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A Note on the Influence of the .Somple

on the Posterior Distribution
WARD WHiTT*

This article studies when and how the posterior distribution responds
monotonically to changing sample evidence. The monotone likeli­
hood ratio (MLR) property, which implies stochastic order, is sug­
gested as a convenient ordering to express and demonstrate this
monotonicity.

KEY· WORDS: Bayesian inference; Posterior distribution; Mono­
tone likelihood ratio; Stochastic order.

1. INTRODUCTION

Suppose we sample at random without replacement
from an urn containing N balls, each of which is colored
either red or white. Given our prior distribution of the
number of red balls in the urn and the observed number
of red balls in the sample, we can compute using Bayes's
theorem the posterior distribution of the number of red
balls either in the entire population or remaining in the
urn after the sample has been removed. We usually
expect the sample to reflect the population in the sense
that the more we see in the sample, the more we believe
we will see in the population. When we speak of the
posterior distribution on the entire population, this state­
ment is always true in a strong sense; see Theorems 2 and
4. We also usually expect this statement to be true when
we speak of the posterior distribution on the unsampled
population. This statement, however, obviously need not
always be true. For example, if we know in advance that
exactly k of the N balls are red, then the number of red
balls remaining in the urn decreases as the number of red
balls in the sample increases. We provide conditions on
the prior distribution for the posterior distribution on the
unsampled population to be an increasing function (in
some sense) of the sample evidence; see Theorem 3. The
monotonicity properties discussed here are similar to
convergence properties of the posterior distribution as
the sample size increases (DeGroot 1970, p. 201, and
references there). We do not know of any earlier work on
the kind of monotonicity treated here, but such properties
are not difficult to deduce in the case of conjugate prior
distributions on real parameters (Deflroot 1970, Ch. 9).
For example, suppose Xl, ... , X n is a random sample
from a Bernoulli distribution with an unknown value of
the parameter W. Suppose also that the prior distribu­
tion of W is a beta distribution with parameters a and fJ

such that a > °and fJ > 0. Then the posterior distribu-
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raising this monotonicity issue and R.E. Thomas and the referee for
helpful comments and corrections.

tion of W when X k = xk(k = 1,· ... , n) is a beta distribu­
tion with parameters a + y and fJ + n - y, where
y = Xl +...+ X n (DeGroot 1970, p. 160). Hence, the
mean of the posterior distribution is (a + y)j (a + fJ + n),
which is clearly strictly increasing in y for fixed nand
strictly decreasing in n for fixed y.

2. COMPARING PROBABILITY DISTRIBUTIONS

The sense in which the posterior distribution will be
shown to be an increasing function of the sample is im­
portant. We wish to show not only that the mean in­
creases but that the whole distribution increases. For
this purpose, we use the following two partial-order rela­
tions on probability mass functions. Suppose p

== Ip(k);k = 0,1, ... ,N} andq == Iq(k);k = 0, 1, ... ,
N} are two probability mass functions on the set
S = 10,1, ... , N}.

Definition 1: The mass function p is stochastically less
than or equal to the mass function q, denoted by p ~d q,
if

N N

~ p(k) s ~q(k) for all m, °~ m s N .
k=m k~m

Definition 2: The mass function p is less than or equal
to the mass function q in the sense of monotone likelihood
ratio (MLR), denoted by p ~r q, if q(k)jp(k) is a non­
decreasing function of k (excluding k such that
p(k) = q(k) = 0).

Stochastic order is important in decision analysis be­
cause p ~'I q means that every decision maker who
prefers more to less (has a nondecreasing :utility function)
prefers q to p. For further discussion about stochastic
order, see Kamae, Krengel, and O'Brien (1977) or
Veinott (1965, p. 769); for further discussion about the
MLR property, see Ferguson (1967, p. 208) and refer­
ences there. We find the relation ~r more convenient to
work with than ~'h and it is even stronger, that is, if
p ~ r q, then p ~ II q. In fact, the two relations can be
connected in an interesting way. For this purpose, let
p(A) = ~kEA p(k) for any subset A of S and let PA be
the conditional probability mass function given A, de­
fined as usual by PA(k) = p(k)jp(A), k E A, for
p(A) > 0.
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which is increasing in k. Similarly,

is nondecreasing (nonincreasing) in k ;
(ii) P(SN - B; = ·ISn = n - i, SN - Sn ~ m < N

- n) is MLR nondecreasing in n if and only if

f3N(k) = (k + I)(N - k - j)PN(k + 1)/(N - k)PN(k)

which is always decreasing in k.

Now we consider the influence of the sample on the
unsampled population.

Theorem 3:
(i) The posterior probability distribution on the un­

sampled population P(SN - S« = ·ISn = j) is MLR
nondecreasing (MLR nonincreasing) in j if and only if

(n + 1) (N - k - n + j)

(N - n)(n + 1 - j)

f(kIN, n + 1, j)

f(kIN, n, j)

which contradicts qA's being a probability mass function
on A. Now, for k l ~ k o,

Theorem 1: The MLR-ordering P ~ T q holds if and only
if PA ~'I qA for all subsets A for which peA) > 0 and
q(A) > O.

Proof: (if) Pick any k: and k 2 such that k, < k 2 and
p(k;) = q(k;) = 0 does not occur for i = 1, 2. One may
easily see that PA ~ 'I qA for A = I»; k2 1 implies q (kl ) /

p(kl) ~ q(k2)/p(k 2) .

(only if) Note that qA(k)/PA(k) is nondecreasing in k
for all A if q(k)/p(k) is nondecreasing in k. Let k obe such
that

qA(ko)/PA(k o) ~ 1 > qA(k)/PA(k) , k < ko .

To see that k o exists, suppose qA(k)/PA(k) < 1 for all k.
Then

L qA(k) = L [qA(k)/PA(k)]PA(k) < L PACk) = 1 ,
kEA kEA kEA

L qA(k) = L [qA(k)/PA(k)]PA(k) ~ L PACk)
k2':kl k2':kl k2': kl

and, for k l < ko,

L qA(k) = L [qA(k)/PA(k)]PA(k) < L PACk)
k~kl k~kl k~kl

is nondecreasing in k ;
(iii) P(SN - B; = . IS; = n - j) is MLR nonin­

creasing in n if and only if f3N (k) is nonincreasing in k.
Proof:
(i) Substituting SN - S« for SN in the proof of

Theorem 2, we obtain

g(kIN, n, j)
P(SN - S; = klSn = j)

L:::~:-n gem IN, n, j) ,

where g(mIN, n, j) = f(j + miN, n, j), and

Hence, PA ~'I qA as claimed.
Corollary: If P ~ T q, then P ~ ,I q.
We call the property in Theorem 1 uniform conditional

stochastic order. We study it further in Whitt (1980).

where

3. THE INFLUENCE OF SAMPLING PNU + k + 1) U + k + 1) (n - j)

PN(j + k)(N - j - k)(j + 1)

g(kIN, n, j + 1)

g(kIN, n, j)

PN(k) = c(N - k + I)PN(k - l)jk, 1 ~ k ~ N

= ckNlpN(O)/(N - k) !k!

which establishes (i).
(ii) and (iii) Finally,

g(k IN, n + 1, n + 1 - j)

g(kIN, n, n - j)

PN(k + n + 1 - j) (k + n + 1 - j) (N - k - n)

PN(k + n - j) (n + 1 - j) (N - k - n + j)

Remark: One may easily see that the extra condition
ISN - Sn ~ m < N - n} in (ii) is necessary. Clearly,

P(SN - Sn+l ~ N - nlSn+1 = n + 1 - j)

= 0 < P(SN - Sn ~ N - nlSn = n - j) .

Corollary: The posterior probability distribution on the
unsampled population P(SN - S« = . IS« = j) is in­
dependent of j for all n if and only if the prior is binomial,
that is, PN(k) = (N!jk!(N - k)!)pk(1 - p)N-k for some
p.

Proof: By Theorem 3(i), P(SN - Sn = ·ISn = j) is
simultaneously MLR nondecreasing and MLR nonin­
creasing in j (and thus independent of j) if and only if
OIN(k) is constant, which occurs if and only if

(k - j)(n - j)

U + 1) (N - k -'-- n + j + 1) ,

f(kjN, n, j + 1)

f(kIN, n, j)

Because the denominator is independent of k, it suffices
to consider only the ratio of the numerators. In particular,

In order to formalize the sampling, let X; equal 1 if
the ith sampled ball is red and 0 otherwise. Because we
sample at random, we have N exchangeable random
variables Xl, ... , X N , each of which can assume the
values 0 and 1. Let S n = X I + ... + X n, n = 1, ... , N,
with So = O. Let the prior distribution be PN(k)
= P (SN = k), k = 0, 1, ... , N. In the following theorem,
we use the MLR-ordering ~ T to describe the influence of
the sample on the posterior distribution of the entire
population.

Theorem 2: The conditional probability distribution on
the entire population P(SN = ·ISn = j) is always
MLR nondecreasing in j and MLR nonincreasing in n.

Proof: By basic properties of conditional probabilities,

f(kIN, n, j)
---------, k ~ j ,
L:::~r-n+j f(m IN, n, j)
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for some c > O. Without loss of generality, let c = p/
(1 - p) for 0 ~ P ~ 1. Then

PN(k) = (:) pk(1 - p)-kpN(O) .

In order to have PN(O) + PN(I) +...+ PN(N) = 1, we
must have PN(O) = (1 - p)N, which makes PN(') bi­
nomial with parameters Nand p.

Remark: The corollary concludes that there are prior
distributions for which sampling provides absolutely no
additional information about the unsampled population.
The binomial priors correspond precisely to the assump­
tion of independence, which of course means the sample
should have no influence on the probability distribution
of the unsampled population. This phenomenon has
obvious implications for situations such as destructive
testing in which interest is focused on the unsampled
population. In accord with sound statistical practice, the
prior distribution should be examined before sampling
to determine the information that might be gained.

Example: To see how Theorem 3 can be applied, sup­
pose we sample servers from a service system at random
without replacement and see how many are busy. For
an M/O/N loss service system (Riordan 1962, pp. 81-91)
the steady-state probability PN(k) of having k busy
servers is characterized by the truncated Poisson dis­
tribution, that is, PN(k) = x (k)/"E/:=o x(j), 0 ~ k :s: N,
where xU) = ajjj!. Consequently, aN(k) = a/(N - k)
and f:1N(k) = a(N - k - j)/(N - k), so that the condi­
tions in (i) and (ii) of Theorem 3 are satisfied. On the
other hand, one may easily see that the monotonicity in
(i) (or a weaker form) does not extend to all OI/G/N
loss systems. For example, in a OI/G/2 system (loss or
delay) with P(u > v) = 1, where u is an interarrival­
time random variable and v is a service-time random
variable, no more than one server is ever busy.

One may easily see that the strong ordering in Theorem
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2 holds in other situations but not necessarily with equal
generality. Suppose we have a prior probability mass
function 7r(8) on a discrete real parameter 8 (the dis­
creteness is not necessary) ; suppose the sample observa­
tion or sufficient statistic is real valued and is governed
by a conditional probability mass function f (x 1 8). Let
h (81 z) be the posterior distribution, defined by
h(8Ix) = f(xI8)r(8)/LB f(xI8)r(8).

Theorem 4: The posterior mass function h(8Ix) is MLR
nondecreasing (MLR nonincreasing) in x if and only if
f (x I8) is MLR nondecreasing (MLR nonincreasing) in 8.

Proof: Note that h(8 llx2)/h(8llxl) ~ h(82Ix2)/h(82Ixl)
if and only if h (821Xl)/ h (81 1Xl) ~ h (821X2) / h (81 1X2) ; how­
ever, h(8 21x) /h(8l lx) = [f (x I(2)/ f (z 1(1) J(7r(82) /7r(8l)).

Remarks: Theorem 4 covers the example of the beta
prior distribution and the binomial sample discussed in
the introduction. Theorem 4 is closely related to the
theory of uniformly most powerful tests as discussed in
Section 5.3 of Ferguson (1967) and references there. Cor­
responding to Theorem 1 in Ferguson (1967, p. 210),
Theorem 4 implies that one-sided tests always minimize
Bayes's risk for one-sided hypotheses such as H 0: 8 ~ 80

against HI: 8 > 80•

[Received April 1978. Revised October 1978.J
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