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Abstract
This paper studies stationary customer flows in an open queueing network. The flows
are the processes counting customers flowing from one queue to another or out of the
network. We establish the existence of unique stationary flows in generalized Jack-
son networks and convergence to the stationary flows as time increases. We establish
heavy-traffic limits for the stationary flows, allowing an arbitrary subset of the queues
to be critically loaded. The heavy-traffic limit with a single bottleneck queue is espe-
cially tractable because it yields limit processes involving one-dimensional reflected
Brownianmotion. That limit plays an important role in our new nonparametric decom-
position approximation of the steady-state performance using indices of dispersion and
robust optimization.

Keywords Generalized Jackson networks · Heavy traffic · Stationary point
processes · Stability · Index of dispersion · Asymptotic methods
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1 Introduction

In this paper, we establish heavy-traffic limits for the stationary flows in a non-Markov
open queueing network (OQN). By flows, wemean the departure processes, flows from
one queue to another, superpositions of such processes and thus the internal arrival
processes. We consider an OQN with K single-server stations, unlimited waiting
space, and the first-come first-served service discipline. We assume that we have
mutually independent renewal external arrival processes, sequences of independent
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and identically distributed (i.i.d.) service times and Markovian routing. Such a system
is called a generalized Jackson network (GJN), because it generalizes the Markovian
OQNanalyzedby Jackson [18] inwhich all the interarrival times and service times have
exponential distributions. Jackson OQNs are remarkably tractable because the vector
of steady-state queue lengths (number in system) has a product-form distribution, just
as if the queues were independent M/M/1 queues with the correct arrival rates.

The major theoretical advance for GJNs more general than Jackson OQNs has no
doubt been the heavy-traffic limit theory [8,20,24] (which did not consider the flows).
However, the practical application of that theory remains challenging, largely because
the different queues in an OQNmay have widely varying traffic intensities, with only a
few being bottlenecks. The heavy-traffic limits can be extended to that case, as shown
by Chen and Mandelbaum [6,7], but there remains a need for effective numerical
algorithms for computing performance measures which properly account for a range
of traffic intensities. See [11,17] for previous algorithms.

Thus, early parametric-decomposition methods, as in [23], which treat the queues
asmutually independent given a partial parametric specification of each internal arrival
process (obtained by solving a system of linear equations) remain viable tools. This
paper is part of our effort in [25–27,29] to develop a new improved parametric-
decomposition approximation for GJNs and more general OQNs, which have similar
computational efficiency and ease of use.

Our main idea can perhaps best be seen by first considering a feed-forward GJN.
Then the performance at each queue depends on the full model only through the
service-time distribution at that queue and the arrival process to that queue. However,
that arrival process tends to be relatively complicated, primarily because it tends to
be non-renewal and depends on all the model parameters of the previous queues. In
response, we partially characterize the stochastic properties of each stationary arrival
process by its rate and index of dispersion for counts (IDC), which is a scaled version
of the variance-time curve, a nonnegative real-valued function of time; see [26,28].
To carry out this program, we need to approximate the IDC of the arrival process at
each queue. For a feed-forward GJN, this is not an exceptionally hard task because
the service times are independent of the arrival process. We can rely on the heavy-
traffic limit for the stationary departure process in [25] and the functional central limit
theorem (FCLT) of the splitting operation in §9.5 of [24].

The approximation of the IDC in a GJN with customer feedback is considerably
more difficult, because of the correlation between the service times and the arrival
processes. To develop such an approximation, we rely on the heavy-traffic limits
for the flows established in this paper. For the full RQNA algorithm, including the
extension to non-feed-forward OQNs, see [27,29].

The heavy-traffic limit for the flows in a GJN here extends the heavy-traffic limit for
the stationary departure process in theGI/GI/1model in [25]. That was evidently the
first paper to establish a heavy-traffic limit for a stationary flow (other than an external
arrival process) in a queueing model. Our main result in this paper is Theorem 3.1,
which expresses a joint heavy-traffic limit for the centered flows with other processes.
The limit for the flows is the final term in (3.7), which depends on the limits of other
terms. However, Theorems 4.1 and 4.2 show that the limit simplifies dramatically
when there is only a single bottleneck queue.
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As before in [25], for our proof we rely heavily on the justification for interchanging
the limits t → ∞ and ρ ↑ 1 in a GJN provided by Gamarnik and Zeevi [14] and
Budharaja and Lee [5]. By allowing an arbitrary subset of the queues to be bottleneck
queues (have nondegenerate limits), while the rest have null limits, we follow Chen
andMandelbaum [6,7]. Even though the proofs follow quite directly from the existing
literature, the asymptotic results here are evidently new.

As a preliminary step for our heavy-traffic limit, we establish conditions for the
existence of stationary flows in a GJN and for convergence to those stationary flows
as time evolves. For that we rely heavily on the Harris recurrence that was used to
establish the stability of a GJN under appropriate regularity, as in Dai [9] (see the
remark after Theorem 5.1 for earlier literature); see also Ch. VII of Asmussen [1].

The rest of the paper is organized as follows: We specify the model and establish
the existence and convergence results (as time increases) for the stationary flows of
a GJN in Sect. 2. We establish the main heavy-traffic limit for the stationary flows
in Sect. 3. In Sect. 4 we treat the special case of a GJN with only one bottleneck
queue, which is useful because it involves only one-dimensional RBM. We show
that the approximation technique of feedback elimination discussed in §III of [23]
is asymptotically correct in the HT limit. Finally, we draw conclusions in Sect. 5.
Additional details for this paper appear in [29] and a longer version of this paper
available on the authors’ web pages.

2 The stationary flows in an open queueing network

In this section, we establish the existence of unique stationary flows in a GJN and
convergence to those stationary flows as time increases. These issues are complicated,
but they are manageable under appropriate regularity conditions, in particular, if we
construct a Markov process representation and make assumptions implying Harris
recurrence as in §5 of [9], Chapter VII of [1], [14] and references there. In Sect. 2.1
we specify the model. Then in Sect. 2.2 we make assumptions implying the Harris
recurrence and establish the existence, uniqueness and convergence result for the
stationary flows.

2.1 The OQNmodel

We start by formulating a general OQN model that goes beyond the assumptions
we make to establish Harris recurrence. Let there be K single-server stations with
unlimited waiting space and the first-come first-served (FCFS) discipline. We assume
that the system starts empty at time 0, but that could be relaxed. We associate with
each station i an external arrival point process A0,i , which satisfies A0,i (t) < ∞ with
probability 1 for any t . Let A0 ≡ (A0,1, . . . , A0,K ) denote the vector of all external
arrival processes.

Let {V l
i : l ≥ 1} denote the sequence of service times at station i and define the

(uninterrupted) service point (counting) process as
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Si (t) = max
n≥0

{
n∑

l=1

V l
i ≤ t

}
, t ≥ 0,

which we also assume to have finite sample path with probability 1.
In addition to external arrivals, departures from each station may be routed to other

queues or out of the network. To specify the general routing (or splitting) process, let
θ li ∈ {0, 1}K indicate the routing vector of the lth departure from queue i . Following
standard conventions, at most one component of θ li is 1, and θ li = e j indicates that
the lth departure from the i th queue is routed to station j for 1 ≤ j ≤ K , where e j is
the j th standard basis of the Euclidean space RK . The case θ li = 0 indicates that the
lth departure from the i th queue exits the system. The distribution of θ li is specified
in Assumption 2.1. Finally, we define the routing decisions up to the nth decision at
station i by

�i (n) ≡ (�i,1(n), . . . ,�i,K (n)) ≡
n∑

l=1

θ li ,

and let �i,0(n) denote the number of among the first n departing customers that exit
the system from station i .

For the internal arrival flows, let Ai, j be the customer flow from i to j . Each internal
arrival flow Ai, j splits from the departure process Di according to the splitting-decision
process �i, j , so that

Ai, j (t) = �i, j (Di (t)), t ≥ 0, 1 ≤ i ≤ K , 0 ≤ j ≤ K .

Let Aint(t) ≡ (Ai, j (t) : 1 ≤ i, j ≤ K ) denote the matrix of all internal arrival flows.
For the total arrival process at station i , let

Ai (t) = A0,i (t) +
K∑
j=1

A j,i (t)

and let A(t) ≡ (A1(t), . . . , AK (t)) be the vector of total arrival processes.
As observed in (7.1) and (7.2) in §7.2 of [6], the queue length and departure pro-

cesses at each queue are jointly uniquely characterized by the flow balance equations

Qi (t) = Qi (0) + Ai (t) − Di (t)) and Di (t) = Si (Bi (t)), t ≥ 0, 1 ≤ i ≤ K ,

where Bi (t) is the cumulative busy time of server i up to time t , which by work
conservation satisfies

Bi (t) =
∫ t

0
1Qi (u)>0du, t ≥ 0,

where 1A is the indicator function with 1A = 1 on the set A and 0 elsewhere.
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For the flow exiting the queueing system, let Dext,i denote the flow that exits the
system from station i . Hence,

Dext,i (t) =
Di (t)∑
l=1

θ li,0 = �i,0(Di (t)), t ≥ 0.

Finally, let Dext(t) ≡ (Dext,1(t), . . . , Dext,K (t)) be the vector of external departure
processes.

2.2 Existence, uniqueness and convergence via Harris recurrence

In this section, we establish the existence of unique stationary flows and convergence
to them as time increases for any initial state. Toward that end, we make three assump-
tions, the first one being

Assumption 2.1 We assume that the OQN is a GJN, in particular:

(i) The K external arrival processes are mutually independent (possibly null)
renewal processes with finite rates λi , where the interarrival times have finite
squared coefficient of variation (scv, variance divided by the square of the mean)
c2a0,i for 1 ≤ i ≤ K .

(ii) The service times come from K mutually independent sequences of i.i.d. random
variables with means 1/μi , 0 < μi < ∞, and finite scv c2si for 1 ≤ i ≤ K .

(iii) The routing is Markovian with a substochastic K × K routing matrix P =
(pi, j )1≤i, j≤K such that pi, j ≥ 0, pi,0 ≡ 1 − ∑K

j=1 pi, j ≥ 0 and I − P ′

is invertible; For each 1 ≤ i ≤ K , the sequence {θ1i , θ2i , . . . } is i.i.d. with

P(θ li = e j ) = pi, j and P(θ li = 0) = pi,0 ≡ 1 − ∑K
j=1 pi, j .

(iv) The arrival, service and routing processes are mutually independent.

For completeness, we also assume that the network starts empty at time 0, so that
no customer is in service or waiting, but this can be relaxed. The condition of finite
scv’s is used in the convergence of the distribution and in the next section; for relaxed
assumptions, see the discussions below Theorems 2.1 and 2.2. Note that I − P ′ is
invertible if we assume that all customers eventually leave the system; see [8] or
Theorem 3.2.1 of [19].

Let U (t) denote the vector of residual external arrival times at time t ; let V (t) be
the vector of residual service times at time t , set to 0 when the server is idle; and let
the system state process be

S(t) ≡ (Q(t),U (t), V (t)), t ≥ 0. (2.1)

Under our assumption, the initial condition is specified by S(0) = (0, 0, 0). Since S is
a piecewise-deterministic Markov process, the following result holds; see [9], which
draws on [12].

Theorem 2.1 (strongMarkov process)Under Assumption 2.1, the system state process
S is a strong Markov process.
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To state the stability assumption, we let λ0 = (λ0,1, . . . , λ0,K ) be the external
arrival rate vector and let λ = (λ1, . . . , λK ) denote the vector of total arrival rates. We
obtain λ by solving the traffic-rate equations

λi = λ0,i +
K∑
i=1

λ j p j,i , (2.2)

or, (I − P ′)λ = λ0 in matrix form, where I denotes the K × K identity matrix and
P ′ is the transpose of P . Let ρi ≡ λi/μi be the traffic intensity at station i .

Assumption 2.2 The traffic intensities satisfy maxi ρi < 1.

Following convention, we say that the OQN is stable if the system state process in
(2.1) is stable, i.e., if there exists a distribution π on Z

K+ × R
2K+ for S(0) such that

S(t) has that same distribution π for all t ≥ 0. Here Z+ denotes nonnegative integers
and R+ denotes nonnegative real numbers. We now state the additional assumption
to ensure the uniqueness of the stationary distribution π and the convergence of the
distribution of S(t) to π .

Assumption 2.3 Each non-null external arrival process has an interarrival-time distri-
bution with a density that is positive for almost all t .

Our assumption here implies the key assumption (A3) in both [9,10] that the distri-
bution is unbounded and spread out; see also [9] and Chapter VII of [1]. This clearly
avoids periodic behavior associated with the lattice case, but otherwise it is not restric-
tive for practical modeling.

The following theorem follows from Theorem 2 of [14] or Theorem 5.1 of [9] or
Theorem 6.2 of [10], which extend earlier work on stability for OQNs in [3,21] and
[13].

Theorem 2.2 (existence, uniqueness and convergence) Under Assumptions 2.1–2.3,
the system state stochastic process S in (2.1) is a positive Harris recurrent Markov
process. There exists a unique stationary distribution π and for every initial condition
the distribution of S(t) converges to π as t → ∞.

If a strong Markov process is Harris recurrent, the existence of a σ -finite stationary
measure (unique up to a constant multiple) is shown in the early [2], which in turn
draws on [16]; see also [15]. (More precisely, they assume that the process is a Hunt
process.) If the measure is finite, it can be normalized to a probability measure and the
process is called positive Harris recurrent. It is shown in [9] that S is positive Harris
recurrent, hence the existence and uniqueness of a stationary distribution. Dai [9]
assumedAssumptions 2.1, 2.2 and aweaker version ofAssumption 2.3: the interarrival
times are unbounded, spreadout and have finite mean, and the service times have
finite mean; see (1.2)–(1.5) in [9]. The convergence in distribution follows from the
convergence in total variation norm in Theorem 6.2 of [10], where they assumed
finite p + 1 moment for p ≥ 1. Since our primary focus is the application to Robust
Queue using the variance function, we are content with the assumption of finite second
moment, as in Assumption 2.1.
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We now state the strong implications of Theorem 2.2, namely, the existence and
convergence of stationary flows. Define the auxiliary cumulative process C, as in §VI.3
of [1], by

C(t) ≡ (B(t),Y (t)),

where Bi (t) is the cumulative busy times for server i over interval [0, t] and

Yi (t) ≡ μi (t − Bi (t)) (2.3)

is the cumulative idle time of station i , scaled by the service rate μi .
To focus on the flows, we describe the GJN by the aggregate process

M(t) ≡ (S(t), C(t),F(t)),

where
F(t) ≡ (A0(t), Aint(t), A(t), S(t), D(t), Dext(t)) (2.4)

is a vector of cumulative point processes, with the processes defined in Sect. 2.1. We
refer toF in (2.4) as the flows. We say that a flow is stationary if it has stationary incre-
ments. We refer to [22] and Chapter 6 of [4] for background on stationary stochastic
processes and ergodicity.

Now, we consider the system that starts at time s. For the system state and auxiliary
processes, let Qs(t) = Q(s + t),Us(t) = U (s + t), Vs(t) = V (s + t), Bs(t) =
B(t + s)− B(s) and Ys(t) = Y (t + s)−Y (s), so that Ss ≡ (Qs,Us, Vs) is the system
state process with initial condition S(s). For the flows, let A0,s(t) = A0(t+s)− A0(s)
be the external arrival counting process that starts at time s. Similarly, let Aint,s(t) =
Aint(t+s)− Aint(s), As(t) = A(t+s)− A(s), Ds(t) = D(t+s)−D(s), Dext,s(t) =
Dext(t + s)− Dext(s) be the corresponding processes that starts at time s. The service
processes Ss(t) are more subtly defined by

Si,s(t) ≡ Si (Bi (s) + t) − Si (Bi (s)), for i = 1, 2, . . . , K ,

which is a vector of delayed renewal processes with first intervals distributed as V (s),
the vector residual service time and at system time s (its i th component is also the
residual service time of the process Si at time Bi (s)). Finally, let Cs ≡ (Bs,Ys) and
Fs ≡ (A0,s, Aint,s, As, Ss, Ds, Dext,s).

Theorem 2.2 implies the existence and convergence of stationary flows.

Theorem 2.3 (Existence and convergence of stationary flows) Under Assumptions
2.1–2.3, there exist unique stationary and ergodic cumulative processes (with station-
ary increments satisfying the LLN) Ce ≡ (Be,Ye),Fe ≡ (A0,e, Aint,e, Ae, Se, De,

Dext,e), and a unique stationary process Se ≡ (Qe,Ue, Ve), such that, as s → ∞,

Ms ≡ (Ss, Cs,Fs) ⇒ (Se, Ce,Fe) ≡ Me,

where ⇒ denotes weak convergence in each coordinate.
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3 Heavy-traffic limit theorems for the stationary processes

To set the stage for our heavy-traffic limits, in Sect. 3.1 we present a centered repre-
sentation of the flows. This representation parallels those used in [6,7,9,20], but here
we focus on the flows. Then in Sect. 3.2 we establish our main heavy-traffic limit.

3.1 Representation of the centered stationary flows

Recall that the external arrival rate vector is λ0, so the total arrival rates are given by
λ = (I − P ′)−1λ0 as in (2.2). For service, we start with a rate-1 base service process
S0i for station i and scale it by μi so that the service process at station i is denoted by
Si ≡ S0i ◦ μi e with e(t) = t being the identity function. Let the centered processes be
defined by

Ã0,i = A0,i − λ0,i e, Ãi = Ai − λi e, D̃i = Di − λi e,

�̃ j,i = � j,i ◦ (S j ◦ Bj ) − p j,i S j ◦ Bj , and S̃i = Si ◦ Bi − μi Bi . (3.1)

Furthermore, let X(t) be the net-input process, allowing the service to run continu-
ously, defined as

X ≡ Q(t) − (I − P ′)Y ,

where Y is defined in (2.3).
The next proposition expresses the queue length processes, the centered total arrival

and the centered departure flows in terms of the centered external arrival, service
and routing processes. Let ψ be the K -dimensional reflection map; for example, see
Chapter 14 of [24].

Proposition 3.1 (Centered representation) The net-input process can be written as

X = Q(0) + Ã0 + �̃′1 − (I − P ′)S̃ + (λ0 − (I − P ′)μ)e, (3.2)

while the queue length process can be written as

Q = X + (I − P ′)Y = ψI−P ′(X),

where ψI−P ′ is the K -dimensional reflection mapping with reflection matrix I − P ′.
In addition, the centered total arrival and departure processes can be written as

Ã = P ′(I − P ′)−1 (Q(0) − Q) + (I − P ′)−1
(
Ã0 + �̃′1

)
,

D̃ = (I − P ′)−1
(
Q(0) − Q + Ã0 + �̃′1

)
,

where the centered processes are defined in (3.1).
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Remark 3.1 (Stationary flows) Note that the representation in Proposition 3.1 does
not impose any assumption on the initial condition of the open queueing network. As
ensured by Theorem 2.3, there exists a stationary distribution π such that the flows
are stationary if S(0) ∼ π . With this specific initial condition, Proposition 3.1 applies
to the stationary flows.

3.2 Heavy-traffic limit with any subset of bottlenecks

Throughout this section, we assume that the system is stationary in the sense of The-
orem 2.3 and we suppress the subscript e to simplify the notation. We let an arbitrary
pre-selected subset H of the K stations be pushed into the HT limit, while other
stations stay unsaturated. Two important special cases are: (i) |H| = K , so that all
stations approach HT at the same time, which corresponds to the original case in [20];
and (ii) |H| = 1 so that only one station is in HT. This second case is appealing for
applications because the RBM is only one-dimensional. We focus on it in detail later.

To start, consider a family of systems indexed by ρ. Let the ρ-dependent service
rates be

μi,ρ ≡ λi/(ciρ), 1 ≤ i ≤ K , (3.3)

and set ci = 1 for all i ∈ H and ci < 1 for all i /∈ H. Equivalently, we have
ρi = ciρ. For the pre-limit systems, we have the same representation of the flows as
described in Theorem 3.1, with the only exception that μi in (3.2) is now replaced by
the ρ-dependent version in (3.3).

We now define the HT-scaled processes. As in the usual HT-scaling, we scale time
by (1 − ρ)−2 and scale space by (1 − ρ). Thus we make the definitions

A∗
0,i,ρ(t) ≡ (1 − ρ)[A0,i ((1 − ρ)−2t) − (1 − ρ)−2λ0,i t],
A∗
i,ρ(t) ≡ (1 − ρ)[Ai,ρ((1 − ρ)−2t) − (1 − ρ)−2λi t],
S∗
i,ρ(t) ≡ (1 − ρ)[Si,ρ((1 − ρ)−2t) − (1 − ρ)−2μi,ρ t],

D∗
i,ρ(t) ≡ (1 − ρ)[Di,ρ((1 − ρ)−2t) − (1 − ρ)−2λi t],

D∗
ext,i,ρ(t) ≡ (1 − ρ)[Dext,i,ρ((1 − ρ)−2t) − (1 − ρ)−2λi pi,0t],
A∗
i, j,ρ(t) ≡ (1 − ρ)[Ai, j,ρ((1 − ρ)−2t) − (1 − ρ)−2λi pi, j t],

�∗
i, j,ρ(t) ≡ (1 − ρ)

⎡
⎣�(1−ρ)−2t�∑

l=1

θ li, j − pi, j (1 − ρ)−2t

⎤
⎦ ,

Q∗
i,ρ(t) ≡ (1 − ρ)Qi,ρ((1 − ρ)−2t), for 1 ≤ i, j ≤ K . (3.4)

Furthermore, let �∗
i,ρ ≡ (�∗

i, j,ρ : 1 ≤ j ≤ K ); let �∗
ext,ρ ≡ (�∗

i,0,ρ : 1 ≤ i ≤ K );
and let F∗

ρ collect all the scaled and centered flows, defined as

F∗
ρ (t) ≡ (A∗

0,ρ(t), A∗
int,ρ(t), A∗

ρ(t), S∗
ρ(t), D∗

ρ(t), D∗
ext,ρ(t)). (3.5)
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Finally, let Z∗
i,ρ(t) ≡ (1− ρ)Zi,ρ((1− ρ)2t) denote the HT-scaled workload process

at station i in the ρth system.
Before presenting the HT limit of the systems, we introduce useful notation by

discussing a modified system that is asymptotically equivalent in heavy-traffic.

Remark 3.2 (Equivalent network)The systemwith bottleneck stations designated byH
is asymptotically equivalent to a reducedH-station network, where all non-bottleneck
queues have zero service times. Equivalently, the non-bottleneck queues can be viewed
as instantaneous switches. To obtain the rates and routing matrix in the equivalent
network, we let IA denote the |A|× |A| identity matrix for any index setA; let PH be
the |H| × |H| submatrix of the original routing matrix P corresponding to the rows
and columns inH; let PHc be the submatrix of P corresponding toHc; and let PHc,H
collect the routing probabilities from stations inHc to the ones inH, similarly, define
PH,Hc . Now the new routing matrix for the bottleneck stations, denoted by P̂H, is

P̂H = PH + PH,Hc (IHc − PHc )−1 PHc,H. (3.6)

Note that the inverse (IHc − PHc )−1 appearing in (3.6) is the fundamental matrix
associated with the transient finite Markov chain with transition matrix PHc . If we let
P̂Hc,H denote the matrix of the probabilities that the first visit to a bottleneck queue
of an external arrival at a non-bottleneck queue i ∈ Hc is at j ∈ H, then we have

P̂Hc,H =
∞∑
l=0

(PHc )l PHc,H = (IHc − PHc )−1 PHc,H.

Similarly, for the new external arrival rate λ̂0,H, we write

λ̂0,H = λ0,H + P̂ ′
Hc,Hλ0,Hc = λ0,H + P ′

Hc,H
(
IHc − P ′

Hc

)−1
λ0,Hc ,

where λ0,A denotes the column vector of the entries in λ0 that corresponds to the
index setA. Since the total arrival rate in the modified system remains the same as the
original system, we have

λ̂H = (I − P̂ ′
H)−1λ̂0,H = λH.

To simplify notation, we suppress the subscript used in the identity matrix I in the rest
of the paper whenever there is no confusion on its dimension.

The following theorem states the joint heavy-traffic limit of the queue length pro-
cess, the workload and waiting time processes, the splitting-decision process and all
the flows. Combining conclusions (i) and (iii)–(v), we obtain explicit expressions for
the heavy-traffic limit of the scaled and centered flows F∗

ρ .

Theorem 3.1 (Heavy-traffic FCLT) Under Assumptions 2.1–2.3, consider a family of
open queueing networks in stationarity, indexed by ρ. Let H ⊂ {1, 2, . . . , K } denote
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the index of the bottleneck stations: Assume that μi,ρ = λi/(ciρ) for 1 ≤ i ≤ K and
set ci = 1 for all i ∈ H and ci < 1 for all i /∈ H. Then, as ρ ↑ 1,

(Q∗
ρ, Z∗

ρ,�∗
ρ,�∗

ext,ρ,F∗
ρ ) ⇒ (Q∗, Z∗,�∗,�∗

ext,F∗), (3.7)

where

(i) For 0 ≤ i ≤ K, A∗
0,i = ca0,i Ba0,i ◦ λ0,i e and S∗

i = csi Bsi ◦ λi e, where Ba0,i
and Bsi are standard Brownian motions. (�∗,�∗

ext) is a zero-drift (K + 1)-
dimensional Brownian motion with covariance matrix 	i = (σ 2

jk : 0 ≤ j, k ≤
K ), where σ 2

j, j = pi, j (1− pi, j )λi and σ 2
j,k = −pi, j pi,kλi for 0 ≤ i �= j ≤ K.

Furthermore, Ba0,i , Bsi and (�∗,�∗
ext) are mutually independent, 1 ≤ i ≤ K.

(ii) The limiting queue length process Q∗ consists of two parts. Q∗
Hc ≡ 0 and Q∗

H
is a stationary |H|-dimensional RBM

Q∗
H ≡ ψH

(
X̂∗
H

)
,

where ψH is the |H|-dimensional reflection map with reflection matrix RH ≡
I − P̂H and X̂∗

H is a |H|-dimensional Brownian motion

X̂∗
H = Q∗

H(0) +
(
e′
H + P̂ ′

Hc,He′
Hc

) (
A∗
0 + (

�∗)′ 1
)

− (I − P̂H)S∗
H − λ̂0,He,

(3.8)

where eA collects columns in the K -dimensional identity matrix I that corre-
sponds to index setA; P̂H, P̂Hc,H and λ̂0,H are defined Remark 3.2; and Q∗

H(0)
has the unique stationary distribution of the stationary RBM.

(iii) The limiting total arrival process A∗ is specified by

A∗ = (I − P ′)−1
(
A∗
0 + (

�∗)′ 1
)

+ P ′(I − P ′)−1eH
(
Q∗
H(0) − Q∗

H
)
.

(iv) The limiting stationary departure process D∗ is specified as

D∗ = (I − P ′)−1
(
Q∗(0) − Q∗ + A∗

0 + (
�∗)′ 1

)
.

In particular, D∗
Hc = Q∗

Hc + A∗
Hc − Q∗

Hc (0) = A∗
Hc .

(v) The limiting internal arrival flow A∗
i, j and external departure flow D∗

ext,i can be
expressed as

A∗
i, j = pi, j D

∗
i + �∗

i, j ◦ λi e, and

D∗
ext,i = pi,0D

∗
i + �∗

i,0 ◦ λi e, for 1 ≤ i, j ≤ K .

(vi) The limiting workload process is Z∗
i = λ−1

i Q∗
i .
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Proof Much of the statement follows from [5–7]. First, the HT limit for the state
process with an arbitrary subset H of critically loaded stations follows from [6,7].
Second, the HT limit for the steady-state queue length follows from [5]. The papers
[5,14] do not consider non-bottleneck stations, but their arguments extend to that more
general setting. (See Remark 3.3 below for discussion.) Because our basic model data
involve only single arrival and service processes,with only the parameters being scaled,
we do not need Assumption (A4) in [5]. We subsequently establish the heavy-traffic
limits for the flows. We do so by exploiting the continuous mapping theorem with the
direct representations of the stationary flows that we have established.

To carry out our proof, we work with the centered representation in Theorem 3.1,
using the HT-scaling in (3.4). Thus, the HT-scaled net-input process is

X∗
ρ = Q∗

ρ(0)+ A∗
0,ρ +

(
�̃∗

ρ

)′
1− (I − P ′)S̃∗

ρ + (λ0 − (I − P ′)μρ)(1−ρ)−1e, (3.9)

where S̃∗
i,ρ ≡ S∗

i,ρ ◦ ¯̄Bi,ρ , ¯̄Bi,ρ = (1 − ρ)2Bi,ρ ◦ (1 − ρ)−2e, �̃∗
ρ is a matrix whose

i j th entry is �∗
i j,ρ ◦ S ◦ Bi,ρ , and S ◦ Bρ is a vector of length K with S ◦ Bi,ρ ≡

(1−ρ)2Si,ρ ◦ Bi,ρ ◦ (1−ρ)−2e. The HT-scaled queue length can be written as Q∗
ρ =

X∗
ρ + (I − P ′)Y ∗

ρ . Rewriting Q∗
H,ρ

and Q∗
Hc,ρ

in block-wise matrix representation
yields

Q∗
H,ρ = X̂∗

H,ρ + (I − P̂ ′
H)Y ∗

H,ρ, (3.10)

where X̂∗
H,ρ

= X∗
H,ρ

− P ′
Hc,H(I − P ′

Hc,Hc )
−1(Q∗

Hc,ρ
− X∗

Hc,ρ
).

Now, we substitute into X̂∗
H,ρ

the expression for X∗
ρ from (3.9) in block matrix

notation, leaving a constant η̂ρ in the final deterministic drift term initially unspecified,
to obtain

X̂∗
H,ρ = Q∗

H,ρ(0) +
(
e′
H + P ′

Hc,H(I − P ′
Hc,Hc )

−1
) (

A∗
0,Hc,ρ + (�̃∗

ρ)′1
)

+ (I − P̂ ′
H)S̃∗

H,ρ + P ′
Hc,H(I − P ′

Hc,Hc )
−1(Q∗

Hc,ρ(0) − Q∗
Hc,ρ)

+ η̂ρ(1 − ρ)−1e. (3.11)

To derive the drift term η̂ρ = λ0 − (I − P ′)μρ , we rewrite η̂ρ into blocks:

η̂ρ = λ0,H+P ′
Hc,H(I −P ′

Hc,Hc )
−1λ0,Hc −(I − P̂ ′

H)μH,ρ = (I − P̂ ′
H)(λH−μH,ρ),

(3.12)
where the last equation follows from the block representation of the traffic-rate equa-
tion.

Now we are ready to deduce the claimed conclusions. First, for conclusion (i),
most follows directly from Donsker’s theorem, Theorem 4.3.2 of [24], and the GJN
assumptions. The exception is the limit

(S̃∗
ρ, �̃∗

ρ) ⇒ (S∗,�∗)
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which follows from the continuous mapping theorem by a random-time-change argu-
ment as in [7].

For the convergence of the queue length process Q∗, we apply [5] to get

(Q∗
H,ρ(0), Q∗

Hc,ρ(0)) ⇒ (Q∗
H(0), Q∗

Hc (0)) as ρ ↑ 1.

In particular, we see that Q∗
Hc,ρ

= 0. For Q∗
H,ρ

, we observe that η̂ρ(1 − ρ)−1e →
−(I − P̂H)λHe uniformly on bounded intervals and

Q∗
H,ρ = X̂∗

H,ρ + (I − P̂ ′
H)Y ∗

H,ρ = ψI−P̂ ′
H

(X̂∗
H,ρ).

Conclusions (iii) and (iv) follow from the representations derived in Theorem 3.1,
the continuous mapping theorem and the established convergence of the queue length
process, the external arrival processes and the splitting-decision processes. To this end,
we only need to apply diffusion scaling (accelerate time by (1−ρ)−2 and scale space
by (1 − ρ)) to the representations in Proposition 3.1.

Next, conclusions (v) follows from the limit of the departure process and the FCLT
of the splitting operation in §9.5 of [24]. Finally, the associated limits for the workload
can be related to the limit for the queue length as indicated in [7]. ��
Remark 3.3 (Elaboration on the application of [5]) We apply [5], but it must be
extended to the model with non-bottleneck queues. We do not go through all details
because we regard that step as minor, but we now briefly explain.

First, the main stability condition (A6) there holds in our setting here. The only
difference is the use of ρ instead of n as in [5]. Comparing (3.4) here with (A5)
there, for the bottleneck queues, the two scaling conventions are connected by setting
n = (1−ρ)−2, ṽni = 0 and β̃n

i = −λi/ρ. The stability condition here is then connected
to that in [5] by setting θ0 = −1 in (13) there.

For the moment estimation in their Theorem 3.3, we treat QH and Q∗
Hc separately.

For QH, our representation (3.10) and (3.11) can be mapped to the representations
(16) on p.51 of [5], but with slightly more complicated constant terms associated with
the matrix multiplication we have in (3.11). Noting the expression for the drift term
we have in (3.12), the rest of the proof is essentially the same. For Q∗

Hc , by [6,7], it
is negligible in the sense of Theorem 3.3 of [5]. Theorem 3.4 of [5] relies only on the
moment estimation as in their Theorem 3.3 and the strong Markov property of S(t)
(which they denote as X(t)). Finally, Theorems 3.2 and 3.5 of [5] remain unchanged.

4 Examples

4.1 Functional central limit theorem of the flows

We now present important special cases of Theorem 3.1. We start with the case with
no bottleneck queues. Suppose |H| = 0 so that all stations are strictly non-bottleneck,
i.e.,μi,ρ = λ/(ciρ), where ci < 1 for all i . As ρ ↑ 1, the family of systems converges
to a limiting systemwhere the traffic intensity at station i is ρi = ci . Hence, the scaling
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used in (3.4) corresponds to the diffusion scaling used in the usual FCLT. In particular,
the diffusion limits can be written as

A∗
0,i = ca0,i Ba0,i ◦ λ0,i e, S∗

i = csi Bsi ◦ λi e,

A∗ = D∗ = (I − P ′)−1
(
A∗
0 + (

�∗)′ 1
)

,

A∗
i, j = pi, j D

∗
i + �∗

i, j ◦ λi e, D∗
ext,i = pi,0D

∗
i + �∗

i,0 ◦ λi e, for 1 ≤ i, j ≤ K .

4.2 Networks with one bottleneck queue

We now consider the special case in which there is only one bottleneck queue.Without
loss of generality, let H = {h}, so that station h is the only bottleneck station. This
special case is especially tractable, because it involves one-dimensional RBM instead
of multi-dimensional RBM. In particular, the limiting variance functions in such dif-
fusion limits can be written explicitly. The variance functions are applied in RQNA
[25,26,29]. We show that a feedback elimination procedure is asymptotically exact.

In doing so, we consider a reduced one-station network which consists of the only
bottleneck queue, while all non-bottleneck queues have service times set to 0 so that
they serve as instantaneous switches. In the reduced network, we define an external
arrival Â0 to the bottleneck queue to be any external arrival that arrives at the bottleneck
queue for the first time. Hence, an external arrival may have visited one or multiple
non-bottleneck queues before its first visit to the bottleneck queue.

The following theorem implies that the reduced network is asymptotically equiva-
lent to the original bottleneck queue in the sense of the stationary queue length process
in the HT limit.

Theorem 4.1 TheHT limit X̂∗
h in (3.8), withH = {h}, can be expressed as the following

one-dimensional Brownian motion:

X̂∗
h = Q∗

h(0) + Â∗ +
(
�̂∗

S − (1 − p̂)S∗
h

)
+ λ̂0,he, (4.1)

where

Â∗ = A∗
0,h +

∑
i∈Hc

(
p̂i,h A

∗
0,i + �̂∗

i,h

)
,

�̂∗
i,h =

√
p̂i,h(1 − p̂i,h)B�̂i,h

◦ λ0,i e, and �̂∗
S =

√
p̂(1 − p̂)B

�̂S
◦ λi e, (4.2)

while p̂ ≡ P̂h and p̂i,h is the (i, h)th entry of P̂Hc,H as in Remark 3.2; and B
�̂i,h

, B
�̂S

are independent standard Brownian motions.

Furthermore, one can check by comparing Theorem 4.1 with Theorem 3.1 that
(4.1) coincides with the HT limit of the net-input process in a single-server queue with
feedback, where the external arrival process is Â, the service times remain unchanged,
and the feedback probability is p̂.
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As observed in Section III of [23], to develop effective parametric-decomposition
approximations for OQNs it is often helpful to preprocess the model data by eliminat-
ing immediate feedback for queues with feedback. The immediate feedback returns
the customer to the end of the line. The approximation step is to put the customer
instead back at the head of the line, so as to receive all its (geometrically random
number of) service times at once.

For our purpose here, we recognize all customers that feed back to the bottleneck
queue as immediate feedback, even after visiting non-bottleneck queues. The probabil-
ity of feedback is then exactly p̂. After feedback elimination, the new service process
Ŝ is the renewal process associated with the new service times, i.e., a geometric sum
of the original service times at the bottleneck queue. Note that the modified service
process after feedback elimination has a HT limit Ŝ∗ ≡ �̂∗

S − (1− p̂)S∗
h , where �∗

S is
defined in (4.2). This matches exactly with the “service” component in (4.1). Hence,
we have the following.

Theorem 4.2 (Feedback elimination with one bottleneck queue) For the bottleneck
queue in the generalized Jackson network, consider the modified single-server queue
with arrival process Â and service process Ŝ. The joint heavy-traffic limit for the
queue length process, the waiting time process, the workload process and the external
departure process in the original model can be expressed in terms of those in the
modified system as

(Q∗, Z∗, D∗
ext)

dist .= (Q̂∗, (1 − p)Ẑ∗, D̂∗
ext).

5 Conclusions

After establishing existence and convergence (as time increases) for the stationary
flows under Assumptions 2.1, 2.2 and 2.3 in Theorem 2.3, we established in Theorem
3.1 a general heavy-traffic limit for the system state process in (2.1) together with the
flow process in (2.4), allowing an arbitrary subset of the stations to be critically loaded,
while the rest are sub-critically loaded. For the heavy-traffic limit in Theorem 3.1, the
processes of interest are centered and scaled as in (3.4) and (3.5). We then obtained
explicit results for the special case in which zero or one station is critically loaded in
Sect. 4.

There are many important topics for future research. First, it remains to establish an
extension of Theorem 3.1 to the model generalized by allowing non-renewal external
arrival processes, which requires generalizing the key supporting theorems in [5,14]. It
also remains to develop useful explicit formulas based onTheorem3.1whenmore than
one station is critically loaded.Of course, itwould also be good to obtain corresponding
results for models with multiple classes and queues with multiple servers.
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