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We introduce and investigate a framework for constructing algorithms to numerically invert

Laplace transforms. Given a Laplace transform f̂ of a complex-valued function of a nonneg-

ative real-variable, f , the function f is approximated by a finite linear combination of the

transform values; i.e., we use the inversion formula

f(t) ≈ fn(t) ≡ 1

t

n∑

k=0

ωkf̂
(

αk

t

)
, 0 < t < ∞ ,

where the weights ωk and nodes αk are complex numbers, which depend on n, but do not

depend on the transform f̂ or the time argument t. Many different algorithms can be put into

this framework, because it remains to specify the weights and nodes. We examine three one-

dimensional inversion routines in this framework: the Gaver-Stehfest algorithm, a version

of the Fourier-series method with Euler summation, and a version of the Talbot algorithm,

which is based on deforming the contour in the Bromwich inversion integral. We show that

these three building blocks can be combined to produce different algorithms for numerically

inverting two-dimensional Laplace transforms, again all depending on the single parameter

n. We show that it can be advantageous to use different one-dimensional algorithms in the

inner and outer loops.
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1. Introduction

In recent years, numerical transform inversion has become recognized as an important

technique in operations research, notably for calculating probability distributions in stochas-
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tic models. There have now been many applications; e.g., see the survey by Abate et al.

(1999) and the textbook treatment by Kao (1997).

Over the years, many different algorithms have been proposed for numerically inverting

Laplace transforms; e.g., see the surveys in Abate and Whitt (1992) and Chapter 19 of Davies

(2002), the extensive bibliography of Valko and Vojta (2001) and the numerical comparisons

by Davies and Martin (1979), Narayanan and Beskos (1982) and Duffy (1993). In contrast

to the usual approach, in this paper we do not focus on a particular procedure, but instead

introduce and investigate a framework that can encompass a wide range of procedures. The

flexible framework opens the way to further work, e.g., performing optimization in order to

choose the best set of parameters and thus the best procedure, by various criteria, for various

classes of functions.

The flexible framework for numerically inverting one-dimensional Laplace transforms is

also convenient for developing algorithms to invert multi-dimensional Laplace transforms.

We can combine different one-dimensional inversion algorithms to obtain different multi-

dimensional inversion algorithms. In particular, given three different one-dimensional in-

version algorithms, we directly obtain nine different two-dimensional inversion algorithms,

one for each possible combination in the inner and outer loops. These one-dimensional al-

gorithms can be combined with hardly any modifications, in some cases with none at all.

Moreover, we show that it can be advantageous from the point of view of algorithm effi-

ciency to combine two different one-dimensional inversion algorithms in the two-dimensional

inversion algorithm.

The framework for one-dimensional inversion was originally introduced in several short

papers by Zakian (1969, 1970, 1973), but it does not seem to have received much attention,

if any. Moreover, in those papers, Zakian did not mention the advantage of having a flexible

framework, encompassing several different procedures. Indeed, Zakian proposed a specific

procedure, as we will explain in Section 2. The major contribution here, we believe, is

suggesting the more general flexible framework, encompassing several different procedures,

and showing how that can be exploited in multidimensional inversion algorithms.

To demonstrate the potential of our proposed flexible framework, we look at three specific

widely used approaches in this framework, namely, (i) Fourier series expansions with Euler

summation, (ii) combinations of Gaver functionals and (iii) deformation of the contour in the

Bromwich integral. These methods are well known as the Euler algorithm (the Fourier-series

method with Euler summation), e.g., see Dubner and Abate (1968), Abate and Whitt (1992,
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1995), Choudhury, Lucantoni and Whitt (1994a), O’Cinneide (1997), Section 19.6 of Davies

(2002) and Sakurai (2004); the Gaver-Stehfest algorithm; e.g., see Gaver (1966), Stehfest

(1970), Section 8 of Abate and Whitt (1992), Section 19.2 of Davies (2002) and Valko and

Abate (2004); and Talbot’s method, e.g., see Talbot (1979), Murli and Rizzardi (1990), Evans

(1993), Evans and Chung (2000), Section 19.8 of Davies (2002) and Abate and Valko (2004).

Here is the idea: Given a Laplace transform f̂ of a complex-valued function f of a

nonnegative real-variable,

f̂(s) ≡
∫ ∞

0
e−stf(t) dt , (1)

the function f is represented approximately by a finite linear combinations of the transform

values, via

f(t) ≈ fn(t) ≡ 1

t

n∑

k=0

ωkf̂
(

αk

t

)
, t > 0 , (2)

where the nodes αk and weights ωk (i.e., the interior and exterior scaling constants) are

complex numbers, which depend on n, but not on the transform f̂ or the time argument t.

We assume that the Laplace transform f̂(s) in (1) is well defined and analytic for Re(s) > 0,

where Re(s) is the real part of the complex variable s ≡ u+ iv; i.e., Re(s) = u for s = u+ iv

with i =
√−1 and u and v real numbers. The associated imaginary part of s is Im(s) = v.

(We have assumed that the “abscissa of convergence” is less than or equal to 0, which is

natural for a large class of applications, but that can be generalized. Indeed, it is without

loss of generality, because we can make a change of variables.)

Clearly, there are advantages to having the nodes αk and weights ωk in the representation

of fn(t) in (2) be independent of both the transform f̂ and the time argument t. As a

consequence, the procedure can be efficiently applied to multiple transforms and multiple

time points. Of course, in general, the accuracy of the approximation will depend on the

transform f̂ and the time argument t, but there is the potential for great efficiency. Moreover,

the same framework applies to multiple procedures as well, so that independent accuracy

checks are readily available too.

In most applications, f will be real-valued; then we approximate by the real part, i.e.,

Re{f(t)} ≈ Re{fn(t)} ≡ 1

t

n∑

k=0

Re{ωkf̂
(

αk

t

)
}

=
1

t

n∑

k=0

[
Re{ωk}Re{f̂

(
αk

t

)
} − Im{ωk}Im{f̂

(
αk

t

)
}
]

. (3)

The case of complex-valued functions arises naturally when we consider inner loops in the

inversion of multidimensional transforms; see Section 3.
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For any given n, and any given set of approximating parameters {ωk, αk, 1 ≤ k ≤ n}, the

function fn on the right in (2) serves as an approximation of the function f , which we intend

to apply for all t that are continuity points of f with 0 < t < ∞. It is understood that there

may be numerical difficulties if t is either very small or very large. In those exceptional cases

it is often preferable to apply asymptotics as t → 0 or t → ∞, e.g., from the initial-value

and final-value theorems (Doetsch 1974); e.g., as in Abate and Whitt (1997). Alternatively,

it may be desirable to scale the function, as in Choudhury and Whitt (1997).

For any specific t, we can increase n in order to obtain better accuracy. However, greater

system precision will typically be required to perform the calculation as n increases. As in

Abate and Valko (2004), we suggest exploiting multi-precision software, which is now widely

available through computer algebra systems such as Mathematica and Maple in order to

obtain the required precision; e.g, see Graf (2004). Such high precision is also an integral

part of UBASIC, which the second author has been using for more than twenty years.

In fact, in this paper we assume that multi-precision software is being used, so we do

not consider special measures to control roundoff error within limited precision (e.g., stan-

dard double precision). The framework may also be useful with limited precision, provided

appropriate measures are taken to control roundoff error, but some procedures, such as the

Gaver-Stehfest algorithm, usually require high precision.

For one of the specific inversion routines we consider here (the Euler algorithm), the

required precision as a function of n was identified on p. 272 of Abate, Choudhury and

Whitt (1999). For the other two specific inversion routines we consider here, Abate and

Valko (2004) identified the required precision as a function of n for a large class of transforms.

(The full story is rather complicated; see Abate and Valko (2004) for more details.) Thus in

our implementations of the three basic methods we obtain “automatic algorithms”: Given

the accuracy we want for f(t) (by which we mean relative accuracy, measured in significant

digits; the number of significant digits is defined as − log10 (relative error); see (34)), a

formula specifies the appropriate parameter n; then, given n, the program determines the

required precision for the computation, using another formula, so that the desired accuracy

for f(t) is realized. Of course, if there are difficulties, then the parameter n and/or the

system precision can be increased.

Different specific algorithms are obtained by introducing different families of approxi-

mating parameters {ωk, αk, 0 ≤ k ≤ n}. Indeed, Stehfest (1970) originally expressed the

Gaver-Stehfest method in this form. We will cast the Fourier-series method with Euler sum-
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mation and Talbot’s method in this form as well. It turns out that other methods also are

already in this form. In particular, the Padé method used by Zakian (1969, 1970) and Vlach

(1969) and the Gaussian quadrature method of Piessens (1969, 1971) and Wellekens (1970)

are in this form, but we will not examine them in detail here.

On the other hand, there also are methods that are not, at least directly, in the form

of (2). Among these is the popular Laguerre or Weeks method; e.g., see Abate, Choudhury

and Whitt (1998) and Section 19.5 of Davies (2002). There we have

f(t) ≈
n∑

i=0

cili(bt) , (4)

where li(t), i ≥ 0, are the standard Laguerre functions, which form an orthonormal basis for

the function space L2([0,∞),R), while the weights ci and the scale factor b depend on the

transform f̂ .

A main purpose for the unified framework is to develop new algorithms for multidimen-

sional transform inversion. So far, relatively little attention has been given to inversion of

multidimensional Laplace transforms; e.g., see Choudhury et al. (1994a), Abate et al. (1998),

Hwang and Lu (1999) and references therein. The Fourier-series multidimensional inversion

routines in Choudhury et a. (1994) have been applied to tackle challenging performance-

analysis problems in the steady-state analysis of stochastic networks and the time-dependent

analysis of queues with time-varying rates in Choudhury et al. (1995a,b), and Choudhury

et al. (1994b, 1997). Choudhury et al. (1997) includes an example of a 21-dimensional

inversion.

It is significant that the simple framework in (2) extends easily to multidimensional

transforms. For any two-dimensional transform f̃(s1, s2) of a two-dimensional complex-

valued function of nonnegative real variables, f(t1, t2), the corresponding two-dimensional

inversion formula is

f(t1, t2) ≈ fn1,n2(t1, t2) ≡
1

t1t2

n1∑

k1=0

ωk1

n2∑

k2=0

ω′k2
f̃

(
αk1

t1
,
α′k2

t2

)
, (5)

where n1 and n2 are the parameters, k1 and k2 are the indices, ωk1 and ω′k2
are the weights

and αk1 and α′k2
are the nodes for the outer and inner loops, respectively. We can calculate

the approximant fn1,n2(t1, t2) at any argument (t1, t2) provided that we can evaluate the

double transform f̃(s1, s2) at any argument (s1, s2). As in (2) and (3), we use the real part

if f(t1, t2) is real-valued.
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Given the three specific one-dimensional algorithms we consider in the framework (2),

namely, Gaver (G), Euler (E) and Talbot (T ), we can combine them in every possible com-

bination to obtain nine two-dimensional algorithms. In particular, it is not necessary to

use the same routine in both the inner and outer loop. Indeed, we will show that it can

be advantageous to combine two different one-dimensional routines. We are unaware of this

ever having been done before.

In this paper, we examine these nine two-dimensional algorithms, using the notation GT ,

where the first operator G applies to the outer loop, while the second operator T applies to

the inner loop. We discuss the performance of these two-dimensional routines, illustrating

with numerical examples.

Here is how the rest of this paper is organized: We start in Section 2 by explaining the

unified framework. Then in Section 3 we elaborate on the extension of the framework to two

dimensions. In the next three sections we introduce specific algorithms in the framework.

In Sections 4, 5 and 6 we briefly specify our versions of the one-dimensional Gaver-Stehfest,

Fourier-series (with Euler summation) and Talbot algorithms in the unified framework. Then

in Section 7 we discuss the performance of these one-dimensional algorithms. In Section 8 we

show how the three one-dimensional inversion algorithms can be combined to produce specific

two-dimensional algorithms. In Section 9 we present numerical examples evaluating the

performance of the two-dimensional inversion algorithms. In Section 10 we draw conclusions.

2. The Unified Framework

In this section we provide motivation for the general inversion formula (2), explaining

how it was originally derived. We present two derivations: first, one based on the Bromwich

inversion integral due to Wellekens (1970) and, second, the original one based on approx-

imating delta functions due to Zakian (1969, 1970, 1973). However, we will not use those

specific inversion routines later in the paper. We start by observing that it is natural to have

t−1 appear both inside and outside the transform f̂ in the inversion formula for f(t) in (2).

Initial-Value and Final-Value Theorems. One way to see the role of t−1 is to consider

appropriate Abelian and Tauberian theorems, in particular, the familiar initial-value and

final-value theorems; e.g., see Bingham et al. (1987), Doetsch (1974) or Feller (1971). In
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simple form, the initial-value theorem states that, when the two limits both exist,

lim
t↓0

f(t) = lim
t↓0

1

t
f̂

(
1

t

)
, (6)

while the final-value theorem states that, when the two limits both exist,

lim
t↑∞

f(t) = lim
t↑∞

1

t
f̂

(
1

t

)
. (7)

Moreover, other refined asymptotics agree when the transform is scaled in that way, e.g., see

Heavyside’s theorem, Theorem 37.1 of Doetsch (1974).

Starting from the Bromwich Inversion Integral. We now start to review Wellekens’

(1970) argument, which begins with the Bromwich inversion integral. Since the Euler and

Talbot algorithms also can be derived from the Bromwich inversion integral, this argument

explains why they too fit in the framework (2).

Suppose that f is a real-valued function of a nonnegative real variable, which is continuous

at t. The Bromwich inversion integral expresses f(t) as the contour integral

f(t) =
1

2πi

∫

C
f̂(s)est ds, t > 0 , (8)

where the contour C extends from c − i∞ to c + i∞ for c > 0, falling to the right of all

singularities of f̂ , under the usual regularity conditions; see Theorem 24.4 of Doetsch (1974).

Following Wellekens (1970), we make the change of variables z = st and rewrite the

contour integral as

f(t) =
1

2πit

∫

C′
f̂(z/t)ez dz, t > 0 , (9)

where C ′ is the same contour as a function of z. By that step alone, we see how t−1 appears

both in the multiplicative constant and the argument of the transform f̂ . Indeed, almost

any method of numerical integration (approximate quadrature) applied to the integral in (9)

produces the representation (2); see Davis and Rabinowitz (1984). The relationship does

not only hold asymptotically for small and large t.

Rational Approximations for the Exponential Function. To achieve the unified

framework in (2) from (9), Wellekens (1970) approximated the exponential function ez in the

integrand of (9) by a rational function. Indeed, both the earlier approaches exploit rational

approximations for the exponential function, so we digress to discuss that intermediate step

now.
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Writing the rational function in a partial-fraction representation (e.g., see p. 76 of Doetsch

1974), we have

ez ≈
n∑

k=0

ωk

αk − z
, (10)

where z is a complex variable and αk and ωk are complex numbers.

We will impose regularity conditions on the complex numbers αk and ωk appearing in

(10): First, we will assume that the parameters αk are distinct, implying that the rational

approximant in (10) has n + 1 poles. We will require that the approximant be analytic for

Re(z) > 0. Consequently, we assume that Re(αk) < 0 for all k. We also assume that the

pairs of complex numbers (αk, ωk) occur in complex-conjugate pairs. (If s ≡ u + iv, then its

complex conjugate is s̄ ≡ u− iv.) That is, if either αk or ωk has a non-zero imaginary part,

then we also have the pair (ᾱk, ω̄k) among the n terms in the sum (10). Since

ωk

αk − z
+

ω̄k

ᾱk − z

is real for all real z, that condition guarantees that the approximating rational function is

real valued for all real z. Consequently, we can alternatively express (10) as

ez ≈ 1

2

n∑

k=0

[
ωk

αk − z
+

ω̄k

ᾱk − z
] , (11)

where Re(αk) < 0 for all k.

Of course, we want to choose the rational function in (10) or (11) so that we obtain

a good approximation. A classic way to do that is to choose the complex numbers αk

and ωk so as to match the MacLaurin series of the two functions as far as possible. That

procedure is effective; indeed, that procedure is the classical method of Padé approximation;

see Baker and Graves-Morris (1996); moreover, the exponential function was one of the first

functions to be treated; see the Preface and Section 1.2. It should thus not be surprising

that Zakian (1969, 1970, 1973) and Wellekens (1970) exploited Padé approximation when

they approximated the exponential function, but of course there are many other possible

rational approximations for the exponential function, with merits depending on the context.

The Rest of Wellekens’ Argument. Continuing to follow Wellekens (1970), we achieve

the unified framework in (2) from (9) by approximating the exponential function ez in the

integrand of (9) by a rational function, using (10) or (11). For example, using (10), we get

fn(t) ≈ 1

2πit

∫

C′
f̂(z/t)

n∑

k=0

ωk

αk − z
dz
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=
1

t

n∑

k=0

1

2πi

∫

C′
f̂(z/t)

ωk

αk − z
dz

=
1

t

n∑

k=0

ωkf̂
(

αk

t

)
, t > 0 , (12)

using the Cauchy integral formula in the last step, e.g., p. 9 of Davies (2002).

It still remains to choose the specific rational approximation for the exponential function.

Wellekens (1970) shows that the classic Padé approximation arises when we perform Gaussian

quadrature to the integral (9). Thus there is additional justification for Padé approximation.

Zakian’s Original Argument. Zakian originally obtained (2) in a very different way, in

particular, by approximating a delta function by a finite linear combination of exponential

functions. Let δ((x/t)− 1) be the scaled delta function that attaches mass t to the point t,

for each t > 0; i.e., it satisfies the properties

∫ T

0
δ((x/t)− 1) dx = t and δ((x/t)− 1) = 0 for x 6= t, 0 < t < T . (13)

More precisely, if f is an integrable complex-valued function of a nonnegative real variable

that is continuous at t, then

f(t) =
1

t

∫ T

0
f(x)δ((x/t)− 1) dx, 0 < t < T . (14)

Note that δ actually is a function of two variables, x and t.

The idea, then, is to approximate the scaled delta function δ((x/t)− 1) by a finite linear

combination of exponential functions; i.e.,

δ((x/t)− 1) ≈ δn((x/t)− 1) ≡
n∑

k=0

ωke
−αkx/t , (15)

where αk and ωk are complex numbers. It may not be immediately clear that this is a good

thing to do, but we explain later.

Now we consider an integrable function f that we want to evaluate, again assumed to be

a complex-valued function of a nonnegative real variable. For each continuity point t of f ,

we approximate f(t) by the associated integrals with respect to δn((x/t− 1); i.e., combining

(14) and (15), we use the approximation

f(t) ≈ fn(t) ≡ 1

t

∫ T

0
f(x)δn((x/t)− 1) dx, 0 < t < T,

=
1

t

∫ T

0
f(x)

n∑

k=0

ωke
−αkx/t dx,
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=
1

t

n∑

k=0

ωk

∫ T

0
f(x)e−αkx/t dx,

→ 1

t

n∑

k=0

ωk

∫ ∞

0
f(x)e−αkx/t dx, =

1

t

n∑

k=0

ωkf̂
(

αk

t

)
, (16)

where we let T →∞ in the last step, with the limit being justified by standard assumptions

on f guaranteeing that the Laplace transform is well defined. We see that equation (16) is

of the same form as (2).

The linearity in formula (2) implies that the inversion can be applied either to the

complex-valued function f or to its real and imaginary parts: Suppose that f is a complex-

valued function and let f (1) ≡ Re(f) and f (2) ≡ Im(f) be the real and imaginary parts of

f . Then

f(t) = f (1)(t) + if (2)(t), f̂(s) = f̂ (1)(s) + if̂ (2)(s) (17)

and

fn(t) ≡ 1

t

n∑

k=0

ωkf̂
(

αk

t

)

=
1

t

n∑

k=0

ωk[f̂
(1)

(
αk

t

)
+ if̂ (2)

(
αk

t

)
]

=
1

t

n∑

k=0

ωkf̂
(1)

(
αk

t

)
+ i

1

t

n∑

k=0

ωkf̂
(2)

(
αk

t

)

=
1

t

n∑

k=0

Re{ωkf̂
(1)

(
αk

t

)
}+ i

1

t

n∑

k=0

Re{ωkf̂
(2)

(
αk

t

)
}

≡ f (1)
n (t) + if (2)

n (t) . (18)

It remains to show that the approximants δn in (15) can indeed serve as good approxi-

mants for the scaled delta function δ. At first, it may not be obvious that the delta function

admits a reasonable approximation of the form (15). Indeed, it is obvious that the ap-

proximation δn cannot be a good approximation for the delta function δ uniformly in the

neighborhood of its discontinuity, since the approximant is a continuous function, but nev-

ertheless we can hope to approximate f(t) at points t that are continuity points of f .

As Zakian (1970) observed, the possibility of good approximations is evident if we take

Laplace transforms: The Laplace transform of the scaled delta function is

δ̂(s, t) ≡
∫ ∞

0
e−sxδ((x/t)− 1) dx = te−ts , (19)

while the Laplace transform of the general nth approximant is

δ̂n(s, t) ≡
∫ ∞

0
e−sxδn((x/t)− 1) dx =

n∑

k=0

ωk

s + (αk/t)
. (20)
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Assuming that the nodes αk are distinct for 0 ≤ k ≤ n, we see that the Laplace transform

of the approximant is a proper rational function with poles at αk/t, expressed in a partial-

fraction representation with partial fraction coefficients ωk.

At this point we exploit uniqueness and continuity theorems for Laplace transforms, e.g.

see Doetsch (1974) and Chapter 13 of Feller (1971), to justify characterizing functions and

measures in terms of Laplace transforms. Thus, assuming that we can work with Laplace

transforms, in order to approximate the scaled delta function δ((x/t)−1) by its approximant

δn((x/t)− 1) in (15), it suffices to approximate the exponential function te−ts in (19) by the

rational functions in (20). As observed by Zakian (1970), that problem is the well-studied

problem of Padé approximation.

Summary. We regard the discussion so far in this section as providing support for con-

sidering the unified framework in (2). Seeing those derivations helps understand why the

framework (2) is natural. Zakian (1969, 1970, 1973) and Wellekens (1970) went further,

exploiting Padé approximation, to obtain specific algorithms, considering them as “the solu-

tion.” In contrast, we suggest considering alternative approximants within this framework.

In Sections 4, 5 and 6 we discuss three very different ways to arrive at approximants, using

well-established inversion algorithms. In that way, we demonstrate that the framework may

be useful without necessarily using Padé approximation.

Framework for Optimization. As mentioned earlier, the flexible framework presents

the opportunity to perform optimization to select the “best” procedure, by some criterion.

Indeed, one such optimization is the Padé approximation performed by Zakian (1970). As

an example of a different approach, we could consider a given value of n and choose the

resulting 2n + 2 parameters by doing optimal fitting, using families of test functions and

mathematical programming. To be concrete, suppose that we consider m1 test functions

fi and m2 arguments of interest tj. Let ω and α be the vectors of weights and nodes, i.e.,

ω ≡ (ω0, . . . , ωn) and α ≡ (α0, . . . , αn). Then our object might be to choose the vectors ω

and α in order to minimize the squared error. That is, we might perform the minimization

min
ω,α

m1∑

i=1

m2∑

j=1

(
fi(tj)− 1

tj

n∑

k=0

ωkf̂i

(
αk

tj

))2

, (21)

where the decision variables ω and α are vectors of complex numbers. In the optimization

(21), the test functions fi and their transforms f̂i are presumed to be known. We might

11



also put further constraints upon the variables ω and α. For example, paralleling the Gaver-

Stehfest procedure, we could require that they be real numbers. Finally, given the vectors ω

and α, we have a new algorithm in the unified framework (2) to apply to new transforms of

interest. This seems to be an interesting direction of research, but we do not pursue it here.

3. Two-Dimensional Inversion Algorithms

Starting from a function of two variables, f(t1, t2), we can construct the Laplace transform

in a two-step process, applying the one-dimensional construction twice: First, consider t2 a

constant, and apply (1) with the complex variable s1 to f to get the one-dimensional Laplace

transform

f̂(s1, t2) ≡
∫ ∞

0
e−s1t1f(t1, t2) dt1 , (22)

which we assume is well defined for Re(s1) > 0. Then consider the complex variable s1 a

constant, and apply (1) a second time with the complex variable s2 to get the two-dimensional

Laplace transform

f̃(s1, s2) ≡
∫ ∞

0
e−s2t2 f̂(s1, t2) dt2 , (23)

which we assume is well defined for Re(s1) > 0 and Re(s2) > 0.

Likewise, two-dimensional transform inversion can be considered a two-step process, ap-

plying the one-dimensional inversion formula (2) twice: For specified argument pair (t1, t2),

first invert f̃(s1, s2) with respect to s2 (inner loop), regarding s1 as constant, to get an

approximation for f̂(s1, t2). Then invert the approximation for f̂(s1, t2) with respect to s1

(outer loop), regarding t2 as constant, getting the desired approximation for f(t1, t2).

It is straightforward to extend the unified framework to two dimensions: Following the

two-step procedure just described, we have

f̂(s1, t2) ≈ f̂n2(s1, t2) ≡ 1

t2

n2∑

k2=0

ω′k2
f̃

(
s1,

α′k2

t2

)
(24)

and

f(t1, t2) ≈ fn1(t1, t2) ≡
1

t1

n1∑

k1=0

ωk1 f̂n2

(
αk1

t1
, t2

)
. (25)

Combining (24) and (27), we obtain the general form for the inversion

f(t1, t2) ≈ fn1,n2(t1, t2) ≡
1

t1t2

n1∑

k1=0

ωk1

n2∑

k2=0

ω′k2
f̃

(
αk1

t1
,
α′k2

t2

)
, (26)

as in (5).
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We can justify the two-dimensional inversion formula the same way we did for the one-

dimensional case in Section 2. When we do, we see that the two-dimensional objects are

just the product of the two corresponding one-dimensional objects. For example, the two-

dimensional scaled delta function is just the product of the two one-dimensional delta func-

tions. Moreover, the two-dimensional linear combination of exponentials is the product of

the two one-dimensional linear combinations of exponentials. Thus the Laplace transforms

are the products of the two one-dimensional Laplace transforms. Hence the one-dimensional

Padé approximation can be applied to each dimension in the two-dimensional case.

As a consequence of the general two-dimensional framework in (26), we can apply the

three one-dimensional routines in Sections 4, 5 and 6 in any combination to obtain nine

different candidate two-dimensional routines. Even though the Gaver-Stehfest routine works

only with real weights and nodes, we can apply the Gaver-Stehfest routine in the inner loop

with any of these other procedures, because the Gaver-Stehfest routine extends to complex-

valued functions via (17) and (18).

From the experience in Choudhury, Lucantoni and Whitt (1997), we know that it may

be necessary to do extra work for the inner loop to ensure that the intermediate function

f̂(s1, t2) has sufficient accuracy to accurately perform the calculation in the outer loop. Thus,

we anticipate that we may need n2 > n1. However, for ease of use, it is desirable to have

only one parameter n, as in the one-dimensional case. We can achieve that by letting

n1 = n and n2 = cn (27)

for a fixed parameter c, which depends on the specific routines used in the inner and outer

loops. That is assuming that the system precision required in the outer loop and the accuracy

produced in the inner loop both grow proportionally to n, which experience shows to be

approximately so with the algorithms considered here.

What is surprising is that it often suffices to have c = 1. For the specific two-dimensional

algorithms we consider, built from the three one-dimensional algorithms G, E and T , we find

that c = 1 often suffices; see Section 8.

4. The Gaver-Stehfest Algorithm

Now we start specifying specific one-dimensional inversion algorithms in the unified

framework (2). We start with the Gaver-Stehfest procedure, because it directly appears

13



in the framework. The Gaver-Stehfest algorithm is distinguished by the fact that it does not

use complex numbers; the weights and nodes are real numbers.

The Gaver-Stehfest procedure is based on the sequence of Gaver approximants, {fn(t) :

n ≥ 1}, derived by Gaver (1966), which can be written as

fn(t) ≡ n ln (2)

t

(
2n
n

)
n∑

k=0

(−1)k

(
n
k

)
f̂

(
(n + k) ln (2)

t

)
. (28)

There is a simple probabilistic derivation, which is reviewed in Section 8 of Abate and Whitt

(1992). Note that the Gaver approximants are directly in the framework (2).

The Gaver approximants can be computed by a recursive algorithm, namely,

G
(k)
0 =

γk

t
f̂(kγ/t), 1 ≤ k ≤ 2n,

G
(k)
j = (1 + (k/j))Gk

j−1 − (k/j)G
(k+1)
j−1 , 1 ≤ j ≤ n, j ≤ k ≤ 2n− j ,

fn(t) = G(n)
n , (29)

where γ ≡ ln (2).

Unfortunately, however, the convergence fn(t) → f(t) as n → ∞ is slow (logarithmic),

so acceleration is needed. Accordingly, Stehfest [?] proposed the linear Salzer acceleration

scheme. Since the acceleration method is linear, the Gaver-Stehfest algorithm fits in the

framework (2), just like the Gaver approximants in (28).

This linear acceleration method is reviewed by Valko and Abate (2004), where the Salzer

method is compared to popular nonlinear sequence accelerators. Valko and Abate found that

the Salzer scheme performed remarkably well, being only outperformed by the Wynn rho

algorithm. As an aside, we point out that the framework (2) is distinguished by encompassing

linear acceleration techniques, but not nonlinear acceleration techniques, when acceleration

is used.

Here we focus on the original Salzer scheme proposed by Stehfest, because it performs

well and because it is of the right (linear) form. For any t > 0 and positive integer M , Salzer

summation yields the Gaver-Stehfest inversion formula

fg(t,M) =
M∑

n=1

(−1)n+M

(
nM

M !

) (
M
n

)
fn(t) , (30)

where fn(t) is given in (28).

Putting (28) into (30) and rearranging the double summation, we get

fg(t,M) =
ln (2)

t

2M∑

k=1

ζkf̂

(
k ln (2)

t

)
, (31)

14



where

ζk = (−1)M+k
k∧M∑

j=b(k+1)/2c

jM+1

M !

(
M
j

) (
2j
j

) (
j

k − j

)
, (32)

with bxc being the greatest integer less than or equal to x and k ∧M ≡ min{k, M}.
Inversion formula (31) is in the form (2) with n = 2M , αk = k ln (2) and ωk = ln (2)ζk for

ζk in (32). We shift the notation from n to M primarily because we would have to require

that n be an even integer. The parameter M is natural too, because the algorithm uses M

Gaver functionals; the extra M terms in (31) are used to perform the Salzer summation. We

consistently use the parameter M for the rest of this paper.

The weights ζk in (32) (and thus ωk in (2)) depend on both n and k. Since the nodes

αk = k ln (2) are constant multiples of k, there is even spacing of the nodes along the real

line. We remark that
2M∑

k=0

ζk = 0 for all M ≥ 1 . (33)

Because of the binomial coefficients in the weights, the Gaver-Stehfest algorithm tends

to require high system precision in order to yield good accuracy in the calculations. From

Abate and Valko (2004), we conclude that the required system precision is about 2.2M when

the parameter is M . The precision requirement is driven by the coefficients ζk in (32). Such

a high level of precision is not required for the computation of the transform f̂(s).

Abate and Valko (2004) investigated, experimentally, the precision produced as a function

of the parameter M . They found that the answer depends on the transform. From extensive

experimentation, Abate and Valko (2004) conclude that about 0.90M significant digits are

produced for f(t) with good transforms. By 0.90M significant digits, we mean that

relative error =

∣∣∣∣∣
f(t)− fg(t,M)

f(t)

∣∣∣∣∣ ≈ 10−0.90M . (34)

In other words, we are considering the relative error. We also need to explain what we mean

by good transforms. Transforms are said to be “good” (of their class F) if the transforms have

all their singularities on the negative real axis and the functions f are infinitely differentiable

for all t > 0. If the tranforms are not good, then the number of significant digits may not

be so great and may not be proportional to M .

Thus the efficiency of the Gaver-Stehfest algorithm, measured by the ratio of the signifi-

cant digits produced to the precision required, is

eff(G) ≡ significant digits produced

precision required
≈ 0.90M

2.2M
≈ 0.4 . (35)

Let dxe be the least integer greater than or equal to x.
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Gaver-Stehfest Algorithm Summary. If j significant digits are desired, then let M be

the positive integer d1.1je. Given M , set the system precision at d2.2Me. Given M and

the system precision, calculate the weights ζk, 1 ≤ k ≤ 2M , using (32). Then, given the

transform f̂ and the argument t, calculate the sum fg(t,M) in (31).

5. The Euler Algorithm

The Euler algorithm is an implementation of the Fourier-series method, using Euler

summation to accelerate convergence of the final infinite series; e.g, see Abate, Choudhury

and Whitt (1999). Since the Fourier-series method can also be derived from the Bromwich

inversion integral in (8), the derivation of the framework (2) from the Bromwich inversion

integral in Section 2 shows that the Fourier-series method fits directly in the framework (2).

Since Euler summation is a linear acceleration algorithm, the full algorithm Euler also fits

in the framework (2).

We can also start from the final Euler algorithm itself: We obtain the desired Euler algo-

rithm in the framework (2) by fixing the parameters in the Euler algorithm in our previous

papers. Referring to the algorithm summary on p. 272 of Abate, Choudhury and Whitt

(1999), we let old parameter vector (l,m, n, A) be assigned values (1,M,M, 2 ln (10)M/3),

where M is a positive integer. Here the original l (lower case L) has been replaced by 1

(one). We omit that roundoff-error-control parameter, because we are thinking of employ-

ing multi-precision software, as in Abate and Valko (2004). The value of A is taken from

equation (40) on p. 271 of Abate, Choudhury and Whitt (1999).

With this parameter assignment, the Euler inversion formula to numerically calculate

f(t) for real-valued f is

fe(t,M) =
10M/3

t

2M∑

k=0

ηkRe

(
f̂

(
βk

t

))
, (36)

where

βk =
M ln (10)

3
+ πik, ηk ≡ (−1)kξk, (37)

with i =
√−1 and

ξ0 =
1

2
, ξk = 1, 1 ≤ k ≤ M, ξ2M =

1

2M
,

ξ2M−k = ξ2M−k+1 + 2−M

(
M
k

)
, 0 < k < M . (38)
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Inversion formula (36) is in the form (2) with n = 2M , ωk = 10M/3ηk and αk = βk for ηk

and βk in (37) and (38). Again we let the single parameter be M instead of n. As with the

Gaver-Stehfest algorithm, about half of the 2M + 1 terms appearing in the sum in (36) are

to accelerate convergence using Euler summation.

Like the Gaver-Stehfest algorithm, there is even spacing of the nodes βk, but now they

are evenly spaced on the vertical line s = M ln (10)/3t instead of on the real axis. As with

the Gaver-Stehfest algorithm, the weights are real with

n∑

k=0

ηk = 0 for all even n ≥ 2 . (39)

However, now the nodes are complex, so when f is real valued, we work with

Re

{
ηkf̂

(
βk

t

)}
= ηkRe

{
f̂

(
βk

t

)}
. (40)

The Euler algorithm tends to be more efficient than the Gaver-Stehfest algorithm. Given

M , the required system precision is only about M , but it produces about 0.6M significant

digits for good transforms. Thus the efficiency of the Euler algorithm, again measured by

the ratio of the significant digits produced to the precision required, is

eff(E) ≡ significant digits produced

precision required
≈ 0.60M

1.0M
≈ 0.6 . (41)

which is about 3/2 times that of the Gaver-Stehfest algorithm.

Euler Algorithm Summary. If j significant digits are desired, then let M be the positive

integer d1.7je. Given M , set the system precision at M . Given M and the system precision,

calculate the weights ηk and nodes βk using (37) and (38). Then, given the transform f̂ and

the argument t, calculate the sum fe(t,M) in (36).

6. The Talbot Algorithm

The Talbot algorithm also starts from the Bromwich integral (8), so it too is destined to

fit in the framework (2). The Talbot algorithm is based on cleverly deforming the contour

in the Bromwich inversion integral. We obtain the desired version of Talbot’s method in

the framework (2) by fixing parameters in the version of Talbot’s method in Section 3 of

Abate and Valko (2004). It should be noted that the version of Talbot’s algorithm there is

a considerable simplification of previous versions in the literature.
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The Talbot inversion formula to numerically calculate f(t) for real-valued f is

fb(t,M) =
2

5t

M−1∑

k=0

Re

(
γkf̂

(
δk

t

))
(42)

(subscript b for TalBot), where

δ0 =
2M

5
δk =

2kπ

5
(cot (kπ/M) + i), 0 < k < M , γ0 =

1

2
eδ0 ,

γk = [1 + i(kπ/M)(1 + [cot (kπ/M)]2)− i cot (kπ/M)]eδk , 0 < k < M , (43)

where again i ≡ √−1.

The parameters in the framework (2) are n = M , αk = δk and ωk ≡ (2/5)γk for δk and γk

in (43). For this fixed-Talbot algorithm, both the weights and the nodes are complex. Now

there is uneven spacing of the nodes. Now the weights do not sum to zero, but the sum is

small. In particular,

Re

{
M−1∑

k=0

γk

}
≈ 10−0.6M . (44)

As discussed in Abate and Valko (2004), for the implementation of the Talbot algorithm

there may be complications with a few complex-function routines. Those difficulties involve

calculating the required values of the Laplace transform. Without those difficulties, the

Talbot algorithm tends to be about as efficient as the Euler algorithm. When the parameter

is M , about 0.6M significant digits are produced for a good transform, while about M digits

of precision are required. Thus the efficiency of the Talbot algorithm is

eff(T ) ≡ significant digits produced

precision required
≈ 0.60M

1.0M
≈ 0.6 , (45)

just as for the Euler algorithm.

Talbot Algorithm Summary. If j significant digits are desired, then let M be the posi-

tive integer d1.7je. Given M , let the system precision also be M . Given M and the system

precision, calculate the weights γk and nodes δk using (43). Then, given the transform f̂ and

the argument t, calculate the sum fb(t,M) in (42).

7. Performance of the One-Dimensional Algorithms

In this section we briefly discuss the performance of the three one-dimensional algorithms.

We have extensive experience with the Euler algorithm based on our previous work. For the
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Inversion Number of transform system precision reqd. sig. digits produced efficiency
Routine evaluations decimal digits for good transform (SD/Prec.)

Gaver-Stehfest 2M 2.2 M 0.90 M 0.4
Euler 2M+1 1.0 M 0.60 M 0.6

Talbot M 1.0 M 0.60 M 0.6

Table 1: A rough analysis of cost and efficiency for the three specified one-dimensional
inversion routines.

Gaver and Talbot algorithms, we draw extensively upon Abate and Valko (2004); see Section

4 for supporting details. The story is quite complicated, so that reference to Abate and Valko

(2004) is important for serious study.

We first summarize the analysis of efficiency of the three one-dimensional inversion rou-

tines specified above. Unfortunately, there is no systematic error analysis. Moreover, the

observed performance depends on the transform. We describe the performance for good

transforms, i.e., those with all singularities falling on the negative real axis and for which the

function f is infinitely differentiable (class F in Abate and Valko 2004). For good transforms,

the error is almost independent of t and the transform. For other transforms, that is not

true.

Twelve examples of transforms in F are listed in Table 1 of Abate and Valko (2004). A

summary of the algorithm efficiency described in the last three sections appears in Table 1.

From our experience, and from Table 1, we conclude that the Euler and Talbot algorithms

are more efficient than the Gaver-Stehfest algorithm. However, the Gaver-Stehfest algorithm

has the advantage that only real numbers are used.

We next compare the three algorithms for a specific example, namely the transform

f̂(s) =
1√

s + s
, (46)

which has known inverse

f(t) = eterfc(
√

t), t ≥ 0 , (47)

where erfc is the complementary error function. The performance of the three algorithms

as a function of the single parameter M is summarized in Table 2. The calculations were

performed using the multi-precision language UBASIC on an 0.2 GHz cpu.

Since the transform in (46) is a good transform (in class F [?]), the error tends to be

independent of t. However, the results in Table 2 are quite complicated. In particular, they
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sig. digits exec. time
routine routine

M G E T G E T
20 18 13 12 2 4 2
30 27 19 18 5 7 4
50 45 30 30 15 17 10

100 91 59 60 90 68 47

Table 2: A comparison of the performance of the three one-dimensional inversion routines
as a function of M for the transform in (46) with inverse function in (47). The execution
time is in milliseconds on an 0.2 GHz cpu.

are nonlinear. For example, as M goes from 50 to 100, G takes 6 times as long, whereas E
takes 4 times as long. This has to do with computing costs at different levels of precision,

even though the same number of terms are being computed. Now compare E and T at the

same value of M : They both have the same number of terms, so we might expect them to

take the same time; however, T has a complex multiplication for each term, whereas E is

using only real multiplication.

Only a few significant digits are required for most engineering applications. The very

high accuracy we are able to obtain with high system precision for this example, shown in

Table 2, may be important when we consider high-dimensional multidimensional inversions,

because then we may need greater accuracy in the inner loops in order to obtain required

precision in the outer loops.

There may not need to be great concern about the computational effort required to

compute the weights and nodes, because for multiple applications the weights and nodes can

be computed in advance and stored for easy access (even for multiple values of M), but they

might also be computed on the fly. Hence we have investigated the computational effort

required to compute the weights and nodes for the different algorithms. Table 3 shows the

time in milliseconds (with a 0.2 GHz cpu) required to compute the weights and nodes for

the three methods G, E and T specified above.

Since the new version of the Talbot algorithm is relatively less tested, we present an addi-

tional example examining its performance. We apply the Talbot algorithm to the transform

f̂(s) =
1√

s +
√

s + 1
, (48)

which has known inverse

f(t) =
1− e−t

√
4πt3

, t ≥ 0 . (49)
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M Euler Talbot Gaver-Stehfest
25 ≈ 0 6 12
50 1 25 100

100 4 160 1200
200 20 1600 19,000

Table 3: A comparison of the execution times for the weights and nodes, in milliseconds
with an 0.2GHz cpu, for the three specified one-dimensional inversion routines.

t M = 10 M = 20 M = 40 M = 100 M = 200
10−8 1 10 23 59 119
10−6 6 12 23 59 119
10−2 6 12 23 59 119
10−1 6 12 23 59 119
10−0 6 11 23 59 119
101 5 11 22 58 118
102 5 10 21 57 118
104 3 9 20 55 114
106 2 8 19 54 113
108 1 7 18 53 112

Table 4: Significant digits produced by the one-dimensional Talbot algorithm as a function
of t and M for the example in (48) and (49).

Numerical results for a wide range of t and M are given in Table 4. Again we see excellent

performance.

8. Candidate Two-Dimensional Algorithms

In this section we combine the three one-dimensional inversion algorithms G, E and T
specified in Sections 4, 5 and 6 to construct nine two-dimensional inversion algorithms. In

each case, the two-dimensional inversion routine can be expressed in the common form (26),

but in some cases further simplification can be obtained by exploiting properties of complex

conjugates. We display the possible algorithms below in Table 5.

In Table 5 we use the notation in Sections 4–6. In particular, we use the single parameter

M instead of n. The outer loop has parameter M and the inner loop has parameter cM , so

there remains only the single parameter M .

We also use the special notation for the nodes and weights introduced in Sections 4–6.

Thus, ζk are the Gaver weights in (32), ηk and βk are the Euler weights and nodes in (37)
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and (38), and γk and δk are the Talbot weights and nodes in (43).

It is understood that the weights and nodes in the outer loop depend on the parameter

M , while the weights and nodes in the inner loop depend on the parameter cM , where c

is specified at the left, based on our experience with a collection of good transforms (the

class F from Abate and Valko 2004). When c 6= 1, which occurs in only three cases, the

corresponding parameters in the inner loop are designated by the addition of a ’ (prime).

For example, with the all-Gaver routine G(M)G(2M), ζk depends on M , while ζ ′k depends

on 2M . Similarly, in G(M)E(3M), ζk again depends on M , but η′k and β′k depend on 3M .

However, much to our surprise, in six of the nine two-dimensional algorithms we found that

it suffices to let c = 1, making the number of computations in the inner loop no greater than

in the outer loop.

The four algorithms combining E and T exploit relations involving complex conjugates,

so there is an extra term in each sum, with the entire quantity divided by 2.

9. Performance of the Two-Dimensional Algorithms

In this section we describe the performance of the two-dimensional inversion routines.

Paralleling Table 1, in Table 6 we analyze the efficiency of the nine routines specified in

Section 8. We order the algorithms according to the approximate number of transform

evaluations required, because that seems to be the decisive factor. The algorithms at the

top, requiring fewer transform evaluations, tend to be most efficient.

Now we consider two concrete examples in detail, both taken from Ditken and Prudnikov

(1962). Both are good transforms (in the class F Abate and Valko 2004). (We have examined

about ten examples from Ditken and Prudnikov (1962); these two are representative. We

also have conducted experiments on queueing transforms. Applications to queues will be

discussed in Abate and Whitt 2005.) The first example here is the two-dimensional Laplace

transform

f̂(s1, s2) =
1

s1s2
√

s1

(
1− s1

s1 + s2 +
√

2s1s2

)
(50)

with inverse function

f(t1, t2) =
2√
π

[√
t21 + t22 − t2

]1/2

. (51)

Numerical results for this first example are given in Table 7. We consider all nine methods

in Table 5.
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T (M)G(M) :
2 ln (2)

5t1t2

M−1∑

k1=0

Re



γk1

2M∑

k2=1

ζk2 f̃

(
δk1

t1
,
k2 ln (2)

t2

)



T (M)T (M) :
2

25t1t2

M−1∑

k1=0

Re



γk1

M−1∑

k2=0

[
γk2 f̃

(
δk1

t1
,
δk2

t2

)
+ γ̄k2 f̃

(
δk1

t1
,
δ̄k2

t2

)]

 ,

E(M)G(M) :
10M/3 ln (2)

t1t2

2M∑

k1=0

ηk1

2M∑

k2=1

ζk2Re

{
f̃

(
βk1

t1
,
k2 ln (2)

t2

)}

E(M)T (M) :
10M/3

5t1t2

2M∑

k1=0

ηk1

M−1∑

k2=0

Re

{
γk2 f̃

(
βk1

t1
,
δk2

t2

)
+ γ̄k2 f̃

(
βk1

t1
,
δ̄k2

t2

)}

T (M)E(M) :
10M/3

5t1t2

M−1∑

k1=0

Re



γk1

2M∑

k2=0

ηk2

[
f̃

(
δk1

t1
,
βk2

t2

)
+ f̃

(
δk1

t1
,
β̄k2

t2

)]



G(M)T (3M) :
2 ln (2)

5t1t2

2M∑

k1=1

ζk1

3M−1∑

k2=0

Re

{
γ′k2

f̃

(
k1 ln (2)

t1
,
δ′k2

t2

)}

G(M)G(2M) :
(ln (2))2

t1t2

2M∑

k1=1

ζk1

4M∑

k2=1

ζ ′k2
f̃

(
k1 ln (2)

t1
,
k2 ln (2)

t2

)

E(M)E(M) :
102M/3

2t1t2

2M∑

k1=0

ηk1

2M∑

k2=0

ηk2Re

{
f̃

(
βk1

t1
,
βk2

t2

)
+ f̃

(
βk1

t1
,
β̄k2

t2

)}

G(M)E(3M) :
10M ln (2)

t1t2

2M∑

k1=1

ζk1

6M∑

k2=0

η′k2
Re

{
f̃

(
k1 ln (2)

t1
,
β′k2

t2

)}

Table 5: The nine two-dimensional inversion routines based on the three one-dimensional
routines: Gaver-Stehfest G, Euler E and Talbot T . The value of c has been specified based
on experience with good transforms. The routines are ordered according to the number of
transform evaluations required. A prime appears on the nodes and weights in the inner loop
in the three cases in which c 6= 1, indicating that these parameters depend on cM , not M .
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Inversion approx. number of sig. digits produced efficiency
Routine transform evaluations for good transform (sd’s/evals.)

T (M)G(M) 2M2 0.6 M 0.300/M
T (M)T (M) ∗2M2 0.6 M 0.300/M
E(M)G(M) 4M2 0.6 M 0.150/M
E(M)T (M) ∗4M2 0.6 M 0.150/M
T (M)E(M) ∗4M2 0.6 M 0.150/M
G(M)T (3M) 6M2 0.8 M 0.133/M
G(M)G(2M) 8M2 0.6 M 0.075/M
E(M)E(M) ∗8M2 0.6 M 0.075/M
G(M)E(3M) 12M2 0.8 M 0.067/M

Table 6: A rough analysis of cost and efficiency for the nine two-dimensional inversion
routines. The routines have been ordered according to the approximate number of required
transform evaluations. The asterisks indicate values that have been multiplied by 2 because
there is a second evaluation involving the complex conjugate.

sig. digits exec. time
M M

Routine 10 20 30 50 10 20 30 50
T (M)G(M) 6 12 18 30 0.05 0.20 0.6 3
T (M)T (M) 6 12 18 30 0.04 0.15 0.4 2
E(M)G(M) 6 12 17 27 0.05 0.41 1.3 7
E(M)T (M) 7 13 19 30 0.07 0.29 0.8 4
T (M)E(M) 7 13 19 30 0.07 0.28 0.8 4
G(M)T (3M) 8 16 24 40 0.13 1.00 3.6 21
G(M)G(2M) 9 13 17 28 0.19 0.80 2.8 19
E(M)E(M) 6 14 18 30 0.14 0.71 2.0 9
G(M)E(3M) 8 16 24 39 0.27 1.90 7.0 40

Table 7: A comparison of the performance of the nine two-dimensional inversion routines as
a function of M for the transform in (50) with inverse function in (51). The execution time
is in seconds on an 0.2 GHz cpu.
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sig. digits exec. time
M M

Routine 10 20 30 50 10 20 30 50
T (M)G(M) 7 13 19 31 0.08 0.31 1.1 7
T (M)T (M) 6 12 18 30 0.05 0.19 0.6 3
E(M)G(M) 6 13 19 28 0.08 0.63 2.2 13
E(M)T (M) 7 12 18 30 0.10 0.37 1.1 5
T (M)E(M) 7 13 19 30 0.09 0.35 1.1 5
G(M)T (3M) 9 18 28 46 0.22 1.86 7.2 48
G(M)G(2M) 9 13 17 26 0.27 2.04 8.4 72
E(M)E(M) 6 13 18 30 0.24 1.12 3.6 17
G(M)E(3M) 9 17 22 37 0.35 2.73 11.2 81

Table 8: A comparison of the performance of nine two-dimensional inversion routines as a
function of M for the transform in (52) with inverse function in (53). The execution time is
in seconds on an 0.2 GHz cpu.

The execution time reflects the number of transform evaluations, but it also reflects the

required precision setting. For example, T G and T T require about the same number of

transform evaluations, 2M2, but the execution time for T G is higher because the precision

setting is higher. The precision setting is 2.2M for T G, but only M for T T . In contrast, ET
and T E have both the same number of evaluations, 4M2, and the same precision setting, so

that the overall execution time is consistently about the same. On the other hand, T T and

ET have the same precision setting, but T T evaluates half as many terms as ET ; accordingly,

the execution time for T T is about half that for ET .

Our second example is the two-dimensional Laplace transform

f̂(s1, s2) =
exp

(
1/

√
s2(s1 + 1)

)

s2

√
s1 + 1

(52)

with inverse function

f(t1, t2) =
e−t1

√
πt1

I0([8
√

t1t2]
1/2) , (53)

where I0 is the modified Bessel function; see p. 66 of Magnus et al. (1966). Numerical

results for this second example are given in Table 8.

From Tables 7 and 8, we conclude that the algorithms in the upper part of the tables,

requiring fewer transform evaluations, are most efficient. Rough generalizations would be:

(1) It is not so good to use the Gaver-Stehfest routine in the outer loop and (2) the Talbot

routine tends to be efficient wherever it is used. However, there is a difficulty with the Talbot
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algorithm, which does not have to do with efficiency. It is caused by the fact that the Talbot

routine involves both complex weights and complex nodes. We found that we sometimes

encountered difficulties evaluating transform values when the Talbot algorithm was used in

the inner loop. That is because of difficulties in the software (e.g., Mathematica) properly

evaluating complex-valued functions of two complex variables, e.g., involving the square-root

function.

Thus, at this time, we would not recommend using the Talbot algorithm in the inner loop,

or at least being aware that there might be problems involving computation with complex

numbers and functions. That leaves T G, EG and T E as the top-ranked two-dimensional

routines. None of these uses the same one-dimensional routine in both loops. However, all

nine methods are effective. Overall, our study indicates the unified framework has promise.

10. Conclusions

In this paper we have proposed the general unified framework in (2) for numerical in-

verting Laplace transforms. We pointed out that the flexible framework makes it possible

to perform optimization in order to select specific inversion routines for special classes of

functions, but it remains to pursue that approach. In Sections 4, 5 and 6 we showed that

the Gaver-Stehfest method, G, the Fourier-series method with Euler summation, E , and a

version of Talbot’s method, T , all fit into this common framework.

In Section 3 we observed that the unified framework extends directly to yield a cor-

responding framework for numerically inverting multidimensional Laplace transforms. In

Section 8 we observed that the three specific one-dimensional algorithms we introduced

in the framework (2) produce nine candidate two-dimensional algorithms, all in the two-

dimensional framework (5).

In Sections 7 and 9 we reported results on the performance of the algorithms. In Section

7 we concluded that the Euler and Talbot one-dimensional algorithms are about equally

efficient, as measured by the ratio of the number of significant digits produced to the number

of digits of machine precision required, while these two are about 1.5 times as efficient as

the Gaver-Stehfest one-dimensional algorithm. However, the Gaver-Stehfest algorithm has

the advantage of working with only real numbers.

Investigations of the two-dimensional algorithms in Section 9 indicate that all nine com-

binations of the three one-dimensional routines can be effective two-dimensional algorithms.
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However, we encountered difficulties calculating values of two-dimensional transforms when

the Talbot method T is used in the inner loop, because of problems evaluating transforms for

conjugate s. Initial results indicate that the best two-dimensional algorithms are the combi-

nations T G, EG and T E . Evidently it can be advantageous to use different one-dimensional

routines in the inner and outer loops.

Much remains to be done. First, as is often the case with numerical transform inversion

(and many other numerical methods), a systematic error analysis is lacking. The bounds

for the Fourier-series method with Euler summation in Abate and Whitt (1995), O’Cinneide

(1997) and Sakurai (2004) are the exception. There is a need for much more testing. It

remains to better understand how the algorithms perform on different classes of transforms.

More work is needed, extending Abate and Valko (2004), to understand how the algorithm

performance depends on the structure of the transform. It remains to see what combina-

tions of the three one-dimensional routines will be especially effective for high-dimensional

inversion problems.

It also remains to consider other kinds of transforms. We have found that essentially the

same unified framework applies to generating functions; we plan to elaborate on that in Abate

and Whitt (2005). Thus, just as in Choudhury et al. (1994a), the unified framework will

apply to multidimensional transforms, where each dimension may involve either a generating

function or a Laplace transform.

References

Abate, J., G. L. Choudhury and W. Whitt. 1998. Numerical inversion of multidimensional

Laplace transforms by the Laguerre method. Performance Evaluation 31, 229–243.

Abate, J., G. L. Choudhury and W. Whitt. 1999. An introduction to numerical inversion

and its application to probability models. In Computational Probability, W. Grassman

(ed.), Kluwer, 257–323.

Abate, J. and P. P. Valko. 2004. Multi-precision Laplace inversion. Int. J. Numer. Meth.

Engng. 60, 979-993.

Abate, J. and W. Whitt. 1992. The Fourier-series method for inverting transforms of

probability distributions. Queueing Systems 10, 5–88.

Abate, J. and W. Whitt. 1995. Numerical inversion of Laplace transforms of probability

27



distributions. ORSA Journal on Computing 7, 36–43.

Abate, J. and W. Whitt. 1997. Asymptotics for M/G/1 low-priority waiting-time tail

probabilities. Queueing Systems 25, 173–223.

Abate, J. and W. Whitt. 2005. Avoiding M/G/1 transform functional equations in numerical

inversion. in preparation.

Baker, G. A. and P. Graves-Morris. 1996. Padé Approximants, second edition, Encyclopedia
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