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Abstract

Insight is provided into a previously developedM/M/s/r+M(n) approximation for theM/GI/s/r+GI queueing model
by establishing fluid and diffusion limits for the approximating model. Fluid approximations for the two models are compared
in the many-server efficiency-driven (overloaded) regime. The two fluid approximations do not coincide, but they are close.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The primary purpose of this paper is to supplement
two recent papers on multi-server queues with aban-
donment. Those papers were motivated by the desire
to help analyze call centers; see[2].
First, in [11] we developed an algorithm for cal-

culating approximations for all the standard steady-
state performance measures in theM/GI/s/r + GI

model, having a Poisson arrival process, independent
and identically distributed (IID) service times with
a general distribution (the firstGI), s servers,r ex-
tra waiting spaces, IID times to abandon before start-
ing service with a general distribution (the+GI ) and
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the first-come first-served (FCFS) service discipline.
That algorithm is based on approximating the given
M/GI/s/r + GI model by an associated Markovian
M/M/s/r +M(n) model with state-dependent aban-
donment rates. It yields exact numerical results for the
M/M/s/r + M special case.
Second, in[13] we developed a deterministic fluid

approximation for theG/GI/s/r + GI model, hav-
ing an arrival process that is a general stationary-
point process. That fluid approximation describes the
transient behavior of the queueing system. The steady-
state behavior of the fluid model serves as an approx-
imation for the steady-state behavior of the queueing
model. The fluid approximation becomes appropriate
in the many-server heavy-traffic limit in which both
the arrival rate and the number of servers are allowed
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to increase. The fluid approximation is especially in-
teresting in theefficiency-driven(ED) limiting regime,
in which the probability of eventually abandoning
approaches a limit strictly between 0 and 1 as the ar-
rival rate and the number of servers approach infinity.
Equivalently, the associated sequence of traffic inten-
sities {�s : s�1} approaches a limit�>1. Indeed,
it suffices to assume that the traffic intensity is held
fixed with�>1. The fluid approximation evidently is
asymptotically correct in the ED many-server heavy-
traffic limiting regime, but that is yet to be proved. In
[13] supporting evidence is given by establishing the
fluid limit in a discrete-time framework.
Given those two papers, we are interested in estab-

lishing an ED many-server heavy-traffic fluid limit for
theM/M/s/r + M(n) model to see if the approx-
imation developed in[11] is asymptotically correct,
i.e., to see if it agrees with the fluid approximation for
theM/GI/s/r + GI special case in the ED regime.
That would provide additional support for the approx-
imation in [11], at least in the ED regime. There are
two gaps in this program: First, establishing a fluid
limit does not directly imply associated convergence
of the steady-state distributions (invariant measures)
and, second, convergence to the continuous-time fluid
limit for the M/GI/s + GI model has not yet been
fully proved.
In the present paper we establish the desired

deterministic many-server heavy-traffic fluid limit,
and a more general diffusion-process limit, for the
M/M/s/r + M(n) model. Unfortunately, however,
we find that the two fluid approximations do not coin-
cide, but they are sufficiently close that the new fluid
limit, nevertheless, does provide positive support for
the approximation in[11].
This paper goes beyond that initial goal by estab-

lishing many-server heavy-traffic limits for the more
generalM(n)/M(n)/s/r+M(n)model, having state-
dependent arrival and service rates as well as state-
dependent abandonment rates. These results extend the
many-server heavy-traffic limits for theM/M/s/r +
M model in the ED limiting regime established in
[12]. Theorem 2.1–2.3 there established a diffusion
limit, a fluid limit, and limits for the steady-state dis-
tributions, respectively. That paper also presented nu-
merical examples to show that the ED approxima-
tions can be useful for describing the performance of
call centers that are providing low-to-moderate quality

of service, and thus are experiencing substantial cus-
tomer abandonment. Such low-to-moderate quality of
service often occurs in service-oriented (nonrevenue-
generating) call centers. It is widely recognized that al-
ternative quality-and-efficiency-driven (QED) many-
server heavy-traffic limits yield useful approximations
in a wide range of commonly occurring scenarios; see
[3,7]. Our recent ED work is aimed at showing the ED
approximations can also be useful.
As in [12], the stochastic-process limits established

here can be viewed as consequences of corresponding
results for more general state-dependent Markovian
queues in[6]; see Theorems 4.1 and 4.2 plus Section
5.3 there. Nevertheless, the alternative proofs here
are appealing because the special cases considered
here are much easier to treat directly. In the special
cases considered here, the limit processes have no
boundaries, so that it is not necessary to consider the
reflection map at all. Instead, we use the relatively
simple argument in the seminal heavy-traffic paper on
the M/M/s model by Iglehart[4], drawing upon
Stone[8].
Here is how the rest of this paper is organized. First,

in Section 2 we establish themany-server heavy-traffic
stochastic-process limits for theM(n)/M(n)/s/r +
M(n) model. Afterwards, in Section 3 we dis-
cuss associated approximations for the steady-state
performance. That depends upon the existence and
uniqueness of solutions to a fundamental fixed-point
equation (2). In general there can be multiple solu-
tions, implying the existence of multiple asymptotic
equilibrium points (ass → ∞) even though there is
always a unique limiting steady-state distribution for
eachs.
In Section 4 we briefly describe theM/M/s/r +

M(n) approximation for theM/GI/s/r +GI model
developed in[11]. Next, in Section 5 we describe the
fluid approximation for theG/GI/s/r + GI model
developed in[13]. Finally, in Section 6 we compare
the two fluid approximations in the ED regime.

2. The stochastic-process limits in the ED
limiting regime

In this section we establish the stochastic-process
limits for theM(n)/M(n)/s/r + M(n) model with
Markovian state-dependent arrival rates, service rates
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and abandonment rates. We consider a sequence of
models indexed by the number of servers,s, and
let s → ∞. For eachs�1, the model is charac-
terized by one parameter and three functions. The
parameter is the number of extra waiting spaces
rs , where 0<rs �∞. When rs <∞, we will let rs
be sufficiently large that it plays no role, asymp-
totically. The three functions are the arrival rate
�s ≡ {�s(n): 0�n< s + rs}, the (total) service rate
�s ≡ {�s(n): 1�n< s + rs + 1} and the (total) aban-
donment rate�s ≡ {�s(n): 1�n< s + rs + 1}. For
example,�s(n) is the arrival rate when there aren
customers in the system, either being served or wait-
ing. If rs <∞, then �s(s + rs) = 0. We also have
�s(0) = �s(0) = 0, �s(n)>0 for 0�n< s + rs and
�s(n) + �s(n)>0 for 1�n< s + rs + 1.

Let Ns(t) be the number of customers in the
system at timet. Let Ns(0) be a random initial num-
ber of customers, specified independently of the evo-
lution of the system after time 0 assumed to satisfy
0�Ns(0)< rs + 1 with probability one. For eachs,
the stochastic process{Ns(t): t�0} is a birth-and-
death stochastic process with birth rates�s(n) and
death rates�s(n) + �s(n).
We assume that there are fixed functions�̂, �̃, �̂, �̃,

�̂ and�̃ such that for each positive real numberx and
each sequence{xs : s�1}, wheresxs is a nonnegative
integer withxs → x ass → ∞,

�s(sxs) − s�̂(x)√
s

→ �̃(x),

�s(sxs) − s�̂(x)√
s

→ �̃(x),

�s(sxs) − s�̂(x)√
s

→ �̃(x) ass → ∞. (1)

Asymptotically ass → ∞, the number of customers
in the system will concentrate at a point where the
input rate equals the output rate. Thus, we seekx >0
such that there is a solution to thefundamental fixed-
point equation

�̂(x) = �̂(x) + �̂(x). (2)

In the ED limiting regime we will havex >1, but we
do not require it.

To establish convergence to a diffusion process in
this setting, we form the normalized stochastic process

Ns(t) ≡ Ns(t) − sx̂√
s

, t�0 (3)

for positive real number̂x, which will turn out to be
a solution to Eq. (2).
LetD ≡ D([0,∞),R) denote the space of all right-

continuous real-valued functions on the positive half
line with left limits everywhere in(0,∞), endowed
with the usual SkorohodJ1 topology; [1,10]. Let ⇒
denote convergence in distribution (both for sequences
of stochastic processes inD or for sequences of ran-
dom variables inR). LetNor(m,�2) denote a random
variable that is normally distributed with meanm and
variance�2.

Theorem 2.1(Stochastic-process limit for the
state-dependent model). Consider the sequence of
M(n)/M(n)/s/r + M(n) models specified above,
satisfying(1). Suppose thatNs(0) ⇒ N(0) in R as
s → ∞,whereNs is the scaled process in(3).Assume
that the fundamental fixed-point equation(2) has a
solution, denoted byx̂, and let the constant̂x ap-
pearing in(3) be such a solution. Assume thatrs �s�
for all s, wherex̂ < �. Moreover, suppose that(i) the
functions�̂, �̂ and �̂ appearing in(1) have continuous

derivatives�̂
′
, �̂′ and �̂

′
in the neighborhood of the

point x̂ and (ii) the functions̃�, �̃ and �̃ appearing in
(1) are continuous in the neighborhood of the pointx̂.
ThenNs ⇒ N in D ass → ∞, whereN is a diffusion
process with infinitesimal meanm(y) = �̃ − �y for

�̃ ≡ �̃(x̂) − �̃(x̂) − �̃(x̂) and

− � ≡ �̂
′
(x̂) − �̂′

(x̂) − �̂
′
(x̂) (4)

and infinitesimal variance�2(y) = �2(0) = 2�̂(x̂). If
�>0, thenN is an Ornstein–Uhlenbeck(OU) diffu-
sion process with

N(t) ⇒ N(∞)
d=Nor(�̃/�, �̂(x̂)/�) as t → ∞. (5)

Proof. SinceNs is a birth-and-death process and the
limiting diffusion process has no boundaries, we can
apply Stone[8], just as Iglehart[4] did in his seminal
paper. Given[8], with the scaling in (3) it suffices
to show that the infinitesimal means and variances
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converge to the infinitesimal means and variance of
the limit process.
SinceNs(t) is nonnegative-integer valued, the pos-

sible values ofNs(t) are[k−sx̂]/√s for k�0. Hence,

for arbitrary real numbery, we consider a sequence
{ys : s�1}, whereys is an allowed value ofNs(t) for
eachs andys → y as s → ∞. For example, for all
sufficiently larges, we can construct an allowed value
by letting ys ≡ (�sx̂ + y

√
s� − sx̂)/

√
s, where�t�

is the greatest integer less than or equal tot. When
y <0, we needs to be sufficiently large to guarantee
that�sx̂ + y

√
s��0.

To complete the proof, we exploit conditions (1) and
(2) and apply Taylor’s theorem to represent the func-
tions �̂, �̂ and �̂ in the neighborhood of the point̂x.
Let o(1) be a quantity that converges to 0 ass → ∞.

For the infinitesimal means,

ms(ys) ≡ lim
h→0

E[(Ns(t + h) − Ns(t))/h|Ns(t) = ys]

= lim
h→0

E

[∣∣∣∣Ns(t + h) − Ns(t)

h
√
s

∣∣∣∣Ns(t) = x̂s + √
sys

]

= �s(x̂s + ys
√
s) − �s(x̂s + ys

√
s) − �s(x̂s + ys

√
s)√

s

= s�̂(x̂ + ys/
√
s) + √

s�̃(x̂ + ys/
√
s) − s�̂(x̂ + ys/

√
s)√

s

−
√
s�̃(x̂ + ys/

√
s) + s�̂(x̂s + ys/

√
s) + √

s�̃(x̂ + ys/
√
s)√

s
+ o(1)

= s�̂(x̂) + s�̂
′
(x̂)(ys/

√
s) + √

s�̃(x̂ + ys/
√
s)√

s

− s�̂(x̂) + s�̂′
(x̂)(ys/

√
s) + √

s�̃(x̂ + ys/
√
s)√

s

− s�̂(x̂) + s�̂
′
(x̂)(ys/

√
s) + √

s�̃(x̂ + ys/
√
s)√

s
+ o(1)

→ �̂
′
(x̂)y + �̃(x̂) − �̂′

(x̂)y − �̃(x̂) − �̂
′
(x̂)y − �̃(x̂)

= �̃ − �y ≡ m(y)

for �̃ and� in (4). For the infinitesimal variances,

�2
s (ys) ≡ lim

h→0
E[(Ns(t + h) − Ns(t))

2/h|Ns(t) = ys]

= lim
h→0

E

[∣∣∣∣∣ (Ns(t + h) − Ns(t))
2

hs

∣∣∣∣∣Ns(t) = x̂s + ys
√
s

]

= �s(x̂s + ys
√
s) + �s(x̂s + ys

√
s) + �s(x̂s + ys

√
s)

s

= s�̂(x̂ + ys/
√
s) + s�̂(x̂ + ys/

√
s) + s�̂(x̂s + ys/

√
s)

s
+ o(1)

→ 2�̂(x̂) ≡ �2(y).

It is well-known that the limiting diffusion process
is an OU process if�>0, and that process has the
indicated normal steady-state distribution; e.g.,[5, p.
218]. Otherwise, the diffusion process does not pos-
sess a proper steady-state distribution.�

We are primarily interested in the ED limiting
regime, wherex̂ >1. Complications occur in the
QED limiting regime, wherêx = 1. Theorem 2.1 then
does not apply directly to typical applications because
the asymptotic rate functionŝ� and �̂ typically are
not differentiable at 1. (For example, see (8) below.)
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Mandelbaum and Pats[6] address this more compli-
cated situation. On the other hand, the case in which
x̂ <1 is also elementary, corresponding to the heavy-
traffic limit for the infinite-serverM/M/∞ model,
as in [4]. That previous result is a special case of
Theorem 2.1.

By a variation of the same reasoning, it is possible
to establish a more general deterministic fluid approx-
imation. We then scale more crudely by dividing bys
instead of by

√
s. Instead of (1), we now assume that

there are fixed functionŝ�, �̂ and�̂ such that for each
positive real numberx and each sequence{xs : s�1},
wheresxs is a nonnegative integer withxs → x as
s → ∞,

�s(sxs)
s

→ �̂(x),
�s(sxs)

s
→ �̂(x),

�s(sxs)
s

→ �̂(x) (6)

ass → ∞. Moreover, we assume that�̂(0) > 0, �̂(0)
= 0 and �̂(0) = 0 and if rs <∞, �̂(1 + �) =
0, �̂(1+ �) > 0 and �̂(1+ �)� 0, wherex̂ < ��
rs/s for all s. A fundamental role is played by the
asymptotic total-drift functionf (x) ≡ �̂(x)− �̂(x)−
�̂(x).
We will obtain anordinary differential equation

(ODE) for the limit, which is useful for describing the
transient behavior. To state the limit, we introduce the
scaled process

N̄s(t) ≡ Ns(t)

s
, t�0. (7)

Now, since we scale bys, the processNs need not
be in the neighborhood of the pointsx̂, so we could
encounter boundaries, but we will not.

Theorem 2.2(Fluid limit for the state-dependent
model). Consider the sequence ofM(n)/M(n)/s/r+
M(n) models specified above, satisfying(6), and let
N̄s(t) be the scaled number in system in(7). Assume
that rs �s� for all s, where x̂ < �. Assume that the
functions�̂, �̂ and �̂ appearing in(6) are continuous
and satisfy the conditions above. If N̄s(0) ⇒ n(0) as
s → ∞, wheren(0) is a real number(deterministic)
satisfying0<n(0)< �, thenN̄s ⇒ n in D ass → ∞,
where n is a degenerate diffusion process with in-
finitesimal mean(state-dependent drift) m(y)= f (y),

with f being the asymptotic total-drift function, and
infinitesimal variance�2(y) = 0; i.e., n is the ODE
ṅ(t) = f (n(t)) with initial value n(0). If (2) has a
unique solution, thenn(t) → n(∞) ≡ x̂ as t → ∞.

Proof. We first extend the scaled processNs in (7) to
the entire real line by letting (i)�s(n)=�s(0), �s(n)=
�s(0) = 0 and�s(n) = �s(0) = 0 for integersn with
n<0 and (ii)�s(n)= �s(s + rs)= 0, �s(n)= �s(s +
rs)>0 and�s(n) = �s(s + rs)�0 for integersn with
n> s + rs . With this construction, the processNs will
never visit negative values and will never exceeds+rs .
However, now the processNs is defined on the whole
real line, so there are no boundaries, and we can apply
the argument of Theorem 2.1, just as in the proof of
Theorem 2.2 of[12]. For the final limit ast → ∞, we
use the fact thatf (0)>0, so thatf (x)>0 for x < x̂,
while f (x)<0 for x > x̂. �

3. Approximations for the steady-state
distribution

In this paper, we are primarily interested in apply-
ing the diffusion and fluid limits in Theorems 2.1 and
2.2 to generate approximations for the steady-state
behavior of the queueing system. Since the stochas-
tic process{Ns(t): t�0} is a birth-and-death process,
much is known about its limiting steady-state behavior
(ast → ∞). Under regularity conditions, which hold
wheneverrs <∞, there will exist a unique proper lim-
iting steady-state distribution, which is also a station-
ary distribution. We assume that is the case for eachs;
let the random variableNs(∞) have that steady-state
distribution.
There will be no difficulty when there exists a

unique solution to the fundamental fixed-point equa-
tion (2). If there does, then the main practical con-
clusion to draw from Theorems 2.1 and 2.2 is that,
under the stated conditions, in steady state the number
of customers in the system tends to be concentrated
about the level̂xs for larges, wherex̂ is a solution
of Eq. (2). The fluid limit in Theorem 2.2 concludes
the error is of order o(s) as s → ∞, while the dif-
fusion limit in Theorem 2.1 concludes the error is
of order O(

√
s). The diffusion limit provides a finer

description.
In general, however, Eq. (2) need not have a solution

and, if it does, the solution need not be unique. In a
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large class of settings there will exist a solution on
account of the following elementary result.

Theorem 3.1(Existence of a solution to (2) for the
state-dependent model). Suppose that asymptotic
arrival-rate function �̂ is a nonincreasing continu-
ous function, while the asymptotic total-service-rate
function �̂ and the asymptotic total-abandonment-
rate function �̂ are both nondecreasing continuous
functions, for all s sufficiently large. Suppose that
�̂(0)> �̂(0) + �̂(0) and �̂(x) → ∞ asx → ∞. Then
there exists at least one solution to Eq. (2).

Moreover, in a large class of settings the solution
will be unique.

Theorem 3.2(Uniqueness of a solution to (2) for the
state-dependent model). In addition to the conditions
of Theorem3.1,suppose that̂�+ �̂ is strictly increas-
ing. Then there exists a unique solution to Eq.(2).

For the standard application in Section 4,�̂ + �̂ is
strictly increasing becausê� is strictly increasing on
the interval[0,1], but constant on the interval(1,∞),
while �̂ is strictly increasing on the interval(1,∞),
but constant on the interval[0,1], i.e.,

�̂(x) = x ∧ 1, x�0, and

�̂(x) = �(x − 1), x�1, (8)

where�(x) = 0 for x�0, � is strictly increasing on
(0,∞) and�(x) → ∞ asx → ∞.
Fundamental equation (2) could have more than one

solution. The system would then have multiple stable
points, asymptotically ass → ∞. Theorems 2.1 and
2.2 would then apply to all such solutions describ-
ing transient behavior that depends strongly upon the
initial conditions. Even though{Ns(t): t�0} has a
unique limiting steady-state distribution for eachs, ass
increases the process could tend to exhibit multi-stable
behavior; i.e., the steady-state distribution for larges
would tend to be approximately a mixture of point
masses attached to the different equilibrium points.
The stochastic processNs would tend to remain a long
time near one equilibrium point and then eventually
move to another equilibrium point and spend a long
time there.

Such anomalous behavior could arise if the natural
monotonicity assumptions in Theorems 3.1 and 3.2 are
violated. For example, the arrival rate could increase
as the queue length increases if customers were some-
how attracted to the queue. For example, customers
in a store might think that there must be something
worth waiting for if they see a line, and have a greater
propensity to join the queue the longer it is.
Even more likely is the possibility that the total

service rate might decrease when the congestion in-
creases, perhaps because service efficiency declines
due to fatigue caused by the higher workload. That
phenomenon in call centers was noted by Sze[9].
However, it is not our purpose to explore multi-
stability phenomena here.
Assuming that there exists unique solution to (2),

and assuming that the conditions of Theorem 2.1
hold with �>0, we obtain the natural approxima-
tion for the steady-state number of customers in an
M(n)/M(n)/s/r +M(n) system by letting the actual
system be terms in such a limit, i.e.,

Ns(∞) ≈ sx̂ + √
sN(∞)

d=Nor(sx̂ + √
s(�̃/�), s�̂(x̂)/�), (9)

where
d= means equal in distribution. That in turn im-

plies that, for larges and t, Ns(t) will tend to be of
order O(

√
s) away from the levelsx̂. Theorem 2.1

also directly yields approximations for the transient
behavior. Assuming that there exists a unique solution
to (2) and that the conditions of Theorem 2.2 hold, we
obtain the cruder fluid approximationNs(∞) ≈ sx̂.

4. TheM/M/s/r + M(n) approximation for
M/GI/s/r + GI

Weweremotivated to consider theM(n)/M(n)/s/r

+ M(n) model because theM/M/s/r + M(n) spe-
cial case was proposed as an approximation for
the M/GI/s/r + GI model in [11]. Unlike the
approximations developed in this paper above, that
approximation is not based on any limit theorem. In
[11], further approximations are proposed to describe
the experience of individual customers, starting with
a more careful analysis of which customers abandon
when an abandonment occurs.
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To obtain theM/M/s/r + M(n) approximation,
we choose the exponential service-time distribution
by simply matching the mean of the given service-
time distribution. We choose the total-abandonment-
rate function�s to approximate the behavior in the
M/GI/s/r +GI model with IID abandon times hav-
ing abandon-time cdfF. We assume that the cdfF is
absolutely continuous with a probability density func-
tion (pdf) f; i.e., we assume thatF(x) = ∫ x

0 f (y)dy
for all x >0. We then work with the hazard-rate (or
failure-rate) function

h(x) ≡ f (x)

1− F(x)
, x�0. (10)

We think of the pdff as being continuous and posi-
tive on the entire nonnegative real line, but that is not
required.
The key approximation in[11] is an approximation

for the abandonment rate of a customer who isj th
from the end (back end) of a queue (necessarily of
length at leastj)

	s(j) ≈ h(j/�s). (11)

(Here, of course, the arrival rate�s is constant.)
We get approximation (11) by first recognizing

that, in the actualM/GI/s/r + GI model, any cus-
tomer’s abandonment rate would be exactlyh(t) if
he had been waiting for timet. The problem is that,
given the state of theM/M/s/r + M(n) model at
any time, we do not know how long customers have
waited, so we estimate it. As an approximation, we
estimate that there have beenj arrivals since the time
a customer who isj th from the end of the queue
arrived. (In this step, we are ignoring abandonments,
which tend to occur at a lower rate than arrivals.)
Given that customers arrive at rate�s , the expected
time between successive arrivals is 1/�s . Combining
these two approximations, we estimate that a cus-
tomer who isj th from the end of the queue has been
waiting for time j/�s . That gives us approximation
(11). The approximation may seem terribly crude, but
numerical comparisons indicate that it is remarkably
accurate.
The associated approximation for the total abandon-

ment rate when there arek customers in the system

is then

�s(k) ≈
k−s∑
j=1

	s(j) for k > s (12)

with �s(k)= 0 if k�s, because in this application we
are assuming customers only abandon before begin-
ning service. As indicated in[11], if the densityf were
not smooth, then we might instead let

	s(j) ≈ �s

∫ j/�s

(j−1)/�s
h(t)dt. (13)

Then the approximate total abandonment when there
arek customers in the system would be

�s(k) ≈ �s

∫ (k−s)/�s

0
h(t)dt

= − �s logeF
c((k − s)/�s) for k > s, (14)

and�s(k) = 0 for k�s.
The specialM/M/s/r+M(n) case considered here

starts with (14). In addition, we assume that�s(k)=s�
for all k and�s(k)= k∧ s =min{k, s} for k�0. (That
implies we are assuming that the mean service time is
one.) Since here we are evaluating the approximation
in the ED limiting regime, we assume that�>1. As
a consequence, in the special case the assumptions in
both (1) and (6) are satisfied, with�̃(x)=�̃(x)=�̃(x)=
0 for all x. Indeed,�s(xs) = s�̂(x) for all x >0 and
s >0, where

�̂(x) = −� logeF
c((x − 1)/�) for all x >1, (15)

and �̂(x) = 0 for 0�x�1, with F c(x) ≡ 1 − F(x)

being the complementary cdf (ccdf).
As a consequence, the fundamental fixed-point

equation (2) becomes

F c((x̂ − 1)/�) = e−(�−1)/�, (16)

where �>1. In this setting, there clearly exists a
unique solutionx̂ >1 to the fundamental fixed-point
equation, because the right side is a number strictly
between 0 and 1, while the left side is a continuous
function on the interval(1,∞) decreasing from 1 at
x = 1 toward 0 asx → ∞.
The drift rate in the limiting diffusion process ob-

tained from Theorem 2.1 is� = �̂
′
(x̂)= h((x̂ − 1)/�),

whereh is the hazard-rate function in (10) andx̂ is the
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unique solution to the fundamental fixed-point equa-
tion (2), i.e., to (16).

Remark 4.1. TheM/M/s/r +M special case: The-
orem 2.1 here is consistent with Theorem 2.1 in[11]
for theM/M/s/r +M special case. IfF is exponen-
tial with mean 1/	, thenF c(x) = e−	x andh(t) = 	
for all t. Eq. (2) thus becomes (16) withF c(x)=e−	x ,
which implies thatx̂ − 1= (� − 1)/	, just as in The-
orem 2.1 of[11]. Sinceh(t) = 	 for all t, the state-

dependent drift is� = �̂
′
((x̂ − 1)/�)= 	, again just as

in Theorem 2.1 of[11].

5. The fluid approximation for G/GI/s/r + GI

In this section we describe the equilibrium be-
havior of the fluid approximation for the general
G/GI/s/r + GI model; for the full time-dependent
behavior, see[13]. The fluid approximation directly
approximates the scaled processNs(t)/s and related
quantities; we obtain the desired approximation for
Ns(t) by undoing the scaling.
As before, for the initial queueing model, we as-

sume that the individual service rate is one and that
the arrival rate iss� for �>1, which puts us in the
ED limiting regime. The key model elements are the
service-time cdfG and the abandon-time cdfF. Let
Gc andF c be the associated ccdf’s. We assume that
the arrival process is a general stationary point pro-
cess with a well-defined rate, with that rate beings�,
where�>1.
We scale by dividing the number in system for each

sby sand lettings → ∞. Our final approximation for
the steady-state number of customers in the system is
obtained by unscaling, i.e.,

Ns(∞) ≈ s(1+ qF), (17)

whereqF is the queue content (amount of fluid waiting
before starting service), which is given in (20) below.
The fluid approximation for the equilibrium behav-

ior in the ED limiting regime (without undoing the
scaling) is depicted inFig. 1. The fluid approxima-
tion depends on the two ccdf’sGc andF c, but not
on the stochastic structure of the arrival process (be-
yond its rate). InFig. 1, time appears on the horizontal
axis, increasing toward the left, while queue content
(scaled number of customers) appears on the vertical

Overloaded Equilibrium

in service

in queue

w+ u

1

w

Gc(u)

�F c(t )

0time t

�

Fig. 1. The steady-state distribution of fluid content in the fluid
approximation for theG/GI/s+GI queueing model with individ-
ual service rate 1, traffic intensity�>1, service-time distribution
G and abandon-time distributionF. The figure plots the density of
fluid content that has been in the system for timet. Time increases
to the left.

axis. Specifically, the value at timet is the density of
the fluid that has been in the system for exactly length
t, i.e., the remaining portion of the fluid that arrived
t time units in the past. Fluid arrives at rate� and a
proportionF(t) of that fluid abandons by timet. Fluid
that does not abandon waits in queue until timew, af-
ter which it is in service. Entering fluid exits before
time w by abandonment, and after timew by service
completion. In particular, the general fluid approxi-
mation has, first, all customers who do not abandon
waiting exactly timew and, second, a proportionF(t)

of arrivals abandoning before timet after arrival, for
0< t <w. Moreover, in equilibrium for the fluid ap-
proximation, all servers are busy and fluid abandons
at an overall rate� − 1.
The density of fluid content that has been waiting

in queue for a lengtht is

q(t) = �F c(t), 0� t�w, and

q(t) = 0, t >w, (18)

where the constant waiting time before starting ser-
vice,w, is the solution to the equation

F(w) = � − 1

�
. (19)
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The total fluid content waiting in queue is

qF =
∫ w

0
q(t)dt = �

∫ w

0
F c(t)dt. (20)

Remark 5.1. TheM/M/s/r + M special case: We
now observe that the fluid approximation in (17), (19)
and (20) here is consistent with both Theorem 2.1 in
[11] and Theorem 2.1 here for theM/M/s/r + M

special case, continuing Remark 4.1. If the abandon-
time cdfF is exponential with mean 1/	, thenF c(x)=
e−	x and Eq. (19) becomes 1− e−	w = (� − 1)/�.
Then Eq. (20) becomes

qF = �
∫ w

0
e−	t dt = �

(1− e−	w)

	
= � − 1

	
. (21)

However, more generally, we see thatqF in (20)
need not coincide witĥx−1 obtained as the solution to
(16). In support of theM/M/s/r +M(n) approxima-
tion for theM/GI/s/r + GI model in[11], though,
we see that the service-time cdfG beyond its mean
has played no role in the fluid approximation for the
G/GI/s/r +GI model. The service-time cdfG only
plays a role in describing how long fluid in service has
been in service. Letb(t) denote the density of fluid
that has been in service for a length of timet. Equi-
librium for the fluid approximation hasb(t) = Gc(t),
t�0.

6. A comparison of the two fluid approximations

In this final section we do further analysis to com-
pare: (i) the fluid approximation for theM/M/s/r +
M(n) approximation to theM/GI/s/r + GI model
and (ii) the direct fluid approximation for the
M/GI/s/r + GI model. To have similar notation,
let qM (M for Markov) denote the fluid approxima-
tion for the scaled queue content (waiting in queue
before starting service) in theM/M/s/r + M(n)

approximation to theM/GI/s/r + GI model; i.e.,
qM = x̂−1 for x̂ the solution to (16). Our goal now is
to compareqM to qF in (20) above. Let other quanti-
ties associated with the two models be designated by
superscripts M and F.
We have already observed that in generalqM does

not coincide withqF. In any contemplated scenario,
we can calculateqM andqF to judge how close the

M/M/s/r + M(n) approximation is likely to be. To
establish more general connections, we first change
notation, writing
 ≡ � − 1, so that we can focus on
the comparison for� close to 1, which corresponds
to small 
. We then make an additional simplifying
assumption for the Markovian model: We assume for
theM/M/s/r + M model that all abandonments are
from the front of the queue (by the customers who
have been there the longest). Up to now, it has not
mattered which customers abandon in the Markovian
models. With that assumption, the waiting time of all
customers, served or not, is the same, and by Little’s
law (L= �W ) must bewM = qM/�. Thus Combining
this with (16), we obtain the equation

F(wM) = 1− e−(�−1)/� = 1− e−
/(1+
). (22)

Eq. (22) is convenient, because it is easy to compare to
Eq. (19), which with the change of notation becomes

F(wF) = 

1+ 


. (23)

First, from Eqs. (22) and (23), we easily see that in
all caseswF �= wM, even in theM/M/s/r+M model,
where qF = qM, as shown in Remark 5.1. (That is
not surprising, since we are treating the abandonments
differently.) However, if we expand the exponential in
(22), then we obtain

1− e−
/(1+
) = 

1+ 


− 
2

2(1+ 
)2
+ 
3

6(1+ 
)3

+ O(
4) as
 ↓ 0. (24)

To relate the quantitieswF andwM, assume that the
abandon-time cdfF has a positive densityf. Then the
cdf F is continuous and strictly increasing, so that it
has an inverse, sayg ≡ F−1. ThenwF = g(1/(1 +

)) andwM = g(1− e−
/(1+
)). Using a Taylor series
expansion, we get

wM ≈ wF − g′(
/(1+ 
))

2

2(1+ 
)2
. (25)

From formulas (22) and (23), we also have the in-
equalitieswF�qF�wF(1+ 
), while

wF(1+ 
) − g′(
/(1+ 
))

2

2(1+ 
)
≈ qM = wM(1+ 
)�wF(1+ 
). (26)
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We then have the bounds

|qF − wF(1+ 
)|�
wF,

|qM − wF(1+ 
)|�g′(
/(1+ 
))

2

2(1+ 
)2
,

|qM − qF|
� max

{

wF, g′(
/(1+ 
))


2

2(1+ 
)2

}
. (27)

Example 6.1. The case of a uniform abandon-time
distribution: Suppose that the abandon-time distribu-
tion is uniformly distributed on the interval[0,1], so
that the abandon-time cdf isF(x)=x, 0�x�1. From
(19) and (20), we see that in this caseqF=
−
2/2(1+

), while, from (16),

qM = (1+ 
)(1− e−
/(1+
))

= 
 − 
2

2(1+ 
)
+ 
3

6(1+ 
)2
+ O(
4), (28)

so that

qM − qF = 
3

6(1+ 
)2
+ O(
4). (29)

For example, if
 = 0.1 (� = 1.1), thenqF = 0.09545,
while qM =0.09559 andqM −qF ≈ 0.0001377. There
is a difference of only about 0.1%. That is much closer
than predicted by the bounds in (27), becausewF(1+

) = 
 = 0.1, 
wF = 
2/(1+ 
) = 0.0091,g′(x) = 1,
0<x <1, andg′(
/(1+ 
))
2/2(1+ 
)2 = 
2/2(1+

)2 = 0.01

2.42 = 0.0041.
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