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Abstract: If the number of customers in a queueing system as a function of time has a proper limiting steady-state distribution,
then that steady-state distribution can be estimated from system data by fitting a general stationary birth-and-death (BD) process
model to the data and solving for its steady-state distribution using the familiar local-balance steady-state equation for BD processes,
even if the actual process is not a BD process. We show that this indirect way to estimate the steady-state distribution can be effective
for periodic queues, because the fitted birth and death rates often have special structure allowing them to be estimated efficiently
by fitting parametric functions with only a few parameters, for example, 2. We focus on the multiserver M t /GI/s queue with a
nonhomogeneous Poisson arrival process having a periodic time-varying rate function. We establish properties of its steady-state
distribution and fitted BD rates. We also show that the fitted BD rates can be a useful diagnostic tool to see if an M t /GI/s model is
appropriate for a complex queueing system. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 00: 000–000, 2015

Keywords: estimating steady-state distributions; periodic queues; birth-and-death processes; fitting models to data; gray-box
stochastic model

1. INTRODUCTION

1.1. Steady-State Distributions and Birth-and-Death
Processes

Let {Q(t) : t ≥ 0} be a stochastic processes taking values
in the non-negative integers, such as the number of cus-
tomers in a queueing system at each time t . The stochastic
process {Q(t) : t ≥ 0} has a proper (limiting) steady-state
distribution if

lim
t→∞P(Q(t) = k) = αk for all k ≥ 0,

where
∞∑

k=0

αk = 1. (1)

Given system data, that is, a segment {Q(s) : 0 ≤ s ≤ t} of
the sample path, a standard way to estimate the steady-state
probability vector α is to calculate the proportion of time
spent in each state; that is, if Tk(t) is the total time spent in
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state k during [0, t], then we estimate αk by

αk(t) = Tk(t)

t
, k ≥ 0. (2)

It may be surprising, but there usually is also another quite
different way to estimate the steady-state probability vector
α. The alternative way is to fit a general stationary birth-and-
death (BD) process to the same sample path in the obvious
way, as if the stochastic process {Q(t) : t ≥ 0} were a BD
process, which we are not assuming.

In particular, let Ak(t) and Dk(t) be the number of arrivals
and departures, respectively, observed in state k over [0, t].
State-dependent BD rates can be estimated by

λk(t) = Ak(t)

Tk(t)
and μk(t) = Dk(t)

Tk(t)
. (3)

This is the natural way to estimate the rates when
{Q(t) : t ≥ 0} is a BD process [3, 19, 37]. In fact, these are
the maximum likelihood estimators for these rates.

We then estimate the steady-state distribution by solving
the local-balance equations for a BD process; that is, we
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let αe(t) ≡ {
αe

k(t) : k ≥ 0
}

(where ≡ means “equality by
definition”) be the solution to the equation

αe
k(t)λk(t) = αe

k+1(t)μk(t), k ≥ 0, (4)

with the additional property that

∞∑
k=0

αe
k(t) = 1. (5)

We use the superscript e to denote that the vector αe
k(t) is

obtained from the estimated BD rates in (3) via (4).
It turns out that the two empirical steady-state probabil-

ity vectors α(t) and αe(t) are intimately related. Indeed, if
Q(0) = Q(t), that is, if the initial state Q(0) coincides with
the final state Q(t) of the sample path, then the two prob-
ability vectors α(t) and αe(t) are identical. More generally,
they are stochastically ordered; see Theorem 1 of [32]. More-
over, under minor regularity conditions, αe

k(t) is a consistent
estimator of αk , that is,

αk ≡ lim
t→∞αk(t) = lim

t→∞P(Q(t) = k) = lim
t→∞αe

k(t); (6)

see Chapter 4 of [10] and Corollary 4.1 of [32].
Thus, fitting a stationary BD process by (3) and solving

the local balance Eq. (4) is a legitimate way to estimate the
steady-state probability vector α, even though we are not
assuming that the stochastic process {Q(t) : t ≥ 0} is a BD
process. The fitted-BD approach to estimate the steady-state
distribution has the advantage that the birth-rate and death-
rate functions tend to have more structure, which makes the
fitting easier. Thus, the structure in the fitted BD rates helps
us make reasonable estimates in the tails of the steady-state
distribution, where there tend to be relatively few data points.

We previously studied this indirect fitting approach for sta-
tionary non-Markovian GI/GI/s models in [7]. We found
that the fitted BD not only provides a way to calculate the
steady-state distribution but the fitted birth-rate and death-rate
functions reveal important structural properties of the original
GI/GI/s model; see Section 6.2 for further discussion.

1.2. Steady-State Distributions for Periodic Queues

In this article, we examine this indirect BD approach for
estimating the steady-state distribution of a periodic queue,
that is, for a queue having a periodic arrival-rate function.
As the probabilities P(Q(t) = k) should themselves be peri-
odic functions of t , we first need to formulate the problem
carefully. To do so, suppose that the period is c. The sto-
chastic process {Q(t) : t ≥ 0} has a dynamic steady-state

probability mass function (PMF) α(t), 0 ≤ t < c (a fam-
ily of PMF’s indexed by t), and an overall steady-state PMF
αc if the following limits are well-defined probability vectors:

αk(t) ≡ lim
n→∞P(Q(nc + t) = k) = lim

n→∞
1

n

n∑
j=1

1{Q(jc+t)=k},

0 ≤ t < c, and

αc
k ≡ 1

c

∫ c

0
αk(t) dt = lim

t→∞
1

t

∫ t

0
1{Q(s)=k} ds, k ≥ 0.

(7)

Moreover, αc can be regarded as a special case of α in (1)
if we randomize the initial time uniformly over the interval
[0, c].

Before proceeding, we note that both the dynamic steady-
state PMF α(t) and the overall steady-state PMF αc are
of practical interest. For example, for a hospital emergency
room, we may want to know the likelihood of states such as
large queues, both averaged over all time and at fixed times.
That is, we may want to know the average congestion or the
average use of resources as well as the peak congestion or
the peak use of resources.

Thus, in this article, we focus on the BD approach to
estimating the steady-state PMF αc. We do so for the spe-
cial case of the many-server Mt/GI/s queues with periodic
arrival-rate functions, focusing especially on the case of sinu-
soidal arrival-rate functions, which are often used in studies
of staffing algorithms for queues with time-varying arrival
rates, for example, see [15, 24].

The periodic Mt/GI/s queueing models here have a non-
homogeneous Poisson process (NHPP, the Mt ) as an arrival
process, which is independent of independent and identically
distributed (i.i.d.) service times distributed as a random vari-
able S with mean E[S] = 1/μ = 1 and a general distribution,
s servers, 1 ≤ s ≤ ∞, and unlimited waiting space. More-
over, in our simulation examples we consider the stylized
sinusoidal arrival rate function

λ(t) ≡ λ (1 + β sin(γ t)) , (8)

where the cycle is c = 2π/γ . There are three parameters:
(i) the average arrival rate λ, (ii) the relative amplitude β and
(iii) the time scaling factor γ or, equivalently the cycle length
c = 2π/γ .

1.3. The Indirect Fitting Approach

For these models, we find that the indirect BD fitting
approach tends to be more efficient because the fitted BD rates
tend to have more structure than the steady-state distribution;
for example, the fitted BD rates typically are nondecreasing
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functions; for example, see Section 4. The fitted death rates
are often very nearly piecewise-linear with

μk ≡ μk(∞) ≡ lim
t→∞μk(t) ≈ μ min {k, s} , (9)

where 1/μ is the mean service time, just as for the exact for-
mulas in the corresponding M/M/s model. The fitted birth
rates

λk ≡ λk(∞) ≡ lim
t→∞λk(t) (10)

tend to be approximately linear in the most frequently visited
states, but are more complicated outside this region. Never-
theless, we find that they can be fit quite accurately using a
parametric function with only two parameters; see Section
5. In contrast, the direct steady-state distribution tends to be
quite complicated. (Henceforth, we use μk and μk(∞) inter-
changeably when we are concerned with the limiting values
or values for very large t , and similarly for other variables).

For the stationary M/M/s model, the shape of the steady-
state PMF can be understood from heavy-traffic limits for the
M/M/s model in [16] and properties of BD and diffusion
steady-state distributions discussed in [5]. The steady-state
PMF of the number in system is approximately a normal pdf
(where all servers are not busy) connected to an exponential
pdf (where all servers are busy) joined at s. For associated
nonstationary models, the steady-state PMF is even more
complicated, for example, see the left hand plot in Fig. 9.

1.4. Organization

We start in Section 2 by establishing structural results
for the fitted BD rates and the steady-state distribution in
the Mt/GI/s queue. We have separate subsections for the
Mt/M/s and Mt/GI/∞ special cases. Then in Section 3,
we establish additional structural results for the special case
of the sinusoidal arrival rate functions in (8).

We follow in Section 4 by showing the results of simu-
lation experiments investigating what these fitted rates and
steady-state distributions look like. In doing so, we confirm
and illustrate the theoretical results in Sections 2 and 3. From
the special structure of the fitted rates, we see that it should not
be difficult to fit parametric functions to the data. In Section 5,
we show that the steady-state distribution of Mt/M/s queues
can be efficiently estimated by fitting parametric functions to
the fitted BD rates; often only two parameters are needed.

Afterward in Section 6, we discuss how the fitted BD rates
are promising to help diagnose what model is appropriate
for a complex queueing system, as suggested in [7]. To illus-
trate how the present analysis can be used, we show that data
from an emergency department are consistent with a peri-
odic arrival-rate function (not a surprise), but are inconsistent
with a sequence of i.i.d. length-of-stay random variables. It is

natural to postulate the Mt/GI/∞ model with i.i.d. length-
of-stay random variables under the assumption that the length
of stay should only depend on the patient’s medical condition.
The fitted death rates show that the length-of-stay distribu-
tion should be regarded as time-varying, which is consistent
with the conclusions reached in [2, 28, 36]. In Section 6.4, we
advocate the fitted BD process as a statistical test of the much-
used Mt/M/s + M Erlang-A model. We draw conclusions
in Section 7.

2. THE PERIODIC Mt/GI/s QUEUEING MODEL

We start by develop supporting theory. Let A(t) count the
number of arrivals in the interval [0, t]. We assume that the
arrival rate function λ(t) is a periodic continuous function
with periodic cycle of length c. Let λ be the long-run average
arrival rate, with

λ ≡ 1

c

∫ c

0
λ(s) ds = lim

t→∞
A(t)

t
. (11)

Let the service times be distributed as a random variable S

with cumulative distribution function (CDF) G and mean
E[S] ≡ 1/μ < ∞. Let the (long-run) traffic intensity be
defined by ρ ≡ λE[S]/s = λ/sμ.

Let Q(t) denote the number of customers in the system at
time t and let P(Q(t) = k), k ≥ 0, be its time-dependent
PMF. As indicated for the periodic Mt/M/s model in Section
3 of [17], because of the NHPP arrival process, the stochas-
tic process {Q(nc + t) : n ≥ 0} is a regenerative stochas-
tic process for any fixed t , 0 ≤ t < c, with the events
{Q(nc + t) = 0}, n ≥ 1, being regenerative events. For
applications of this regenerative structure, we also require
that the interval between such emptiness epochs has finite
mean. That was proved for M service in Section 3 of [17]
and for various other service distributions in Section 6 of [17].
In this article, we make the assumption for the general GI

service that the interval between such emptiness epochs has
finite mean. Under this assumption, we have a well defined
periodic steady-state distribution when ρ < 1.

THEOREM 2.1 (Periodic steady-state distribution): If
ρ < 1 in the regenerative periodic Mt/GI/s queueing model,
then a dynamic steady-state PMF α(t), 0 ≤ t < c, and
an overall steady-state PMF αc are well-defined probability
vectors as in (7).

Let λk(t) and μk(t) be the fitted birth rate and death rate
in state k from data over [0, t], obtained as indicated in
Section 1. Our theoretical results will be for the limits λk(∞)

and μk(∞) obtained by letting t → ∞. In the Mt/GI/s

model, the arrival rate actually depends only on time, not the
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state. Hence, we can obtain the following explicit expressions
for the fitted rates with ample data.

THEOREM 2.2 (Fitted BD rates with ample data): In the
regenerative periodic Mt/GI/s queueing model with ρ < 1,

λk(∞) =
∫ c

0 αk(t)λ(t) dt∫ c

0 αk(t) dt
=

∫ c

0 αk(t)λ(t) dt

cαc
k

(12)

and

μk+1(∞) = αc
kλk(∞)

αc
k+1

=
∫ c

0 αk(t)λ(t) dt

cαc
k+1

. (13)

for αk(t) and αc
k in (7).

PROOF: We use the regenerative structure to focus on (i)
the expected number of arrivals in state k per regenerative
cycle divided by the expected length of a regenerative cycle
and (ii) the expected time spent in state k per regenerative
cycle divided by the expected length of a regenerative cycle.
We get (12) involving a single periodic cycle by looking at
the ratio. As the arrival rate depends only on time, we have
(12). We then can apply the detailed balance equation in (4)
to get (13). �

Theorems 2.1 and 2.2 can be applied in two ways. First, we
can apply these theorems to learn about the fitted BD rates.
They pose a strong constraint on the fitted BD rates because
the detailed balance equation in (4) must hold. As a conse-
quence, if we know either the fitted birth rates or the fitted
death rates, then the others are determined as well. We will
illustrate in our specific results below.

Second, we can apply the estimated BD rates to estimate
the steady-state probability vector αc in Theorem 2.1. Let
αe ≡ αe(∞) be the steady-state probability vector of the
fitted BD process obtained from (4). As αe coincides with
αc in (7), we can use the fitted BD model to calculate the
steady-state distribution αc in (7). To do so, we estimate the
BD rates and then apply the detailed balance equation in (4).
Moreover, by developing analytical approximations for the
fitted BD rates, we succeed in developing an approximation
for αc.

We can immediately apply Theorem 2.2 to obtain bounds
on the fitted birth rates. As formula (12) expresses λk(∞) as
an average of the arrival rate function over one cycle, we can
immediately deduce

COROLLARY 2.1 (bounds on the fitted birth rates): In the
periodic Mt/GI/s queueing model starting empty in the
distant past,

λL ≡ inf
0≤t<c

λ(t) ≤ λk(∞) ≤ sup
0≤t<c

λ(t) ≡ λU . (14)

2.1. The Periodic Mt/M/s Model

For the special case of an exponential service-time dis-
tribution, that is, for the Mt/M/s model, the stochas-
tic process {Q(t) : t ≥ 0} is Markov and more convenient
explicit formulas are available.

We first observe that an analog of Theorem 3.1 of [7] also
holds for the fitted death rates in this time-varying case.

THEOREM 2.3 (explicit death rates): For the periodic
Mt/M/s model with ρ < 1,

μk(∞) = min {k, s} μ, k ≥ 0, (15)

so that

λk(∞) = αc
k+1 min {k + 1, s} μ

αc
k

, k ≥ 0, (16)

for αc
k in (7).

PROOF: As for Theorem 3.1 of [7], (15) follows from the
lack of memory property of the exponential distribution. We
then apply (4) to get (16). However, we now show that it is
also possible to directly apply Theorem 3.1 of [7] here. We
use the fact that the Mt/M/s model has a proper dynamic
periodic steady-state distribution with a period equal to the
period of the arrival process, cf. [17]. For that model, we can
convert the arrival process to a stationary point process by
simply randomizing where we start in the first cycle. If the
period is of length d, then we start the arrival process at time
t , where t is uniformly distributed over the interval [0, d].
That randomization converts the arrival process to a station-
ary point process, so that we can apply Theorem 3.1 of [7]
(a). But then we observe that the randomization does not alter
the limit (15). �

We next observe that a geometric tail holds for the Mt/M/s

model with the same decay rate as for the associated sta-
tionary M/M/s model with arrival rate λ. Recall that a
probability vector α has a geometric tail with decay rate σ if

αk ∼ ζσ k as k → ∞, (17)

for positive constants σ and ζ , that is, if the ratio of the two
sides in (17) converges to 1 as k → ∞; see Section 3.3 of [7].

THEOREM 2.4 (geometric tail): For the Mt/M/s model
with s < ∞ and λ < sμ, the periodic steady-state PMF’s
αk(t) and αc

k in (7) possess a geometric tail as in (17) with
the same decay rate as in the associated stationary M/M/s

model with arrival rate λ; that is,

αk(t) ∼ ζtσ
k
t as k → ∞ for each t , 0 ≤ t < c,

(18)
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and

αc
k ∼ ζ cσ k

c as k → ∞, (19)

where

σc = σt = σ = ρ ≡ λ

sμ
, ζt ≥ ζ ≥ (1 − ρ) and

ζ c ≥ ζ ≥ (1 − ρ) (20)

with (ζ , σ), (ζt , σt ), and (ζ c, σc) denoting the asymptotic
parameter pairs for M/M/s, α(t), and αc. As a consequence,

λk(∞) → λ as k → ∞. (21)

PROOF: For each t in a cycle [0, c], the tail behavior can
be deduced by considering bounding discrete-time processes,
looking at the system at times t +kc, k ≥ 0. Both systems are
bounded below by the discrete-time model that has all arrivals
in each interval at the end of the interval and all departures at
the beginning of the interval, while both systems are bounded
above by the discrete-time model that has all arrivals in each
interval at the beginning of the interval and all departures
at the end of the interval. These two-discrete time systems
are random walks with steady-state distributions satisfying
(17) with common decay factor σ = ρ. A step in the ran-
dom walk is the difference of two Poisson random variables
U − D, where EU = λc and ED = sμc, which have ratio
EU/ED = λ/sμ, which in turn determines the decay rate.
A stochastic comparison [6] then implies that βt ≥ β. For
the final inequality in (20), we can compare the M/M/s sys-
tem to the corresponding M/M/1 model with a fast server,
working at rate sμ. The two systems have the same birth rate,
while the M/M/1 system has death rates that are greater than
or equal to those in the M/M/s model. Hence, the steady-
state distributions are ordered stochastically. Finally, the final
limit in (21) follows from Theorem 2.3 and (18), where here
sμσ = sμρ = λ. �

We remark in closing this section that the periodic
Mt/M/∞ has different tail behavior; hence the assumption
that s < ∞. We next start considering the IS model.

2.2. The Periodic Infinite-Server Model

We now consider the special case of the periodic
Mt/GI/∞ IS model, because it admits many explicit for-
mulas, as shown in [9, 8, 26]. If we let the model start empty
in the indefinite past with a fixed periodic arrival-rate func-
tion, then it can be regarded as in periodic steady-state at
time 0. However, to directly show the convergence to a peri-
odic steady state (prove Theorem 2.1) in this case, we assume
it starts empty at time 0.

By Theorem 1 of [9], the number in system has a Poisson
distribution for each t with mean function m(t), where

m(t) = E[S]
∫ t

0
λ(t − s)dGe(s), t ≥ 0, (22)

and Se is a random variable with the stationary-excess CDF
Ge associated with the service-time CDF G, that is,

Ge(t) ≡ P(Se ≤ t) ≡ 1

E[S]
∫ t

0
(1 − G(s)) ds, t ≥ 0.

(23)

Moreover, the departure process in the Mt/GI/∞ model is
a Poisson process with rate function where

δ(t) =
∫ t

0
λ(t − s)dG(s), t ≥ 0. (24)

For a periodic arrival-rate function with period c, we have

m(nc + t) = E[S]
∫ nc+t

0
λ(nc + t − s)dGe(s)

= E[S]
∫ nc+t

0
λ(c + t − s)dGe(s) (25)

and

δ(nc + t) =
∫ nc+t

0
λ(nc + t − s)dG(s)

=
∫ nc+t

0
λ(c + t − s)dG(s), t ≥ 0, (26)

Because these integrals are nondecreasing functions ofn, they
converge to limits as n → ∞, thus, directly proving Theorem
2.1. The periodic steady state is obtained directly by starting
empty in the indefinite past. As stated in Theorem 1 of [9],
the number in system has a Poisson distribution for each t

with periodic mean function m(t), with the same period c,
where

m(t) = E[λ(t − Se)]E[S]
= E[S]

∫ ∞

0
λ(t − s)dGe(s), t ≥ 0, (27)

Moreover, the departure process in the Mt/GI/∞ model is
a Poisson process with periodic rate function δ(t), with the
same period c, where

δ(t) = E[λ(t − S)] =
∫ ∞

0
λ(t − s)dG(s), t ≥ 0. (28)

For the special case of a sinusoidal arrival rate function, an
explicit expression for m(t) is given in Theorem 4.1 of [8].
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As a consequence, we have the following corollary.

COROLLARY 2.2:(periodic steady-state distribution in
the IS model): In the periodic Mt/GI/∞ queueing model
starting empty in the distant past, α(t), 0 ≤ t < c and αc are
well defined probability vectors with

αk(t) = πk(m(t)), 0 ≤ t < c, and

αc
k = 1

c

∫ c

0
πk(m(t)) dt , (29)

for m(t) in (27), where πk(m) be the Poisson distribution with
mean m, that is,

πk(m) ≡ e−mmk

k! , k ≥ 0.

We now consider the fitted death rates estimated with
ample data, that is, μk(∞). To obtain the departure rate
conditional on the number of busy servers, we use the fol-
lowing consequence of Theorem 2.1 of [13], which character-
izes the time-varying distributions of the remaining service
times in an Mt/GI/∞ model, conditional on the number of
busy servers, extending the classical result for the M/GI/∞
model.

THEOREM 2.5:(remaining service times conditional on
the number): Consider the periodic Mt/GI/∞ queueing
model starting empty in the distant past, where the service-
time CDF G has pdf g. Conditional on Q(t) = k, the
remaining service times at time t are distributed as k i.i.d.
random variables with pdf

gk,t (x) =
∫ ∞

0 λ(t − u)g(x + u) du∫ ∞
0 λ(t − u)Gc(u) du

, x ≥ 0,

which is independent of k.

We now apply Theorem 2.5 to obtain the following general
result about the fitted death rates.

THEOREM 2.6 (fitted death rates): Consider the Mt/GI

/∞ queue with a periodic arrival rate function in the setting
of Theorem 2.5. Conditional on Q(t) = k, the departure rate
at time t is

δk(t) = kδ1(t) = kgk,t (0) = kμE[λ(t − S)]
E[λ(t − Se)] = kδ(t)

m(t)
.

(30)

Hence, paralleling the fitted birth rate in (12),

μk(∞) =
∫ c

0 αk(t)δk(t) dt

cαc
k

= k
∫ c

0 αk(t)(δ(t)/m(t)) dt

cαc
k

,

k ≥ 1, (31)

where αk(t), αc
k , m(t) and δ(t) are given in (29), (27) and

(28).

PROOF: First, we get (30) directly from Theorem 2.5 and
formulas (27) and (28). The first term in (31) can be taken as
a definition. Then we apply (30). �

Paralleling Corollary 2.1, Theorem 2.6 implies bounds for
the fitted death rates.

COROLLARY 2.3 (bounds on the fitted death rates): In
the periodic Mt/GI/∞ queueing model starting empty in
the distant past,

μL ≡ inf
0≤t<c

{δ(t)/m(t)} ≤ μk(∞)

k

≤ sup
0≤t<c

{δ(t)/m(t)} ≡ μU . (32)

for m(t) in (27) and δ(t) in (28).

PROOF: Theorem 2.6 expresses μk(∞)/k as an average
of δ(t)/m(t) over one cycle. �

We get equality of the upper and lower bounds in (32),
recovering (15) for s = ∞, if S is exponential, because then
δ(t) = m(t)μ as Se is distributed the same as S. Indeed, we
also get an associated negative result, because it is known that
Se is distributed the same as S if and only if S is exponential.
Thus, we have the following consequence.

COROLLARY 2.4:(direct proportionality of the fitted
death rates): In the periodic Mt/GI/∞ queueing model with
service-time S having mean E[S] = 1/μ,

μk = kμ for all k ≥ 0 (33)

and for all periodic arrival-rate functions λ if and only if S is
exponential.

We now apply Theorem 2.5 to deduce a rate conserva-
tion property for this Mt/GI/∞ model in each state over a
periodic cycle.

THEOREM 2.7 (arrival and departure rates over a cycle):
For the periodic Mt/GI/∞ queueing model starting empty
in the distant past,∫ c

0
αk(t)λ(t) dt =

∫ c

0
αk(t)δ(t) dt for each k ≥ 0

(34)

for αk(t) in (29), so that∫ c

0
λ(t) dt =

∫ c

0
δ(t) dt . (35)

Naval Research Logistics DOI 10.1002/nav
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PROOF: As the arrival rate at time t is λ(t), independent
of the state k, we can apply first (4) and then (30) to obtain

∫ c

0
αk(t)λ(t) dt = cαc

kλk(∞) = cαc
k+1μk+1(∞)

=
∫ c

0
αk+1(t)δk+1(t) dt

=
∫ c

0
αk+1(t)(k + 1)[δ(t)/m(t)] dt

=
∫ c

0
αk(t)δ(t) dt , (36)

as in (34). We add over k to get (35). �

3. THE IS MODEL WITH A SINUSOIDAL
ARRIVAL-RATE FUNCTION

We now consider the special case of the periodic
Mt/GI/∞ IS model with the sinusoidal arrival rate function
in (8). For this model, we draw on previous results established
in [8].

3.1. A General Service-Time Distribution

We can apply Corollary 2.1 to obtain explicit bounds on
the fitted birth rates.

COROLLARY 3.1 (bounds on the fitted birth rates): For
the Mt/GI/∞ model with sinusoidal arrival rate function
in (8) having 0 < β < 1, starting empty in the distant past,

0 < (1 − β) ≤ λk(∞)

λ
≤ (1 + β) < 2 for all k ≥ 0.

(37)

We now establish asymptotic results for the extreme cases
in which the cycles are very long (γ ↓ 0) or are very short
(γ ↑ ∞). We directly show the dependence on γ ; for exam-
ple, by writing λk(∞; γ ). The following result is consistent
with the known results that the arrival process converges to a
stationary Poisson process, and the steady-state distribution
converges to a Poisson distribution with mean λ/μ as γ ↓ 0;
see Theorem 1 of [29].

THEOREM 3.1 (short cycles): For the Mt/GI/∞ model
with sinusoidal arrival rate function in (8),

λk(∞; γ ) → λ and μk+1(∞; γ ) → (k + 1)μ

as γ ↑ ∞ for all k ≥ 0. (38)

PROOF: First, it is helpful to rewrite (12) so that the inte-
grals are over a fixed interval, independent of γ . By making
a change of variables s = γ t , we obtain

λk(∞; γ ) =
∫ 2π/γ

0 αk(t)λ(t) dt∫ 2π/γ

0 αk(t) dt
=

∫ 2π

0 αk(s/γ )λ(s/γ ) ds∫ 2π

0 αk(s/γ ) ds

(39)

The conclusion follows in two steps. First, λ(s; γ ) → λ as
γ ↑ ∞, uniformly in s over [0, 2π ]. (Recall that λ(0; γ ) = λ

because sin(0) = 0 and that sin(t) → 0 as t ↓ 0.) Sec-
ond, by Theorem 4.5 of [8], m(t ; γ ) → λ/μ as γ ↑ ∞,
uniformly in t . Hence, αk(t ; γ ) → αk(t ; ∞) as γ ↑ ∞, uni-
formly in t , where αk(t ; ∞) is the Poisson PMF with mean
λ/μ, independent of t . For the fitted death rates, we apply (4)
to write

μk+1(∞; γ ) = λk(∞; γ )αc
k;γ

αc
k+1;γ

→ λαc
k;∞

αc
k+1;∞

= (k + 1)μ

as γ ↑ ∞, (40)

because αk(t ; ∞) is the Poisson PMF with mean λ/μ

independent of t . �

We now turn to the case of long cycles, where the PSA is
appropriate. Thus, the steady-state PMF αc is the average of
the individual steady-state PMF’s for each t in the cycle; see
Theorem 1 of [30]

THEOREM 3.2 (long cycles): For the Mt/GI/∞ model
with sinusoidal arrival rate function in (8),

λk(∞; γ ) → (k + 1)μαc
k+1;0

αc
k;0

and

μk+1(∞; γ ) → (k + 1)μ as γ ↓ 0 (41)

for all k ≥ 0, where αc
k;0 is the time average of αc

k(t ; 0) which
is the Poisson PMF with mean λλ1(t)/μ, where λ1(t) =
1 + β sin(t), 0 ≤ t ≤ 2π .

PROOF: By Theorem 4.4 of [8], m(t/γ ) → λ(t)/μ as
γ ↓ 0 uniformly in t . Hence, αk(t ; γ ) → αk(t ; 0) uniformly
in t . We then apply this starting from (39), getting

λk(∞)

=
∫ 2π/γ

0 αk(t)λ(t) dt∫ 2π/γ

0 αk(t) dt
=

∫ 2π

0 αk(s/γ )λ(s/γ ) ds∫ 2π

0 αk(s/γ ) ds

→
∫ 2π

0 αk(s; 0)λ(s; 0) ds∫ 2π

0 αk(s; 0) ds
=

∫ 2π

0 (k + 1)μαk+1(s; 0) ds∫ 2π

0 αk(s; 0) ds

= (k + 1)μαc
k+1;0

αc
k;0

,
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because αk(s; 0) is the Poisson PMF with mean λ(s; 0)/μ at
time s. �

3.2. The Mt/M/∞ Model with Sinusoidal Arrival Rate

In this section, we determine tight bounds for the fitted
birth rates for the Mt/M/∞ model with sinusoidal arrival
rate. Tightness is verified by showing that these bounds are
approached in the heavy-traffic limit.

As shown in [8], the Mt/M/∞ model with sinusoidal
arrival rate function in (8) is especially tractable. From (15)
of [8], the number in system, Q(t), has a Poisson distribution
for each t with mean

m(t) ≡ E[Q(t)] = λ(1 + s(t)),

s(t) = β

1 + γ 2
(sin(γ t) − γ cos(γ t)) . (42)

Moreover,

sU ≡ sup
t≥0

s(t) = β√
1 + γ 2

(43)

and

s(tm0 ) = 0 and ṡ(tm0 ) > 0 for tm0 = cot−1(1/γ )

γ
.

(44)

The function s(t) increases from 0 at time tm0 to its maximum
value sU = β/

√
1 + γ 2 at time tm0 + π/(2γ ). The interval

[tm0 , tm0 + π/(2γ )] corresponds to its first quarter cycle.
Let Z be a random variable with the steady-state PMF of

Q(t); its PMF is a mixture of Poisson PMF’s. In particular,

P(Z = k) = γ

2π

∫ 2π/γ

0
P(Q(t) = k) dt , k ≥ 0, (45)

The moments of Z are given by the corresponding mixture

E[Zk] = γ

2π

∫ 2π/γ

0
E[Q(t)k] dt , k ≥ 1,

so that E[Z] = λ. For more details, see [33].
We use (42) to improve the bounds in Corollary 3.1 and

obtain a simple proof of Theorem 3.1 in this case.

THEOREM 3.3:(bounds for the fitted birth rates for the
Mt/M/∞ model with sinusoidal arrival rate function): In
the Mt/M/∞ IS queueing model with the sinusoidal arrival
rate function in (8), starting empty in the distant past,

λ

(
1 − β√

1 + γ 2

)
≤ λk(∞) ≤ λ

(
1 + β√

1 + γ 2

)

for all k ≥ 0. (46)

and

λk(∞) → λ as γ → ∞ f or all k ≥ 0. (47)

PROOF: We apply (4) to obtain the expression

(k + 1)λk(∞)

μk+1(∞)
= αc

k+1

αc
k

, k ≥ 0. (48)

As we have M service, μk+1(∞) = (k +1)μ. Hence, we can
write

λk(∞) = (k + 1)μαc
k+1

αc
k

, k ≥ 0. (49)

As the integrand in the integral representation of αc
k+1 in (29)

differs from the the integrand in the integral representation
of αc

k by an extra factor of m(t)/(k + 1), we can insert the
bounds on m(t) in (18) of [8] to obtain (46). Clearly, (47)
follows from (46). �

We conclude by deriving a heavy-traffic limit showing that
the lower and upper bounds established in Theorem 3.3 are
attained in the heavy-traffic limit. This limit involves λ, which
is both the long-run average arrival rate and the long-run aver-
age number of busy servers. In the limit λ → ∞, any fixed
state k, independent of λ, will thus be a small state in the limit,
so we should expect to see the minimum value of the increas-
ing fitted birth rate function in the first limit in (50) below. To
have a relatively large state compared with λ asymptotically
in the limit λ → ∞, we let the state index be

⌊
mλ

⌋ + k for
suitably large m in the second limit. That yields the upper
bound.

THEOREM 3.4 (heavy-traffic limits): In the Mt/M/∞
IS queueing model with periodic arrival rate function, starting
empty in the distant past,

λk(∞)

λ
→ 1 − β√

1 + γ 2
as λ → ∞ and

λ�mλ�+k(∞)

λ
→ 1 + β√

1 + γ 2
as λ → ∞

for m > 1/loge2 ≈ 1.44. (50)

PROOF: We expand (49), writing

λk(∞) = αc
k+1(k + 1)μ

αc
k

= μ
∫ c

0 e−m(t)m(t)k+1 dt∫ c

0 e−m(t)m(t)k dt
(51)

In each case of (50), we apply Laplace’s method to the numer-
ator and denominator of (51), after premultiplying both by the
same appropriate term (so this term cancels). Let x ≡ λ/μ
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and consider the first expression. In particular, after multiply-
ing the numerator and denominator by ex/xk , we can express
the denominator as

∫ c

0
e−xs(t)(1 + s(t))k dt ∼

√
2π

x|s ′′(x0)| (1 + s(x0))
kexs(x0)

as x → ∞,

where ∼ means that the ratio of the two sides converges to 1,
s(t) ≡ m1(t)−1 for m1(t) in (42), where c = 2π/γ and x0 =
c − cot−1(1/γ ))/γ and m(x0) = (λ/μ)(1 − β/(

√
1 + γ 2)),

by virtue of (16) and (18) in [8]. (The minus sign in the
exponent of e−xs(t) means that we look for the most negative
value of s(t)). We have used the fact that the integral is dom-
inated by an appropriate modification of the integrand at a
single point when x becomes large. The ratio in (51), thus,
approaches 1 + s(x0).

For the second expression, after multiplying the numerator
and denominator by ex/xx+k , we can express the denominator
as ∫ c

0
e−xs(t)(1 + s(t))mx+k dt

=
∫ c

0
e+x[mloge{1+s(t)}−s(t)](1 + s(t))k dt

∼
√

2π

x|f ′′(x0)| (1 + s(x0))
kexf (x0) as x → ∞,

where f (t) ≡ mloge {1 + s(t)} − s(t), so that x0 = (c/4) +
cot−1(1/γ ))/γ and m(x0) = (λ/μ)(1 + β/(

√
1 + γ 2)),

again by (16) and (18) in [8]. (The plus sign in the expo-
nent of e+x[mloge{1+s(t)}−s(t)] with m > 1/log22 means that we
look for the most positive value of s(t)). The ratio in (51)
again approaches 1 + s(x0). �

4. SIMULATION EXPERIMENTS

We now investigate what the fitted birth rates, death rates
and steady-state distributions look like in these Mt/GI/s

models by conducting simulation experiments. In doing so,
we illustrate and confirm the theoretical results in Sections 2
and 3.

4.1. Designing the Simulation Experiments

Our base model is the Mt/M/∞ model with the sinu-
soidal arrival-rate function in (8), which is the special case
of the Mt/GI/s model in which s = ∞, S has an expo-
nential distribution and β = 10/35. We generated the NHPP
arrival process by thinning a Poisson process with rate equal
to the maximum arrival rate over a sine cycle. As we use

relative amplitude β = 10/35, with λ = 35 a proportion
10/(35 + 10) = 10/45 = 0.222 of the potential arrivals
were not actual arrivals. The fitted BD rates as well as the
empirical mass function were estimated using 30 independent
replications of 1.5 million potential arrivals before thinning.
Overall, that means about 45×(35/45) = 35 million arrivals
in each experiment. Multiple i.i.d. repetitions were performed
to confirm high accuracy within the regions shown. To com-
pare the transient behavior of the fitted BD process to the
original process, we simulated a separate version of the fitted
BD process in a similar manner.

4.2. The Mt/M/s Models

Figures 1 and 2 show the estimated BD rates for the
Mt/M/s models with s = ∞ and s = 40, respectively.

The estimated BD rates yield corresponding estimates of
the steady-state distribution by solving the local balance
equation (4). The estimated steady-state distributions for the
Mt/M/∞ model with the sinusoidal arrival rate function in
(8) having parameters λ = 35 and β = 10/35 for different
ranges of γ are shown in Fig. 3. On the left (right) is shown
different cases varying in a power of 10 (2). Many of the plots
on the left coincide, so that we see convergence as γ ↑ ∞
and as γ ↓ 0. Indeed, the relevant ranges for intermediate
behavior can be said to be 1/8 ≤ γ ≤ 8 for these parameters
λ = 35 and β = 10/35, with the limits serving as effective
approximations outside this interval.

4.3. Different Service Distributions: Near Insensitivity

We have also conducted corresponding simulation exper-
iments for Mt/GI/s models with nonexponential service-
time distributions. Figures 4 and 5 show the fitted rates for the
Mt/GI/∞ model with H2 and E2 service distributions with
squared coefficient of variation SCV c2 = 2 and c2 = 1/2,
respectively, just as in Section 2 of [7]. Figure 6 shows the
associated steady-state mass functions for H2 and E2 service
times, which also look similar.

Indeed, the agreement is so good for these infinite-server
models that it is natural to wonder whether the fitted birth
rate, fitted death rate and steady-state PMF with s = ∞ have
an insensitivity property, that is, depend on the service-time
distribution only through its mean. However, closer exami-
nation show that it is not so. We do see that the insensitivity
property does hold asymptotically as γ ↓ 0 for s = ∞,
which is to be expected. In that limit, the PSA approximation
is valid [31], so that at time t the model has a time-varying
distribution equal to the steady-state distribution of the sta-
tionary M/GI/∞ model with constant arrival rate equal to
λ(t).
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Figure 1. Fitted birth rates (left) and fitted death rates (right) for the Mt/M/∞ model with the sinusoidal arrival rate function in (8) having
parameters λ = 35 and βλ = 10 and 7 values of γ ranging from 1/8 to 8. [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

Figure 2. Fitted birth rates (left) and fitted death rates (right) for the Mt/M/40 queue with the sinusoidal arrival rate function in (8) having
parameters λ = 35 and βλ = 10 and 7 values of γ ranging from 1/8 to 8. [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

Figure 3. the estimated steady-state number in the Mt/M/∞ model with the sinusoidal arrival rate function in (8) having parameters λ = 35
and β = 10/35 for different ranges of γ . [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 4. Fitted birth rates (left) and fitted death rates (right) for the Mt/H2/∞ model with the sinusoidal arrival rate function in (8) having
parameters λ = 35 and βλ = 10 and 7 values of γ ranging from 1/8 to 8. (The service SCV is c2 = 2). [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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Figure 5. Fitted birth rates (left) and fitted death rates (right) for the Mt/E2/∞ model with the sinusoidal arrival rate function in (8) having
parameters λ = 35 and βλ = 10 and 7 values of γ ranging from 1/8 to 8. [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

Figure 6. Fitted steady-state mass functions for the Mt/H2/∞ model (left) and the Mt/E2/∞ model (right) for with the sinusoidal arrival
rate function in (8) having parameters λ = 35 and βλ = 10 and 7 values of γ ranging from 1/8 to 8. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

Figures 7–9 illustrate the full range of possibilities by
showing the estimated birth rates, death rates and steady-
state PMF’s for the Mt/GI/∞ model with the sinusoidal
arrival rate function in (8) having parameters λ = 100 and
β = 10/35 and 4 different service-time distributions for
γ = 1/2 (left) and γ = 2 (right). For γ = 1/2, we again see
near-insensitivity, but for γ = 2, we see significant depen-
dence on the service-time distribution. Further study shows
that the difficulty primarily arises for large values of γ , which
are not so common in applications. We also see that changing
only the service-time PMF can affect the estimated birth rates
as well as the estimated death rates, and then the final steady-
state PMF. The interesting bimodal form of the steady-state
PMF in some cases is investigated in [33]. The two modes
roughly correspond to the two extremes of the PMF; the
process Q(t) tends to spend more time near these extremes.

4.4. Transient Behavior

It should be evident that the transient behavior of the fitted
BD process and the original process have significant differ-
ences. In particular, there is no periodicity in the fitted BD
process. The differences are particularly striking with small
γ , that is, for long cycles c(γ ) = 2π/γ . That is dramatically
illustrated in Fig. 10, which compares the sample paths of

the number in system of the two processes for the Mt/M/∞
queue with the sinusoidal arrival rate function in (8) having
parameters λ = 100 and β = 10/35 and γ = 0.01. As
γ = 0.01, the cycle length is 628. Hence, in the time interval
[0, 4000] we see a bit more than six cycles, but there is no
periodic behavior in the fitted BD process.

However, the sample paths are not always so strikingly
different. Indeed, the sample paths get less different as γ

increases. Figures 11 and 12 illustrate by showing the sam-
ple paths for γ = 1 and γ = 10 over the interval [0, 40].
For γ = 1, there are again 6.28 sine cycles, but for γ = 10,
there are 62.8 cycles. In these cases, the sample paths look
much more similar. From Fig. 11 and 12, we conclude that
we might well use the fitted BD process to describe the tran-
sient behavior as well as the steady-state behavior for γ ≥ 1,
that is, for relatively short cycles. Periodic arrival rates with
short cycles often arise in practice in appointment-generated
arrivals, where the actual arrivals are randomly distributed
about the scheduled appointment times; see [22, 23] and
references therein.

4.5. Limits for Small and Large γ

The behavior of the fitted BD process can be better
understood by limits for the steady-state distribution of the
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Figure 7. Estimated death rates for the Mt/GI/∞ model with the sinusoidal arrival rate function in (8) having parameters λ = 100 and
β = 10/35 and four different service-time distributions for γ = 1/2 (left) and γ = 2 (right). [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

Figure 8. Estimated birth rates for the Mt/GI/∞ model with the sinusoidal arrival rate function in (8) having parameters λ = 100 and
β = 10/35 and four different service-time distributions for γ = 1/2 (left) and γ = 2 (right). [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

Figure 9. Estimated steady-state PMF’s for the Mt/GI/∞ model with the sinusoidal arrival rate function in (8) having parameters λ = 100
and β = 10/35 and four different service-time distributions for γ = 1/2 (left) and γ = 2 (right). [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

Mt/M/∞ model as γ ↑ ∞ and as γ ↓ 0. First, as
γ ↑ ∞, even though the arrival rate function oscillates
more and more rapidly, the cumulative arrival rate function
�(t) ≡ ∫ t

0 λ(s) ds converges to the linear function λt . Conse-
quently, the arrival process converges to a stationary Poisson

process (M) with the average arrival rate λ and the steady-
state number in system converges to the Poisson steady-state
distribution in associated the stationary M/M/∞ model with
mean λ. That follows from Theorem 1 of [29] and references
therein; [34]. As a consequence, as γ ↑ ∞ we must have
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Figure 10. Sample paths of the number in system for the original process (left) and the fitted BD process (right) for the Mt/M/∞ queue
with the sinusoidal arrival rate function in (8) having parameters λ = 100 and β = 10/35 and γ = 0.01. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

Figure 11. Sample paths of the number in system for the original process (left) and the fitted BD process (right) for the Mt/M/∞ queue
with the sinusoidal arrival rate function in (8) having parameters λ = 100 and β = 10/35 and γ = 1.0. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

the fitted birth rates in the fitted BD process converge to the
constant birth rates of a Poisson process, and that is precisely
what we see as γ increases in Fig. 1.

Second, as γ ↓ 0, the cycles get longer and longer, so
that the system behaves at each time t as a stationary model
with the instantaneous arrival rate at that particular time t .
That is the perspective of the pointwise stationary approxi-
mation (PSA) for queues with time-varying arrival rates [14],
which is asymptotically correct for the Mt/M/∞ model as
γ ↓ 0. That follows from Theorem 1 of [30]. As a conse-
quence, as γ ↓ 0 we must have the fitted birth rates in the
fitted BD process converge to a proper limit, corresponding
to an appropriate average of the birth rates seen at each time

t for t in a sinusoidal cycle, and that is precisely what we
see as γ increases in Fig. 1. In particular, the limit Z0 of the
steady-state variable Z ≡ Zγ as γ ↓ 0 is the mixture of
the steady-state distributions. That is, by combining the PSA
limit with (45), we see that

P(Z0 = k) = 1

2π

∫ 2π

0
P(Q0(t) = k) dt , k ≥ 0, (52)

where Q0(t) has a Poisson distribution with mean m0(t) =
λ1(t), where we let γ = 1. In particular, this limit as γ ↓ 0
becomes independent of γ .
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Figure 12. Sample paths of the number in system for the original process (left) and the fitted BD process (right) for the Mt/M/∞ queue
with the sinusoidal arrival rate function in (8) having parameters λ = 100 and β = 10/35 and γ = 10. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

These two limits as γ ↑ ∞ and as γ ↓ 0 can be seen by
comparing the sample paths of the fitted BD processes for
different γ . This is especially interesting for the long-cycle
case. Figure 13 illustrates by showing the sample paths of the
number in system for the fitted BD process in the Mt/M/∞
queue with the sinusoidal arrival rate function in (8) having
parameters λ = 100 and β = 10/35 and γ = 0.1 (left) and
γ = 0.01 (right). The plots of different interval lengths show
that the fitted BD processes are very similar.

5. ESTIMATING THE STEADY-STATE
DISTRIBUTION

In this section, we investigate how we can efficiently
estimate the steady-state distribution by fitting parametric
functions to the estimated BD rates and then solve the local
balance equation (4). We illustrate what should be possible
in applications by considering the base Mt/M/∞ IS model
with a sinusoidal arrival-rate function. Figures 1–6 in Section
4.2 show what to expect. In applications it is likely to be
appropriate to use different fitting functions, but the general
approach should be the same.

5.1. The Base Infinite-Server Model with Sinusoidal
Arrival Rate Function

First, for Mt/GI/∞ IS model with E[S] = 1, we do not
need to consider the death rates, because we have μk ≈ k

throughout; for M service, we have equality by Theorem
2.3. Hence, we concentrate on the birth rates, initially using
the same large sample as before. For larger values of γ , a

linear function works well for the fitted birth rate, but not for
smaller values of γ . As our parametric function, we choose

λ
p

k = a arctan b(k − c) + d, (53)

which is nondecreasing in k with finite limits as k increases
and decreases, and has the parameter four-tuple (a, b, c, d).
We let c = d = λ, so that leaves only the two parameters a

and b.
Figures 14–16 show the fitted mass function and birth rates

for the three gamma values: γ = 1/8, 1/2 and 2, respectively.
These were constructed using the Matlab curve fitting tool-
box, which fits by least squares. The figures show that the
special arctangent function in (53) does much better than a
linear fit for small γ , but a simple linear fit works well for
large γ . The parameter pairs in the three cases were (a, b) =
(7.541, 0.125), (6.682, 0.1253), and (3.577, 0.0744), respec-
tively. The main point is that a parametric fit based on only
two parameters yields an accurate fit to a mass function that
can be quite complicated. The regular structure of the BD
rates make it possible to obtain relatively good (at least rea-
sonable) estimates of the steady-state in distribution in the
tails where there tend to be few data points.

We make some further comments about Figs. 14–16. As
γ → ∞, the cycles become very short, so that the arrival-
rate function oscillates very rapidly, but the cumulative arrival
rate function approaches the function λt , and so the arrival
process approaches a stationary Poisson process as observed
in Section 4.5. Accordingly, the steady-state distribution is
asymptotically Poisson, which is approximately normal. We
see that already in Fig. 16 for γ = 2. The distributions with
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Figure 13. Sample paths of the number in system for the fitted BD process in the Mt/M/∞ queue with the sinusoidal arrival rate function
in (8) having parameters λ = 100 and β = 10/35 and γ = 0.1 (left) and γ = 0.01 (right). [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

Figure 14. Fitted mass function (left) and birth rates (right) for the Mt/M/∞ model with the sinusoidal arrival rate function in (8) having
parameters λ = 35, βλ = 10 and γ = 0.125. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

smaller γ (longer cycles) are the average of Poisson distri-
butions, but Fig. 14 show that they are more complicated;
see [33].

5.2. Small Samples

To illustrate the advantages of the arctan BD fit, we also
conducted experiments evaluating the estimators with smaller
sample sizes. Figures 17 and 18 illustrate for the model with
γ = 0.125 in Fig. 14, but with the sample size greatly
reduced.

Now, we consider a smaller experiment with about 25,000
potential arrivals instead of the 45 million potential arrivals
(resulting in about 35 million actual arrivals) in our previ-
ous experiments. In particular, we simulate 10 replications

of the model over a full cycle. As γ = 1/8, a cycle length is
2π/γ ≈ 50. As the average arrival rate is λ = 35, there are
about 35 × 50 = 1750 arrivals per cycle.

We first take measures to ensure that the system starts
approximately in dynamic periodic steady state. To do that,
we extract our data from a longer run that has already reached
steady state, which for our γ = 1/8 and all γ not too large,
is in the first cycle, after starting empty. we start the data col-
lection at the first time t such that Q(t) = 15 after a time
t0 for which Q(t0) = 45 and we terminate the first time that
condition is repeated, which invariably is approximately a
full cycle after the data collection began. (We remark that the
sampling procedure is similar to the way that the speed ratios
were estimated in [7]).
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Figure 15. Fitted mass function (left) and birth rates (right) for the Mt/M/∞ model with the sinusoidal arrival rate function in (8) having
parameters λ = 35, βλ = 10 and γ = 0.5. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 16. Fitted mass function (left) and fitted birth rates (right) for the Mt/M/∞ model with the sinusoidal arrival rate function in (8)
having parameters λ = 35, βλ = 10 and γ = 2.0. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 17. A comparison of the arctan BD fit to a small-sample direct fit of the steady-state probability mass function (left) and birth rates
(right) for the Mt/M/∞ model with the sinusoidal arrival rate function in (8) having parameters λ = 35, βλ = 10, and γ = 0.125. Data are
collected from 10 cycles as indicated. The previous large-sample fit is used to represent the “true value.” [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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Figure 18. A comparison of the arctan BD fit to a small-sample direct fit of the steady-state tail probabilities (left) and (right) for the
Mt/M/∞ model in Figure 17. The large-sample fit is used to represent the “true value.” [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

That procedure satisfies three requirements: (i) the system
starts approximately in dynamic periodic steady state; (ii)
the terminal state coincides with the initial state, so that the
two empirical mass functions α and αe constructed from the
directly estimated BD rates coincide, as indicated in Section
1.1, and (iii) we average over roughly a full cycle (or more
generally, multiple full cycles). In addition, we get a smoother
fit by fitting the parametric function in (53) to the estimated
birth rates.

Figure 17 shows that both estimated steady-state PMF’s are
quite good considering the small sample size. Our sampling
procedure clearly helps for both the direct estimation and the
arctan BD fit. The advantage of the arctan fit is perhaps most
evident in Fig. 18, which shows the estimated tail probabili-
ties. Evidently, the arctan BD fit can “extrapolate” reasonably
to regions where there are few data points or none at all.
However, as in all such extrapolations, caution is required.
Justification of such extrapolations may in part depend on
extra information about what we know about the system.

The observations above are amplified by considering even
smaller sample sizes. To illustrate, we now repeat the exper-
iment using the data from only a single cycle. (The sample
size is now further reduced by a factor of 10). Figures 19 and
20 show the analogs of Figs. 17 and 18.

6. STOCHASTIC GRAY-BOX MODELING
OF QUEUEING SYSTEMS

In addition to investigating an alternative way to estimate a
steady-state distribution from data, as illustrated by Section 5,
this paper further explores how fitting a BD process to queue-
ing system data can be used as a gray-box model, which was
begun in [7].

6.1. A Diagnostic Tool to Determine What Model
is Appropriate

The goal is to have a diagnostic tool to help evaluate
what stochastic queueing model is appropriate for complex
queueing systems. Actual service systems may have complex
time-dependence and stochastic dependence that may be dif-
ficult to assess directly. Fitting a BD process may be a useful
way to probe into system data. In [7] we referred to this as
gray-box stochastic modeling. In [7], we applied this analysis
to various conventional GI/GI/s queueing models. We saw
how the fitted rates

{
λk , μk

}
differ from the corresponding

M/M/s model, for given overall arrival rate λ and individ-
ual service rate μ. We saw that they differ in systematic ways
that enabled us to see a signature of the GI/GI/s model.

Here, we have considered many-server Mt/GI/s queue-
ing models with sinusoidal periodic arrival rate functions. We
find that the fitted death rates usually have the same simple
linear structure as seen for GI/GI/s models, but we find sig-
nificant differences in the fitted birth rates. Overall, we see a
signature of the Mt/GI/s model with sinusoidal arrival rates.

6.2. Comparing the Fitted Rates in the Mt/M/∞ and
GI/M/∞ Models

Our main hypothesis is that the fitted BD rates can reveal
features of the underlying model. To compare the impact of
predictable deterministic variability in the arrival process, as
manifested in a time-varying arrival rate function, to stochas-
tic variability, we see how the fitted birth rates differ in the
Mt/M/∞ IS model with a sinusoidal arrival rate function
and the stationary GI/M/∞ model with a renewal process
having an interarrival time more variable than the exponential
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Figure 19. A repeat of the experiment in 17 with data from one cycle instead of 10 cycles. Estimates are shown of the steady-state probability
mass function (left) and birth rates (right). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 20. A comparison of the arctan BD fit to a small-sample direct fit of the steady-state tail probabilities (left) and (right) with data
from one cycle instead of ten cycles. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

distribution. (When the service-time distribution is exponen-
tial with mean 1, the fitted death rates coincide with the exact
death rates in both cases, that is, μk = k; see Theorem 3.1 of
[7] and Theorem 2.3 here.) However, the fitted birth rates are
revealing.

In [7], we found that, when the actual arrival rate is n (pro-
vided that n is not too small), with the service rate fixed at
μ = 1, the fitted birth rates in state k, denoted by λn,k , tended
to have the form

λn,k ≈ (n + b(k − n)) ∨ 0, (54)

where b ≈ 1 − 2/(1 + c2
a), a constant in the interval [−1, 1],

with c2
a being the SCV, (variance divided by the square of

the mean) of the interarrival-time distribution of the renewal
arrival process. This is illustrated in Fig. 21, which shows
the fitted birth rates and death rates in five GI/M/∞ mod-
els with arrival rate λ = 39 and service rate μ = 1. The
five interarrival-time distributions are Erlang E4, E2, M , and
hyperexponential, H2 with c2

a = 2 and c2
a = 4.

Figure 21 shows that the fitted birth rates tend to be
approximately linear (over the region where the process vis-
its relatively frequently, so that there are ample data for
the estimation), with λn,n = n and slope increasing as the
variability increases. This is consistent with greater vari-
ability in the arrival process leading to a larger steady-state
number in system. For c2

a < 1, the slope is negative; for
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Figure 21. Fitted birth rates and death rates for five G/M/∞ models with λ = 39 and μ = 1. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

Figure 22. The estimated drift functions (birth rates minus death rates) in (55) for the G/M/∞ model in Figure 21 (left) and the Mt/M/∞
model in Figure 1 (right). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

c2
a > 1, the slope is positive. As c2

a increases to ∞, the slope
approaches 1.

Figure 21 should be compared to Fig. 1 in Section 4.2,
which shows the fitted rates for the Mt/M/∞ IS model
with the sinusoidal arrival rate function in (8). Very roughly,
we expect the predictable variability of a nonhomogeneous
Poisson arrival process with a periodic arrival rate function
to correspond approximately to a stationary model with a
renewal arrival process having an interarrival-time distrib-
ution that is more variable than an exponential distribution
[27]. That means we expect to see something like the fitted
birth rates with increasing linear slopes in Fig. 21. And indeed
that is exactly what we do see in Fig. 1, but restricted to a
subinterval centered at the long-run average λn,n = n.

The evolution of a BD queue primarily depends on the
BD rates λk and μk through their difference, the drift δk ≡
λk − μk+1, k ≥ 0. To see the relevance of the drift, note that

αk+1

αk

> (=<)1 if and only if δk > (− <)0. (55)

Hence, we see the modes of α through the zeroes of δ.
We plot the drift functions associated with the G/M/∞

and Mt/M/∞ models in Figs. 21 and 1 in Fig. 22. These
show that there is drift toward the overall mean in all cases,
which is stronger when there is less variability.

Similar results hold for models with finitely many servers.
We show the results paralleling Fig. 1 for the case of 40
servers in Fig. 2. Figure 2 shows the piecewise-linear death
rates, with two linear components, joined at the number of
servers that are characteristic of multiserver queues. Figure 2
of [7] displays similar plots for GI/GI/s queues. How-
ever, the estimated birth rates in Figs. 1 and 2 are unlike
those of any GI/GI/s queue. Theorems 3.3 and 3.4 estab-
lish finite bounds and heavy-traffic limits for the fitted birth
rates, consistent with these figures.

6.3. An Emergency Room Example

To illustrate how the results here can be applied, we show
the fitted BD rates obtained from 25 weeks of data from
an Israeli emergency department studied in [36]. Figure 23
shows the estimated birth rate (left), death rate (center) and
death rate divided by the state (right) for the ED over a 25-
week period. The ED is the same as studied in Section 3 of
[2]. The data used in [36] included about 25, 000 patient vis-
its to the internal unit of the ED over a 25 week period from
December 2004 to May 2005.

It is well known that the arrivals to an ED vary strongly over
time, just as in most service systems; see Fig. 9 of [15]. Thus,
a natural candidate rough aggregate model for an ED is the
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Figure 23. The fitted state-dependent birth rate λk (left), death rate μk (center) and death rate divided by the state, μk/k (right) obtained
from arrival and departure data in an Israeli emergency department over 25 weeks, taken from [36]. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

Mt/GI/∞ queue, which has a NHPP as its arrival process,
i.i.d. service (length-of-stay, LoS) times with some general
(nonexponential, perhaps lognormal) distribution, s servers,
unlimited waiting space and service in order of arrival. The
assumption that the length-of-stay random variables are i.i.d.
might be postulated under the assumption that the length of
stay should only depend on the patient’s medical condition.

The fitted BD process is important as a diagnostic tool
because it shows that the data are inconsistent with the
Mt/GI/∞ model. The present paper is essential for inter-
preting Fig. 23. First, Figures 1, 2, and 4 in Sections 6.2
and 4.3 provide strong support for two conclusions: First, as
anticipated, the fitted birth rates are roughly consistent with
an NHPP (Mt ) arrival process having a periodic arrival rate
function. Second, the fitted death rates are inconsistent with
i.i.d. service times. This second negative conclusion may be
easier to see by looking at the state-dependent death rate
divided by the state, so that is why we display that as the
third plot in Figure 23. Extensive simulations show that the
fitted death rates are approximately proportional to the state
k in an Mt/GI/∞ model with a periodic arrival rate func-
tion, and approximately piecewise-linear with finitely many
servers.

These tentative conclusions about the ED based on the
analysis of Mt/GI/s queues in this article are strongly sup-
ported by further data analysis in [36]. The data analysis
in [36] supports an Mt/Gt/∞, where there is strong time-
dependence in the service-time distribution as well as the
arrival rate function. That conclusion in turn is consistent
with other observations, for example, see [2, 28] and refer-
ences there. The fitted BD is convenient because it quickly
exposes the difficulty with a model using i.i.d. service times.

6.4. Fitting the Erlang-A Model to Data

Perhaps the most frequently applied stochastic queueing
model is the M/M/s + M Erlang-A model. The Erlang-A

model is a stationary BD process with four parameters: the
arrival rate λ, the service rate μ, the number of servers s,
and the individual customer abandonment rate from queue θ ;
see [12, 25] and references therein. The familiar M/M/s/0
Erlang B (loss) and M/M/s ≡ M/M/s/∞ Erlang C (delay)
models are the special cases in which θ = ∞ and θ = 0.

The fitted BD process may provide a useful statistical
test of the classical M/M/s + M Erlang-A model in set-
tings where it may be applied. The Erlang-A model is typ-
ically fit within an assumed GI/GI/s + GI model frame-
work, assuming that the interarrival times, service times
and patience times come from mutually independent i.i.d.
sequences of i.i.d. random variables. Assuming this frame-
work, the Erlang-A model is typically fit by estimating the
distributions of the interarrival times and service times to
see if they are nearly exponential. It has been recognized
that abandonment is more complicated because of censor-
ing; thus, other estimation methods have been proposed for
estimating the customer patience distribution via the hazard
rate of the customer patience distribution; see [4].

However, the assumed GI/GI/s + GI framework need
not hold. Service systems typically have time-varying arrival
rates and there may be significant dependence among inter-
arrival times and service times. The number of servers may
vary over time as well and the servers are often actually
heterogeneous [11]. Indeed, careful statistical analysis of ser-
vice system data can be quite complicated, for example, see
[2, 4, 18, 21, 20].

Thus, the fitted BD rates provides another framework to
test and fit the Erlang-A model to data, which we propose
doing in addition to the standard fitting procedure, to check
consistency. Given that the data are from the Erlang-A model,
we will see approximately the simple linear structure in the
estimated BD rates. With enough data, we will see that

λk ≈ λ, k ≥ 0, and μk ≈ (k ∧ s)μ + (k − s)+θ ,

k ≥ 1, (56)
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where a ∧ b ≡ min {a, b} and (a)+ ≡ max {a, 0}. By this
procedure, we can estimate all four parameters and test if
the model is appropriate. A direct BD fit of the form (56)
may indicate that the model should be effective even though
some other tests fail. For example, experience indicates that
a good model fit can occur by this BD rate fit even though the
servers are heterogeneous and the service-time distribution
is not exponential. Moreover, in those cases we may find that
the Erlang-A model works well in setting staffing levels.

6.5. When the Erlang-A Model Does Not Fit

However, what do we conclude if the BD fit does not
yield the BD rate functions in (56)? Some insights are rela-
tively obvious. For example, if we do not see death rates with
two linear pieces joined at some level s, then we can judge
that the number of servers probably was not constant during
the measurement period. But it remains to carefully evaluate
how to interpret departures from the simple Erlang structure
in (56).

We may also consider directly applying the fitted BD
process even if we do not see the Erlang-A structure in (56),
because BD processes are remarkably tractable. If we hap-
pen to find piecewise-linear fits, then we may find diffusion
approximations with large scale, as in [5], which is not limited
to the classical Erlang models in [12, 16]. It is well known that
we can calculate the steady-state distribution of a general BD
process by solving local balance equations. We also can effi-
ciently calculate first-passage-time distributions in general
BD processes [1].

7. CONCLUSIONS

After observing that the steady-state distribution of any sto-
chastic process on the integers with only unit-step transitions
can be estimated from data by fitting BD rates and solving
the BD local-balance equations in (4), we investigated the
application of this approach to the Mt/GI/s queueing model
with a periodic arrival-rate function, primarily focusing on the
case of the sinusoidal arrival-rate function in (8). In Sections
2 and 3 we established structural results for the steady-state
distribution and the fitted rates in this model.

In Section 4, we conducted simulation experiments show-
ing the results of the fitting procedure. Figures 4–6 show near
insensitivity to the service-time distribution beyond its mean
in the Mt/GI/∞ model for some cases with moderate scale
(average arrival rate λ = 35), but Figs. 7–9 show signifi-
cant deviations from insensitivity at larger scale λ = 100).
As expected, we see that the transient behavior of the fitted
BD process can be very different from the original process,
but we see that the difference decreases as the cycle length
of the periodic function decreases (relative to the mean ser-
vice time). Figure 10 shows great differences in the sample

paths for the long cycles with γ = 0.01 in (8), but Figs. 11
and 12 show striking similarities with shorter cycles based
on γ = 1.0 and 10 in (8).

In Section 5, we showed that estimating the fitted rates
and then solving the local-balance Eqs. in (4) can be an effi-
cient way to estimate the steady-state distribution because the
birth-rate and death-rate functions tend to be more elementary
functions. We found that good estimates of the steady-state
distribution in the Mt/M/∞ model can be obtained in this
way by fitting only two parameters in the four-parameter
arctangent function in (53).

Finally, in Section 6, we see how the fitted BD model can
serve as a gray-box model to help diagnose what is an appro-
priate queueing model for complex queueing applications, as
suggested in [7]. In Section 6.2, we compared the BD models
fit to stationary GI/GI/s models in [7] to the BD models
fit to the Mt/GI/s models in this article. For large s, we
see that the fitted death rates have the same piecewise-linear
structure found in the M/M/s model, but there are signifi-
cant differences in the fitted birth rates. However, the birth
rates have the same linear structure around the steady-state
mean number of busy servers.

In Section 6.3, we illustrated how the gray-box mod-
eling approach can be applied. Figure 23 dsplaying the
fitted BD rates in an Israeli emergency department from
[2, 36] show that the ED data are roughly consistent with
the arrival process being a NHPP with a periodic arrival rate
function, but are inconsistent with i.i.d. service (length-of-
stay) times. Instead, the length-of-stay distribution should be
time-varying, consistent with observations in [2, 28, 36]. In
Section 6.4, we observed that this provides an alternate fit-
ting procedure for the classical Erlang-A model, which can
usefully supplement the standard fitting procedure, and thus,
provide an additional statistical test.

There are many directions for future research. As indi-
cated before Theorem 2.1 in Section 2, it remains to prove
that the interval between successive emptiness epochs in the
stochastic process {Q(nc + t) : n ≥ 0} have finite mean for
any periodic Mt/GI/s model with E[S] < ∞ and ρ < 1.
It also remains to derive explicit formulas and asymptotic
approximations for the fitted rates in these and other mod-
els. In forthcoming [35], we establish many-server heavy-
traffic limits for the fitted birth rates and death rates in the
Mt/GI/∞ model.
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