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Call centers usually handle several types of calls, but it is usually not possible or cost effective to have every
agent be able to handle every type of call. Thus, the agents tend to have different skills, in different combi-

nations. In such an environment, it is challenging to route calls effectively and determine the staff requirements.
This paper addresses both of these routing and staffing problems by exploiting limited cross-training. Consistent
with the literature on flexible manufacturing, we find that minimal flexibility can provide great benefits: Simula-
tion experiments show that when (1) the service-time distribution does not depend on the call type or the agent
and (2) each agent has only two skills, in appropriate combinations, the performance is almost as good as when
each agent has all skills. We apply this flexibility property to develop an algorithm for both routing and staffing,
aiming to minimize the total staff subject to per-class performance constraints. With appropriate flexibility, it
suffices to use a suboptimal routing algorithm. Simulation experiments show that the overall procedure can be
remarkably effective: The required staff with limited cross-training can be nearly the same as if all agents had
all skills. Hence, the overall algorithm is nearly optimal for that scenario.
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1. Introduction
The purpose of this paper is to provide insights and
methods to help improve the design and management
of telephone call centers and more general customer
contact centers, allowing contact through other media
such as e-mail. As indicated in the review by Gans
et al. (2003), further work is needed because call cen-
ters have become quite complicated.

Skill-Based Routing. Call centers usually handle
several types of calls, but it is usually not possible
or cost effective to train every agent (customer ser-
vice representative) to be able to handle every type
of call. For example, with the globalization of many
businesses, call centers often receive calls in several
different languages. The callers and agents each may
speak one or more of several possible languages, but
not necessarily all of them. Of course, it may sim-
ply not be possible for the agents to learn all the
languages. However it may well be possible to find

agents who can speak two or three languages, in
various combinations, especially when agents in the
same “virtual call center” are working in different
locations.

Another classification of calls involves special pro-
motions. The callers may be calling a special 800 num-
ber designated for the special promotion. Agents
typically are trained to respond to inquiries about
some of the promotions, but not all of them. Learn-
ing about special promotions is certainly less difficult
than learning entire languages, but it tends to be pro-
hibitive to train all agents to be able to respond to
calls about all promotions, especially when there is
a very short time span between the creation and the
delivery of the promotion.

Specialization also naturally arises in strategic out-
sourcing, where one company turns over some of
its business functions to a third-party contractor.
An example is the management of the company’s
computer and information systems. The strategic
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outsourcing is usually managed by a single point-of-
contact help desk, which, in fact, is a call center. In
these technical help desks, agents may only be able to
help customers with some of their technical problems.
The agents may have different skills, with some skills
requiring extensive training.

Moreover, with outsourcing, in some cases agents
may be trained to represent more than one service
provider. Again, acquiring the skills to represent a
few different service providers may be feasible, but it
tends to be prohibitive to train all agents to represent
all service providers.

Thus, frequently, the calls have different require-
ments and the agents have different skills. Fortu-
nately, modern automatic call distributors (ACDs) have
the capability of assigning calls to agents with the
appropriate skills. Thus, the call-center information-
and-communication-technology (ICT) equipment can
allow for the generalization to multiple call types.
That capability is called skill-based routing (SBR).

Most current call centers perform SBR, and many
do so remarkably well. Nevertheless, there remains
a need for fundamental principles and operations
research techniques that will make it possible to better
design and manage SBR call centers. The operational
complexities of SBR call centers were nicely described
by Garnett and Mandelbaum (2000).

Resource Pooling. We propose a two-word answer
to the SBR problem: resource pooling. As explained by
Mandelbaum and Reiman (1998), “resource pooling”
can have different meanings. Within the context of an
SBR call center, we use “resource pooling” to mean
that with a limited amount of cross-training (having
agents with multiple skills, but only a few skills in
appropriate combinations) and a reasonable (subopti-
mal) routing algorithm, a diverse SBR call center may
perform nearly the same as if all agents had all skills
(and routing were not an issue at all).

In other words, we find that a little flexibility goes a
long way. That conclusion is now a fundamental prin-
ciple of flexible manufacturing, e.g., see Aksin and
Karaesman (2002), Hopp and Van Oyen (2004), Jordan
et al. (2004), Gurumurthi and Benjaafar (2004), and
references therein. (For work on stochastic networks
in the same spirit, see Azar et al. 1994; Vvedenskaya
et al. 1996; Turner 1996, 1998; Mitzenmacher 1996;
Mitzenmacher and Vöking 1999.) That work shows

that only limited flexibility suffices, provided that the
sharing is arranged appropriately. That sharing pro-
viso is captured by the notion of chaining, articulated
by Jordan and Graves (1995). Our work is consistent
with that large body of previous work.

Here, we go further: We apply the limited-flexibility
principle to develop a full algorithm to both route and
staff in an SBR call center. We also specify the required
number of telephone trunk lines. By making simu-
lation experiments, we show that our algorithm is
nearly optimal in a reasonable SBR scenario with six
call types when each agent has only two skills. How-
ever, our results here are restricted to the case in
which the mean service times do not depend on the
call type or the agent. That restriction is reasonable
for many call-center applications, but it leaves open
the applicability of the approach more generally.

Organization of This Paper. In §2, we specify our
SBR call center and the optimization problem we want
to solve. In §3, we specify precisely how we implement
SBR; it is done with a static-priority scheme based on
agent-skill matrices. In §4, we describe our experiment
to investigate resource pooling in an SBR call center.
There we specify the model assumptions we make in
all our simulation experiments.

In §5, we present our staff-and-equipment provi-
sioning algorithm. In §§6 and 7, we describe sim-
ulation experiments to show how that algorithm
performs. These have six call types with an offered
load requiring about 90 agents. The first experiment
in §6 is for a balanced call center, like the one consid-
ered in §4. The second experiment in §7 is for a more
realistic unbalanced call center.

In §8, we discuss extensions. Additional details
can be found in Wallace (2004), on which this paper
draws.

Related Literature. Other interesting, but quite dif-
ferent approaches to staffing SBR call centers have
recently been proposed by Harrison and Zeevi (2005),
Bassamboo et al. (2005), Armony and Mandelbaum
(2004), and Chevalier et al. (2004). See these sources
for additional references. Earlier work includes Perry
and Nilsson (1992), Borst and Seri (2000), and Koole
and Talim (2000). In using simulation to improve call-
center performance, we are following longstanding
practice; see Anton et al. (1999) and Brigandi et al.
(1994).
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2. Our SBR Call Center
Our SBR call center is a multiserver queueing sys-
tem with C servers, K extra waiting spaces, and n call
types. We assume that there is a separate queue for
each call type (which could, of course, be virtual).
The pair �C�K� corresponds to having C agents and
C + K available telephone trunk lines. A call uses a
trunk line both while it is waiting and while it is being
served. We assume that the ACD can accommodate
C+K calls, with any calls not being served waiting (in
the queue for its type). Calls arriving when all C +K
trunk lines are occupied are assumed to be blocked
and lost. We do not consider either abandonments or
retrials; they are discussed in §8 on extensions.

We say that an agent has skill k if the agent can
answer calls of type k; then the agent can be assigned
any class-k call. If the agent does not have skill k, then
the agent cannot be assigned class-k calls. Within this
framework, we will specify a routing policy. A rout-
ing policy specifies which agent should answer each
call. We assume that calls are answered immediately
when the assignment is made. Thus, all assignments
are made either when a new call arrives or when an
agent completes a call and becomes free. We assume
that the agent completes the call without interruption,
once it has been answered.

Within this framework, the staffing problem is to
choose the total number of agents C and specify
their skills. The more general provisioning problem
includes specifying K as well. For agents with spec-
ified skills, our goal is to lexicographically minimize
�C�K� subject to per-class performance constraints. By
“lexicographically minimize,” we mean: first, mini-
mize C and then, for given C, minimize K. We con-
sider C and K lexicographically because the agents
tend to be much more costly than trunk lines.

There are also costs for giving agents skills, but we
do not consider those costs directly here. Instead, we
treat the skills as part of the constraints. In particular,
we will allow each agent to have only two skills. For
this initial study, we allow total freedom in the choice
of the two skills.

The specific performance constraints we consider
are speed-to-answer service-level constraints and blocking-
probability constraints. To state these constraints, let
Wk be the steady-state waiting time before beginning

service and let Qk be the steady-state number of cus-
tomers in the system, experienced by an arrival of
type k. The per-class speed-to-answer service-level
constraints specify that the conditional probability
that the steady-state waiting time for type-k calls
is below a desired target, given that the call is not
blocked, should be above some threshold, i.e.,

P�Wk ≤ �k �Qk <C +K�≥ 
k� 1≤ k≤ n� (2.1)

where �k is the type-k target and 
k is the type-k
threshold. The per-class blocking-probability con-
straints are

P�Qk =C +K�≤ �k� 1≤ k≤ n� (2.2)

We will show that in a reasonable scenario, includ-
ing the constraints in (2.1) and (2.2), we are able to
obtain a near-optimal solution, even though we do
not perform an elaborate optimization for the routing.
Amazingly, limited flexibility and a reasonable rout-
ing policy are enough. However, we consider only
two specific scenarios. Thus, we only establish a proof
of concept: We show that such near optimality may
possibly be achieved in other scenarios. Nevertheless,
we believe our results can radically change the approach to
staffing and routing in SBR call centers. Our results sug-
gest paying more attention to obtaining the required
limited cross-training, while paying less attention to
the routing.

3. A Static-Priority-Routing Scheme
We use a static-priority scheme for routing. As indi-
cated before, agents have skills. An agent can answer
any type-k call if and only if that agent has skill k.
Thus, an agent can have from 1 to n skills. (We are
thus specifying the routing algorithm for a general
case, even though we are contending that it might
be sufficient for each agent to have only two skills.)
Agents not only have skills, but they also have prior-
ity levels for those skills.

We specify the skills of agents and the priority lev-
els of those skills via a C × n agent-skill matrix A.
The rows of A correspond to the agents, the columns
of A correspond to priority levels, and positive entries
identify skills: If Ai� j = k, then agent i has skill k at
priority level j ; if Ai� j = 0, then agent i has no skill at
priority level j ; if there is no j for which Ai� j = k, then
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agent i does not have skill k. Thus, row i of A specifies
the skills and priority levels for the ith agent. Lower
skill-level numbers have preference in the priority
scheme. We assume that each agent has at most one
skill at any given priority level, so that the matrix A
can indeed be used to assign skills and priority levels
to agents. Without loss of generality, we assume that
each agent has each skill at only one priority level
(a positive integer appears at most once in each row).

The first column of A specifies the primary skills,
by which we mean those skills with the highest prior-
ity (lowest priority number). Thus, Ai�1 is the primary
skill of agent i. We assume that every agent has a pri-
mary skill, so that Ai�1 is an integer with 1≤Ai�1 ≤ n
for each i. We group the agents by their primary skills,
so that work group Gk is the subset of all agents with
primary skill k, i.e.,

Gk ≡ �i� 1≤ i≤C� Ai�1 = k�� 1≤ k≤ n�
By our assumptions, the collection of work groups
is a partition of the set of all agents, i.e., of the set
�1� � � � �C�. Each agent belongs to one, and only one,
work group. The number of agents in work group k,
denoted by Ck, is the number of elements in Gk,
denoted by �Gk�, i.e.,

Ck ≡ �Gk� =
C∑
i=1

1�Ai�1=k��i��

where 1B is the indicator function of the set B; i.e.,
1B�i�= 1 if i ∈ B and 1B = 0 otherwise. We allow work
groups to be empty, but we require that for all k,
1≤ k≤ n, there exists at least one agent with skill k.
Otherwise, class-k calls would never be answered.

To clarify the rules for assigning skills to agents, we
consider the following four examples:

A5×1 =




1
1
1
1
1



� A3×2 =




1 0
2 0
2 0


 �

A4×2 =




1 0
1 0
2 1
2 1


 � A6×4 =




3 4 1 0
1 4 0 0
2 3 0 0
4 0 0 0
3 1 2 4
1 0 4 0



�

The first matrix, A5×1, specifies an agent profile for
a call center manned by five agents, all possessing the
same single skill. The second matrix, A3×2, specifies
an agent profile for a call center with three agents,
each possessing one of two primary skills. The zeros
in the second column indicate that no agent has a sec-
ondary skill. Thus, this call center has two separate
work groups that function as separate call centers:
Agent 1 will handle all type-1 calls, while agents 2
and 3 will handle all type-2 calls.

The third matrix, A4×2, is in the spirit of the bilin-
gual call-center model used in Green (1985) and
Stanford and Grassmann (1993, 2000). In this matrix,
the first two rows represent two agents each with a
primary skill to support call type 1 and no secondary
skill. These two agents form work group one and are
referred to as the limited-use or restricted-use servers
in Green (1985) and the unilingual group in Stanford
and Grassmann (2000). The third and fourth rows rep-
resent agents 3 and 4. These agents each have a pri-
mary skill to support call type 2 and a secondary skill
to support call type 1. They make up work group
two and are referred to as the general-use servers
and bilingual group in Green (1985) and Stanford and
Grassmann (2000), respectively.

In the last example, the matrix A6×4 illustrates the
more general structure possible for the agent-skill
matrix. This example has six agents and four call
types. There are four work groups, one for each call
type. Using the first column, we can identify the
agent’s work group. Work group 1 consists of agents 2
and 6, while work group 2 consists of agent 3. All
agents have secondary skills with the exception of
agents 4 and 6. Agent 4 supports only call type 4,
while agent 5 is a universal agent, because he can sup-
port all of the call types. However, agent 5 not only
can support all call types; he does so in a specified
priority order. Agent 6 can support two different ser-
vice requests: call type 1 at the primary level and call
type 4 at the tertiary level. Note that agent 6 has a
skill at priority level 3 but no skill at priority level 2.

What to Do When an Arrival Occurs. To imple-
ment SBR, we need to specify the decisions we will
make in two situations: (1) when an arrival occurs
and (2) when an agent becomes free. We treat each
in turn.
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Arriving calls of type k are first routed to available
agents in work group k because those agents have
primary skill k (Gk = �i� Ai�1 = k�). We use the longest-
idle-agent-routing (LIAR) policy to determine which of
the idle agents in work group k is to handle the call.
The LIAR policy sends the call to the agent in work
group k who has been idle the longest since the com-
pletion of his last job. The LIAR policy is deemed
fair because it tends to balance the work load across
agents. However, other tie-breaking schemes could be
used instead. For example, we could instead choose
the idle agent whose cumulative idle time over the
last half hour is greatest. Under our assumptions, the
tie-breaking rule has no impact upon the performance
measures we consider here, but the issue is neverthe-
less important in practice.

If all agents with call type k as a primary skill are
busy, then the call is routed to available agents having
call type k as a secondary skill (at priority level 2).
Again, among all agents having type k as a secondary
skill, the LIAR policy is used to pick the actual agent
to handle the call. If all agents with call type k as a
primary skill or a secondary skill are busy, then the
call is routed to available agents having call type k as
a tertiary skill (at priority level 3), and so on. Again,
the LIAR policy is used to break ties.

If no available qualified agent can be found to han-
dle the type-k call immediately upon arrival, then the
type-k call is placed at the end of the queue associated
with call type k.

What to Do When an Agent Becomes Free. We
now specify what an agent does when he completes
handling a call and becomes free. First, if there are no
customers in the n queues, then the agent goes idle.
Otherwise, the agent visits the queues of the call types
for which he has skills. If there are no waiting calls
for which he has skills, then again the agent goes idle.
The agent visits the queues in order of the agent’s
priority levels; i.e., the agent goes first to the queue
with his primary skill, second to the queue with his
secondary skill, and so on. The agent serves the call
that is first in line in the first nonempty queue in
the priority-level order. Thus, the agent serves calls
within each queue in a first-come, first-served (FCFS)
order.

4. The Resource Pooling Experiment
In this section, we describe a simulation experiment
conducted to investigate the extent to which resource
pooling holds in SBR call centers. In particular, we
investigate how many skills agents need for the per-
formance to be nearly the same as if all agents had all
skills. We start by specifying the modeling assump-
tions we make for all our simulation experiments.

Model Assumptions. We assume that n types of
calls arrive at the call center according to n mutu-
ally independent Poisson processes with rates �k,
1≤ k≤ n. That is equivalent to assuming that all calls
arrive according to a single Poisson process with
rate � = �1 + · · · + �n and, afterward, are assigned
to be type k with probability pk ≡ �k/�, according to
mutually independent trials, independent of the sin-
gle Poisson process.

We assume that the call holding (service) times are
mutually independent exponential random variables,
independent of the arrival process, with a common
mean 1/�. We believe that this is our most restrictive
assumption. It is reasonable in many applications, but
if it is not nearly satisfied, then the approach in this
paper may not perform well.

We do not consider either abandonments or retri-
als. Thus, calls that are blocked do not affect future
arrivals. We are anticipating that service quality
will be sufficiently high that abandonments can be
ignored. Thus, we assume that all admitted calls will
eventually be served.

The Resource-Pooling Experiment. Under our as-
sumptions so far, the universal-agent case is approx-
imately equivalent to the M/M/C/K model with
the FCFS discipline, in which there is a single call
type and a single queue. However, even when all
calls have the same service-time distribution, as we
are assuming, these systems are not quite equiva-
lent, because the FCFS discipline associated with the
M/M/C/K model is not operating overall in our SBR
system (even though it is within each queue).

We consider a call center serving n = 6 call types
and see what happens when all agents possess
m skills, allowing m to range from 1 to 6 in separate
simulation runs. The model we consider is a balanced
M6/M/90/30 SBR call center: There are C = 90 agents
and K = 30 extra waiting spaces. Because there are six
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call types, there are six work groups, each with Ck =
90/6 = 15 agents. The service times are independent
and identically distributed (i.i.d.) exponential random
variables with mean 1/�k = 1/�= 10 minutes.

Because the number of agents is 90, each work
group can have exactly 15 agents, and when m ≥ 2,
there will be exactly 15/5= 3 agents with each of the
6 × 5 = 30 combinations of the possible primary and
secondary skills. When m > 2, we do not try hard
to optimally balance the skills at lower priority lev-
els. Instead, we let each successive skill beyond the
skill assigned at priority level 2 be the next avail-
able skill. For example, suppose that when m = 2,
row i of the agent-skill matrix A is �5�3�0�0�0�0�.
When we increase the number of skills per agent,
row i is changed successively to �5�3�4�0�0�0�,
�5�3�4�6�0�0�, �5�3�4�6�1�0�, and �5�3�4�6�1�2�.
This procedure guarantees that each skill appears the
same number of times at each priority level. This pro-
cedure also yields appropriate sharing, but evidently
not optimal sharing.

However, the full procedure above does not matter
much, because we are primarily interested in compar-
ing the cases m = 1, m = 2, and m = 6. When m = 6,
all agents have all skills, and the call center behaves
much like a single-group call center. In contrast, when
m = 1, the call center behaves much like six sepa-
rate call centers, for which the performance is much
worse. When m = 1, the call center does not behave
exactly like separate call centers because of the finite
waiting room. Here, when m = 1, the six call types
share the common waiting room. The shared waiting
room leads to much better performance than if the
waiting room was divided into segregated portions
without any sharing.

Here is the main point: We show that the perfor-
mance for 2 ≤m ≤ 5 is nearly the same as for m= 6,
being much better than when m= 1. We thus see that
significant resource pooling occurs even when each
agent has only two skills. The performance is some-
what better if m = 3 than if m = 2, but most of the
resource-pooling benefit occurs when m= 2.

Recall that the offered load with common mean
service times is the arrival rate times the mean
service time. We consider three different offered
loads: 84.0 (normal load), 77.4 (light load), and 90.0
(heavy load). The corresponding traffic intensities

are: 84�0/90= 0�933 (normal load), 77�4/90 = 0�86
(light load), and 90/90 = 1�00 (heavy load). As dis-
cussed in Whitt (1992), the interpretation of traffic
intensities depends on the number of servers, with
the normal load increasing as the number of servers
increases. The finite waiting room makes it possible to
have traffic intensities greater than 1 (as would cus-
tomer abandonment, which we are not considering).

In our resource-pooling simulation experiment, we
examine all possible cases, considering each num-
ber of skills with each loading. Thus, we perform
6× 3= 18 simulation runs in all. Each simulation run
is based on approximately 800,000 arrivals, starting
after an initial warm-up period to allow the system
to reach steady state. The warm-up period was cho-
sen to correspond to 2,000 mean service times, which
constituted about 20%–24% of each run. To calculate
confidence intervals, we used the technique of batch
means, dividing each run into 20 batches.

It is important to validate the simulation tool. As
described in Wallace (2004, ch. 4), the simulation tool
was validated by making comparisons with alterna-
tive ways for obtaining numerical results. In par-
ticular, as summarized in Wallace (2004, Table 4.1),
the simulation was compared with other methods for
treating several different special cases. Among these
were exact numerical results for theM/M/C/K model
and the bilingual call center analyzed by Stanford
and Grassmann (1993, 2000). For more complicated
models, a comparison was made with Ridley’s (2003)
simulator for call centers with time-dependent arrival
rates, specialized to the case of constant arrival rates.

We show the simulation results in Figure 1. (More
detailed descriptions of system performance in the
18 cases are shown in tables in the online supple-
ment (Wallace and Whitt 2005). Those tables show
that the variability of the estimates is not great; e.g.,
the 95% confidence intervals for per-class probabilities
are about 1%.) Figure 1 shows nine individual graphs
in a 3 × 3 arrangement. The columns correspond
to the normal-, light-, and heavy-load cases, respec-
tively. The rows show estimates of (1) the steady-
state blocking probability, (2) the conditional expected
steady-state delay (before beginning service), given
that the call enters (is not blocked), and (3) the condi-
tional steady-state probability that the delay exceeds
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Figure 1 Typical Performance Measures as a Function of the Number of Skills per Agent and the Offered Load for an M6/M/90/30 SBR Call Center
with 1/�1 = · · · = 1/�6 = 10 Minutes
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Note. The specific performance measures are the blocking probability, the mean conditional delay given entry, and the conditional probability that the delay is
greater than 0.5, given entry.

0.5 minutes, given that the call enters. Both the block-
ing probability and the delay probability are in per-
centages. For each of the offered-load scenarios, we
make six different simulation runs, one for each dif-
ferent number of skills. The horizontal axis for each
graph specifies the number of skills that the agents
have. The full model requires specifying the agent-
skill matrix, which we have done above. The six
agent-skill matrices themselves are displayed in the
online supplement (Wallace and Whitt 2005).

Figure 1 dramatically shows the existence of re-
source pooling. With only one exception, there are sig-
nificant improvements in performance when agents
are given at least two skills. That one exception is
the conditional waiting-time tail probability under
heavy loading. However, in all cases, we see that
most of the benefit is achieved by adding the second
skill. Only modest further improvements are achieved

when additional skills are provided. Indeed, Figure 1
shows that near-full resource pooling is achieved by
giving agents only two skills.

To put the simulation results into perspective, it
is useful to analyze related cases for the M/M/C/K
model analytically. We do so in Table 1. First, when
m = 6, the model is approximately equivalent to the
M/M/90/30 model. As noted above, when m = 1,
the model does not reduce to six separate M/M/15/5
models, because the six call types actually share the
common waiting room of size 30. However, it is clear
that the M/M/15/5 model is a worst-case bound for
the blocking probabilities. On the other hand, the
M/M/15/30 model is a best-case bound for the block-
ing probabilities. To put the simulation results for
m = 1 in perspective, we thus calculate performance
measures for theM/M/15/5 andM/M/15/30 models,
with the same arrival and service rates.
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Table 1 A Comparison of Simulation Estimates of Performance
Measures for the SBR Model with Six Skills, Two Skills, and
One Skill for Three Different Loadings: Light, Normal, and
Heavy

Performance measure

Loading Model Blocking E�W � P 	W ≤ 0
5� Utilization

Light M/M/90/30 0
00017 0.08 0.942 0.860
Six skills 0
00018 0.09 0.951 0.860
Two skills 0
00023 0.15 0.910 0.860
One skill 0
00620 1.84 0.600 0.854

M/M/15/5 0
03880 0.59 0.737 0.854
M/M/15/30 0
00007 2.15 0.575 0.827

Normal M/M/90/30 0
0036 0.45 0.733 0.930
Six skills 0
0038 0.46 0.781 0.929
Two skills 0
0044 0.59 0.716 0.928
One skill 0
0336 2.85 0.478 0.897

M/M/15/5 0
0650 0.82 0.641 0.927
M/M/15/30 0
0066 4.94 0.344 0.872

Heavy M/M/90/30 0
024 1.24 0.387 0.977
Six skills 0
023 1.24 0.493 0.976
Two skills 0
025 1.40 0.453 0.974
One skill 0
075 3.29 0.419 0.918

M/M/15/5 0
095 1.05 0.555 0.972
M/M/15/30 0
028 8.97 0.153 0.905

Notes. Also included are the corresponding exact numerical results for the
M/M/90/30, M/M/15/5, and M/M/15/30 models. The waiting time is
conditional upon entry.

From Table 1, we see that indeed the performance
in the SBR model with two skills is close to both the
performance in the SBR model with six skills and the
performance in the M/M/90/30 model. On the other
hand, the performance in these cases is not close to
the performance in the other three cases, and the per-
formance in those three cases varies widely.

5. The SBR Provisioning Algorithm
In this section, we apply the resource-pooling prop-
erty to develop an algorithm to generate requirements
for staff and trunk lines in our call-center model with
SBR. That means that we aim to determine the param-
eters C and K in the Mn/M/C/K/SBR model and the
agent-skill matrix A, given the other model param-
eters and various constraints on A and on perfor-
mance. Our main idea is to assume that there will
be sufficient cross-training so that resource pooling
holds, but we use simulation to verify that the perfor-
mance is indeed satisfactory, and to make appropriate
adjustments if it is not.

The algorithm is carried out in three steps:
(1) Exploit the M/M/C/K model to find an initial
candidate solution, (2) add servers one at a time as nec-
essary (determined by performing simulation experi-
ments) to find an initial feasible solution (satisfying all
the constraints), and (3) perform a local search using
additional simulation experiments to find a better fea-
sible solution.

The local search is much in the spirit of Choudhury
et al. (1995), but that algorithm exploited numeri-
cal transform inversion instead of simulation. The
algorithm here is somewhat more complicated than
it otherwise would be because we consider both
the available waiting space K and the number of
servers, C. Modifying the algorithm for the case
K =
 is not difficult.

The Optimization Problem. Our primary goal is
to minimize C, the total staff required. A secondary
goal, for given C, is to minimize C +K, the required
number of trunk lines. We seek minimum values of C
and K subject to the condition that constraints on per-
formance are satisfied. We consider the two sets of
per-class performance constraints in (2.1) and (2.2).
We also aim to determine an appropriate agent-skill
matrix A, subject to constraints on it and subject to
constraints on performance. The specific problem we
consider here allows an arbitrary agent-skill matrix A sub-
ject to the constraint that each agent has precisely two
skills. We intend that to be illustrative of what can be
done by our general approach, exploiting the resource
pooling resulting from limited cross-training, with
appropriate sharing of skills.

Finding an Initial Candidate Pair �C�K�. We ini-
tially act as if all agents have all skills. Thus, we
choose initial values of C and K to meet the perfor-
mance requirements in a standard M/M/C/K model,
using the total aggregate arrival rate �≡ �1 + · · ·+�n.
We also need to choose single performance con-
straints replacing the (in general) class-dependent
performance constraints in (2.1) and (2.2). To be spe-
cific (and optimistic), choose the loosest among these
constraints, or any one if the choice is not obvious.
(This step should not be critical.)

Ways to find the optimal values of C and K for
the M/M/C/K model, along with supporting theory,
have been developed by Massey and Wallace (2005).
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We apply that approach. We remark that the treat-
ment of K is somewhat subtle. If we increase K to
reduce blocking and improve performance, at the
same time we will increase delays, and thus make
performance worse from another perspective. Thus,
when we change C by increasing or decreasing it by 1,
it is advantageous to simultaneously adjust K so as to
keep C +K fixed.

Determining the Initial Work Group Sizes. Hav-
ing used the M/M/C/K model to find an initial pair
�C�K�, we now must specify the skills and priority
levels for the C agents. We first determine the initial
work group sizes; i.e., we first determine Ck, the num-
ber of agents in work group k, for each k, 1≤ k≤ n.

Motivated by heavy-traffic stochastic-process limits
for many-server queues (e.g., Halfin and Whitt 1981,
Puhalskii and Reiman 2000, Garnett et al. 2002), we
use a square root approximation to allocate agents to
the n work groups. In particular, first ignoring inte-
grality constraints, we first generate real numbers Rk
as initial estimates for Ck. We let

Rk = !k+ x√!k� 1≤ k≤ n� (5.1)

where !k ≡ �k/�k is the offered load of call type k and
x is a positive constant. It is easy to see that x must be

x= �C −!�∑n
i=1

√
!i
� (5.2)

It is also easy to see that Rk > 0 and R1 + · · ·+Rn =C
provided that C > !, which will always be the case
if the blocking probability is sufficiently small. As
shown in Wallace (2004, Theorem 8.2.1), the square-
root method allocates relatively more capacity to the
work groups with the smaller offered loads than
would an allocation that is directly proportional to the
loads.

We next round the work group sizes Rk specified
in (5.1) to obtain the desired integer values Ck, keep-
ing the property C1 + · · · + Cn = C. When there are
several work groups, none of which are large, this
rounding can cause difficulties, but these difficulties
will be addressed in the later phases of the algorithm,
so we do not consider the rounding problem very
important.

Here is one way to do the rounding: First round
down, letting C∗

k = �Rk�, 1 ≤ k ≤ n, where �y� is

the greater integer less than or equal to y. We start
by assigning C∗

k agents to work group k. The total
number of agents assigned so far is C∗ ≡C∗

1 +· · ·+C∗
n .

We then need to assign the remaining C −C∗ agents
to work groups. (Note that necessarily 0 ≤ C − C∗ ≤
n− 1.) Next, assign the C −C∗ remaining agents one
to each group in order of the differences Rk − �Rk�
(higher numbers first).

Determining the Initial Agent-Skill Matrix. Given
the work group sizes, we next need to construct an
associated initial agent-skill matrix A. We focus on
the case in which all agents are given a secondary
skill. When each agent is given a secondary skill, we
first need to specify the secondary skill to go with the
given primary skill. Here, we assume all possibilities
are open to us. To achieve that goal, we use a fair
assignment rule, aiming to “optimally” balance.

Let Ci�k denote the number of agents in work
group i (having primary skill i) that will be assigned
secondary skill k. Let Ri�k be an initial estimate of Ci�k,
which may not be integer. For any i and k with k �= i,
we let

Ri�k =
CiCk
C −Ci

� (5.3)

Note that the sum of Ri�k over k is Ci. Also note that
this rule lets the number of agents in work group i

having secondary skill k be directly proportional to
both Ci, the size of work group i, and Ck, the size of
work group k. Finally, we round, as described above,
to obtain the desired numbers Ci�k.

When each agent has at most two skills, the pro-
cedure above fully specifies the agent-skill matrix
(except for irrelevant permutations of the rows). How-
ever, more is required when agents have more than
two skills. In that case, we do not try to be more care-
ful; we use the scheme described in §4. Hence, at this
point, we have determined an initial candidate solu-
tion, but it may not be feasible because some of the
performance constraints may be violated.

Finding an Initial Feasible Solution. Because we
have based our initial staffing on the resource-pooling
property, we anticipate that the initial staffing require-
ment C is optimistic (a lower bound). But to find
out, we simulate the call-center model, which has
been fully specified above, and examine the perfor-
mance. If we find that all the performance constraints
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are satisfied, then we have found an initial feasible
solution, and we move on to the next step. How-
ever, we may well find that some of the performance
constraints are violated. In that case, we make adjust-
ments until we obtain an initial feasible solution. We
keep increasing C and correspondingly adding rows
to the matrix A until the constraints are met. But we
also may need to adjust K, so the overall procedure is
more complicated. We now explain how to make the
adjustments. There are two steps in this phase of the
algorithm:
Step 1: Increasing C. We start by doing the perfor-

mance evaluation. Then, we do the delay test: If the
speed-to-answer service-level target is not met for one
or more classes, we increment C by one and decre-
ment K by 1, thus keeping C+K fixed, and repeat the
experiment. (See Massey and Wallace 2005 for moti-
vation for this treatment of K.) Now, we need to add
a row to A.

We use a performance-based method; it adds a row
with primary and secondary skills corresponding to
the call types with the worst performance. To specify
that, let

Dk ≡ 
k− P�Wk ≤ �k �Qk <C +K�� (5.4)

Noting that positive is bad in (5.4), we let

k∗1 = argmax�Dk� 1≤ k≤ n��
k∗2 = argmax�Dk� 1≤ k≤ n� k �= k∗1��

(5.5)

where argmax identifies the index yielding the max-
imum. We thus add the row with primary skill k∗1
and secondary skill k∗2. For example, when there are
six call types, we add the row �k∗1� k

∗
2�0�0�0�0�. We

repeat this step until all the speed-to-answer service-
level targets are met. Because of the resource pooling,
we anticipate that we will not need to increment C
many times.
Step 2: Increasing K. Once we have found a staffing

level C meeting the speed-to-answer service-level tar-
get, we investigate the blocking-probability target. If
the blocking-probability target is met, then we have
an initial feasible solution, and we can go on to the
refinement phase (finding a better feasible solution).
If the blocking-probability target is not met, then we
increment K by one, and repeat Step 1. That is, we

apply simulation to do another performance evalu-
ation. We see whether or not the speed-to-answer
service-level targets are still met. They might not
be, because increasing K can lower the blocking
probabilities, but at the same time, increase delays.
So we repeat Step 1, increasing C if necessary. We go
back and forth between Steps 1 and 2 until we see that
both sets of performance constraints are met. When
they are, we have obtained an initial feasible solution.
(It is clear that this phase of the algorithm will termi-
nate, because the parameters C and K are successively
increased at each step.) We now move on to search
for better feasible solutions.

Finding Better Feasible Solutions. In this final
phase of the algorithm, we perform a local search
to find better feasible solutions, by which we mean
solutions with smaller values of C, and for that C,
the smallest possible value of K. We keep trying to
lower C until we exhaust all possibilities (explained
below). We have an important frame of reference—
we already know the optimal pair �C�K� for the
M/M/C/K model. If we get close to this pair, we
know that we must be nearly optimal.

We perform two steps: (1) we try to remove a
row from A and still obtain a feasible solution and
(2) given an infeasible A, we try to change a row to
make it feasible. If we are successful in the removal
step, then we repeat it. If we are unsuccessful in the
removal step, then we perform a change step. If we
are unsuccessful in a change step, then we try another
change step until we exhaust the allowed possibilities
(specified below). If we are successful in one of these
change steps, then we go back to the removal step.
It thus suffices to specify the removal step and the
change step, including the termination condition for
the change step when we are unsuccessful.

Removal Step. In this step, we decrement C and
increment K, keeping C +K fixed, and remove a row
from A. We now specify how to determine the row
to remove. We remove the row having primary and
secondary skills with the best current performance.
Paralleling (5.5), we specify that by letting

k∗∗1 = argmin�Dk� 1≤ k≤ n� Ai�1 = k for some i��

i∗ = argmin�DAi�2
� 1≤ i≤C� Ai�1 = k∗∗1 �� (5.6)

for Dk in (5.4). We thus remove row i∗.
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Having removed row i∗, we evaluate the perfor-
mance of the new agent-skill matrix without that row.
If all constraints are satisfied, then we make the cur-
rent solution the best feasible solution so far, and
repeat the removal step. If delay constraints are vio-
lated, we check to see if they can be satisfied, with the
blocking-probability constraints satisfied, by decreas-
ing K. If that cannot be done, we conclude that remov-
ing row i∗ was unsuccessful. We then move on to the
change step, trying to make this latest infeasible solu-
tion feasible.

Change Step. In this step, we initially leave C

and K unchanged, and change an existing row of the
agent-skill matrix A. We change a row by identifying
both a row to remove following (5.6), and a row to
add following (5.5). We thus want to remove primary
skill Ai∗�1 and secondary skill Ai∗�2, while we want to
add primary skill k∗1 and secondary skill k∗2. The natu-
ral direct action is the double change: �Ai∗�1�Ai∗�2�→
�k∗1� k

∗
2�. If all performance constraints are satisfied,

then we make the current feasible solution the best
feasible solution so far.

If the delay constraints are satisfied, but the block-
ing constraints are not satisfied, then we try to get
all constraints satisfied by successively increasing K.
If that succeeds, then we make the final solution the
best feasible solution so far. However, if that does not
succeed, we terminate with the smallest value of K
for which the delay constraints were not met. We then
continue on to another change step.

Because there is no guarantee that the algorithm
will terminate, we specify a maximum allowable
number of these change steps, e.g., 20, trying to find
a feasible solution. If no feasible solution is found
within that number of steps, then the search is ter-
minated. If the procedure returns to a previous case,
then the search can be terminated as well.

If a feasible solution is found, then it becomes the
best feasible solution so far, and we go back to the
removal step. If no feasible solution is found, we stop.

Good feasible solutions can be recognized in two
ways: (1) by the fact that all the performance con-
straints tend to be satisfied with relatively little slack
and (2) the �C�K� pair differs little from the optimal
solution for the corresponding M/M/C/K model.

The algorithm has now been fully specified. Many
variations in the algorithm can be considered. In

our implementations of the change step, we have
confined changes to the double changes specified
above, but we could also consider the following less
bold changes, e.g., �Ai∗�1�Ai∗�2� → �k∗1�Ai∗�1�, �Ai∗�1�

Ai∗�2� → �k∗1�Ai∗�2�, and �Ai∗�1�Ai∗�2� → �Ai∗�1� k
∗
1�.

That has not proved necessary in our experiments.

6. A Balanced Example
In this section, we show how the provisioning algo-
rithm in §5 works in a balanced example, closely
related to the example used for the resource-pooling
experiment in §4. Like §4, the balanced example has
six call types. Again, the mean service time is 10 min-
utes. Here, the offered load for each call type is 13.75,
so that the total offered load is 82.5.

We consider the two performance constraints in
(2.1) and (2.2). Here, we let �k = � = 0�5 and 
k = 
=
0�80 for all k, which corresponds to the requirement
that 80% of the calls of each type be answered within
0.5 minute (30 seconds).

Under the assumption of Poisson arrivals (which
we have assumed here, but which need not hold
in practice), the random variables Qk are distributed
as Q, the steady-state total number in the system at
an arbitrary time, by virtue of the Poisson Arrivals
See Time Averages �PASTA� property, e.g., see Wolff
(1989). Here, we will let the blocking-probability tar-
get be �k = � = 0�005 for all k, which corresponds
to 0.5% blocking. Typically, agents are much more
expensive than trunk lines, so that the blocking-
probability target should be relatively small. The
blocking-probability constraint is included, so that
there are not substantially more trunk lines than
needed.

We start by applying the M/M/C/K model. First,
the asymptotic method for the M/M/C/K model in
Massey and Wallace (2005) yields an initial solution
of �C�K�= �90�21�. As shown in Table 2, exact anal-
ysis yields �90�20� instead, but the blocking probabil-
ity is close to the boundary (0.5% blocking). Clearly,
89 agents are insufficient; the delay constraint and the
blocking constraint are simultaneously violated.

In contrast, if all agents have only one skill, then
we have six separate M/M/C/K models each with
offered load 13.75, for which the optimal solution is
�18�10�, yielding a total �C�K�= �108�60�. Of course,
because we have a common waiting room, we would
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Table 2 Performance Measures for the M/M/C/K Model for Different C and K to Put the SBR Simulation
Results in Perspective

M/M/C/K and �= 8
25

Performance measure C = 90, K = 21 C = 90, K = 20 C = 90, K = 19 C = 89, K = 21

Blocking (%) 0
45 0
49 0
53 0
60
Mean delay (minutes) 0
248 0
238 0
227 0
303
�	delay≤ 0
5 � entry� (%) 82
4 82
9 83
2 78
9
�	delay≤ 1
0 � entry� (%) 89
6 90
0 90
5 87
0
Average agent utilization (%) 91
25 91
22 91
18 91
12

Note. The mean service time is 1/�= 10 minutes.

not need K = 60. The main point is that we would
need 18 more agents if each agent had only one skill.
So, clearly, adding multiple skills has an enormous
performance impact. Indeed, 20% more agents are
required when agents have only one skill instead of
all six skills. The question is whether we can experi-
ence much less performance degradation when agents
have only two skills.

We now turn to the simulation phase of the algo-
rithm. We now apply our provisioning algorithm. For
the initial value C = 90, the algorithm assigns primary
and secondary skills in a balanced way: Each of the
six work groups has 15 agents, and for each work
group (primary skill), each of the five remaining skills
are assigned to three agents in the work group. Thus,
each of the 30 pairs of distinct skills are assigned as
primary and secondary skills to three agents. Given
that obvious initial agent-skill matrix, we apply sim-
ulation to evaluate its performance.

The simulation results for this initial case with
�C�K� = �90�21� and that skill matrix is given in
Table 3. We show the overall blocking probabil-
ity, the overall mean delay, the mean delay for
each call type, the overall speed-to-answer service-
level ��delay ≤ 0�5 � entry�, the per-call-type speed-
to-answer service-level ��delayi ≤ 0�5 � entry�, the
overall agent utilization percentage, the work-group
utilization percentages, and the percentage work-
group utilizations devoted to call types with that skill
as a primary skill. We do not display confidence inter-
vals, but because the model is symmetric, we can see
the statistical precision from the six per-class results.

From Table 3, we see that the blocking probabil-
ity is 0�0054, which is above the target � = 0�0050,
while some of the speed-to-answer service-level prob-
abilities are also below the target 80%. However, the

constraints are only violated by very small amounts.
Indeed, those speed-to-answer discrepancies could
conceivably be because of statistical error, but the
blocking gap seems to be statistically (if not practi-
cally) significant. For all practical purposes, the ini-
tial candidate solution based on theM/M/C/K model
does the job for this balanced example.

However, we will proceed until all constraints are
fully satisfied. Following the specified procedure,
we increment C by 1 and decrement K by one,
to produce the new candidate pair �91�20�. It next
remains to specify the work groups and the agent-
skill matrix. For this symmetric example, we use the
performance-based method and select the agents with
the worst performance. We thus add one agent to
work group 6 with secondary skill 5, i.e., we add the
row �6�5�0�0�0�0� to the initial agent-skill matrix.
Then, we simulate this new case and obtain the results
for iteration 2 in Table 3. Now, we see that the per-
formance constraints are all satisfied. We continue for
two more iterations to see if we can reduce the num-
ber of waiting spaces. We arrive at �91�19� as the best
solution in iteration 3, as confirmed by iteration 4. As
we should expect, the performance is somewhat bet-
ter for work groups 5 and 6 because they received the
extra help. The main point is that the provisioning
solution when each agent has only two skills is nearly
the same as for the single-class M/M/C/K model.
There is only a difference of a single agent!

To further investigate what is going on, we also
apply our staffing algorithm to the case in which all
agents are universal agents, i.e., in which all agents
have six skills. Interestingly, we find that the best fea-
sible solution has a strictly smaller value of C than
for theM/M/C/K model. Our provisioning algorithm
terminates with the pair �C�K�= �89�24�. It turns out
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Table 3 Performance Measures for the Balanced Offered-Load Example in Which the Offered Loads
Are �1 = · · · = �6 = 13
75, the Mean Service Times Are 1/�1 = · · · = 1/�6 = 10
0 Minutes,
the Blocking-Probability Target Is � = 0
005, and the Speed-to-Answer Service-Level Target Is
�	delay≤ 0
5 � entry�≥ 0
80

The SBR provisioning algorithm for the balanced example

Number of iterations
(C agents, K waiting spaces)

1 2 3 4 Six skills
Performance measure 	90�21� 	91�20� 	91�19� 	91�18� 	89�24�

Blocking (%) 0
54 0
43 0
49 0
54 0
47
Mean delay (minutes) 0
36 0
30 0
29 0
27 0
34
Mean delay 1 0
37 0
32 0
30 0
29 0
33
Mean delay 2 0
36 0
32 0
30 0
28 0
31
Mean delay 3 0
35 0
30 0
29 0
28 0
37
Mean delay 4 0
36 0
30 0
29 0
28 0
33
Mean delay 5 0
35 0
28 0
27 0
26 0
34
Mean delay 6 0
37 0
28 0
27 0
26 0
34
�	delay≤ 0
5 � entry� (%) 79
8 82
7 83
1 83
6 82
2
�	delay1 ≤ 0
5 � entry� 80
3 81
9 82
4 83
0 82
4
�	delay2 ≤ 0
5 � entry� 79
7 81
9 82
7 83
5 82
6
�	delay3 ≤ 0
5 � entry� 80
0 82
5 82
7 83
2 81
9
�	delay4 ≤ 0
5 � entry� 80
5 82
6 82
9 83
4 82
5
�	delay5 ≤ 0
5 � entry� 79
7 83
5 83
9 84
3 82
2
�	delay6 ≤ 0
5 � entry� 79
5 83
9 84
1 4
5 82
1
Average agent utilization (%) 91
1 90
2 90
2 90
1 92
0
Work group 1 utilization 91
2 90
4 90
2 90
2 91
9
Work group 2 utilization 91
2 90
3 90
3 90
2 92
0
Work group 3 utilization 91
1 90
4 90
3 90
2 92
2
Work group 4 utilization 91
2 90
3 90
3 90
2 92
0
Work group 5 utilization 91
2 90
4 90
3 90
3 92
0
Work group 6 utilization 91
2 89
7 89
7 89
8 91
8
Work group 1 primary utilization 68
3 69
1 68
8 68
5 61
0
Work group 2 primary utilization 68
0 68
9 68
7 68
2 61
2
Work group 3 primary utilization 67
8 68
7 68
9 68
4 62
7
Work group 4 primary utilization 67
8 68
9 68
5 68
2 61
3
Work group 5 primary utilization 67
9 68
3 67
7 68
3 61
4
Work group 6 primary utilization 68
3 66
5 66
7 66
7 61
2

Note. The last column gives the six-skill best feasible solution for comparison.

that the non-FCFS service discipline of the six-skill
policy requires one fewer agent (but with extra trunk
lines). We performed additional simulation experi-
ments to verify that this is a bonafide phenomenon
of the routing policy. Even so, the staffing with two
skills differs by only two agents from the staffing with
six skills. Moreover, the application of the M/M/C/K
model to find an initial candidate solution gets very
close to the final answer. Only one more iteration was
required to reach the best feasible solution.

7. An Unbalanced Example
In this section, we consider a more difficult unbal-
anced example. We leave the mean service times the

same, but modify the arrival rates so that the offered
loads become

!1 = !2 = 4�25� !3 = 10�50� !4 = 13�75�

!5 = 19�25� and !6 = 30�50�
(7.1)

Just as for the balanced example, the total offered load
is 82.50, but now the six offered loads are unbalanced.
We use the same (common) performance constraints
as before.

Just as for the balanced example, the solution based
on the M/M/C/K model is �C�K�= �90�21�. On the
other hand, if each agent has only a single skill, then
we find that the six required �C�K� pairs associated



Wallace and Whitt: A Staffing Algorithm for Call Centers with Skill-Based Routing
Manufacturing & Service Operations Management 7(4), pp. 276–294, © 2005 INFORMS 289

with the offered loads in (7.1) are: �7�5�, �7�5�, �14�8�,
�18�9�, �24�10�, and �36�13�, respectively, yielding
a total requirement of �106�50�. Interestingly, fewer
agents are required in the single-skill case for the
unbalanced model than for the balanced model (106
instead of 108), but there still is a dramatic increase
in required resources.

To see what happens when each agent has two
skills, we again turn to the simulation. However, in
the unbalanced case, the initial case is no longer sym-
metric, so from the outset, we have rounding prob-
lems when we specify the work groups. The second
step to find an initial feasible solution phase takes
four iterations, proceeding from C = 90 to C = 93.

As indicated, the initial phase of the simulation
algorithm takes us to the initial feasible solution
�93�18� in four steps. We then proceed to obtain bet-
ter feasible solutions. We reach �91�20�, just as in
the balanced example. That takes four iterations in
the order: remove, change, remove, change. However,
subsequent iterations �remove� change� � � �� produce
no improvement. Indeed, in the �90�21� case obtained
in the next remove step, both delay and blocking con-
straints are violated, without any satisfied constraints
having significant slack.

Just as in the balanced example, we also consider
the case in which all agents have all six skills. Once
again, when all agents have all six skills, the best fea-
sible solution has C = 89. For this example, K = 24.
Thus, we have admirably achieved our goal. The final
feasible solution is within a single agent of what can
be achieved for the M/M/C/K model and within two
agents of what can be achieved when all agents have
all skills.

8. Extensions
In this final section, we discuss some extensions.

Class-Dependent Performance Constraints. All
the experiments described above have performance
constraints the same for all customer classes. We
also did experiments with class-dependent perfor-
mance constraints. In particular, we introduced three
grades of service: platinum, gold, and silver. Among
our six classes, we let two classes be given each
grade of service. We specified the meaning by letting
the service-level constraint parameter pairs ��k�
k�

in (2.1) be, respectively, �90�20�, �80�20�, and �80�30�.
We left the rest of the balanced and unbalanced
models unchanged, including the blocking-constraint
parameters. We used the coarsest pair �80�30� in
the M/M/C/K analysis, which was just as before.
Thus, the initial staffing for the M/M/C/K model is
unchanged: �90�21�.

Just as before, the algorithm converged after sev-
eral iterations. In particular, for the unbalanced exam-
ple, four iterations were required to find the initial
feasible solution with �C = 94� K = 17�. The best fea-
sible solution was obtained at iteration 15, yielding
�C = 93� K = 15�. The results for 14 of the 16 iterations
are shown in Tables 4 and 5. The candidate solution
with �C = 92� K = 19� obtained at iteration 11 has all
but one delay constraint violated, with that one quite
close, so that our final candidate �C = 93� K = 15� is
likely to be the optimal solution. The higher staff
requirement is as expected, because some of the per-
formance constraints are more stringent.

Other Performance Constraints. Our approach
applies equally well to other performance constraints
besides the ones in (2.1) and (2.2), class dependent or
not. For example, we could have constraints on the
expected per-class conditional steady-state waiting
time, E&Wk �Qk <C+K' (the average speed of answer,
ASA, for answered calls), or we could have two
(or more) different per-class speed-to-answer service-
level constraints like the one in (2.1), one focusing
on relatively small targets such as 30 seconds, and
another focusing on larger targets such as three min-
utes. We might want to ensure that 80% of all calls
are answered within 30 seconds and that 99% of all
calls are answered within three minutes. The second
speed-to-answer service-level constraint ensures that
callers failing to meet the first target are not subse-
quently given poor service.

Class-Dependent Mean Service Times. A critical
assumption so far in this paper is that all service times
have a common mean. It is easy to extend the algo-
rithm to other cases, but there is good reason to ques-
tion whether it will still perform well, especially when
the mean service times are allowed to depend on both
the customer type and the agent; e.g., see Garnett and
Mandelbaum (2000).
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Table 4 Performance Measures in the First Seven Iterations of the SBR Heuristic Algorithm in the Case of Different
Service-Level Targets and Unbalanced Offered Loads: �1 = �2 = 4
25, �3 = 10
50, �4 = 13
75, �5 = 19
25, and
�6 = 30
50

SBR heuristic resource provisioning algorithm

Number of iterations (Number of agents, extra waiting space)

1 2 3 4 5 6 7
Performance measure 	90�21� 	91�20� 	92�19� 	93�18� 	94�17� 	93�18� 	93�18�

Blocking (%) 0
53 0
42 0
36 0
31 0
26 0
30 0
31
Mean delay (minutes) 0
35 0
29 0
23 0
19 0
15 0
19 0
19
Mean delay 1 0
80 0
67 0
58 0
39 0
35 0
39 0
41
Mean delay 2 0
84 0
57 0
48 0
40 0
30 0
35 0
35
Mean delay 3 0
37 0
27 0
21 0
15 0
12 0
15 0
13
Mean delay 4 0
38 0
32 0
27 0
23 0
19 0
24 0
26
Mean delay 5 0
27 0
24 0
18 0
16 0
11 0
14 0
14
Mean delay 6 0
24 0
21 0
16 0
14 0
12 0
15 0
16
�	delay≤ 0
5 � entry� (%) 81
1 83
7 86
5 88
6 90
6 88
5 88
4
�	delay1 ≤ 0
5 � entry� 68
2 72
0 74
9 81
2 83
3 81
7 81
3
�	delay2 ≤ 1/3 � entry� 65
0 72
3 75
1 78
1 82
2 80
1 80
6
�	delay3 ≤ 1/3 � entry� 76
9 81
4 85
1 88
2 90
2 88
2 89
3
�	delay4 ≤ 1/3 � entry� 76
0 78
7 81
3 83
8 86
0 82
9 81
8
�	delay5 ≤ 1/3 � entry� 79
9 82
0 85
7 87
5 90
1 88
2 88
7
�	delay6 ≤ 0
5 � entry� 84
4 86
3 88
9 90
4 92
9 89
8 89
3
Average agent utilization (%) 91
2 90
2 89
3 88
4 87
5 88
4 88
4
Work group 1 utilization 86
6 85
4 84
1 81
3 79
9 81
2 81
1
Work group 2 utilization 86
5 84
2 82
7 81
2 79
9 81
1 80
8
Work group 3 utilization 89
6 88
5 87
0 86
1 85
2 86
1 85
4
Work group 4 utilization 90
7 90
0 89
1 88
6 87
7 88
6 88
7
Work group 5 utilization 91
6 90
9 90
2 89
4 88
2 89
0 89
2
Work group 6 utilization 93
1 92
5 91
8 91
3 90
7 91
7 92
1
Work group 1 primary utilization 53
8 54
7 55
5 51
7 52
5 51
4 51
6
Work group 2 primary utilization 53
6 50
3 51
4 51
3 51
9 50
9 50
7
Work group 3 primary utilization 63
4 62
8 61
5 61
1 62
2 61
3 59
0
Work group 4 primary utilization 68
9 69
2 70
2 71
0 71
3 71
2 71
3
Work group 5 primary utilization 71
6 72
5 72
7 73
0 72
0 71
4 70
8
Work group 6 primary utilization 77
9 78
5 78
7 79
5 79
8 80
8 81
8

Notes. The mean service times are 1/�1 = · · · = 1/�6 = 10
0 minutes, and the target blocking is �= 0
005. The service-level
targets for call types 1–6 are 	80�30�, 	80�20�, 	90�20�, 	80�20�, 	90�20�, and 	80�30�, respectively, where 	80�30� means
�	delay≤ 0
5 � entry�≥ 0
80.

However, we note that the algorithm extends easily
to class-dependent mean service times (independent
of the agent). To find the initial candidate solution
by applying the M/M/C/K model, we then need to
define an overall mean service time. That is easily
done by letting the expected service time be a con-
vex combination of the individual mean service times;
namely,

1
�
≡ 1
�

n∑
i=1

�i
�i
� (8.1)

The overall service time is now hyperexponential
(a mixture of exponentials) instead of exponential, so
the M/M/C/K model is even more optimistic, but it

can nevertheless be used because it is only being used
to generate an initial candidate solution.

We investigated several cases of unequal mean
service times. We considered the same balanced
and unbalanced examples, where two of the classes
had mean service times 10−x, two of the classes had
mean service times 10, and two of the classes had
mean service times 10 + x for x = 2 and x = 7.
Surprisingly, perhaps, the algorithm was also effec-
tive in these alternative scenarios, yielding nearly the
same staffing (within a single agent). To illustrate,
we present the detailed performance measures for the
balanced example with x = 2 in Table 6; the mean
service times were thus 8, 10, and 12. The optimal
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Table 5 Performance Measures in Seven Later Iterations of the SBR Heuristic Algorithm in the Case of Different
Service-Level Targets and Unbalanced Offered Loads: �1 = �2 = 4
25, �3 = 10
50, �4 = 13
75, �5 = 19
25, and
�6 = 30
50

SBR heuristic resource provisioning algorithm

Number of iterations (Number of agents, extra waiting space)

8 9 10 11 12 15 16
Performance measure 	93�18� 	93�18� 	93�18� 	93�18� 	92�19� 	93�15� 	93�14�

Blocking (%) 0
31 0
32 0
32 0
32 0
38 0
44 0
503
Mean delay (minutes) 0
20 0
20 0
20 0
21 0
26 0
19 0
18
Mean delay 1 0
40 0
45 0
34 0
38 0
44 0
34 0
34
Mean delay 2 0
34 0
35 0
33 0
36 0
40 0
31 0
32
Mean delay 3 0
13 0
12 0
12 0
11 0
14 0
10 0
09
Mean delay 4 0
28 0
28 0
29 0
25 0
31 0
24 0
23
Mean delay 5 0
12 0
11 0
10 0
11 0
12 0
09 0
09
Mean delay 6 0
18 0
19 0
22 0
24 0
32 0
22 0
20
�	delay≤ 0
5 � entry� (%) 88
2 887
9 87
6 87
5 84
9 88
2 88
6
�	delay1 ≤ 0
5 � entry� 81
4 79
9 82
9 81
8 79
5 83
0 82
6
�	delay2 ≤ 1/3 � entry� 80
5 80
2 80
5 80
0 78
3 81
2 81
4
�	delay3 ≤ 1/3 � entry� 89
8 90
2 90
1 90
7 88
9 91
6 91
7
�	delay4 ≤ 1/3 � entry� 81
0 80
9 80
0 81
9 78
6 82
6 82
8
�	delay5 ≤ 1/3 � entry� 89
4 90
1 90
6 90
6 89
0 91
4 91
8
�	delay6 ≤ 0
5 � entry� 88
3 87
3 86
2 85
3 81
3 85
6 86
4
Average agent utilization (%) 88
4 88
4 88
4 88
4 89
3 88
3 88
2
Work group 1 utilization 80
8 81
3 79
8 79
9 81
2 79
6 79
8
Work group 2 utilization 80
8 81
0 80
9 80
9 82
4 80
8 80
6
Work group 3 utilization 85
4 85
4 85
7 85
9 87
1 85
7 85
6
Work group 4 utilization 88
9 89
0 89
3 88
5 89
5 88
6 88
5
Work group 5 utilization 88
6 88
2 88
3 88
5 89
3 88
3 88
2
Work group 6 utilization 92
6 92
8 93
3 93
6 94
3 93
5 93
5
Work group 1 primary utilization 51
4 52
5 48
2 48
9 48
6 48
6 49
3
Work group 2 primary utilization 50
8 51
5 50
8 51
1 51
0 51
0 50
8
Work group 3 primary utilization 58
7 58
0 58
0 57
7 56
8 57
8 57
6
Work group 4 primary utilization 71
4 71
3 71
1 69
1 68
6 69
3 68
9
Work group 5 primary utilization 69
1 67
6 66
9 67
1 66
0 66
7 66
6
Work group 6 primary utilization 83
1 84
1 85
4 86
4 87
4 86
4 86
1

Notes. The mean service times are 1/�1 = · · · = 1/�6 = 10
0 minutes, and the target blocking is �= 0
005. The service-level
targets for call types 1–6 are 	80�30�, 	80�20�, 	90�20�, 	80�20�, 	90�20�, and 	80�30�, respectively, where 	80�30� means
�	delay≤ 0
5 � entry�≥ 0
80.

solution was �91�19�, just as in the balanced example
in Table 3.

However, it remains to carefully evaluate how the
algorithm performs under such generalizations. Bad
behavior is clearly possible when the mean service
times vary greatly and depend upon both the call type
and the agent.

Nonexponential Distributions and Abandon-
ments. We anticipate that the algorithm will be
equally effective for generalizations of the present
model in which customers may abandon before start-
ing service, and where both the service times and

patience times (times to abandon before starting ser-
vice) have nonexponential distributions. These are
important model generalizations, because they occur
in real call centers and because they can make a
big difference in performance. Statistical analysis of
call-center data has shown that the service-time and
patience distributions are often not nearly exponen-
tial; see Brown et al. (2005).

Simulations can easily incorporate these important
features. It remains to verify that the performance
of the algorithm is indeed good though. However,
as indicated above, to achieve good performance,
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Table 6 Performance Measures Using the SBR Heuristic Algorithm for the Case of Different Mean Service Times with
Balanced Call Volumes: �1 = · · · = �6 = 1
375 Calls/Minute, Mean Service Times 1/�1 = 1/�2 = 8
0 Minutes,
1/�3 = 1/�4 = 10
0 Minutes, 1/�5 = 1/�6 = 12
0 Minutes, Target Blocking �= 0
005 and Target Delay
�	delay≤ 0
5 � entry�= 1−�	delay> 0
5 � entry�= 0
80

SBR heuristic resource provisioning algorithm

Number of iterations (Number of agents, extra waiting space)

1 2 3 4 5 6 7
Performance measure 	90�21) 	91�20) 	92�19) 	91�20) 	90�21) 	91�19) 	91�18)

Blocking (%) 0
56 0
44 0
38 0
45 0
56 0
49 0
55
Mean delay (minutes) 0
37 0
31 0
25 0
30 0
36 0
29 0
28
Mean delay 1 0
50 0
36 0
30 0
33 0
39 0
33 0
32
Mean delay 2 0
49 0
40 0
28 0
33 0
38 0
32 0
32
Mean delay 3 0
35 0
31 0
26 0
32 0
38 0
30 0
30
Mean delay 4 0
36 0
32 0
27 0
32 0
37 0
30 0
29
Mean delay 5 0
27 0
23 0
19 0
26 0
35 0
25 0
24
Mean delay 6 0
27 0
23 0
20 0
25 0
32 0
24 0
23
�	delay≤ 0
5 � entry� (%) 79
4 82
5 85
2 82
6 79
8 83
0 83
3
�	delay1 ≤ 0
5 � entry� 74
5 79
8 82
9 81
2 78
4 81
2 81
5
�	delay2 ≤ 0
5 � entry� 74
7 78
6 83
5 80
9 78
5 81
4 81
4
�	delay3 ≤ 0
5 � entry� 79
9 82
2 84
9 81
9 79
4 82
4 82
7
�	delay4 ≤ 0
5 � entry� 80
2 82
4 84
5 82
2 79
9 82
7 82
8
�	delay5 ≤ 0
5 � entry� 83
8 86
1 88
3 84
8 80
9 85
0 85
6
�	delay6 ≤ 0
5 � entry� 83
6 86
1 87
4 84
7 82
0 85
6 85
8
Average agent utilization (%) 91
1 90
2 89
3 90
2 91
1 90
2 90
1
Work group 1 utilization 90
6 89
1 88
2 89
0 90
1 89
1 89
0
Work group 2 utilization 90
7 89
5 88
0 89
1 90
1 89
0 88
9
Work group 3 utilization 91
1 90
4 89
5 90
3 91
0 90
2 90
3
Work group 4 utilization 91
0 90
3 89
5 90
4 91
2 90
4 90
2
Work group 5 utilization 91
4 90
8 89
9 91
2 92
4 91
2 91
1
Work group 6 utilization 91
5 90
6 89
9 90
7 91
6 90
7 90
6
Work group 1 primary utilization 67
5 64
7 65
5 64
2 53
8 64
6 64
3
Work group 2 primary utilization 67
6 67
0 64
9 64
3 51
6 64
3 64
3
Work group 3 primary utilization 68
3 68
9 69
5 69
0 67
6 68
4 68
8
Work group 4 primary utilization 69
2 69
0 69
5 68
9 67
6 68
7 68
5
Work group 5 primary utilization 69
1 69
7 70
1 71
5 72
0 71
7 71
5
Work group 6 primary utilization 69
0 69
4 70
2 70
3 80
5 69
8 69
5

it may be important to require that the service-time
and patience distributions are each the same for all
customers.

It is significant that the initial step using the
M/M/C/K model can be replaced by a corresponding
initial step using the M/GI/C/K +GI model, having
i.i.d. service times with a nonexponential distribution
(the first GI) and i.i.d. patience times with a non-
exponential distribution (the +GI), drawing on the
approximation algorithm in Whitt (2005). Moreover,
we anticipate that the overall performance will be
close to that predicted by the M/GI/C/K+GI model,
thus that single-class model can be used to predict
and quantify the performance impact of these addi-
tional features in the SBR call center. For example,

we could predict the consequence of the shift from
exponential to hyperexponential service times in (8.1).

Other Sharing Schemes. Our algorithm assigns
secondary skills in a balanced way, according to the
fair-assignment rule in (5.3), but the algorithm should
perform well with other assignments, providing that
there is indeed adequate sharing across all work
groups. Evidently, what is needed is something like
the chaining specified by Jordan and Graves (1995).
Accordingly, we performed analogs of the resource-
pooling experiment in §4 in which the secondary
skills were assigned by chaining. In particular, for 1≤
i≤ 5, all agents in work group i (with primary skill i)
were assigned secondary skill i+ 1, and all agents in
work group 6 were assigned secondary skill 1.
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The story in §4 is essentially the same with this less-
balanced form of sharing, being only slightly worse.
That is in distinct contrast to the much worse perfor-
mance that occurs if for all i, 1 ≤ i ≤ 3, all agents in
work group 2i − 1 have secondary skill 2i, while all
agents in work group 2i have secondary skill 2i− 1;
then the entire call center performs as three separate
call centers, each of size 30. That causes a serious per-
formance degradation.

Different Numbers of Skills. We were naturally
interested to see what happens when even less shar-
ing is done. Thus, we performed experiments in
which only some of the agents have two skills, while
the remaining agents have only a single skill. In
particular, we considered variations of the resource-
pooling experiment in §4 in which only 5 and
10 agents in each work group (of size 15) have sec-
ondary skills, with a balanced distribution among the
five other work groups. As expected, performance
degrades as the degree of sharing decreases, but not
proportionally. For example, the case of five yields a
performance about equally between the case of one
skill and two skills (instead of 1/3 of the way).

When the agents have different numbers of skills,
new issues arise. To achieve better performance (but
not necessarily to balance work loads), it tends to
be advantageous to route to the less flexible agents
first if there is a choice. Once agents have different
numbers of skills, attention needs to be paid to the
utilizations of the different agents. For example, we
found that when we applied our algorithm directly to
these partial-skill cases, in the case of normal loading
(as in §4), the less flexible agents (with only a sin-
gle skill) had about twice the idle time as the more
flexible agents (with two skills). When we routed
calls to the less flexible agents first, the performance
improved slightly and the utilizations became more
balanced. Thus, routing to the less flexible agents first
was beneficial from both points of view. However, we
have not yet done enough experiments to draw strong
general conclusions. For any contemplated scenario,
we would suggest paying attention to agent utiliza-
tions as well as the performance constraints in (2.1)
and (2.2).

Percentage Served by Agents with a Primary Skill.
When calls may be served by agents with different
skill levels, it is appropriate to pay attention to how

many calls are served by agents with that call type
as a primary skill, a secondary skill, and so on. We
believe that is an important aspect of call-center per-
formance. Accordingly, it is useful to report those
statistics, e.g., as we did in Table 3.
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