probabilistically, e.g., their
moments can be calculated. Simple approximations are then developed by
fitting convenient distributions to these moments. Overall, the analysis yields
a better understanding of the way RBM and related stochastic flow systems
approach steady state.

TIME-DEPENDENT BEHAVIOR; RELAXATION TIMES; DIFFUSION PROCESSES;
FIRST-PASSAGE TIME; INVERSE GAUSSIAN DISTRIBUTION; COUPLING; FITTING
DISTRIBUTIONS BY MATCHING MOMENTS

7. Introduction and summary

This paper is a sequel to Abate and Whitt (1987a) in which we described the
moments of regulated or reflecting Brownian motion (RBM) as functions of
time, under the condition that RBM starts at the origin. Here we focus on
RBM starting at a positive state x. We continue the numbering from Part I, so
that we can conveniently refer to the theorems and equations of Part I without
special mention. As in Part I, we restrict attention (without loss of generality)
to canonical RBM (with drift coefficient —1 and diffusion coefficient 1), which
we simply refer to as RBM. Section 2 shows how to obtain results for the
general case from the canonical version.

Let R(¢, x) refer to RBM starting at x, which can be defined in terms of
canonical unregulated Brownian motion (BM) starting at the origin (again with
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600 JOSEPH ABATE AND WARD WHITT

drift —1 and diffusion coefficient 1), denoted as in Section 2 by B(¢; —1, 1, 0),
by

(7.1) R(t, x) = max {x +B(t;-1,1,0), B(t; —1,1,0)— inf B(s;-—1,1, O)},
0=s=t

t=0;

see (2.5) in Part I or pp. 19, 49 of Harrison (1985). We describe the moment
functions m,(t, x) = E[R(¢, x)¥], t=0. We are primarily interested in the case
k=1, but we also discuss other k to some extent. For k=1 and 2, explicit
formulas for m,(t, x) are given in Theorem 1.1 (Part I) and the asymptotic
behavior as t— is given in Corollary 1.1.2. Here we develop simple
approximations and general theorems that expose the essential structure.

In Part I we saw that a relatively simple analysis is possible when x =0
because my(t, 0) is increasing for all k (Theorem 1.2) and has a completely
monotone derivative when k=1 and 2 (Theorem 1.7). However, m,(t, x) is
more complicated when x > 0. For x >0, m,(t, x) is always initially decreasing
(for ¢ near 0). In Section 8 we prove that m;,(t, x) is decreasing for all £ when

=1, but m,(¢, x) is initially decreasing and then increasing for 0 <x <1. The
general shape of the first-moment function m; (¢, x) for various initial states x is
shown in Figure 1.

7.1. A moment-function decomposition. Our main approach here is to
decompose the moment functions into two parts by writing m,(t, x) =
my(t, 0) + di (¢, x) where

(7.2) di(t, x) = my(t, x) — my(t, 0).

= = = — STEADY-STATE LIMIT
= =—-= CRITICAL DAMPING

my (@05

0.0

TIME t

Figure 1. Possible forms of the first-moment function m,(t, x) = E(R(¢) | R(0) = x) for different
initial states x
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For k=1 and 2, we show that d,(¢, x) is decreasing in ¢ for all x >0. Since
my(t, 0) is increasing in ¢, my(¢, x) is the sum of two monotone functions for
these k.

We can approximate d,(t, x) for k =1 and 2 the same way we approxim-
ated my(¢, 0); in particular, we can normalize to obtain a c.d.f. (cumulative
distribution function) and fit a convenient c.d.f. to the first three moments.
Just as with m, (¢, 0), it is significant that we are able to calculate explicitly the
first three moments of the c.d.f. related to d,(¢, x). In Part I we worked with
the moment c.d.f.’s Hi(t) = m,(t, 0)/m;(»); here we work with the moment-
difference c.d.f’s Gi(t, x)=1—-dy(t x)/x and Gy(t, x) =1—d,(t, x)/x>. We
primarily focus on the first-moment-difference c.d.f. Gy(¢, x), but we also
obtain important insights about the second-moment-difference c.d.f. G,(¢, x).

The first-passage times of BM play a fundamental role. Let T, be the
first-passage time of the process B(f, —1, 1, y) from y to 0, which has the
inverse Gaussian distribution displayed in (1.5)—(1.7). It turns out that the
first-moment c.d.f. and the first-moment-difference c.d.f. can both be simply
expressed in terms of the first-passage-time c.d.f. The first-moment c.d.f. H;(f)
is the randomized first-passage time to O starting in equilibrium with the
exponential stationary distribution, i.e.,

(1.3) Hi©) = [ 2exp (~2)P(ToS0) s

see Corollary 1.3.1. The difference c.d.f. Gy(x,t) is the average of the
first-passage-time c.d.f.’s for initial states in the interval [0, x], i.e.,

1 "X
(74) Gi(t, ») = [ P(To=n)dy;
0
see Theorem 9.2 and Corollary 11.1.1 here. Our main structural result is the
combination of (7.3) and (7.4).
Theorem 7.1. The first moment of RBM can be represented as

my(t, x) = ER(t, x) = 3H,(¢) + x[1 — G,(¢, x)], t=0,

75 il >4
7.3 = f exp (=2y)P(T,c=t)dy + I P(T,o>1t)dy, t=0,
0 0

where T, is the first-passage time from y to 0 of BM with the inverse Gaussian
distribution in (1.5)—(1.7).

It is significant that a similar relationship holds for the queue-length process
associated with the M/M/1 queue; see Abate and Whitt (1987b), (1988). Then
the integrals, the exponential density and the c.d.f. P(T,,=¢) in (7.5) are
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replaced by sums, the geometric distribution and convolutions of the M/M/1
busy-period c.d.f., respectively. A generalization of Theorem 7.1 including the
M/M/1 queue is stated as Theorem 7.3 below.

It is natural to expect that we could easily recognize (7.5) in the explicit
formula of Theorem 1.1(a), but the connection seems pretty complicated.
However, we can derive Theorem 1.1(a) by substituting (1.6) into (7.5).

We also obtain a remarkably simple characterization of the second-moment
function m,(t, x) in terms of the components of m;, (¢, x) in (7.5). The following
is established in Corollaries 1.3.2 and 1.5.1 in Part I and Theorems 8.3, 9.3 and
10.1 here. Recall that the stationary-excess (or equilibrium residual-life) c.d.f.,
say G,(t), associated with a c.d.f. G(¢) on [0, ©) with mean m; is

(7.6) G.(t) = m;! f U-Gw)du, t20;

see Whitt (1985). It is well known that the moments m,, of G,(t) are related to
the moments m, of G(t) by m =my.,/(k+ 1)m,, so that the moments of
G.(?) are easily obtained from the moments of G(¢).

Theorem 7.2. The second moment of RBM can be represented as

a7 my(t, x) = E[R(t, x)*] = 3H,(¢) + x*[1 — Gy(¢, x)]

t
=x2+t—2fm1(u,x)du
0

where the c.d.f. H,(¢) is simultaneously the convolution of H,(¢) with itself and
the stationary-excess c.d.f. associated with H;(¢), i.e.,

08 HO= [ ) dHw = B0 =2 [ 11 - Hyw)] du

and G,(t, x) is the stationary-excess c.d.f. associated with G,(¢, x), i.e., since
the mean of Gy(¢, x) is x/2,

(7.9) Gylt, x) = Go(t, x) = (2/x) f "1 = Gy(u, x)] du.

A major feature of this work has been the interplay between Laplace
transform analysis and probabilistic methods. Discoveries with one approach
led to verification and further discoveries with the other approach. As a
consequence, the story can be told in two ways, and we present some of both.
In particular, we prove Theorems 7.1 and 7.2 both ways.

In Section 9 we apply Laplace transforms to show that the moment-
difference c.d.f. G(t, x) has the simple representation (7.4). This repre-
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sentation is obtained by exploiting what we believe is a new factorization of the
double transform of the density of RBM starting at x. We also establish (7.9)
in Section 9. In Section 10 we describe additional properties of the moment-
difference c.d.f.’s.

7.2. A stochastic process decomposition. In Section 11 we present an
alternate derivation of (7.3)—(7.5) using probabilistic methods, in particular,
an elementary coupling construction in the spirit of Lindvall (1983), Sond-
erman (1980) and references there. This coupling construction produces a
probabilistic analog of (7.2) for the stochastic processes. Given the stochastic
process {R(t,x):t=0} on an underlying probability space, we construct
another process {R(t,0):#=0} on the same probability space having the
correct finite-dimensional distributions such that the associated RBM-
difference process

(7.10) D(t, x)=R(t, x) — R(¢, 0), t=0,

has non-increasing sample paths w.p.1 (with probability 1). Theorem 7.1 then
is obtained by simply taking expectations. The stochastic process decomposition
in (7.10) is of course stronger than the moment-function decomposition in
(7.2) because we obtain important conclusions about the entire process. In
particular, the process {R(¢, 0): t Z0} is stochastically increasing in ¢, while the
process D(t, x) has decreasing sample paths w.p.1. Moreover, this decomposi-
tion remains valid if the Brownian motion net input process B(¢; —1, 1, 0) in
(7.1) is replaced by a random walk (partial sums of i.i.d. random variables) or
a Lévy process (a process with stationary independent increments; see Prabhu
(1980)). It is easy to see that the argument of Section 11 also establishes the
following.

Theorem 7.3. Suppose that R(t, x) is defined by (7.1) except that the net
input process B(t, —1, 1, 0) is replaced by any Lévy process Y(f) such that
R(t, x) converges in distribution to R(x) as t— o with E[R()] <. Then
(7.10) still holds with {R(¢, 0):t=0} stochastically increasing in ¢ and the
sample paths of {D(t, x): ¢t =0} decreasing w.p.1. Moreover, when the state
space is [0, ),

E[R(t0)] _ (*P(R(®)>y) <
74 BRG] "=
and
(7.12) E[D(, x)] = f (T > 1) dy

where T, is the first-passage time from y to 0 of the net input process Y(¢).
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When the state space is the non-negative integers, then

E[R(t, 0)] _ i P(R(®) > k)

713 ER@)] 2 BR@] 0=
and
(7.14) E[D(t, k)]= 2, P(Ty>1t).

j=0

Note that the term P(R(®)>y)/ER(x) in (7.11) is just the density of the
stationary-excess c.d.f. associated with R(e). (Similarly, P(R(x) > k)/E[R(«)]
in (7.13) is the stationary-excess probability mass function when the c.d.f.
P(R(~)=x) is absolutely continuous with respect to the integer counting
measure.) When the net input process Y(¢f) is BM, then R(x) has the
exponential distribution, whose stationary-excess distribution is of course also
exponential. The BM case is convenient because much is known about the
component c.d.f.’s P(R(®) =y) and P(T,,=¢) in (7.11) and (7.12).

7.3. Approximations. In Section 12 we discuss simple approximations for
the first-moment-difference c.d.f. G,(¢, x) associated with RBM, which to-
gether with Part I yield simple approximations for the entire moment function
my(t, x). Our goal is not so much to obtain numbers, which can be obtained
directly from Theorem 1.1, but to obtain relatively simple formulas that
provide insight. These approximations are supported by extensive numerical
comparisons with exact values based on Theorem 1.1.

For x =3, we approximate the difference c.d.f. Gy(t,x) by an H, c.d.f.
(hyperexponential: mixture of two exponentials). In this case, both com-
ponents of m,(t, x) are approximated by H, c.d.f.’s, so that m,(t, x) is
approximated by a linear combination of four exponentials. In particular, for
x =3, we propose the approximations

my(®) — my(t, x) = 3[1 — H(t)] — x[1 - Gy(t, x)]
(7.15) ~3[pyexp (—t/71) + (1 — p,) exp (—t/7,)]
—x[paexp (—t/73) + (1 — p2) exp (—t/74)]
where 7,=1,, 13=7,, and p; and p, are probabilities (H,(f) comes from
(1.13): p, =0-7236, 7, =0-191 and 7, = 1-31). For ¢ sufficiently large, say t =1,

the terms with 7; and 75 in (7.15) become relatively negligible, so that we can
replace (7.15) by

(7.16)  my() — my(t, x) =~ 3(1 = p1) exp (—t/72) — x(1 — p2) exp (=t/74).

Moreover, for x sufficiently small, say 0 =x =0-5, the term with 7, in (7.16) is
relatively small compared to the term with t;, so that we obtain the simple
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exponential approximation
(7.17)  my() — my(t, x) = 3(1 — p,) exp (—t/7,) = 0-138 exp (—0-764¢),

which is the simple exponential approximation in (1.3) for the case x =0. In
other words, (1.3) is a reasonable approximation for 0=x =0-5 as well as
x =0 when t=1. Consequently, (1.3) is also reasonable for random initial
conditions, provided that the initial distribution is largely concentrated below
the steady-state limit m,(%) = 0-5.

7.4. Initializations for rapid approach to steady state. We conclude in
Section 13 by investigating initializations to achieve rapid approach to steady
state, which is a problem of interest in simulation; see Gafarian et al. (1978),
Kelton (1985) and Kelton and Law (1985) for related work on queues. As in
Part I, our analysis reveals a gap between what is suggested by asymptotic
analysis as t—« in Corollary 1.1.2 (related to relaxation times) and what
seems best from a practical point of view. The asymptotic analysis provides a
rough idea, but it seems to give good approximations only for times beyond
practical interest.

8. Shape of the first two moment functions

In this section we dicuss the shape of the moment functions m,(¢, x) and
my(t, x) for x >0, e.g., we prove that Figure 1 is correct. We first obtained our
characterizations by directly differentiating the formulas for RBM in Theorem
1.1, but below we obtain our characterizations from the fundamental law of
motion (the Chapman—Kolmogorov equations and the generator). (These
characterizations could also be deduced from corresponding characterizations
for the M/M/1 queue in van Doorn (1980) and Abate and Whitt (1988). It is
rather remarkable that the derivatives have a more elementary form than the
moment functions themselves. Recall that ®(¢) is the c.d.f. and ¢(¢) the
density of the standard normal distribution. Let g(y; ¢, x) be the density at y of
RBM at time ¢ starting at x.

8.1. The first-moment function. Numerical values of m,(z, x) based on
Theorem 1.1 for x =0-75, 2-0, 3-0, 6-0 and 12-0 are in Tables 1-5. (The
approximate values there will be discussed in Section 12, where all the tables
are to be found.)

Theorem 8.1. The first two derivatives of m,(¢, x) with respect to ¢ are
) dmy(t,x) (x - t) (x - t)
t, =—‘=t"2 —_— | — P —
m;(t, x) dt ¢ Vi Vi
=—1+27"g(0;t, x) = —1+h,(t)

(8.1)
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for h.(¢) in Section (1.8) and

(82) mi(e, x)_ii"—lt(j—x) ot \/—)(x )

Proof. Using the fundamental law of motion (generator), we obtain

mit,x) =5 [ et 0 dy= [ 3] Zg0i0,0)] ay
=l #aae)eoinn] = vale+ e

= ([s+3#') .

® * 1
—j [g +5g'] dy =—1+27"g(0; 1, x).
0
By reversibility, exp(—2x)g(0;¢, x)=g(x;¢0), so that by (1.15)
271g(0;¢, x) =27 exp (2x)g(x; ¢, 0) = h,(2).

Corollary 8.1.1. For all x >0, the derivatives at ¢ =0 satisfy m;(0, x) = —1
and m}(0, x) =0, i.e., in the neighborhood of t =0, m,(t, x) =x — t + o(£?).

Unlike Corollary 8.1.1, the moment function decomposition in (7.2) does
not greatly help understand the behavior of the moment function m;, (¢, x) with
x>0 for small £ The two component functions of m,(z, x) both have
derivatives of order ¢t~ as t— 0. (In particular, for ¢ near 0, H(t) = (8¢/m)? from
Section 4.3, so that G,(t, x) = (2t/7x?)2.) For very small ¢, the decomposition
of mi(t, x) thus approaches » — », However, our goal was to develop good
approximations for moderately large ¢, say ¢ = 1, after which the RBM mean is
within about 15% of the steady-state limit, and we will show that the
decomposition helps there.

Corollary 8.1.2. For x 21, m{(t, x) >0 for all ¢, so that the first derivative
my(t, x) is increasing for all . Consequently, —1=m;(t, x) <0 and m;(¢, x) is
strictly decreasing and convex for all £>0.

Proof. If mi(%, x) Z 0 for some 7, then m;(t, x) >0 for all #>7, which would
imply that m,(t, x)— + as t— o, which can be ruled out.

Corollary 8.1.3. For 0<x <1, there are times 7 and ¢* such that 0 <7<
t*=x2%/(1—-x) and m(t, x) is decreasing and convex on (0, ?), achieves a
minimum at 7, is increasing and convex on (%, t*) and is increasing and concave
on (¢*, »). The minimum point 7 is the solution to the equation

(8.3) ¢("T}t—t) - t2<I>( \/;’)

Corollary 8.1.3 justifies Figure 1. We can also derive the asymptotic
behavior of the derivatives as t— o, just as in Corollary 1.1.2.
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Corollary 8.1.4. As t— », m;(t, x)— 0 and m](¢, x)— 0; more precisely,

mit, x) ~ —¢<£—\7—;—C>((x C 1) 4 (22— 3x 4 3

(8.4) + (23— 6x% + 15x — 15)t 72 + O(t %))
_ {(2n)'%e"e"’2(l —x)t73 x#1
~(27) " tee™ 73, x=1

By differentiating (8.1) or (7.5), we can see how the derivative mj(t, x)
depends on x. We will apply this result in Section 13.

Theorem 8.2. The derivative of m;(t, x) with respect to x is

d’my(t,x) —x ¢<x - t)

dx dt _? N =_f(tax’0)<0)

Vi
where f(t;x, 0) is the inverse Gaussian density in (1.5), so that mj(z, x) is
decreasing in x for each .

Corollary 8.2.1. For 0<x <1, the minimum 7(x), which is the solution to
(8.3), is strictly increasing in x.

Proof. By Theorem 8.2, for x,<x,, mj((x,), x,) <mi(i(x;), x;) =0, so
that #(x,) >#(x,) by Corollary 8.1.4.

8.2. The second-moment function. The story for the second-moment func-
tion m,(t, x) is also remarkably simple. As with Theorem 8.1, this can be
obtained from Theorem 1.1 or the fundamental law of motion. (Numerical
values of m,(t, x) based on Theorem 1.1 for x =0-25, 0-90 and 2-0 are in
Tables 6-8.)

Theorem 8.3. The first derivative of m,(t, x) with respect to ¢ is

dmz(t, x) _
e

Proof. As in the proof of Theorem 8.1,

(8.5) my(t, x)= 1-2m(t, x).

, 3" =13
mitt =2 [ g0stndy= [ 3| S80in 0] dy

= 1 1 == 1
=[rdsrge )= (e r3e])], [ [e+3¢]
foy g+58 y|8+58 JT ) 18ta8 2y dy

=—2my(t, x) —f yg'dy
0

where

fyg’dy=(yg) —J gdy=-1
0 0 0
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We can apply Theorem 8.3 together with Theorem 7.1 to obtain an easy
proof of Theorem 7.2. We now use Theorem 8.3 to establish the shape of
my(t, x).

Corollary 8.3.1. For x=1, m3(t,x)<0 for all ¢, so that mj(f, x) and
my(t, x) are decreasing in ¢ and my(t, x) is increasing in ¢ for all «.

Corollary 8.3.2. For 0<x <1, there are times 7 <t* =x*/(1 —x) such that
mj(t, x) is increasing and concave on (0,7), achieves a maximum at %, is
decreasing and concave on (7, t*) and is decreasing and convex on (t*, ©). The
maximum point 7 is the solution to (8.3).

Corollary 8.3.3. Since mj(0, x) =1—2x, my(t, x) =0 for all t when x =0-5,
so that m,(t, x) is increasing in ¢ for all ¢ if and only if x =0-5. (m,(0, 0-5) =
0-25.)

Corollary 8.3.4. my(t, x) = my,() = 1/2 for all ¢ if and only if x = V2/2.

The interesting case for my(t, x) is thus V2/2 < x <1, it is depicted in Figure
2. Numerical values for the case x = 0-9 appear in Table 7.

Corollary 8.3.5. For V2/2 <x <1-0, my(0, x) > my() = 1/2, so that there is
a time 7 such that 7 <7 with m,(t, x) decreasing on (0, 7), reaching a minimum
at 7 where my(f, x) <my(®) =0-5, and increasing on (7, ). The time 7 is the
unique solution to m(t, x) = my(*) =0-5.

\ \
myit,x) ‘ ‘

0

1\_4/—'—_
1 l
I
lT |‘*’% TIME t
| l |
! INFLECTION
mp (tx) | |
° I |
| |
T iT T TIME ¢

malt,x) 05
\f/}mmu

o

.-Ir—
) b—

0 & TIME t

Figure 2. The second-moment function m,(¢, x) and its derivatives for V2/2<x<10
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Paralleling Theorem 8.2, we now describe the derivatives of m,(t, x) and

my(t, x) with respect to x. The following is an elementary consequence of
Theorems 7.1 and 8.3.

Theorem 8.4. The derivative of m(t, x) with respect to x is

dmy(t, x) _d’my(t, x) _ —2dmy(t, x) _ '

(8.6)
—t—x

- _2[<1>()‘7_t-—t) —exp (Zx)‘l’( Vi )]

where F(t;x, 0) is the inverse Gaussian c.d.f. in (1.6).

Paralleling Corollary 8.2.1, we have the following consequence.

Corollary 8.4.1. For 0=x <1, the time f =7(x) yielding the minimum value
of m,(t, x) is non-decreasing in x with 7(0) =7(0-5) =0 and 7(x) > ® as x— 1.

Corollary 8.4.2. For 0=x <1, #(x) <#(x) where #(x) yields the minimum
for m,(t, x) and #(x) yields the minimum for m,(¢, x).

9. A transform factorization

Consider (canonical) RBM starting at x and let g(y; ¢, x) be the density of
the state at time ¢, i.e., the density of (1.1) with initial state x. Let g(y;s, x) be
the Laplace transform of g with respect to time, defined by

9.1) g(y;s, x)= jwexp (—st)g(y;t, x) dt

and let g(o;s, x) be the double Laplace transform with respect to space and
time, defined by

92) 8(ois.x)= [ exp(~onris, 1) dy.
Gaver (1968) gave an expression for g in (2.8) on p. 610 there, namely,
_ (a/r,) exp (—r,x) — exp (—ox)
9.3 0;8,x)= 2( ),
&3 8o x) (o +m(o—r)
where

(9.4)  n(s)=P()-1, n()=¥()+1 and W(s)=(1+2s)

The functions —r,(s) and r,(s) are the roots of the equation r*—2r —2s =0 in
the denominator of (2.6) there.

We now show that the double transform g in (9.3) can be factored in a useful
way.
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Theorem 9.1. §(o;s, x) =g(0;s, 0)d(o, s, x), where

rl and a(a;s’ x)=UCXp (—xrz)—rzexp (—xo’).

(9.5) &(os, 0)=s(a+r1) o-r,

Proof. First note that when x = 0 Equation (9.3) reduces to
(o/r) -1 ) 2
(6+n)(o—n)/ n(o+n)

Since rr, = 2s, the first terms in (9.5) and (9.6) agree. To complete the proof,
factor out 2/r,(0 + ) = r/s(o + ry) from (9.3).

9.6) 3(a3s, 0) = 2(

We can apply Theorem 9.1 to calculate the moments

9.7 my(t, x) = fo ye(y; t, x) dy.
We can obtain the time-transformed moments
(9.8) (s, x) = f exp (—st)m,(t, x) dt = f y*8(y;s, x) dy
0 0

by differentiating, i.e.,

ak- .

s, ) = (-1 TEERX)
9.9) 90" lomo
PSS (k)(a’g(a; s, 0) )(a""’&(o;s, x) )
j=0 ] aaj o=0 ao.k—j o=0 '
For the special case k=1,

(9.10) (s, x) = iy (s, 0)d(0; s, x) + d(s, x)g(0; s, 0)
where
9.11) d(s, x)= —({Z’s—x) Y = (exp (—xn) + xr, — 1)/n,,
(9.12) d(0;s,x)=1 and §(0;s,0)=s""

It is significant that we can invert both parts of (9.10). the first part is treated in
Part I; now we treat the second part.

Theorem 9.2.
d(s, x)§(0; x, 0) = f exp (—st)dy(t, x) dt,
0
where

ait, )= [ [1-F5y, 0y
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with F(t;y, 0) = P(T,, =t) being the c.d.f. of the inverse Gaussian distribution
in (1.6).

Proof. To see that the transform of the integral agrees with (9.11) and
(9.12), note that

fo “exp (—st) fo [ = F(e y, 0)] dy dt = fo 1= (s y, 0)] dy

=71 1= exp(~yn)]dy by (L7)

= (exp (—xry) + xr, — 1)/sr,,
which is the product of (9.11) and g(0;s, 0) =s"" in (9.12).

Applying Theorem 1.3 as well as Theorem 9.2, we have established
Theorem 7.1. Since F(t;y,0) in Theorem 9.2 is a c.d.f. for each y, it is
non-decreasing in ¢.

We now use transforms to establish the corresponding result for the
second-moment difference c.d.f. in (7.9). Let dy(s, x), G$(s, x) and G5(s, x) be
the Laplace transforms of d,(¢, x) in (7.2), Gi(t, x) =1 — Gy(t, x) in (7.4) and

5(t, x) =1 = Gy(¢, x) in (7.9), all with respect to time as in (9.1). Let g,(¢, x)
and g,(t, x) be the densities of G,(¢, x) and G,(t, x) and let g,(s, x) and g,(s, x)
be the associated Laplace transforms.

Theorem 9.3. d,(s, x) = x*G5(s, x) = x*(1 — §.(s, x))/s, where
(9.13) 85, x) = (2/sx)[1 = 8,(s, x)] = 2d,(s, x)/sx>
Proof. From (9.9), with (9.11) and (9.12) we find that
2
2d(s, x) L X [1 _ 2d(s, x)]
r

(s, %) = (s, 0) = ===k
2

18

-£[-2e2 1)

but r;!—rit=s"L

10. Properties of the difference c.d.f.’s

Since the first-moment-difference c.d.f. Gy(¢, x) in (7.4) is the average of
inverse Gaussian c.d.f.’s, many properties are easily deduced. First, since the
first three moments of F(¢;y, 0) are y, y + y* and 3y + 3y* + y°, respectively
(see the discussion before Corollary 1.3.4), we can easily calculate the
moments of G;(x, t). These moments can also be calculated from the transform
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expansion

1—exp (—xr 52 s st
__p(__Z)z 1 - m,,S +mx2_—mx3_+ mx4_+ O(SS).

(10.1) xr, 2 6 24

Theorem 10.1. The first four moments of the difference c.d.f. Gy(¢, x) in
(7.4) are

x x x* x
mx1=5, mx2=§+?=6(2x+3)
10.2 m ——3x+x2+x—3—)—c(x2+4x+6)
( ) x3_2 4_4

Mgy = % (2% + 152 + 50x +75).

Corollary 10.1.1. The squared coefficient of variation of G,(¢, x) is

1 2
(10.3) c2=(my,—m2)/m% = (6+x)/3x =§+;
and
(10.4) mx3mx1_9(x2+4x+6)_§[ 9 — x? ]
' mZ | 22x+37 2L (x+3)

so that an H, fit to three moments is possible if and only if x = 3. (See Section
3.1 of Whitt (1982).)

The first three moments of G,(¢, x) match an exponential with mean 3/2
exactly for x =3, but when x =3, m,=124-2<121-5=24(3/2)*, the fourth
moment of an exponential with mean 3/2. This is consistent with numerical
evidence (plotting G{(t, x) =1 — Gy(¢, x) on log paper) indicating that G{(z, x)
is log-convex for x =3. We formalize our numerical experience in several
conjectures.

Conjecture 10.1. For x =3, the first-moment difference c.d.f. G,(¢, x) is DFR;
i.e., the complementary c.d.f. G§(¢, x) is log-convex; p. 74 of Keilson (1979).

From Theorem 9.3 and Proposition 5.8B of Keilson (1979), we have the
following consequence of Conjecture 10.1.

Conjecture 10.2 (corollary to Conjecture 10.1). The second-moment-
difference complementary c.d.f. G5(¢, x) is log-convex for x = 3.

Paralleling Corollary 1.5.1, we also have the following.

Conjecture 10.3 (corollary to Conjecture 10.1). The second-moment-
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difference c.d.f. G,(t, x) is stochastically greater than the first-moment-
difference c.d.f. G,(¢, x) in the likelihood-ratio ordering for x = 3.

We can combine Theorems 9.3 and 10.1 to obtain the first three moments of
G,(t, x). The kth moment of G,(t, x) is just m,.1)/(k +1)m,, for m, in
Theorem 10.1; e.g., the mean of G,(t,x) is (2x +3)/6 and the squared
coefficient of variation of Gy(t,x) is (4/3)(mem,/mZ)—1=1+ (18—
2x?)/(2x + 3)%. As with the first-moment-difference c.d.f., c?=1 for x =3 and
c?=1 for x 2 3. Furthermore, an H, fit to three moments of G,(t, x) is possible
if and only if x =3.

Since F(t;y, 0) is stochastically increasing in y, i.e., F(t;y;, 0)Z F(t; y,, 0)
for all +>0 when y;<y,, we can draw a corresponding conclusion about
Gi(t, x).

Theorem 10.2. The difference c.d.f.’s G,(¢, x) are stochastically increasing in
x: Gy(t, x;) Z G,(t, x,) for all t when x, <x,.

Proof. By the established order,

F(601, 02— [ F(65, 00y ZF(t;x5,0)

1
(x2 —x1) Jy,

whenever x; <x,. Thus

639 = (2)6i0 1)+ 2 [y, 00

(x2—x1) 1
< )Gl(t x1)+( )F(t x1, 0) = Gy(t, x1).

By applying Theorem 1.8 and Corollary 1.8.3, we can also describe the
limiting behavior of G,(t, x) as x— o for k =1 and 2. Of course, by Theorem
10.1, the mean blows up, but if we simply rescale time to keep the mean fixed,
then we obtain a non-degenerate limit as x — . (We omit the details of the
proof. The idea is that for RBM the first-passage time to 0 from x for large x
has mean nearly x with standard deviation of order X2, Corollary 1.8.3. For
k=1 and 2 and large x, m,(¢, 0) is asymptotically negligible compared to
m(t, x), so that m,(t, k) = x*[1 — G(¢, x)].)

Theorem 10.3. For each t >0,

&, 1 -5 ==
(a) 11{2%:2 = 11330 [1 _ Gl(tx, x)] = {:')’ t ?g ]l"‘ 1
and
m —t)? ==
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with the limit in (b) being the stationary-excess distribution associated with the
uniform distribution in (a).

11. A coupling construction

11.1. The difference process. In this section we derive Theorems 7.1 and
7.3 probabilistically. The idea is to construct convenient versions of RBM
starting at x and O on the same sample space such that their difference is a
stochastic process with decreasing sample paths w.p.1. It is easy to see that the
argument extends to yield Theorem 7.3 as well.

This goal is easy to achieve using the usual construction of RBM involving
canonical unregulated Brownian motion B(¢; —1, 1, 0) as in (7.1). Using the
same Brownian motion process B(t; —1, 1, 0) for all x, we obtain a family of
stochastic processes {R(f, x):t=0} indexed by x on a common probability
space. The process R(t, 0) can also be defined directly in terms of the process
R(t, x) by

(11.1) R(t,0)=R(t,x)— inf R(s,x)=B(t;-1,1,0) - 0inf B(s; -1, 1, 0).
0=s=t =s=t

It is immediate from (7.1) and (11.1) that the processes {R(t, x): t=0} and
{R(t, 0): t=0} individually have the desired finite-dimensional distributions,
but of course they are dependent in a complicated way.

We apply (7.1) and (11.1) to create a stochastic processes decomposition for
each k by setting

Di(t, x)=R(t, x)* — R(t, 0)%, t=0,

11.2 k Ck . A
— =2 (—1)"1(],>R(t, 0)7I(t, xy, tZ0,
j=1
where
(11.3) I(t, x) = inf R(s, x), t=0.
0=s=¢

For k =1, (11.2) takes a particularly simple form.

Theorem 11.1. Dy(t, x) =1I(t, x), t=0, so that Dy(¢, x) is decreasing in ¢
w.p.1.

By taking expections, we obtain an alternative derivation of (7.4) and
Theorem 9.2.

Corollary 11.1.1. d,(t, x) = E[I(t, x)] = [§[1 — F(¢; y, 0)] dy.
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Proof. Note that

EUG, 0] = | P, ) > y) dy = [ “PUGE, x)>y) dy

- [P, >0d = [ PT o>ty = P(Ta>0) 0
0 0 0

By taking expectations in (11.2), we obtain the following representation for
the moment function with general k.

Theorem 11.2. The kth moment-difference function in (7.2) can be ex-
pressed as

(11.4) di(t, x) = gl (—1)"1<I;)E[R(t, 0)<~7I(t, x)]

for I in (11.3).

The representation (11.4) is not easy to apply for k >1 because R(¢, 0) and
I(t, x) are dependent. For k >1, (9.9) seems more useful.

It is not difficult to see that the second-moment-difference stochastic process
Ds(t, x) does not have monotone sample paths. However, it is not difficult to
give a probabilistic proof showing that the second-moment-difference function
d,(t, x) is nevertheless monotone. (Numerical values for d,(¢, x) and my(t, x)
appear in Tables 6-8.)

Theorem 11.3. The second-moment-difference function d,(t, x) is decreasing
int.

Proof. As in the proof of Theorem 1.4, we do a detailed analysis for the
M/M/1 queue-length process, i.e., a birth-and-death process with constant
birth and death rates, and obtain the desired diffusion process result in the
limit, invoking Iglehart and Whitt (1970) or Stone (1963). We can thus apply
the result in our later work on the M/M/1 queue too. We use the same
construction. Let Q,(t) denote the number in system in the process starting at
n. Let the traffic intensity be less than 1, so that there is a negative drift, and
the process starting at n hits 0 w.p.1. Hence, the distance between the
processes converges monotonically to 0 w.p.1. By the construction, for each
sample path Q,(t) — Q(t) is decreasing in t. We have to do something extra
for k =2 because Q%(t) — Q3(¢) as constructed above is typically not decreasing
in t. We use the construction above, however, to see that it suffices to focus on
the embedded jump chain of the process starting at n. Moreover, we use the
consequence that Q,(¢) is stochastically greater than or equal to Q(¢) for all .
Let 0,(k) be the embedded process starting at n at the kth transition epoch.
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Let p = P(Q,(k +1)=m + 1| Q,(k) =m). Since the processes have negative
drift, p <1/2. Note that
wm@2p-1)+1, m>0

(11.5) E(Qi(k +1) | Q.(k)=m) —m2={1 m=0.

By the stochastic order between Q, (k) and Q(k),
[EQi(k + 1) — EQj(k + 1)] - [EQ7(k) — EQ3(K)]

- 2 2m(2p = DP(Q,(k) = m) = P(Go(k) =m)] SO.

We remark that it is easy to see that Theorem 11.3 does not extend to the
third and other higher moments. to see this, consider simple symmetric
random walks with a barrier at 0 starting at n and 0. At 0, let the walks go up
or stay put, each with probability 1/2. The change in the expected third
moments after one step are +3n and +1/2, respectively.

11.2. Alternative proof of Corollary 1.3.1. A minor variation of this
coupling construction yields an alternative proof of Corollary 1.3.1. In
particular, let R.(t) denote a stationary version of RBM starting with the
exponential stationary distribution, which can be defined using (7.1) and
randomizing the initial state x according to an exponential distribution with
mean 1/2. In this way, R.(tf) and R(t, 0) are defined in terms of the same
Brownian motion process B(¢; —1, 1, 0). Let

(11.6) D.(t) =R.(t) — R(¢, 0), t=0.
By the same reasoning as above,

D,(t)= inf R.(s), t=0,
0=s=r

so that we can do the proof as follows. (We express it in a general form to
cover half of Theorem 7.3 as well.)

EIR() - R(, 0)] = EID.(0] = | "dP(R(%) S )E[(, )]
= J:dP(R(OO) §x)r(7;,0 >t)dy by Corollary 11.1.1

= [ P(RE) > P(To> 1) a,

using integration by parts for Riemann-Stieltjes integrals; e.g., Apostol
(1957). First, the integral exists by Theorem 9-26 there. Second, the
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integration by parts is justified by Theorem 9-6 there. (For the case of RBM,
P(T,,>1) is also continuous and bounded in x, so that we can apply p. 150 of
Feller (1971).) Hence,

E[R(®) — R(1, 0)] _ (" P(R(»)>x)

FHO=""FRe@] b ER@)]

P(To>1t) dx

=1 [ o P(TaS0) dr
0

where fgew) = P(R(®)>x)/E[R(~)] is the stationary-excess distribution as-
sociated with the c.d.f. P(R(<)=x), which for RBM is the exponential
distribution. For RBM,

1—H()=1- f "2 exp (—20)F (t; x, 0) dx.

12. Approximation for the difference c.d.f.’s and the first-moment c.d.f.’s

In this section we develop simple closed-form approximations for the
first-moment-difference c.d.f. G,(¢, x) in (7.4). We propose a two-moment H,
fit when x =3 and a certain two-moment stationary-excess shifted-exponential
fit when x =3, both of which reduce to an ordinary exponential when x = 3.
By Theorem 10.1, the first three moments (but not higher moments) match an
exponential distribution exactly when x = 3.

12.1. First case: x =3. By Corollary 10.1.1, c2=1 when x =3, so that in
this sense the c.d.f. G,(t,x) is more variable than exponential. In fact,
numerical evidence indicates that the complementary c.d.f. Gi(t, x)=1-
G, (¢, x) is log-convex (Conjecture 10.1 above). Hence, it is natural to consider
an H, approximation. By Corollary 10.1.1, it is possible to make a three-
moment H, fit to G,(t, x) for all x =3. The three-moment H, fitting procedure
is described in Section 5.1. In this case, the parameter y in (5.7) is

3¢ -1 6-
T (d*-9c%+3) 6—3x’

(12.1)

The H, parameters appear in Table 9. The general form of the approximations
for G,(t, x) and m,(x, t) is shown in (7.11). Numerical values of the H,
approximations are displayed.along with the exact values based on Theorem 1
for x =0-75, 2-00 and 3-00 in Tables 1-3. As for the case in which x =0 in Part
I, the quality of the approximations for both G,(¢, x) and m,(t, x) is excellent
in the region of primary interest, 0-5=¢=8-0.

12.2. The second case: x >3. By Corollary 10.1.1, ¢2<1 when x >3, so
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TABLE 1
A comparison of the hyperexponential approximations with the exact first-moment functions
starting at x = 0-75 obtained from Theorem 1.1. (The minimum values are shown in bold.)

exact approximate
time -

t H(@®)/2  xGi(t,x)  myt x) Gi(t, x) my(t, x) Gi(t, x)
0-00 0-000 0-750 0-750 1-000 0-750 1-:000
0-05 0-155 0-545 0-700 0-727 0-696 0-811
0-10 0-206 0-448 0-654 0-597 0-654 0-662
0-15 0-242 0-376 0-618 0-502 0-620 0-545
0-20 0-269 0-322 0-591 0-429 0-594 0-452
0-25 0-290 0-280 0-570 0-373 0-573 0-379
0-50 0:360 0-159 0-519 0-212 0-518 0-184
0-75 0-399 0-103 0-502 0-137 0-501 0-114
1-00 0-425 0-071 0-496 0-095 0-495 0-082
1.25 0-442 0-051 0-494 0-069 0-494 0-064
1-50 0-455 0-038 0-493 0-051 0-494 0-051
1.75 0-464 0-029 0-493 0-039 0-494 0-041
2:00 0-472 0-022 0-494 0-030 0-495 0-033
2-50 0-481 0-014 0-495 0-018 0-496 0-021
3-00 0-488 0-009 0-496 0-0118 0-497 0-0140
3-50 0-492 0-006 0-497 0-0077 0-497 0-0092
4-00 0-494 0-004 0-4981 0-0052 0-4980 0-0060
4-50 0-496 0-003 0-4986 0-0035 0-4985 0-0039
5-00 0-4972 0-002 0-4990 0-0024 0-4989 0-0026
6-00 0-4986 0-001 0-4995 0-0012 0-4994 0-0011
7-00 0-4993 — 0-4997 0-0006 0-4997 0-0005
8-00 0-4996 0-4998 0-0003 0-4998 0-0002
9-00 0-4998 0-4999 0-0002 0-4999 0-0001

10-00 0-4999 0-5000 0-0001 0-5000 -

that in this sense the difference c.d.f. Gy(t, x) is less variable than an
exponential when x > 3. Numerical evidence suggest that the complementary
c.d.f. Gi(t, x) tends to be log-concave or nearly log-concave for x >3 and ¢
away from the origin, e.g., t>1. However, since G§(t, x) ~1 — (2t/7x?): for ¢
near 0, Gi(t, x) is log-convex in the neighborhood of the origin for all x > 0.
Numerical evidence indicates that Gi(t, x) is initially log-convex and then
log-concave.

Conjecture 12.1. For each x>3, there exists f, such that G$(t, x) is
log-convex on the interval (0, ¢,) and log-concave on the interval (z,, ).

The dominant shape for times ¢ of primary interest, say 1=¢=2x, is the
log-concavity and this is reflected in our approximations. For x >3, we tried
three approximations based on matching two moments: gamma, Weibull and
stationary-excess shifted-exponential (SEsE, to be defined below) and found the
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TABLE 2

619

A comparison of the hyperexponential approximations with the exact first-moment functions
starting at x = 2-0 obtained from Theorem 1.1

approximate
time -

t H(1)/2 xGS{(t, x) my(t, x) Gi(t, x) my(t, x) G, x)
0-00 0-000 2-00 2:00 1-000 2-00 1-000
0-05 0-155 1-80 195 0-897 1.97 0-942
0-10 0-206 1-69 1-190 0-847 1-93 0-888
0-15 0-242 1-61 1-185 0-804 1-89 0-838
0-20 0-269 1-53 1-180 0-766 1-84 0-790
0-25 0-290 1-46 175 0-730 1-78 0-746
0-50 0-360 115 1-51 0-574 1-51 0-565
0-75 0-399 0-90 130 0-448 1-28 0-434
1-00 0-425 0-70 113 0-351 1-11 0-338
1-25 0-442 0-551 0-99 0-276 0-98 0-266
1-50 0-455 0-436 0-89 0-218 0-88 0-212
1.75 0-464 0-348 0-81 0-174 0-80 0-170
2-00 0-472 0-279 0-75 0-139 0-75 0-138
2-50 0-481 0-182 0-66 0-091 0-66 0-092
3-00 0-488 0-121 0-609 0-061 0-611 0-063
3-50 0-492 0-082 0-574 0-041 0-576 0-043
4-00 0-494 0-056 0-550 0-028 0-553 0-030
4-50 0-496 0-039 0-535 0-019 0-537 0-021
5-00 0-4972 0-027 0-524 0-0136 0-526 0-0145
6-00 0-4986 0-0136 0-512 0-0068 0-513 0-0071
7-00 0-4993 0-0069 0-506 0-0035 0-506 0-0035
8-:00 0-4996 0-0036 0-5032 0-0018 0-5031 0-0017
9-00 0-4998 0-0019 0-5017 0-0009 0-5015 0-0008

10-00 0-4999 0-0010 0-5009 0-0005 0-5008 0-0004

SESE to perform best. Roughly, speaking, the distributions with given first two
moments become successively more log-concave moving from gamma to
Weibull, sese and the exact difference c.d.f. Numerical comparisons of all
these candidate approximations for the case x = 12 appear in Table 5.

The ordinary shifted-exponential distribution is an exponential distribution
on the interval [a, ©) for a >0, i.e., the complementary c.d.f. is exp (—(¢ —
a)/b), tZa, which has mean a + b, with the two parameters @ and b. The
associated stationary-excess distribution (Sese) has the density

(12.2) g0 =

(12.3) G(1) =

{1/(a+b),

[1/(a + b)) exp (—(t — a)/b),

and complementary c.d.f.

{1 —t/(a +b),
[b/(a +b)] exp (—(¢t —a)/b),

0=t=a

t>a,
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TABLE 3
A comparison of the exponential approximation for the first-moment difference c.d.f. and the
resulting approximation for the first-moment function starting at x =3-0 with exact values
obtained from Theorem 1.1

exact approximate
time
t H@®/2  xGi(tx)  mx)  Gilhx) A, x) Gi(t, x)

0-00 0-000 3-00 3-000 1-000 3-00 1-000
0-05 0-155 2-80 2-950 0-932 299 0-967
0-10 0-206 2-69 2-900 0-898 2-96 0-936
0-15 0-242 2-61 2-850 0-869 2-93 0-905
0-20 0-269 2-53 2-800 0-844 2-88 0-875
0-25 0-290 2-46 2-750 0-820 2-83 0-846
0-50 0-360 2-14 2-500 0-713 2-53 0-716
0-75 0-399 1-85 2252 0-618 2-23 0-607
1-00 0-425 1-59 2-01 0-530 1-97 0-513
125 0-442 1-35 1-79 0-450 175 0-435
1-50 0-455 1-14 1-60 0-380 1-:56 0-368
1-75 0-464 0-96 1-42 0-320 1-40 0-311
2-00 0-472 0-81 1-28 0-269 1-26 0-264
2-50 0-481 0-57 1-05 0-189 1-05 0-189
3-00 0-488 0-40 0-89 0-133 0-89 0-135
3:50 0-492 0-28 0-77 0-094 0-78 0-097
4-00 0-494 0-20 0-69 0-067 0-70 0-069
4-50 0-496 0-143 0-64 0-048 0-65 0-050
5-00 0-4972 0-102 0-60 0-034 0-60 0-036
6-00 0-4986 0-053 0-551 0-0176 0-554 0-0183
7-00 0-4993 0-028 0-527 0-0092 0-528 0-0094
8-00 0-4996 0-015 0-514 0-0049 0-514 0-0048
9-00 0-49980 0-008 0-508 0-0026 0-507 0-0024

10-00 0-49989 0-004 0-504 0-0014 0-504 0-0013

12-00 0-49997 0-001 0-5013 0-0004

14-00 0-499990 — 0-5004 0-00013

16-00 0-499997 0-5001 0-00004

We were motivated to consider sese because G°(t) has approximately the right
shape, being linear initially and then exponential.

The linearity is nearly exact. In particular, when ¢ < x, the barrier at 0 has
negligible influence and RBM behaves just like BM without a barrier, so that

(12.4) my(t, x)=x—t for t<K<x.
Similarly,
(12.5) my(t, x)=~t+ (x —t)*> for t<ux.

From the tables, it is easy to see that (12.4) and (12.5) are consistent with the
numerical results.
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TABLE 4
A comparison of the two-moment stationary-excess shifted-exponential (SESE) approximation
for the first-moment-difference c.d.f. and the resulting approximation for the first-moment
function starting at x = 6-0 with exact values obtained from Theorem 1.1

exact approximate
time
t H(1)/2 xGi(t x)  my(t x) (¢, x) my(t, x) Gi(t, x)
0-00 0-00 6-00 6-00 1-000 6-00 1-000
0-05 0-15 5-80 595 0-966 6-02 0-990
0-10 0-21 5-69 5-90 0-949 6-04 0-980
0-25 0-29 5-46 575 0-910 5-98 0-949
0-50 0-36 5-14 5-50 0-857 577 0-898
0-75 0-40 4-85 525 0-808 5-50 0-848
1-00 0-42 4.58 5-00 0-763 522 0-797
1-25 0-442 4.31 475 0-718 4.93 0-747
1-50 0-455 4.05 4-50 0-674 4-63 0-696
1-75 0-464 379 425 0-631 434 0-645
2:00 0-472 3.53 4-00 0-588 4-04 0-595
2:50 0-481 3-03 3-51 0-505 3-44 0-494
3-00 0-488 2-55 3-04 0-426 2-87 0-398
3.50 0-492 2-11 2-61 0-353 2-41 0-320
4-00 0-494 1.73 2:22 0-288 2:03 0-257
4-50 0-496 1-39 1-89 0-232 1.73 0-207
5-00 0-4972 1-11 1-61 0-185 1-49 0-166
6-00 0-4986 0-69 1:19 0-115 1-14 0-107
7-00 0-4993 0-418 0.92 0-070 0-92 0-069
8-00 0-4996 0-250 0-75 0-042 0-77 0-045
9-00 0-4998 0-147 0-65 0-0246 0-67 0-0290
10-00 0-4999 0-087 0-59 0-0144 0-612 0-0187
12-00 0-5000 0-029 0-529 0-0049 0-547 0-0078
14-00 — 0-010 0-510 0-0017 0-520 0-0033
16-00 0-0034 0-5034 0-0006 0-508 0-0014
18-00 0-0011 0-5011 0-0002 0-5034 0-0006
20-00 0-0004 0-5004 0-0001 0-5014 0-0002

In fact, since RBM starting at x is stochastically greater than BM starting at
x (in the strong sample path sense of Kamae et al. (1977); (7.1) provides a
proof), we have the following result.

Theorem 12.1. For 0=t=x, m,(t, x)=x — t and m,(t, x) =t + (x — t)*

Moreover, for relatively small ¢, we recognize that (12.4) and (12.5) are the
preferred approximations. Approximation (12.4) is relevant to G,(¢, x) because
xGS(t, x) will tend to be the dominant part of m,(t, x) for large x, especially
for t 21 because m,(1, 0) = 0-85 m, (). Hence, we would expect Gi(t, x) to be
approximately linear initially (with the exception of a more rapid decrease in
the neighborhood of the origin) and the sese distribution has this property.
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TABLE 5
A comparison of several two-moment approximations for the first-moment-difference c.d.f.
starting at x = 12-0 and the resulting stationary-excess shifted-exponential (SESE) approxima-
tion for the first-moment function with exact values obtained from Theorem 1.1

exact approximate

m(t, x) Gi(t, x)
time
t H(®)/2 xGi@t, x) my@t x) G5 x) SESE SESE  Weibull gamma

0-00 0-00 12-00 12-00 1-000 12-00 1-000 1-000 1-000
0-25 029 11-53 11-75 0-955 12-01 0-977  0-991 0-997
0-50  0-36 11-14 11-50 0-928 11-83 0-954 — —

075 040 10-85 11-25 0-904 11-59 0-931 — —

1-00 0-42 10-58 11-00 0-881 11-33 0-908  0-935 0-955
1-50  0-455 10-04 10-50 0-837 10-81 0-863 — —

2:00 0472 9-53 10-00 0-794 10-27 0-817  0-834 0-856
2:50  0-481 9-02 9-50 0-752 9-73 0-771  0-779 0-797
3:00  0-488 8:51 9-00 0-709 9-19 0-725  0-723 0-736
400 0-494 7-51 8-00 0-625 8-10 0-634  0-613 0-615
6-00 0499 5-51 6-01 0-459 591 0-451  0-418 0-406
8-:00  0-500 3-63 4-13 0-302 3-75 0271  0-268 0-255

10-00 — 2-11 2-61 0-176 231 0-151  0-163 0-155
12-00 1-10 1-60 0-092 1-51 0-084  0-095 0-092
14-00 0-53 1-03 0-044 1-07 0-047  0-053 0-053
16-00 0-24 0-737  0-020 0-82 0-026  0-029 0-031
18-00 0-101 0-601  0-0084 0-676  0-015  0-015 0-017
20-00 0-042 0-542  0-0035 0-598  0-0082 — —
22-00 0-017 0-517  0-0014 0-555  0-0046 0-0037  0-0054

In fact, the sesE fit is asymptotically correct in the sense of Theorem 10.3 as
x— . (We omit the proof, which is not difficult.)

Theorem 12.2. If we change the time scale so that the difference c.d.f.
G,(t, x) and the sese approximation G(t) specified by (12.3) both have the
mean 1/2 for all x, then both converge to the uniform distribution on [0, 1] as
x—»;ie.,

t, 0=r=1

lim G(tx/2) = lim Gy(tx/2, x) = {1 =1

where, for each x, the sese c.d.f. G(¢) is constructed to have the first two
moments as G,(¢, x).

From Theorem 12.2 plus a uniform integrability argument, we can also
obtain the following corollary about the moments.

Corollary 12.2.1. For all k, the scaled kth moments m,/m* of sese and the
difference c.d.f. asymptotically agree as x — .
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TABLE 6
The exact second-moment function and its components starting at
x =0-25 (from Theorem 1.1(b))

exact

time

t Hy(1)/2 x*G(t, x) my(t, x) G4(t, x)
0-00 0-000 0-063 0-063 1-000
0-05 0-039 0-049 0-089 0-789
0-10 0-071 0-042 0-113 0-678
0-15 0-099 0-037 0-136 0-599
0-20 0-123 0-034 0-157 0-539
0-25 0-145 0-031 0-176 0-489
0-50 0-230 0-020 0-251 0-328
0-75 0-290 0-015 0-305 0-237
1-00 0-333 0-011 0-344 0-177
1-25 0-366 0-0085 0-375 0-136
1-50 0-392 0-0066 0-399 0-106
1-75 0-412 0-0052 0-417 0-084
2-00 0-428 0-0042 0-432 0-067
2-50 0-451 0-0027 0-454 0-044
3-00 0-466 0-0018 0-468 0-029
3-50 0-476 0-00124 0-478 0-0197
4-00 0-483 0-00085 0-484 0-0136
5-00 0-492 0-00041 0-4919 0-0066
6-00 0-496 0-00021 0-4958 0-0033
7-00 0-4977 0-00011 0-4978 0-0017
8-00 0-4988 0-00006 0-4988 0-0009
9-00 0-4993 0-00003 0-49937 0-0005

10-00 0-4996 0-49966 0-0003

For example the ratio ms/m; for the difference c.d.f. (sese) when x =3, 6,
12, 30 and 300 is, respectively, 6-00, (6-00), 3-67 (3-91), 2-75, (2-91), 2-28
(2-34) and 2-03 (2-03).

We now describe moment fitting with sese. In terms of the parameters a and
b, the first three moments are

_atb b
T T T 2@+ b)
_(a+b)2 2 2b3
(12.6) m,= 3 +b +—_3(a+b)
_(a+b)* 3b*a+b) 3 9b*
my=— o+ —————+2b +—4(a+b)'

We can obtain @ and b in terms of m, and m, from (12.6). We find that a can



624 JOSEPH ABATE AND WARD WHITT

TABLE 7
The exact second-moment function and its components starting at
x =09 (from Theorem 1.1(b)). The minimum value of the second
moment among these times is shown in bold type

exact
time
t H(1)/2  x*G5(t,x)  my(t x) G, x)
0-00 0-000 0-810 0-810 1-000
0-05 0-039 0-733 0-772 0-905
0-10 0-071 0-669 0-740 0-826
0-15 0-099 0-614 0-712 0-758
0-20 0-123 0-565 0-688 0-698
0-25 0-145 0-523 0-668 0-646
0-50 0-230 0-370 0-600 0-456
0-75 0-290 0-273 0-563 0-337
1-00 0-333 0-208 0-541 0-257
1-25 0-366 0-161 0-528 0-199
1-50 0-392 0-127 0-519 0-157
1-75 0:412 0-101 0-5128 0-124
2-00 0-428 0-081 0-5088 0-100
2-50 0-451 0-053 0-5041 0-066
3-00 0-466 0-036 0-5018 0-044
3-50 0-476 0-024 0-5007 0-030
4-00 0-483 0-0168 0-5001 0-021
5-00 0-492 0-0082 0-49990 0-0102
6-00 0-496 0-0042 0-49979 0-0051
7-00 0-4977 0-0021 0-49985 0-0027
8-00 0-4988 0-0011 0-499903 0-0014
9-00 0-4993 0-0006 0-499944 0-00074
10-00 0-4996 0-0003 0-499971 0-00040

be eliminated from (12.6) yielding a single equation for z = b/m,, namely,
(12.7) —(2/3c%)z* + 22+ [1 = (1/3¢)]z = (3/4)(c* + 1)[1 — (1/3c?)] = 0.
Setting z =sin 6, we can express the solution parametrically in terms of 6. In
particular
a=m;(1 - sin 6 + cos 6), b =m;,sin 6,
(12.8) ¢®*=1-(2/3)[cos? 6 + (1 — cos 8)(1 — sin 6)]
=(1/3) + (2/3)(1 — cos 8)(sin 8 + cos B).

Equation (12.7) can easily be solved numerically. Alternatively, a good
approximate solution for some values of ¢? can be obtained from

%[1—§l—2]([1+(1—3’_(c[217—32])]5_1), =04

(1=c)(,  [A=cH2E+A=c? 2
-4 (1+ = ) 2> 0-425.

(12.9) z~%=
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TABLE 8
The exact second-moment function and its components starting at
x =2-0 (from Theorem 1.1(b))

exact
time
t Hy(1)/2 X*Gi(t, x) my(t, x) 5@, x)
0-00 0-000 4-00 4-00 1-000
0-05 0-039 3-81 3-85 0-953
0-10 0-071 3-64 371 0-910
0-15 0-099 347 3.57 0-868
0-20 0-123 332 3-44 0-829
0-25 0-145 3-17 331 0-792
0-50 0-230 2:52 275 0-630
0-75 0-290 201 2-30 0-503
1-00 0-333 1-61 1-95 0-403
1-25 0-366 1-301 1-67 0-325
1-50 0-392 1-056 1-45 0-264
1-75 0-412 0-861 1-27 0-215
2-00 0-428 0-705 1-13 0:176
2:50 0-451 0-478 0-929 0-120
3-00 0-466 0-329 0-795 0-082
3-50 0-476 0-228 0-705 0-057
4-00 0-483 0-160 0-643 0-040
5-00 0-492 0-080 0:572 0-020
6-00 0-496 0-041 0-537 0-103
7-00 0-4977 0-0216 0-519 0-0054
8-00 0-4988 0-0115 0-5103 0-0029
9-00 0-4993 0-0062 0-5055 0-00154
10-00 0-4996 0-0033 0-5030 0-00084

The first term in (12.9) is based on ignoring the z* term in (12.7), which is only
appropriate for relatively small ¢>. The second term is obtained by matching
coefficients in the power series expansion of (1 — ¢?). The second term in (12.9)
is a good approximation for a large range of c? values. Table 10 contains
typical values of 6, ¢, a/m;, b/m;=z and 2. The ranges of possible
normalized second and third moments for sese are 1/3=c¢?’=1 and 2=
ms/m3 =6, coinciding exactly with the corresponding ranges for the exact
first-moment difference c.d.f. G,(¢, x) by Theorem 10.1.

Numerical comparisons of the approximations of G,(t, x) and m,(t, x) using
SeSE are made for the cases x =6 and 12 in Tables 4 and 5. The approximations
for x >3 are not as good as for x =3, but they are pretty good in the regions of
primary interest. The relevant second regime here (see Section 1.6) might be
the time required for RBM to get within 0-01x — 0-20x of the steady-state limit
my() = 0-5. For x =12, then, we would be primarily interested in the region
9-5=¢=17-5 for which 2-9=m,(¢, x) Z0-62.
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12.3. The second-moment-difference c.d.f. In this paper we do not study
approximations for the second-moment-difference c.d.f. G,(t,x) and the
second-moment function m,(¢, x), but approximations can be easily con-
structed. For x =3 we can use H, distributions for G,(¢, x); for x >3 it is
natural to use the stationary-excess distribution of the sese distribution in
(12.2), fitting the two parameters a and b to the first two moments of G,(¢, x).
This is asymptotically correct as x —  in the sense of Theorem 12.2 (then with
the parameters a and b determined by the two-moment fit to G,(z, x)).

13. Initialization for rapid approach to steady state

In this section we see which initial states x cause the first moment m,(t, x) to
approach the steady-state limit m;() =0-50 most quickly. See Kelton and
Law (1985) and Kelton (1985) for related work for the M/M/1 queue. (They
consider the expected waiting times of successive customers instead of the
queue-length process, but the behavior of these processes is similar.)

For any initial state x and probability p, let t,(x) be the time required to
reach and remain within (100p)% of the steady-state limit, i.e.,

(13.1) t,(x) =inf {téO:sup — s

t'=t

Let ¢, be the minimum value of #,(x) over all x and let x, be the value(s) of x
such that ,(x) =1,.

The asymptotic theory in Corollary 1.1.2 suggests that the critical damping
level x =1 causes steady state to be approached most quickly. This is so
because there is a ¢~ term when x = 1 instead of a ¢~ term. However, as in
Part I, we find that the asymptotic theory is not adequate for practical
purposes. If we want to find x, for p = 0-01 or 0-02, then the best value of x is
actually much less than 1. Corollary 1.1.2 evidently only becomes relevant for ¢
beyond practical interest.

13.1. Empirical observations. Table 11 displays the values of t,(x) for
p =005, 0-02, 0-01 and 0-002 and various initial states x. Included in the list
are the values x, that are optimal for these p, which are 0-66, 0-72, 0-77 and
0-82, respectively. This suggest that x, is decreasing in p, which we prove in
Section 13.2 below. For these values of p which appear to be of practical
interest, the initial state x =0-75 is nearly optimal, clearly yielding much
smaller values of ,(x) than either the steady-state limit x = 0-50 or the critical
damping level x =1-00. More generally, in agreement with Kelton and Law
(1985), it appears that one-and-a-half times the steady-state limit might be
approximately optimal with one of these criteria.
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Furthermore, in agreement with Kelton and Law (1985), we find that the
functions ¢,(x) increase very sharply in the neighborhood of x,. However, this
seems to be primarily due to the criterion (13.1) rather than the nature of
RBM. As we show in Theorem 13.2 below, the optimal starting state x, is such
that the moment function m,(t, x) reaches, but does not cross, the level
(1 —p)my(=). Then ¢, is the time ¢ that m;(t, x) first hits (1 + p)m;(«) from
above. For x <x*, m;(t, x) crosses below (1 —p)m;(), so that t,(x) is the
later time ¢ when m(¢, x) hits (1 — p)m,(«) from below. Thus #p(x) has a jump
discontinuity at x.

It is of some interest to compare x =1 and x =0 as initial states because
m,(t, 1) and m;(t, 0) are both monotone and initially equally distant from the
steady-state limit m,()=0-5. It is easy to see that mi(t, 0) >|mi(t, 1)| for
t =0-5 so that initially m,(¢, 0) increases more rapidly than m,(¢, 1) decreases.
However, 0-5 — m(t, 0) > m,(¢, 1) — 0-5 for ¢ about 0-75, as is substantiated by
numerical values. One gets within 1% or 0-1% of the steady-state limit quicker
by starting with x =1 than with x =0; see Table 11. (This contradicts the
conclusion at the bottom of p. 391 of Kelton and Law (1985).)

13.2. Theoretical conclusions. We conclude by deriving a few theoretical
properties about ¢,(x), ¢, and x,. Note that the moment functions are ordered,
i.e., my(t, x;) =my(t, x,) for all t=0 when x, <x,. Since m;(t, x) = m,(x) for
all ¢ if and only if x =0-5, and m(¢, x) = my(«) for all ¢ if and only if x =1-0,
we have the following result.

Theorem 13.1. For all p, t,(x) is decreasing in x for 0=x=1/2 and
increasing in x for x = 1.

Corollary 13.1.1. For all p, 0-5<x, <1-0.

Since ml(?(O-S), 0-5) =0-40 from numerical values, x; = 0-5 and ¢, = 0-0 for
p =0-20. (For p >0-20, there are ties for x,.) Hence, the interesting cases are
restricted to p <0-20 and 0-5<x <1-0.

Since m,(¢, x) is unimodal in ¢ with a minimum for 0-5 <x <1-0, we have the
following result.

Theorem 13.2. For p <0-20, x, is the unique x such that
(13.2) my(E(x), x) = (1= p)ms(=)
where #(x) is the solution to (8.3) and ¢, =1,(x,).

As an easy consequence of Theorem 8.2, we have the following monotoni-
city result.

Theorem 13.3. The optimal values ¢, and x, are increasing in 1—p, with
x32=0-50 and 5., =00, x,—1 and t; - » as p—0.
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13.3. The second-moment function. A similar story can be told for the
second-moment function. Let t,,(x), x3, and ¢3, be the analogs of #,(x), x, and
t, for my(t, x).

From Section 8.2, we can deduce the following.

Theorem 13.4. For all p, t,(x) is decreasing in x for 0=x=V2/2 and
increasing in x for x = 1.

Corollary 13.4.1. For all p, V2/2<x},<1-0.
Theorem 13.5. x3, is the unique x, if one exists, such that
ma(t(x), x) = (1 - p)my(=) = (1 - p)/2
my(t(x), x) = my(=) =1/2;
then 13, = t,,(x,). Otherwise, x3, = V2/2 and ty=0.

where

Theorem 13.6. The optimal values ¢3, and x3, are increasing in (1 — p) with
x,—1and t;— as p—0.

Numerical evidence indicates that x5, Zx, for all p. Moreover, my(t, x) =
my(t, x) for all t when x Z 1 and m,(t, x) = m;(¢, x) for all t when x =V2/2, but
the functions cross when V2/2<x <1-0. Meaningful comparisons between
my(t, x) and my(t, x) are difficult, however, because the second moment
involves the squaring operation.
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