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Abstract: This article proposes an approximation for the blocking probability in a many-server loss model with a non-Poisson
time-varying arrival process and flexible staffing (number of servers) and shows that it can be used to set staffing levels to stabilize
the time-varying blocking probability at a target level. Because the blocking probabilities necessarily change dramatically after each
staffing change, we randomize the time of each staffing change about the planned time. We apply simulation to show that (i) the
blocking probabilities cannot be stabilized without some form of randomization, (ii) the new staffing algorithm with randomiation
can stabilize blocking probabilities at target levels and (iii) the required staffing can be quite different when the Poisson assumption
is dropped. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 177-202, 2017
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1. INTRODUCTION

For over 100 years, the multi-server Erlang (M /M /s /oo
delay and M /M /s /0 loss) models have been used to help
set capacities in multi-server service systems, ranging from
telephone exchanges to customer contact centers and hospi-
tal emergency departments [6, 16]. However, these systems
often have two features that deviate significantly from these
models: (i) a strongly time-varying arrival rate over each day,
and (ii) non-Markov (or non-Poisson and nonexponential)
stochastic variability.

There tends to be less interest in dynamic staffing in
response to time-varying arrival rates for loss models than
for delay models, because the staffing usually is less flexible
in loss systems, for example, as with circuits in a telecom-
munications system. When staffing should be regarded as
fixed, it is natural to consider controlling the demand instead,
for example, by dynamic pricing, as has been considered in
[19, 20] and references therein. However, there often is more
flexibility in staffing than we might at first think. For exam-
ple, loss models are natural for an ambulance base serving
several hospitals as in [62], for the rooms in a hotel as in
[34], and for a bike-sharing system as in [22]. In a short-
time scale the available resources are fixed, but in a longer
time scale adjustments can be made. For example, the num-
ber of available ambulances or bicycles may be dynamic,
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because transfers can be made. More generally, with tight
capacity constraints, there is growing interest in reconfig-
urable resources; for example, the way rooms are used in
hotels. This reconfiguration typically cannot be done rapidly
enough to respond instantaneously to current demand, but it
may be done rapidly enough to respond to anticipated demand
in the near future, for example, later on the same day.

With time-varying arrival rates, it is common to assume
that the arrival process is a nonhomogeneous Poisson process
(NHPP, denoted M,), but there is growing Evidence of devi-
ation from the Poisson property from data analysis (often
called over-dispersion) [3, 23, 28, 30]. For the loss systems
considered here, there is extra motivation for considering
non-Poisson variability in arrival processes because arrival
processes are often overflows from other loss systems, which
have greater variability than Poisson, as reviewed in [35],
where staffing methods were considered for the stationary
G/G1/s/0 loss model.

There is a significant body of research aimed at addressing
time-varying arrival rates and non-Markov stochastic vari-
ability separately, as illustrated by [16] and [35]. First, [16]
reviews staffing methods for NHPP’s, while [35] reviews
staffing methods for stationary non-Markov G/G/s/0 loss
models. This article is an effort to simultaneously address
both of these complicating features for loss models. In par-
ticular, we develop an effective time-varying staffing strategy
(dynamically controlling the number of servers) to stabilize
blocking probabilities at target levels in an G,/G1/s; /0 loss
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model having staffing flexibility and an arrival process that
is both non-Poisson and nonstationary (the G,) as well as a
nonexponential service-time distribution (the G 1).

This article is directly a sequel to [36] in which we devel-
oped an effective time-varying staffing strategy to stabilize
blocking probabilities at target levels in an M, /G1 /s, /0 loss
model having staffing flexibility and a time-varying arrival
rate, with an arrival process that is an NHPP (the M) as well
as a general service-time distribution. To meet the significant
challenge presented by the extension to G, arrival processes,
we apply the modified-offered-load (MOL) method together
with results for the stationary G/G/s/0 model, drawing on
[35]. This article also relates to [21] which stabilized the
performance in G,/G1 /s, + GI delay models.

Because we treat a very general model in this article, we
exploit a variety of results and techniques developed over
many years. Consequently, In Section 2, we also provide a
survey the literature. Broad surveys of the literature on time-
varying queues have recently been provided by Defraeye and
van Nieuwenhuyse [9] and Schwarz et al., [63]. These are
much broader than the earlier surveys in Massey [45] and
Green et al., [16], which are more directly related to this
article. A good account of the remarkable early work on the
Erlang models by Erlang appears in [6], while C. Palm’s 1943
early work on time-varying queues appears in [54].

1.1. Stochastic and Deterministic Stochastic Models

The extension to general G,/G1/s/0 loss models has an
important implication for modeling. The classical Erlang
models and their generalizations with time-varying M, arrival
processes can be regarded as deterministic stochastic mod-
els, because the exponential service-time distributions are
fully specified by their deterministic means, while the Pois-
son arrival processes are fully specified by their deterministic
rates. There is no separate specification of the extent of the
stochastic variability. In contrast, when we include G1I ser-
vice times and G; arrival processes, the G;/G1/s/0 model
directly requires that the extent of the stochastic variability
be considered when constructing the model. The extension to
the G,/G1 /s /0 model is important, in part, because it invites
examining the stochastic variability more closely. It is signif-
icant that more complex forms of stochastic variability have
been identified in practice, for example, see [3, 7, 23, 28, 30],
and they can have a big impact on performance, as we will
show next.

1.2. Non-Poisson Arrivals Can Make a Big Difference

In this article, we show that the non-Poisson property can
make a big difference in the staffing. To demonstrate this
important conclusion, we now show the arrival-rate function
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and staffing functions for eight cases in Fig. 1. The arrival-
rate function for all our examples is the sinusoidal arrival-rate
function

() = A+ Bsin(yt), >0, (1.1)

with average arrival rate A, amplitude 8, and cycle length (or
period) T = 2m/y (or equivalently, frequency y = 27 /T).
However, we emphasize that the algorithm is by no means
limited to sinusoidal arrival-rate functions. We fix the time
units by letting the mean service time be u~! = E[S] = 1.
In that scale, we consider both long cycles having 7 = 100
and short cycles having T = 10. We consider two different
performance targets: higher Quality of Service (QoS) with a
blocking target of B = 0.01 and lower QoS with a blocking
target of B = 0.1.

Figure 1 displays the staffing functions for two arrival-
rate functions, the case of long cycles (T = 100 on top)
and the case of short cycles (T = 10 on bottom). In both
cases, A = 100 (large scale) and 8 = 25 (moderate fluctua-
tions). For each case, four staffing functions are shown. There
are two forms of stochastic variability: (i) an NHPP arrival
process and (ii) a more variable (H,), arrival process, con-
structed as a time transformation of a renewal process with
H, = H,(4) (hyperexponential, mixture of two exponential
distributions) having a squared coefficient of variation (scv,
variance divided by the square of the mean) ¢2 = 4.0. (We
explainin Section 3.1.) Figure 1 shows the 2x2 x2 = 8§ cases
over a single periodic cycle. The staffing shown is appropri-
ate for dynamic periodic steady state, as if the system started
empty in the distant past.

The five curves in each plot of Fig. 1 are easy to distinguish:
The arrival rate function is the only smooth function; the
staffing functions are all integer-valued. The two (H,), cases
appear in the thicker blue curves, which lie above the corre-
sponding M, dashed red curves. In each case, the staffing is
necessarily higher to meet the lower blocking target B = 0.01
and higher for the more variable arrival process.

Figure 1 shows that the performance target makes the
biggest difference; the required staffing is much higher with
the target B = 0.01 than with the target B = 0.1. Second, Fig.
1 shows that the variability of the arrival process also makes
a big difference; the required staffing for the more variable
(H,), arrival process is much higher than the required staffing
for the corresponding M, arrival process when B = 0.01.
(The difference is less with target B = 0.1.) (The staffing
functions in Fig. 1 do not include the randomization discussed
in Section 1.3.)

Consistent with previous research, for example, formulas
(14) and (15) in [11], the staffing plots in Fig. 1 show that
there is a time lag in the peak staffing after the peak arrival rate
of about 1 mean service time, because the customers remain
in the system after their arrival for their service times. This
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The MOL staffing functions and the sinusoidal arrival rate function in (1.1) for G,/M/s/0 models with M, and (H,), arrival

processes, for 1 = 1, average arrival rate A = 100, amplitude 8 = 25 and two blocking probability targets B = 0.1 and B = 0.01: for long
cycles T = 100 (top) and short cycles T = 10 (bottom). [Color figure can be viewed at wileyonlinelibrary.com]

time lag of about 1 is much more noticeable for short cycles
than for long cycles. For long cycles, we can staff by using the
pointwise stationary approximation (PSA), that is, by using
the stationary model with arrival rate A(¢) at time ¢ (but that
model is G/GI /s /0, which requires an approximation such
as in [35]). Figure 1 shows that PSA should be reasonably
effective for T = 100, but not for T = 10. Thus, we should
anticipate that staffing to stabilize blocking with T = 10 is
much more difficult than with 7 = 100.

1.3. The Need for Extra Randomization or Averaging

Stabilizing blocking probabilities in loss models turns out
to be fundamentally more difficult than stabilizing delay
probabilities or abandonment probabilities in delay models.
Indeed, it is not possible to stabilize time-varying blocking
probabilities by only choosing an appropriate deterministic
staffing function s(¢), because blocking probabilities neces-
sarily change dramatically at the time of each staffing change.
First, the blocking probability decreases to 0 immediately
after a staffing increase, because there necessarily is space for
another arrival; second, simulations show that the blocking

probability also increases sharply after each staffing decrease.
That is illustrated by the plot on the left in Fig. 2 for the
(H3),/M /s; /0 model with the sinusoidal arrival rate in (1.1)
having parameters A = 100, 8 = 25, and T = 27/y = 100
(and the fixed u = 1), blocking probability target B = 0.1
and the staffing functions shown in Fig. 1 (top).

Asin [36], we either (i) randomize the time of each staffing
change or (ii) average the blocking probabilities in a small
interval about the time of each fixed staffing change. Fig. 2
(right) shows simulation estimates of the blocking probabil-
ity after randomization has been applied. (We elaborate in
Section 4.) To interpret the left-hand plot in Fig. 2 without
randomization, note that Fig. 1 shows that the staffing is non-
increasing in the middle portion, roughly over [22, 78], and
is increasing outside that interval. That explains why we have
the jumps up (down) in the middle (outside).

Here is how the rest of this article is organized. In Section
Section 2, we develop the approximation for the time-varying
blocking probability in the general G,/G1 /s, /0 loss model.
We provide a survey of the literature to put our research in
context. In Section 3, we describe our simulation experiments
and in Section 4, we present our simulation results. In Section
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Figure 2. Simulation estimates of the blocking probabilities in the nonstationary (H,),/M /s;/0 model for the sinusoidal arrival rate in

(1.1) having parameters A = 100, 8 = 25, and T = 2n/y =

100 (and the fixed u = 1), blocking probability target B = 0.1 and

the staffing functions shown in Fig. 1 (top): before randomization (left) and after randomization (right). [Color figure can be viewed at

wileyonlinelibrary.com]

5, we show that the staffing algorithm remains effective for
very high blocking targets, and explain why blocking tar-
gets usually should be lower than delay probability targets
in delay models. In Section 6, we provide a simple approxi-
mation for the performance during the initial transient period
when we start with an empty system. In Section 7, we discuss
time congestion. Finally, in Section 8, we draw conclusions.
Additional experimental results are presented in the appendix
[73] available from the authors’ web pages.

2. STAFFING IN TIME-VARYING MANY-SERVER
LOSS MODELS

This section has nine short subsections: In Section 2.1
we describe a special composition construction for the G,
arrival process; in Section 2.2, we review the results for
infinite-server queues; in Section 2.3, we review the MOL
approximation; in Section 2.4, we review relevant many-
server heavy-traffic (MSHT) limits; in Section 2.5, we show
how we implement the MOL approach with the G,/G1/s/0
model; in Section 2.6, we emphasize that the stabilization
is easier than approximating performance for a system that
is inappropriately staffed; in Section 2.7, we discuss empiri-
cal investigations of the square-root-staffing (SRS) formula;
in Section 2.8, we show that our model can be fit to data
relatively easily; and Section 2.9, we discuss two forms of
blocking that arise for non-Poisson and nonstationary arrival
processes.

2.1. A Special Composition Construction for the
Arrival Process

Let A(#) count the number of arrivals over the interval
[0,¢] and let A(¢) be its deterministic time-varying arrival-
rate function, satisfying 0 < App < A(f) < Ayp < oo for
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positive numbers A, g and Ayp. Let A(z) be the cumulative
arrival-rate function, that is,

A(t):/ A(s)ds, t>0. @2.1)
0

We assume that the distribution of the arrival process is
approximately Gaussian, that is,

A(t) = N(A®1), c2A(1)) (2.2)

for ¢ suitably large, where N (m, 0?%) denoted a random vari-
able with a normal (Gaussian) distribution with mean m and
variance o2, We then characterize the variability of the arrival
process by the asymptotic variability parameter cﬁ. In Section
2.8, we show how to exploit the structure in (2.2) to fit the
parameter ¢ to data.

As a specific construction, we assume that our general
nonstationary arrival process A can be represented as the
composition of a stochastic counting process N and the cumu-
lative arrival rate function A, using the composition function
o, with (x o ¥)(#) = x(y(¢)), t > 0; that is,

t >0,
2.3)

A= NoA or equivalently, A(t) = N(A(?)),

where N is a stochastic counting process with nondecreasing
non-negative integer-valued sample paths. Recall that this is a
standard construction when A is an NHPP; then N is a rate-1
Poisson process and E[A(f)] = A(t),t > 0.

Our use of the special composition construction in (2.3)
follows [21, 43], but this approach was proposed much earlier
in [49] and then again in [14, 51]. As emphasized in Remark
2.2 of [21], this construction is restrictive. In general, we
should not expect such a simple one-parameter characteri-
zation of variability. The level of variability might also be
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time-varying. Nevertheless, even in that case, one-parameter
characterization of variability might be appropriate locally
over subintervals. In any case, that extra level of complexity
in the variability is challenging to capture in data analysis,
for example, when the model is fit to data, as we discuss in
Section 2.8.

As we think of A as specifying the deterministic rate of
arrivals, it is natural to assume that our stochastic process N
is a rate-1 stationary counting process, but we only assume
that N obeys a functional central limit theorem (FCLT); that
is, we introduce a sequence of processes indexed by n and
obtain

N@t) =n""2[Nnt) — nt] = c,B(t)
in D as n— oo, 2.4

where = denotes convergence in distribution and D is the
function space of right continuous real-valued functions with
left limits as in [69], while B(¢) is standard (mean O and vari-
ance 1) Brownian motion. Thus, N can be very general. It
could be a renewal process with mean interarrival time 1 as
well as its stationary (or equilibrium) version, as in Section
V.3 of [2], which necessarily satisfy the same FCLT in (2.4)
[53]. However, it need not be either of those, which means that
dependence among the interarrival times is allowed (under
regularity conditions implying [2.4]).

As an immediate consequence of (2.3) and (2.4), we have
a FCLT for the associated sequence of arrival processes
A,(t) = N(nA(t)),t >0,n > 1.

THEOREM 2.1 (FCLT for the arrival process): If condi-
tions (2.3) and (2.4) hold, then

A, (1) = n72[A, (1) — nA(1)] = e, B(A(1))

in D as n— o0. 2.5)

PROOF: Starting from the assumed FCLT in (2.4), apply
the continuous mapping theorem with the composition func-
tion; see Theorems 3.4.1 and 13.2.1 of [69]. O

Theorem 2.1 supports the Gaussian approximation in (2.2).

2.2. Exploiting Infinite-Server Models

As in [21, 36], we exploit the close connection between
the time-varying many-server (TVMS) models and the asso-
ciated TV infinite-server (TVIS) models. The TVIS models
are useful because they are remarkably tractable. Key proper-
ties of the M, /G 1 /oo TVIS model are reviewed and extended
in[11, 47]. Assuming that the system started empty in the dis-
tant past (so we can avoid any initial conditions), the number

of customers in the system at time ¢, Q(¢), has a Poisson
distribution with mean

m(t) = E[Q()] = /Ook(t —5)G(s)ds

0

= E[At — S)IE[S], t=0, (2.6)
where A(¢) is the deterministic arrival rate at time ¢, G is the
c_umulative distribution function (cdf) of a service time S,
G(s) =1—G(s) = P(S > s) and S, is a random variable
with the stationary-excess or equilibrium lifetime cdf of G,
that is,

X

Gox)= PGS, =)= — [ Gs)ds,

Eis1 ), x>0. (2.7)

We call m(¢) in (2.6) the offered load, because with finitely
many servers, it represents the expected number of servers
needed if we ignored the capacity constraints (considered
the associated IS model). In the stationary case, when A is
a constant, we have the familiar formula m = m(oc0) =
MLE[S]. The second formula in (2.6) shows the TV ana-
log with a random time lag by S,. To get a rough idea of
the impact of the service-time cdf, we can use the mean
E[S,] = E[S](cf + 1)/2;see (2) in [11].

As discussed in Section 3 of [27] and Section 4.3 of [16], if
we directly approximate the TVMS model by a TVIS model,
then we immediately obtain a Poisson distribution, which
leads to the Gaussian approximation Q(¢) ~ N (m(t), m(t)),
where m(t) is the offered load in (2.6) and N (m, v) denotes
a random variable with a normal distribution having mean
m and variance v. (We have variance equal to the mean
because of the Poisson distribution.) If we choose s(¢) so that
P(N(@m(t),m(t)) > s(t)) = «, then we obtain the classical
SRS formula

s@) =m(t) + B*V/m(), (2.8)

where 8* = P(N(0,1) > « is a quality-of-service (QoS)
parameter (not to be confused with 8 in (1.1).

The distribution of Q(f) is more complicated in the
G;/G1 /oo TVIS model, so that analysis becomes much more
challenging. The success of the MOL approximation depends
partly on the following result from [47].

THEOREM 2.2: (the mean for G, [47]; see Theorem 2.1
and Remark 2.3): The formula for the mean m (¢) = E[Q(?)]
in the M,/G1 /oo model in (2.6) remains unchanged if the
arrival process is changed to G, with the same arrival-rate
function.

To approximate the distribution of Q(¢), we now rely on
the MSHT limit for the G,/G 1 /oo model in [56] and refer-
ences therein. For that MSHT limit, we consider a sequence
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of models indexed by n with arrival processes as in Theorem
2.1. Let Q,(¢) be the number of busy servers in model n at
time ¢.

THEOREM 2.3: (MSHT FCLT for the G,/G I /oo model
from [56]) If conditions (2.3) and (2.4) hold for the sequence
of arrival processes in the G;/G I /oo model, then

n ' 2[0,(t) —nm(t)] = X(t) in D as n— oo,
2.9)

where m (¢) is the offered load in (2.6) and X (¢) is a mean-0
Gaussian process with time-varying variance function

v(t) = /oo)»(t —s)V(s)ds with
0
V(s) = G(s) + (c2 — DG(s)?

=m@t)+ (2 -1) /OO At —5)G(s)%ds, (2.10)
0

so that the ratio of v(¢) in (2.10) to m(t) in (2.6) ( called the
time-varying MSHT peakedness ) is
v(t)

()= —= =1+ (- Dm@) ™! /oo At — 5)G(s)*ds.
m(t) 0
(2.11)

PROOF: Assumption 1 of [56] requires that the arrival
counting process satisfies a FCLT. That condition is satis-
fied by virtue of Theorem 2.1 with asymptotic variability
parameter c2. O

Theorem 2.3 supports the Gaussian approximation Q(t) ~
N(@m(t),z(t)m(t)) for m(¢) in (2.6) and z(¢) in (2.11).
Because the TV MSHT peakedness formula in (2.11) is
complicated, we approximate it by the MSHT peakedness
formula in the associated stationary G/G1 /oo model (let-
ting m@) ! ~ w/A and A(t —s) &~ X in (2.11)) to obtain the
MSHT stationary peakedness

z=14 (2 - foo G(s)%ds. (2.12)
0

Formula (2.12) is the MSHT limit of the peakedness (ratio
of the variance to the mean) in the stationary G/GI /oo IS
model. In general, we use the scv instead of the variance for
a non-negative random variable and the peakedness instead
of the variance function for a counting process, because they
expose the level of variability independent of scale. An expo-
nential random variable has scv 1 and a Poisson process has
peakedness 1 for all ¢, for all possible mean values.

This analysis leads to our final TV approximation for the
G,/G1 /oo model:

Q) = N(m(t),zm(1)), (2.13)
Naval Research Logistics DOI 10.1002/nav

where m(t) is given in (2.6) and z is given in (2.12). From
(2.13), we see that the time-varying behavior of Q(¢) is cap-
tured by m(¢) in (2.6), while the impact of non-Poisson sto-
chastic variability in the arrival process (which also depends
on G) is captured by z in (2.12). The use of the heavy-traffic
approximation for z in the stationary G/G /s /0 loss model
and the TVMS G,/G1/s/oo delay model is discussed and
examined, respectively, in [35] and [21].

2.3. The Modified-Offered-Load Approximation

The MOL approximation applies to queues with finitely
many servers. It exploits the mean number of busy servers
in the associated TVIS model, which is the offered load
in (2.6). The MOL approximation for delay was discussed
in [8, 12, 16, 21, 27, 38, 40, 41, 74],]. Short surveys of the
MOL approach to staffing are given in [70, 71].

The MOL method was originated by Jagerman [26] for the
M, /M /s /0 model with a fixed number of servers. Theoretical
support for the MOL approximation for that model and the
more general M,/ Ph/s /0 model were provided in [48]. Peak
congestion in M,;/G1/s/0 models was studied using TVIS
models in [50]. The time-varying performance of the nonsta-
tionary loss model with fixed staffing was also discussed in
[17,58].

For both delay and loss models, the MOL approximation is
an alternative to two natural simple approximations. The first
is the pointwise-stationary-approximation (PSA), which is
the steady-state distribution of the stationary model using the
instantaneous arrival rate at each time. The second approxi-
mation is the simple stationary approximation (SSA), which
uses the stationary model with the long-run average arrival
rate. The SSA approximation usually exhibits poor perfor-
mance whenever the arrival rate fluctuates significantly, but
for relatively short service times or, equivalently, for a slowly
changing arrival-rate function, the PSA is effective, and is
commonly used in practice. However, the PSA deteriorates
substantially with longer service times. Figures 1-3 of [27]
show the big advantage of the new infinite-server (IS) staffing
scheme over PSA and SSA for multi-server delay models
with longer service times. (In [27] a direct IS approximation
is first proposed, but it is extended to the MOL approximation
in Section 4; see the review in [16].)

Ateachtimet, instead of the actual arrival rate A(¢) used by
PSA, the MOL method use the stationary model with arrival
rate

Domot (1) = % 2.14)

where m(t) is the offered load in (2.6) and E[S] is a mean-
service time. There is a simple logic: If the IS model were
stationary at time ¢, then the offered load would be m(t) =
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ML()E[S] by Little’s law (L = AW); the mean m(t) pro-
vides a better starting point for a staffing approximation than
A(1), because it also accounts for the service-time distribu-
tion. The MOL approximation was first used for loss systems
in [26].

In [36] the MOL approach was found to be effective for sta-
bilizing the blocking probability in M,/G1/s;/0 loss models
after incorporating the randomization or averaging. Our goal
here is to investigate if the MOL approach in [36] remains
effective for more general G,/G 1 /s, /0 loss models with non-
NHPP arrival processes. These parallels [21], which showed
that the MOL approach remains effective for G,/G1 /s, /oo
delay models, with or without customer abandonment.

2.4. Many-Server Heavy-Traffic Limits for
Time-Varying Queues

Because no explicit steady-state formulas are available
for the general stationary G/G1/s/0 loss model, we exploit
MSHT limits for loss models. The early papers on heavy-
traffic limits for stationary queueing models can be traced
from [69]. Particularly relevant are the MSHT limits for the
stationary IS model. The seminal paper is the 1965 paper
by Iglehart [24]. The early MSHT limits for more general
G /G /oo models can be traced from [56, 57].

The seminal paper on MSHT limits for time-varying
queues is Mandelbaum et al. [44]. MSHT limits for stationary
loss models were obtained in [4, 5, 64]; as in [35], we will
draw on [5].

MSHT limits for queues that switch between overloaded
and underloaded regimes are contained in [37, 39]. Recent
MSHT limits for complex Markovian TVIS queues and net-
works of queues have been obtained by [32, 33]. Recent
MSHT limits and approximations for complex Markov
finite-server models have been obtained by [59].

2.5. Implementing MOL with G, Arrival Processes

For Markov models, the MOL approximation is easy to
implement, because we can apply the appropriate stationary
Erlang model at each time point for the required time-varying
distribution of the steady-state performance. In contrast, that
approach is not available for the general G,/G1/s,/0 loss
model, because exact steady-state performance measures for
the stationary G/G1 /s /0 model are not available. Thus, we
rely on MSHT approximations to set staffing levels for the
stationary G/G1I/s/0 model in [35]. We rely heavily on
this earlier work in [35] studying staffing methods for the
stationary G/G I /s/0 model with parmeters A, u, and z.

In particular, we apply (18) of [35] to construct the steady-
state part of the MOL approximation. In particular, we
approximate the blocking probability B(s,«,z) in the sta-
tionary G/G1/s/0 model as a function of the number s of

servers, the offered load « = A/u, and z is the MSHT limit
for the peakedness z in (2.12) by

N _ [z (¢ —w/yez)
BNB(s,a,z)z\/;<¢((s_a)/ﬁ)>, (2.15)

where ® and ¢ are the cdf and pdf respectively of the stan-
dard (mean 0, variance 1) Gaussian distribution. Thus, using
the MOL logic, here we use the TV blocking approximation

B(t) ~ B(s(t),m(t),z) (2.16)
for B in (2.15), where s(¢) is the staffing level, m(¢) is the
offered load in (2.6) and z is the MSHT limit for the station-
ary peakedness in (2.12). (The MOL approximation directly
justifies replacing z(¢) in (2.11) by z in (2.12).)

For the M/G1/s/0 model, ¢ = 1, so that the peaked-
ness is z = 1 and thus plays no role. Table 1 of [21] gives
peakedness values as a function of cg and several common
service-time distributions. The peakedness in (2.12) captures
a complex interaction between the arrival process and the
service-time cdf. In particular, the impact of variability in
the service-time distribution upon the steady-state number
in system depends on the sign of cg — 1; see [21, 35] and
references therein for more discussion.

In addition to the MSHT limit for TVIS models in The-
orem 2.3, significant theoretical justification for approxima-
tion (2.15) with (2.12) comes from an early MSHT limit for
the GI/M /s/0 model in Theorem 15 (2) on p. 226 of [5], as
reviewed Section 4 of [35].

THEOREM 2.4: (MSHT FCLT for the G/M /s /0 model
from [5]): Consider a sequence of G/M /s /0 models indexed
by n, with u, = u = 1, o, = A, = nA, arrival processes
A,(t) = N(A,(1)), t = 0, for a rate-1 process N satisfying
(2.4), and (s, —a,)//n — B asn — oo. Then the blocking
approximation in (2.15) is asymptotically correct as n — 00

PROOF: The proof for GI arrivals is given in [5]. It
extends to G under assumption (2.4) by applying Section
7 of [55]. O

2.6. Stabilizing Versus Approximating

In (2.16), we developed an approximation for the TV
blocking in a general G,/G1/s,/0 TVMS loss model, but
we are only going to apply it to choose a TV staffing function
s(t) to stabilize the blocking probability. The approximation
could be used more generally, but it should be used with
caution, because it is less reliable more generally.

Experience indicates that it is far easier to develop staffing
functions that stabilize performance at desired targets with
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time-varying arrivals than it is to approximate the perfor-
mance with arbitrary staffing functions (even at fixed staffing
levels) under which the system may alternate among critically
loaded (quality-and-efficiency-driven or QED), overloaded
(ED), and underloaded regimes (QD) regimes. Experience
indicates that approximation (2.16) should perform well
within a single MSHT regime.

In support of approximation (2.16) for stabilizing, we now
state a supporting MSHT limit for the M,/M /s, + M delay
model with customer abandonment with scaling that forces
the system to remain in the QED MSHT regime. For this
purpose, we apply Puhalskii [61]. Our formulation here fol-
lows and corrects Theorem 12.1 in the EC of [12], which
draws on [44], but see Remark 1 on p. 132 of [61]. The
following result is for delay models, but it applies approxi-
mately to loss models if we let the abandonment rate 6 be very
large.

Hence, consider a sequence of M, /M /s, + M delay models
indexed by n with fixed service rate © = 1 and abandonment
rate 9, 0 < 0 < oo. Let the arrival rate functions in model
n be A,(t) = nA(t) for a fixed arrival-rate function A(¢) as
above, with A(¢) = 0 for all t < 0. We write g(¢) = o(¢) if
g(®)/t — 0ast — oo. Suppose that the staffing functions
satisfies

sp(t) = nm(t) + /nc(t) +o(v/n) as n— oo, (2.17)

where m (¢) is the offered load in (2.6) and ¢() is an integrable
function for all #, which we think of as a staffing control func-
tion. As in [61], when the staffing decreases with all servers
busy, let the customers be moved to the end of the queue
and let them receive a new full service when they are next
assigned. Let Q,(¢) be the number of customers in model n
at time ¢.

THEOREM 2.5: (QED MSHT FCLT supporting stabiliza-
tion in the M; /M /s; + M delay model from [12, 61]): For the
sequence of M,/M /s; + M delay models specified above, if
0,(0) = ¢(0) in R as n — oo, where ¢(0) is deterministic,
then

0,0)=n""'0,) = q(t) in D as n— oo,
(2.18)

where ¢ () satisfies the ordinary differential equation ¢ (¢) =
M) —q(t), sothat g(t) = m(t), the OL in the M, /M /oo IS
model.

If, in addition, 0,,(0) = Q(0) in R as n — oo, then

0,(1) = n7 210, (1) — ng(1)] = Q1)

in D as n— oo, (2.19)
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where O(7) is a diffusion process satisfying
00 = 00 ~ [ (@) Aetsds =0 [ (0) = et
0 0
+/ VA(S) +q(s)dB(s) (2.20)
0

with B being standard Brownian motion. As a consequence,
if A(?) is Lipschitz continuous and c(¢) > 0 for all ¢, then

P(Qu(t) = 5,(1)) = P(Qu(1) > c(t) + 0(1))
— P(O@)>c(t) >0 as n— oo (221)

for all ¥ > 0. Hence, the staffing in (2.17) puts the system
asymptotically in the QED MSHT regime for each ¢ > 0.

PROOF: This is a simplification of Theorems 1 and 2 of
[61]. In particular, in the setting there we have: y, = 8, =0,
qgs = kg = m(s), g = A(s) and §; = c(s) for all s.
Theorem 1 of [61] implies that the limit in (2.18) holds
with limit ¢ (¢), where g (¢) satisfies the ordinary differential
equation g () = A(t) — g(t). However, Corollary 4 of [11]
implies that the OL m (¢) also satisfies the same ODE. Hence,
q(t) =m(t),t > 0. The second limit in (2.19) follows from
Theorem 2 of [61]. The Lipschitz continuity of A(¢) ensures
that the one-dimensional distribution of the diffusion process
Q(t) has a continuous cdf for each ¢, which is required for
the limit to hold for all ¢(¢) in (2.21); see Theorem 3.2.1
of [65]. O

REMARK 2.1: (the scaling): The conventional MSHT
scaling uses centering at the staffing level, but instead we
center at the fluid limit, which shows that the staffing con-
trol (provided by the function c(#)) operates on the diffusion
scale. In particular, the MSHT FWLLN in (2.18) is indepen-
dent of the staffing control c(#), and the control appears in the
limiting diffusion process in (2.19). The scaling here follows
Theorem 12.1 of [12] and [61]. (The error in [12] evidently
occurred because this convention was forgotten when writ-
ing down the limiting diffusion process.) We can stabilize the
delay probability in (2.21) asymptotically as n — oo at any
desired target o« > 0 if we can find a function c(¢) so that
P(Q(t) > ¢(t)) = « for all r. A main contribution of [12]
was to show that an iterative staffing algorithm (ISA) could
be used with simulation to find the desired function c¢(¢) for
the pre-limit.

Fortunately, the story simplifies in the setting of the
M, /M /oo IS model, which is related to the effectiveness
of the MOL approximation.

COROLLARY 2.1: (the special case of the IS model;
Corollary 5.1 of the EC to [12]): If 6 = p = 1, then Q,(¢)
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has the same Poisson distribution for each ¢ as in the associ-
ated M, /M /oo model while the limit in (2.20) becomes the
much more tractable linear stochastic differential equation

0@t) = Q(0) — fo O(s)ds + fo VAGs) + q(s)dB(s),

(2.22)

where again g () = m(t), which satisfies the ordinary differ-
ential equation mi(¢) = A(t) —m(t). The limit Q(¢) in (2.22)
has a Gaussian distribution.

PROOF: The Poisson distribution claim is discussed in
Section 6 of [12]. The representation (2.22) follows from
(2.20). The ODE characterization of m (t) comes from Corol-
lary 4 of [11], just as in Theorem 2.5. The Gaussian property
is well known for linear stochastic differential equations. [J

In contrast to the stabilization considered in this article,
even for the M, /M /s, + M model, general approximation can
be difficult, but excellent approximations for those models
have been obtained in [46] by exploiting closure approxima-
tions starting from the exact functional forward differential
(ftd) equations for the Markov model. Similar approxima-
tions have been obtained for networks in [60]. These refined
approximations can also be used for stabilization, but their
greatest advantage seems to be for more general approxima-
tions when the system alternates between the different MSHT
regimes.

These ffd approximations are evidently limited to Markov
models, but Markov models can be very general if we con-
sider time-varying phase-type (Ph,) or Markov additive
processes (M AP;), as in [33,52, 66]. However, these for-
mulations introduce complex parameters that are harder to fit
to data, and harder to apply to gain insight into the impact
of the model on performance, as we discuss next. Neverthe-
less, these approaches have the advantage that they are not
limited by the composition structure in Section 2.1 and the
one-parameter characterization of variability exploited here.

2.7. Empirically Evaluating the Square-Root-Staffing
Formula

The asymptotic staffing condition in (2.17) suggests that
it should be good to use the SRS formula in (2.8). Indeed,
Fig. 3 in the EC of [12] validated the SRS staffing in the
M, /M /s, /oo delay model without customer abandonment
by plotting the implied empirical QoS

= s(t) —m(1)
Bt)=——=—. 0=
m(1)
for a periodic arrival-rate function with period 7. They
showed that the empirical QoS in (2.23) is a constant function

t<T, (2.23)

for each target across a wide range, after an initial transient,
while Fig. 12 in the EC of [12] validated the SRS staffing
in the M,/M /s, + M delay model with customer abandon-
ment by showing that the empirical QoS was again a constant
function after an initial transient. In both these cases, it still
remained to find the appropriate QoS parameter 8*, which
was done by the MOL method. But the empirical QoS demon-
strated the the SRS formula is appropriate. It only remained
to specify the single QoS parameter.

We have investigated the empirical QoS for the associ-
ated loss model. (Let s(¢) be the computed staffing function
before any randomization is applied.) Unlike our previous
experience with those delay models, we find that the empir-
ical QoS has more fluctuations than before. Figure 3 shows
that the MOL staffing using (2.16) is roughly consistent with
the SRS formula in (2.8), but has significant periodic fluc-
tuations, more than shown for the M, /M /s, + M models in
Figs. 3 and 12 of the EC to [12].

2.8. Analyzing, Fitting, and Testing the Model

When we increase the generality of a model, there is a dan-
ger that it will become too unwieldy to be of practical value
for designing and managing an actual system, such as a call
center or a hospital emergency department. We clearly need
to be able to solve the more general model, which itself is
a big challenge, but we also need to fit the model to data,
and perform statistical tests to ensure that the fitted model is
reasonable.

For the TVMS M, /M /s /0 loss model, we need to estimate
(i) the arrival-rate function A(¢) and (ii)) the mean service
time E[S] = p~'. With our approach, when we general-
ize to the G;/GI/s/0 model, we require in addition only
estimating one more function, the service-time cdf G, and
one more parameter, the arrival process asymptotic variability
parameter cﬁ.

For the service times, we need to verify the assumption
that the service times come from a sequence of indepen-
dent and identically distributed (i.i.d.) random variables,
which partly can be based on engineering judgement (does
the i.i.d. assumption make sense intuitively?) and partly by
standard statistical tests. (Even though we do not consider
dependence among the service times, it too can be ana-
lyzed in TVMS models; e.g., see [35].) We can estimate
the service-time distribution by constructing the empirical
cumulative distribution function (ecdf) of the service times,
G,,(x) = 22:1 (s, <x} (where 14 is the indicator func-
tion of the set A), and then applying it to conduct sta-
tistical tests, for example, as in [29] and the references
therein.

The time-varying arrival process presents much harder
statistical fitting and testing challenges. Even if we have oper-
ational data from a long-time period, we need to have some
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Figure 3. The implied empirical quality of service E* (t) in (2.23) of the staffing function in the nonstationary (H,),/M /s, /0 model with the
staffing algorithm for parameter pairs (7', B) = (10, B) (left) and (100, B) (right) and blocking targets B = 0.01 (top) and B = 0.1 (bottom)

in each case. [Color figure can be viewed at wileyonlinelibrary.com]

structure. In practice, the required structure in the arrival rate
often occurs naturally because the arrival rate often can be
regarded as periodic with a daily or weekly cycle, as in the
data analysis of an emergency department in Section 3.2.1
of [1], Section 6.3 of [16], and Section 3 of [72]. With such
periodic structure, we can estimate the periodic arrival-rate
function by averaging over many days.

Ways to test for the NHPP property are discussed in
[30, 31] and references therein. The asymptotic variability
parameter can be estimated by looking at the index of disper-
sion for counts (IDC), which is a normalized variance-time
curve. In particular, if A(¢) counts the number of arrivals in
the interval [0, ¢], then the IDC is the function

_ Var(AQ@))

1.(t) = > 0. (2.24)

E[A(D] = T

If A(¢) is an NHPP, then I.(t) = 1 for all z.

Even for time-varying arrival processes, under regularity
conditions such as (2.2), we can obtain the asymptotic vari-
ability parameter ¢ from estimates of the IDC over a suitably
long time interval; that is,

el = lim 1.(1). (2.25)
For an NHPP, we have cﬁ = 1; for more (less) variable arrival
processes, we have cg > (<)1.

The IDC has been used to evaluate arrival processes in
TVMS queues that are departure processes from other TVMS
queues in Section 4 of [40]. The bottom-left plots in Figs.
6 and 7 of [40] show IDC estimates supporting an NHPP
arrival process with cg = 1, whereas the bottom-right plots
show IDC estimates supporting a G, arrival process with
¢ ~ 3.5. (This deviation from the NHPP property is partly
caused by the previous TVMS queue having H, service times
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with ¢2 = 4.) Thus, we see that network structure as with
re-entrant customers in [74] is likely to induce non-Markov
arrival processes.

Additional discussion of ways to estimate the asymptotic
variability parameter c2 are contained in [21]. Ways to cal-
culate the asymptotic variability parameter ¢ are discussed
in Section 2 and Section 5 there; see (2.3), (2.4), (2.8), and
(2.9) for connections to the central limit theorem.

2.9. Two Forms of Blocking: Call Congestion and Time
Congestion

It is important to recognize that there are two natural
forms of blocking: There is the blocking, B¢, experienced
by arriving customers (call congestion) and there is the pro-
portion of time all servers are busy, By (time congestion).
By the Poisson Arrivals See Time Averages (PASTA) prop-
erty, these two forms of blocking coincide for the stationary
M /G1/s/0loss model. However, they do not coincide for the
stationary G/G1 /s /0 loss model with non-Poisson arrivals.
Moreover, the difference can be substantial, as discussed in
[35] and references therein.

The delay probabilities seen at arrival and at an arbitrary
time are different in stationary G/G1 /s multi-server delay
models, but in [42] it is shown that these two delay probabil-
ities do not differ much for large-scale G /G /s multi-server
delay models. From [35], it is evident that the story changes
for loss models, where the two probabilities can be very
different.

When the arrival process is nonstationary, the situation
is more complicated. In multiple replications, we estimate
the call congestion at time ¢ by counting (i) the number of
arrivals in a small interval about ¢ and (ii) the number of
these that are blocked; we estimate the blocking (call con-
gestion) by the ratio. In contrast, we can estimate the time
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congestion at time ¢ by the proportion of all replications
that find all servers busy at time ¢. For the most part in this
article, we focus on the call congestion, using the notation
B = Bc.

Consider the M;/GI/s/0 model with an NHPP arrival
process, where we assume it has a smooth arrival-rate func-
tion. If we consider a small-time interval about any time #, the
arrival-rate function can be regarded as approximately con-
stant there, which is tantamount to having a homogeneous
Poisson arrival process in that short time interval. Conse-
quently, we should have B¢ approximately the same as By at
each time point ¢ for the M; /G 1 /s /0 model, and that is what
we find.

Conversely, for the more general G,/G1/s/0, the model
behaves locally about any time # as a G/G1/s/0 model, so
that we should expect B¢ to differ from By, and that is what
we find as well. We discuss the time congestion further in
Section 7 and in the appendix [73].

3. THE SIMULATION EXPERIMENTS

We first describe the experimental setting considered and
the staffing algorithm. Then we describe our simulation
algorithm.

3.1. The Experimental Setting

As in [36] and most earlier work on queues with a time-
varying arrival-rate function, we use the sinusoidal arrival
rate function in (1.1) with average arrival rate A, amplitude
B, and cycle length (or period) T = 27 /y (or equivalently,
frequency y = 2m/T). However, the algorithm is not limited
to sinusoidal arrival-rate functions. For model parameters,
throughout we assume that the average arrival rate is A = 100
and the mean service time is ©~' = E[S] = 1. For the sta-
tionary cases, 8 = 0, while for the nonstationary cases, we
let B = 25. These choices are fixed.

We consider two cycle lengths, 7 = 100 (long) and
T = 10 (short), so that y = 0.0628 and y = 0.628. We
consider two blocking probability targets, B = 0.1 (a higher
target, providing a lower QoS) and B = 0.01 (a lower target,
providing a higher QoS). (We elaborate in Section 5, where
we consider even higher targets.) It remains to specify the G,
arrival process beyond its time-varying rate A(¢) and the G/
service times beyond its mean E[S] = /fl =1.

In this article, we let the underlying process N in (2.3) and
(2.4) be a renewal process, using the H, (hyperexponential
of order 2, that is, a mixture of two exponentials) distrib-
ution, to represent higher non-Poisson variability. The H,
renewal process can also be regarded as an interrupted Pois-
son process, which is a special case of a Markov modulated
Poisson process; see [21] and references therein.

We characterize the variability of renewal processes by the
variability of their inter-renewal times, and we characterize
the variability of all non-negative random variables by their
scv, using ¢2 for the interarrival time scv and ¢? for the
service-time scv. (For a renewal process, the asymptotic vari-
ability parameter in Theorem 2.1 coincides with the scv of
an interarrival time, cﬁ, so the common notation here is jus-
tified. That would not be the case for nonrenewal processes;
e.g., see [13].) All H, distributions have ¢* > 1. For ref-
erence, the exponential distribution (M) has scv ct =1,
while the deterministic distribution (D) has ¢*> = 0.0. The
H, distribution has probability density function (pdf) f(z) =
p]e’[/m‘ + pze”/’”z, where p; + p» = 1, so that there are
three parameters. For any specified mean, we fix the scv at
¢? = 4.0 and we fix the third parameter by assuming bal-
anced means (m;p; = myp, = 0.5). The two component
exponentials have means 4.437 and 0.563.

In summary, the arrival processes will be either M, with
¢ = 1or (H), with ¢2 = 4, while the G1 service times will
be one of D, M, H, or LN, which are characterized by their
scv’s, 0, 1, 4 or 4, respectively. Given this scheme, it suffices
to specify the form of the G,/GI stochastic variability and
the parameter pair (7, B).

3.2. A Key Staffing Assumption: Server Switching

There are two different cases for the capacity units: They
may be exchangeable (can be regarded as commodities) or
may not be. Hotel rooms, hospital rooms, and bicycles for
sharing usually can be regarded as exchangeable, whereas
human servers cannot. Given that we can and do use dynamic
staffing, with human servers we usually need to develop a
shift schedule for each individual server.

With human servers, we allow server switching: When that
server is scheduled to depart, we do not require that the cus-
tomer in service stay in service with the same server until
their service is complete (called the exhaustive service dis-
cipline [25]). Instead, we allow the service in progress to be
handed off to another available server. Moreover, we do not
force a customer out of service if the staffing is scheduled
to decrease when all are busy. Instead, we release the first
server that becomes free after the time of scheduled staffing
decrease. These practical staffing issues are implemented in
the simulation.

To appreciate why there is a significant difference, consider
a call center with 100 busy servers, each having an exponen-
tial service time with mean 1 (time being measured in mean
service times). The mean time until the first server becomes
free is 0.01, because the minimum of » i.i.d. mean-1 expo-
nential random variables has mean 1/n, whereas the mean
time until any given server becomes free is 1.0, which is 100
times longer.
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3.3. The Staffing Algorithm

We obtain our deterministic staffing function by applying
(2.16), which exploits (2.15), which in turn exploits (2.6) and
(2.12) and assumes the system starts empty in the distant past,
so that we have periodic steady-state formulas. In particular,
for each ¢, given m(¢) calculated from (2.6) and z calculated
from (2.12), we let s(¢) be the smallest possible value such
that B(t) < B.This searchis not difficult, because B(s, o, 7))
is monotone in s. Figure 1 shows the result of the algorithm.

We then apply the randomization algorithm from Section
3.1 of [36]. In particular, given the staffing function s(z)
specified above, we construct a sequence of staffing val-
ues {s;,i > 1} and a strictly increasing sequence of staffing
change times {f; : 0 <i < n,ty = 0,t, = 7t} such that

st)y=s;, ti1<t<t;, 1<i<n. 3.1)
We randomize by adding a small random time shift to each
of the scheduled staffing change times, using a sequence of
1.1.d. Gaussian random variables {¢;,i > 1} with mean O and
variance o 2. First, the sequence of scheduled staffing changes
{#;} is replaced with a random sequence {f, } where

fo=0 and f =t +¢, forall i>1. (3.2)

Second, we force the sequence of of randomized staffing
change times {f,} to be nondecreasing and be contained in
the chosen time interval by truncating ;, that is, by replacing
i by (f; V1) Atiq for each i successively, 1 <i <n—1,
where a V b = max{a,b} and a A b = min{a,b}. As a
consequence, we have
i <f <ty forall 1<i<n-1I, (3.3)
so that the sequence { f,} is nondecreasing. (The parameter
o should be chosen small enough so that truncation rarely
occurs.) We can then make the sequence {fl } strictly increas-
ing by including only the last from each group of tied elements
(which creates a batch of arrivals at the same time). In simu-
lations, we estimate the blocking probability by performing
many independent replications. For the randomization para-
meter o and the averaging parameter A, we primarily use
the values derived in [36]: 0 = 0.08 and A = 0.20. (Fig. 1
shows how to interpret these values. They are large compared
to interarrival times, but short compared to the cycle lengths.)
In the alternative averaging approach, we consider the
blocking probability in intervals of fixed length, rather than
the instantaneous blocking probability at a given moment.
Given an interval length A > 0, we look at the time-average
blocking probability in the time interval [t — %,t + %]. This
averaging coincides with the way blocking probabilities are
measured from system or simulation data.
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3.4. The Simulation Algorithm

In the simulation experiments, we first calculated the
staffing levels (as illustrated by Fig. 1) and recorded the times
of staffing changes and the corresponding staffing level in two
matrices. And we used our randomization methods describe
above to generate the new staffing change times. For each
simulation run, we start the system empty at time 0, so that
there is an initial warmup period before the system reaches
steady-state, which we discuss in Section 6. (For the plots, we
do not eliminate an initial part of each run to avoid the warmup
period, which tends to be shorter for many-server loss mod-
els; see [64]. For the most part, the warmup period is easy
to interpret in the plots, but it lasts longer as the service-time
variability increases, as we explain in Section 6. We could
elect to staff to stabilize during the warmup period too, as in
Section 6 and Section EC.2 of [38], but we do not do that
here, because that is not our main concern. Moreover, we do
not eliminate the warmup period before doing our statistical
analysis, because we are not doing any averaging over time.

The first step in generating the arrival process is to gener-
ate an H, renewal arrival process with rate 1, which we do by
generating i.i.d. H, interarrival times. We then transformed
time to convert this into a sinusoidal arrival rate, with our
arrival rate function, using Algorithm 1 in [43]. That algo-
rithm exploits the inverse A~! of the cumulative arrival rate
function A in (2.1). For the sinusoidal arrival rate function in
(1.1), the cumulative arrival rate function is

A(t) = rt + (B/y)(A —cos(yt)), t>0. (3.4)

Explicit formulas for the offered load m(¢) are given in [10].

To estimate the blocking (B = B¢), we recorded the total
number of arrivals that were blocked in an interval of length
0.01 around each sampling time, which was taken to be 0.01.
The final blocking probability at each sampling time was then
calculated by dividing the total number of arrivals that were
blocked in that subinterval in all replications by the total num-
ber of arrivals in that subinterval over all replications. The
number of replications was 10, 000 for B = 0.1, while it was
100, 000 for B = 0.01. Overall, this is a challenging exper-
iment because, for B = 0.01 and T = 100, the expected
total number of arrivals over a single sinusoidal cycle in each
experiment was A x T xn = 10> x10? x 10° = 10°. (We used
a single cycle for 7 = 100, but multiple cycles for 7" = 10.
The experiment required more than a full day of computer
time on a 2.7 GHz personal computer.

4. THE RESULTS OF THE EXPERIMENTS

Our base case is the (Hy);/M /s, /0 loss model with an H,
renewal process having ¢ = 4 (and balanced means) serving
as the base counting process N in (2.3), mean-1 exponential
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Table 1.  Simulation estimates of the blocking probability over four unit intervals each containing one staffing change, for the (H3),/M /s; /0
model with © = 1, A = 100, 8 = 25, and parameter pair (7, B) = (100, 0.1) using the MOL staffing and randomization (left) and averaging

(right)
Estimated call congestion over intervals of length 1
Staffing change Randomization: o = 0.08 Averaging: A = 0.2

Time From To Min. Average Max. Min. Average Max.
39.7 120 119 0.084 0.098 0.118 0.084 0.091 0.102
60.3 92 91 0.078 0.094 0.109 0.084 0.091 0.101
90.2 89 90 0.076 0.094 0.109 0.079 0.087 0.094
99.9 102 107 0.085 0.098 0.110 0.081 0.089 0.096

The minimum, average and maximum values over a unit interval are shown.

service times and the sinusoidal arrival-rate function in (1.1)
with A = 100, 8 = 25, and long cycles, with the para-
meter pairs (7, B) = (100, 0.1) and (100, 0.01). Afterward,
we consider the more difficult cases of short cycles, having
T = 10 (Section 4.2) and then nonexponential service-time
distributions, first with long cycles (Section 4.3) and then
short cycles (Section 4.4). We extend our study to consider
low-variability arrival processes, using Erlang E4 renewal
processes for N in (2.3), in Section 4.5. We discuss heuris-
tic refinements for the difficult case (T, B) = (10,0.01) in
Section 4.6.

Our (H,),/M /s;/0 base case can be compared to previous
results for the M, arrival process in [36]. It also can be com-
pared to previous results for non-Poisson arrival processes,
because the same H, renewal arrival process is used for N
in (2.3) in their corresponding (i) stationary H,/M /s /0 loss
model in the second HyI /M1 case of Table 3 in [35] and
(ii) in the time-varying (H,),/GI /s; delay models, with and
without customer abandonment, throughout [21].

4.1. The Base Case: Exponential (M) Service and Long
Cycles (T = 100)

From the second H>I /M1 case of Table 3 in [35] with
offered load @« = 100 and blocking targets B = 0.1 and
0.01, we see that the staffing approach is good, over-staffing
by only 1 — 2 servers. (That means that the blocking prob-
ability approximations are slightly low.) From the tables in
[36], we see that MOL staffing with the randomization and
averaging works well in stabilizing the blocking probabilities
in the M, /M /s, /0 model.

We now look at similar tables for hyperexponential
arrivals, which leads to the MOL staffing in (2.15) with
z = 2.50 instead of z = 1.00; see Table 1 of [21]. Table
1 shows the performance of the two averaging approaches
for the base model with parameter pair (7, B) = (100,0.1),
randomization parameter ¢ = 0.08, and averaging parame-
ter A = 0.20. Given the estimates obtained at all sample
points, Table 1 shows the minimum, average, and maximum

blocking probabilities over four separate intervals of length
1. (Thus, there are 100 estimates in each subinterval.) Table
1 measures call congestion B¢ ; corresponding results for the
time congestion appear in the appendix.

The good performance of the cases with exponential ser-
vice times can also be seen graphically. Figure 4 shows the
blocking probabilities in the nonstationary (H),/M/s,/0
model with parameter pairs (100, 0.1) (left) and (100, 0.01)
(right), using randomization with o = 0.08. The plot shows
the estimate for each of the 100/0.01 = 10,000 sampling
points in the time interval. The right plot shows that even with
very low blocking target, the blocking probabilities can still
remain stable in long cycles with exponential service time.
In Section 5, we show examples with higher blocking prob-
ability targets, in particular, for B = 0.2, 0.4, and 0.8. Since
the system starts empty, there is an initial warmup period,
which is decreasing in the blocking target; for example, we
see that it is over by roughly time 5 for B = 0.1 and time 8
for B = 0.01; see 6 for further discussion.

4.1.1. Remaining Fluctuations at the Staffing Change
Times

Figure 4 is actually somewhat misleading. It may give the
impression that the stabilization works perfectly and that the
thickness of the plots, that is, the interval [0.08,0.10] on the
left and [0.007,0.010] on the right, is due only to statistical
error. Recall that the plots include all the observations of all
the replications, so we do observe the consequences of both
statistical fluctuations (each replication yields a different out-
come, due to the randomness) and systematic staffing changes
(which are always at fixed times). However, a closer look
shows that visible jumps remain at the time of each staffing
change, but these fluctuations are far less than without the
randomization (or averaging), as illustrated by Fig. 2.

These extra fluctuations are dramatically shown by Fig.
5 which displays portions of Fig. 4 over the subintervals
[21,31] and [50, 60]. These two plots look quite different,
because as can be seen from Fig. 1 the interval [21,31] is
where the staffing is at its peak and so is relatively flat. There
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are relatively few staffing changes in the interval [21,31].
Indeed, the staffing increases only once from 157 to 158 at
time 22.62 and decreases only once at time 29.42. These
correspond to low point and high points in the plot.

In contrast, the staffing function is decreasing steadily
from 131 to 114 over the interval [50, 60], so that we should
expect to see jumps up at the time of each staffing decrease.
And that is what we see: the staffing decrease times, includ-
ing just before and after the interval, are: 49.92, 50.49,
51.07,51.64,52.21,52.79, 53.37,53.95, 54.53,55.12, 55.71,
56.31,56.91, 57.53, 58.15, 58.79, 59.44, 60.11, 60.79. These
times coincide with the peaks seen in Fig. 5. This care-
ful analysis shows that we do not succeed in stabilizing
the blocking perfectly, but it is far better than without the
randomization.

4.1.2. The Statistical Precision

In this section, we discuss the statistical precision of our
experiments. To a large extent, plots like Figs. 4 and 5 directly
show the statistical precision, because estimated values at
times not too close should be approximately independent.
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The plots show the blocking probability estimates for each
of the 7'/0.01 sampling points. The plots above show that
the systematic fluctuations due to staffing changes tend to
dominate the statistical error.

Each estimate is based on 10’ i.i.d. replications. Figure 4
not only shows that the blocking probabilities are success-
fully stabilized, but also shows that the statistical precision is
about 10 — 15%, ranging from about 0.08 to 0.10 for B = 0.1
on the left and from about 0.007 to 0.010 for B = 0.01 on
the right.

To see that our experimental design should provide good
statistical precision, first consider the case of a stationary
model with a Poisson arrival process. The sampling inter-
val of 0.01 with A = 100 means that the number of arrivals
in each sampling interval is a Poisson random number with
mean 1, but the probability of blocking is about 0.01. Hence,
the overall estimate from each replication can be consid-
ered to be approximately a Bernoulli random variable with
mean 0.01. The total sample size for this sampling time is
n = 10°. Hence the sample mean has variance approximately
equal to (0.01)(0.99)/10° ~ 10~ and standard deviation
V1077 &~ 3.16 x 10~* = 0.00032, which makes the relative
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Table2. Confidence intervals of the blocking probabilities in the nonstationary (H,),/M /s, /0 model with parameter air (7', B) = (100, 0.01)
with the staffing algorithm using randomization with & = 0.08, based on 4 i.i.d. replications of the entire experiment

t =20 t =40 t =60 t =80 t =100
Replication 1 0.009210 0.008849 0.008134 0.008155 0.008091
Replication 2 0.008650 0.008448 0.008388 0.008533 0.009072
Replication 3 0.008589 0.008761 0.007724 0.008473 0.007360
Replication 4 0.009921 0.008608 0.007542 0.008537 0.007724
Mean 0.009093 0.008667 0.007947 0.008425 0.008062
Standard deviation 0.000619 0.000176 0.000384 0.000182 0.000737
Halfwidth 95% c.i. +0.000985 40.000280 +0.000611 +0.000290 +0.001173
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Figure 6. Simulation estimates of the blocking probabilities in the nonstationary (H,),/M /s, /0 model with parameter pairs (10,0.1)) (left)
and (10,0.01)) (right) using randomization with & = 0.08. [Color figure can be viewed at wileyonlinelibrary.com]

error only 0.00032/0.01 = 0.032 or 3.2%, which is very
good.

However, that analysis does not take account of the ran-
domization. The randomization in the staffing is done before
the experiments, so that the blocking estimates in the i.i.d.
replications are only conditionally i.i.d., given the outcome
of the randomization. Hence, to calculate correct confidence
bounds in Table 2 below, we did i.i.d. replications of the entire
experiment.

Unfortunately, it is very difficult to analytically calculate
the exact impact of the randomization or averaging. To get
a rough idea of the impact, we create a simple approximate
model. Suppose that our estimate is one of three values 0.008,
0.010, or 0.012, with probabilities 1/4, 1/2, and 1/4. Then
the variance would be 2 x 10_6, so that the standard deviation
would be 1.4 x 1073 = 0.0014, which produces a relative
error of 14%, which is consistent with our figures.

To estimate the actual statistical precision, we conducted 4
i.i.d. replications of the entire experiment, and estimated the
blocking probability at 5 time points, choosing some near
staffing changes and others not. (We use only 4 replications
because the run time for each experiment is so long.) We
estimate the 95% confidence intervals using the Student ¢ dis-
tribution, yielding x4 £ 3.18254/ V4. The results are shown
in Table 2. Each case contains simulation estimates of the
B¢ blocking probabilities in the nonstationary (H,),/M /s, /0

model with parameter pair (7,B) = (100,0.01) using
randomization with & = 0.08. In the simulation program,
the number of replications is 100,000. We can see that the
results yield accuracy at 3 — 15%.

4.2. Exponential Service Times and Short Cycles
(T =10)

We know from [36] that cases with shorter cycles of length
T = 10 are more challenging than the cases with long cycles
of length T = 100. Now the arrival rate changes 10 times
more quickly.

Figure 6 shows the simulation estimates of the blocking
probabilities in the nonstationary (H;),/M /s; /0 model with
parameter pairs (10,0.1) (left) and (10,0.01) (right) using
randomization with & = 0.08. These two plots show that
the blocking probabilities are stabilized well when the tar-
getis B = 0.1, but less well for B = 0.01. But even with
target B = 0.01, the range of possible values clusters quite
tightly about the target; the range is about [0.007,0.010].
The fluctuations are far less than without the randomiza-
tion, as shown by Fig. 2 (left). The stabilization seems that
it should be adequate for engineering applications, but there
clearly is room for improvement. We show that more sta-
ble blocking can be obtained from heuristic refinements in
Section 4.6.
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There is a fundamental difference between the fluctuations
in Figs. 5 and 6. In Fig. 6, we see periodicity with period T
rather than jumps at individual staffing change times. Thus,
we conclude that the staffing algorithm is less effective for
(H,), arrivals than for M, arrivals when we have both a short
period (7 = 10) and a low blocking target (B = 0.01).

To put Fig. 6 in perspective, Fig. 7 makes connections to the
corresponding M, /M /s, /0 model. First, the plot on the left
shows the blocking probabilities for the same case with the
arrival process changed to M,. Because there are negligible
fluctuations, we deduce that the degradation in stabilization
we see for T = 10 and B = 0.01 is due to the (H,), arrival
process. It remains an open problem to explain the reason. Of
course, we know that the H, renewal process (and thus also
the (H,), process) tends to have more short and more long
interarrival times than a Poisson process.

The plot on the right show what happens if we apply that
algorithm for M, to the (H,),/M /s;/0 model in Fig. 6. We
again see the fluctuations, but now about an inappropriately
high blocking level. (Consistent with Fig. 1, the staffing is
too low on the right.) Interestingly, the M, algorithm still
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stabilizes the blocking probabilities for (H,), at this higher
level, although again imperfectly (at the wrong level).

4.3. Nonexponential Service Times and Long Cycles
(T = 100)

For the rest of our experiments, we consider nonexpo-
nential service-time cdf’s. In particular, we examine cases
with hyperexponential, lognormal and deterministic service
times. We will see that, just as in the corresponding cases with
exponential service times, the blocking probabilities can be
stabilized through our randomization methods. We start with
the easier case of long cycles. In this section, we will see
that initial warmup period changes with the service-time cdf,
tending to get longer as the service time gets more variable;
see Section 6.

4.3.1. Hyperexponential Service Times

First, we look at the (H,),/H»/s,/0 model. Figure 8 shows
the simulation estimates of the blocking probabilities in the
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nonstationary (H,),/H?2/s;/0 model with parameter pairs
(100,0.1) (left) and (100, 0.01) (right) using randomization
with 0 = 0.08. We see that in both plots, the blocking
probabilities are again well stabilized (after a longer warmup
period than with M service).

4.3.2. Lognormal Service Times

We next consider the (H,),/LN/s;/O cases. Figure
9 shows the simulation estimates of the B¢ blocking
probabilities in the nonstationary (H;),/LN /s; /0 model with
parameter pairs (100, 0.1) (left) and (100, 0.01) (right) using
randomization with o = 0.08 Again, we see that the blocking
probabilities in both plots are stable.

4.4. Nonexponential Service Times and Short Cycles
(T =10)

Next, we look at the harder cases with short cycles of
T 10. We consider three service-time distributions:
deterministic, hyperexponential and lognormal.

4.4.1. Deterministic Service Times

We first consider the cases where the service times are
deterministic and of length 1. Figure 10 (left) shows the sim-
ulation estimates of the blocking probabilities in the nonsta-
tionary (H,),/D/s;/0 model with parameter pair (T, B) =
(10,0.01) using the same randomization with ¢ = 0.08. We
see that the blocking is somewhat low, but the plot on the right
shows that we can reach the target exactly by just reducing
the number of servers by three at all times. In both cases, the
plots are remarkably stable.

4.4.2.  Hyperexponential Service Times

Next, we look at the (H,),/H,/s;/0 model with T = 10.

Figure 11 shows the simulation estimates of the block-
ing probabilities in the (H,),/ H>/s;/0 model with parameter
pairs (10,0.1) (left) and (10, 0.01) (right) using randomiza-
tion with o = 0.08. If we look at the right plot for B = 0.01,
we again see imperfect stabilization. Moreover, explained in
Section 6, there is a longer warmup period; steady state is
reached at about 20. Conversely, the left plot with B = 0.1
is rather well stabilized. The stabilization for short cycles

Naval Research Logistics DOI 10.1002/nav
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and low blocking targets (for the pair (7', B) = (10,0.01),
we again see imperfect stabilization. Nevertheless, the result
should be adequate for most engineering applications. It
remains to (i) explain why the stabilization degrades in this
case and (ii) to find an algorithm that does better.

4.4.3.  Lognormal Service Times

Finally, we consider the (H,),/LN /s;/0 cases, where the
service times are lognormal with the same mean 1 and scv 4.
Figure 12 shows the simulation estimates of the B¢ blocking
probabilities in the nonstationary (H,),/LN /s, /0 model with
parameter pairs (10,0.1) (left) and (10,0.01) (right) using
randomization with o = 0.08. Again, we see that the left
plot with B=0.1 is rather well stabilized, while the right plot
with B = 0.01 shows a longer warmup period and is only
imperfectly stabilized. The performance is quite similar to
that of the cases with hyperexponential service times. The
longer warmup period may perhaps be due to the larger vari-
ance: Var(S,) = 35.4 for LN and 13.65 H,; see (2) of [11].
Because of the longer warmup period, we show both plots
over the time interval [0, 100].
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4.5. Low-Variability Arrival Processes

We also considered loss models with time-varying arrival
processes less variable than Poisson. For that purpose, we
considered (E4), arrivals, constructed by letting the base
process N in (2.3) be an E4 renewal process, where the times
between renewals have an Erlang E, distribution. A mean-1
E, random variable can be represented as the sum of 4 i.i.d.
exponential random variables each with mean 0.25. An E4
random variable has scv ¢? = 0.25.

Just as for the (H;),/G 1 /s, /0 model, we conducted simu-
lation experiments for the (E4),/G1/s;/0 model for M and
H, service in the cases (T, B) with T = 100 and 10 and
B = 0.1 and 0.01. Most of the results appear in the appendix.
Forlongcycles (T = 100), the staffing algorithm (again using
randomization with o = 0.08) remains effective, essentially
the same as before.

For short cycles (T = 10), the results are essentially the
same as before too. Figure 13 shows the blocking probabili-
ties in the nonstationary (E4), /M /s; /0 model with parameter
pairs (10,0.1) (left) and (10,0.01) (right), using random-
ization with o = 0.08. Just as for (H,), arrivals, there is
noticeable periodicity in the case (T, B) = (10,0.01), but
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the stabilization seems adequate for engineering purposes.
The results for the (E4),/H>/s;/0 model, where service has
been changed from M to H,, with parameter pairs (10,0.1)
and (10,0.01) look similar, except that there is again a
longer warmup period, consistent with Section 6; see the
appendix [73].

4.6. Heuristic Refinements for the Difficult Case
(T,B) = (10,0.01)

The right-hand plots in Figs. 6, 11, 12, and 13 show that
cyclical fluctuations remain with short cycles (T = 10)
and light loading (B = 0.01). That problem is not too
serious because the range of values is quite small, but we
now show that it is possible to improve the performance by
applying simulation to iteratively search for improvements,
starting from the staffing solution provided by our algorithm.
That is in the spirit of the iterative simulation-based staffing
algorithms in [67] and [12].

Starting from our initial staffing, we conducted a local
search using additional simulation experiments to find a bet-
ter staffing function. We considered several adjustments to

the initial staffing function (with the steps described in the
appendix [73]). Figure 14 shows the results of several itera-
tions. In particular, Fig. 14 shows simulation estimates of the
blocking probabilities in the nonstationary (H,),/GI/s;/0
model with M service (left) and H, service (right), parame-
ter pair (7, B) = (10,0.01) with the MOL staffing function
increased by 1 during intervals [9.5, 12.5],[19.5, 22.5], and so
forth. for M service on the left and on the intervals [9.5, 14.0],
[19.5,24.0], etc. for H, service on the right, using random-
ization with o = 0.08, as before. Figure 14 shows clear
improvement over Figs. 6 and 11.

5. VERY HIGH BLOCKING PROBABILITY
TARGETS

The examples in Section 4 were for the higher block-
ing probability target B = 0.1, which represents a lower
QoS, and the lower target B = 0.01, which represents a
higher QoS. We think that these two cases cover the range of
targets of greatest interest in applications, but higher block-
ing could well occur in some of the applications mentioned
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Figure 15. Simulation estimates of the blocking probabilities in the nonstationary (H,),/M /s; /0 model having average arrival rate A = 100
and relative amplitude B = 25 with the staffing algorithm for parameter pairs (7, B) = (100, 0.2) (left) and (7', B) = (100, 0.4) (right) using
randomization with o = 0.08. [Color figure can be viewed at wileyonlinelibrary.com]

o
©

.

o
~N

Blocking Probabilities

0 10 20 30 40 50 60
Time

Blocking Probabilities

o
©

U:QL

e
3

o
=

o
o

o
~

el
w

Fed
o

<}

e

0 . . . . ,
0 20 40 60 80 100
Time

Figure 16. Simulation estimates of the blocking probabilities in the nonstationary (H,),/M /s; /0 model having average arrival rate A = 100
and relative amplitude B = 25 with the staffing algorithm for parameter pairs (7', B) = (10,0.8) (left) and (7', B) = (100, 0.8) (right) using
randomization with o = 0.08. [Color figure can be viewed at wileyonlinelibrary.com]

in Section 1. Accordingly, we have also investigated the
performance of our algorithm for higher blocking probability
targets.

Figure 15 is an analog of Fig. 3 for the (H,),/M/s,/0
model with parameter pairs (100, 0.2) (left) and (100,0.4)
(right), while Fig. 16 shows the performance for the same
model with both 7 = 10 (left) and 7 = 100 (right) for the
very high blocking probability target B = 0.8. These figures
show that the stabilization staffing algorithm remains effec-
tive in these cases with higher blocking probability targets, in
fact it is even more effective, although there are visible peaks
in these figures.

5.1. Relating Blocking Probabilities to Delay

Probabilities

The blocking probability targets 0.1 and 0.01 are much
lower than the delay probability targets considered in previ-
ous work on delay models, especially with customer aban-
donment from queue, as [12]. With customer abandonment,
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the delay probability targets might range from « = 0.1 to
0.9, with @ = 0.5 being a reasonable value. The case « = 0.5
often leads to staffing at the offered load, as discussed in para-
graph 3 of Section 8 in [12]. (The missing case 3 in Fig. 2
referred to there appears in Fig. 3 on p. 21 of the longer ver-
sion on the authors’ web pages.) This simple case is discussed
in Section 3.4 in that longer version as well.

The difference between blocking probabilities and delay
probabilities can be understood from the MSHT limits for
the stationary models. For that purpose, consider sequences
of stationary Erlang M /M /s /0 loss and M /M /s /oo delay
models indexed by n with individual service rate © = 1 and
arrival rate n, where we will let n — o00. As usual, we let
s — oo along with n, so that

(s —n)/n— B> 0. 5.1)

The limit is equivalent to the alternative form (1—p)/n — B
in [18], where p = n/s. Let O, be the steady-state number
of customers in model 7.



Whitt and Zhao: Many-Server Loss Models 197

First, consider the delay model. Let D,, be the steady-state
delay probability in model n. The basic MSHT limit for the
M /M /s /oo delay model states that, under condition (5.1),

D, =P(Q,>s) > a=[1+BdPB)/p(B)] " >0

as n — oQ; 5.2)

see Proposition 1 in [18].

Second, consider the loss model. Let B, be the steady-
state blocking probability in loss model n. The basic MSHT
limit for the M /M /s /0 loss model states that, under condi-
tion (5.1),

VB, = /nP(Q, =s) =y =¢(B)/P(B) >0

as n — oo; 5.3)

as a consequence of Theorem 15 (2) on p. 226 of [5]. The
main point is that D, converges to a nondegenerate limit as
n — o0 in (5.2), whereas

Bn=0(1/ﬁ)—>0 as n— oo 64

in (5.3). Thus, for larger values of n, we expect B, to be
considerably smaller than D,,. Even larger values of D, are
appropriate when we consider customer abandonment.

It is also noteworthy that we can go from one limit to
the other, because the steady-state delay probability in the
M /M /s /oo delay model is intimately related to the steady-
state blocking probability in the M /M /s/0 loss model. In
particular,

(1—-p)D(n,s) (1 —(n/s))D(n,s)
1—pD(s,n)  1—(n/s)D(s,n)
(5.5)

B, = B(s,n) =

for D, = D(s,n) in (5.2); for example, see (2.8) on p. 8 of
[68]. Elementary algebra provides a derivation of (5.2) and
(5.3) from the other.

6. THE INITIAL TRANSIENT WARMUP PERIOD

In each of our simulation experiments, we started with an
empty system. Thus, in each plot we see an initial transient
warmup period where the blocking probability rises toward
its dynamic periodic steady-state limit. This warmup period
differs from model to model, but a good basis for understand-
ing exists in the literature. In particular, the IS model is helpful
once again, because convenient explicit formulas exist that
expose the structure of the warmup period as a function of
the IS model.

In particular, we refer to formula (20) in [11], which shows
the offered load m(z) in (2.6) as a function of time in an
M/GI /oo system starting empty at time 0. By Theorem

2.2, this formula also applies to the associated stationary
G/G1 /oo model, and can be used as an approximation for
many-server G/GI /s /0 models.

For the stationary G/G I /oo model, the mean number of
busy servers at time ¢, starting empty at time 0, is exactly

m(t) = E[Q(t)] = m(00)G (1) = LE[S]P(S, < 1),
t >0, 6.1)
where S is a service time (here assumed to be E[S] = 1)

and G.(t) = P(S, < t) is the associated service-time
stationary-excess cdf in (2.7). The mean

E[S?] E[SI(cI+ 1)
2E[S] 2

E[S.] = (6.2)
is one form of the relaxation time, that is, a measure of
the approximate time to reach steady state in the station-
ary G/G1 /oo model starting out empty at time 0. Of course,
the system gradually approaches steady state over time, and
does not reach it exactly at any finite time, but this helps us
understand the main effects.

The exponential distribution is the unique probability dis-
tribution on the positive halfline for which the stationary-
excess distribution coincides with the original distribution.
As can be seen from (6.2), the mean E[S,] gets larger as the
scv ¢ increases. All the service-time distributions considered
in this article have mean 1, but the scv’s of the D, M, H,, and
LN distributions considered in this article are respectively,
0, 1, 4, and 4. Hence, E[S.] = 0.5, 1.0, 2.5, and 2.5 for the
D, M, H>, and LN distributions. Moreover, the variance of
S, is 35.4 for LN, compared to 13.6 for H, and 1 for M.

To elaborate on the transient formula (6.1), we plot the
complementary cumulative distribution functions (ccdf’s)
Ge = P(S, > x) for the M, H,, and LN distributions in
Fig. 17. To better expose the differences, we also plot in log
scale on the right.

Figures 4 and 6 show that the warmup period is quite short
for the (H;),/M /s;/0 model with M service. As should be
expected, it is somewhat longer for the lower blocking prob-
ability target B = 0.01 than for the higher target B = 0.1. In
contrast, Figs. 8-9, 11, and 12 show that the warmup period
is substantially longer with the more-highly-variable H, and
LN service times. Consistent with E[S.], we see that the
warmup period is roughly about 2.5 times longer than for M
service. As for M service, we see that the warmup period is
somewhat longer for the lower blocking probability target.

Now, referring to Fig. 10, we see that the warmup period
is shorter for the (H,),/D/s /0 stationary model than for M,,
because there is no service-time variability at all. For the
deterministic D distribution, S, is uniformly distributed over
the interval [0, 1], so that E[S,] = 0.5. As discussed in [15],
for deterministic service times the stationary IS model actu-
ally reaches steady-state after one service time. (For all other
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models, steady state is not achieved exactly in finite time.)
To help put the time-varying case in perspective, we show
the blocking in the stationary H,/D/s/0 stationary model
starting empty in Fig. 18.

7. TIME CONGESTION

As indicated in Section 2.9, there are two natural ways to
measure the blocking probability: There is the call congestion
B¢ used here so far, which is the proportion of arrivals that
are blocked, and the time congestion By, which is the propor-
tion of time that all servers are busy. With Poisson arrivals,
these should coincide, but not for non-Poisson arrivals. For
the stationary G/G/s/0 model, the time congestion By is
discussed in Section 6 of [35]. The tables in [35] show that:
(i) B¢ and Br can be quite different and (ii) approximating
Br can be challenging.

In [35], two approximations were proposed for By. The
first approximation from Section 6.1 of [35] is By =
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B¢/ max {z, 1}, while the second approximation from (28)
in Section 6.2 of [35] is By ~ Bc/ﬁs(l), where US (x) being
the Laplace transform of the mean function E[N ()], where
N (2) is the arrival counting process. Theorem 6 of [35] shows
that the second method is exact for the GI/M /s/0 model,
whereas the use of By &~ B¢/ max {z, 1} is only heuristic,
motivated by the numerical results. The implication of the
first method is that we approximate By by the approxima-
tion for B¢ with a Poisson arrival process when the actual
arrival process is more variable than Poisson. In our case
that means that would be acting as if the staffing were the
much lower value with an M, arrival process in Fig. 1 of
the main article. Figure 1 of the main article shows that the
staffing could be very different. Table 3 of [35] shows that
the time congestion is indeed much lower than the call con-
gestion for H, arrival processes, roughly consistent with the
heuristic approximation. An intuitive explanation is given
there as well.

Tables 3 and 4 show the performance of the two averaging
approaches for each of the two approximation methods in the
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Table 3. Simulation estimates of the time congestion By with staffing determined by the first approximation method, letting z = 1, over four
unit intervals each containing one staffing change, for the H,/M /s, /0 model with u = 1 and parameter pair (7, B) = (100,0.1) (y = 0.0628)
using the MOL staffing and randomization (left) and averaging (right)

Estimated time congestion over intervals of length 1 using z = 1

Staffing change Randomization: o = 0.08 Averaging: A = 0.2
Time From To Min. Average Max. Min. Average Max.
40.2 111 110 0.084 0.095 0.107 0.091 0.094 0.103
59.7 85 84 0.090 0.098 0.110 0.091 0.097 0.106
89.9 81 82 0.087 0.100 0.112 0.084 0.096 0.103
99.9 94 95 0.087 0.098 0.107 0.084 0.097 0.104

The minimum, average, and maximum values over a unit interval are shown.

Table4. Simulation estimates of the time congestion By with staffing determined by the second approximation method involving U, (1), over
four unit intervals each containing one staffing change, for the H,/M /s,/0 model with © = 1 and parameter pair (7, B) = (100,0.1) (y =
0.0628) using the MOL staffing and randomization (left) and averaging (right). The minimum, average and maximum values over a unit
interval are shown

Estimated time congestion over intervals of length 1 using U, (1)

Staffing change Randomization: o = 0.08 Averaging: A = 0.2
Time From To Min. Average Max. Min. Average Max.
39.9 112 111 0.085 0.093 0.106 0.086 0.091 0.101
60.1 86 85 0.080 0.089 0.102 0.082 0.088 0.098
90.1 83 84 0.076 0.088 0.098 0.079 0.090 0.096
99.5 95 96 0.079 0.090 0.102 0.081 0.089 0.096

base model with parameter A = 100 and B = 25, as in the
main article, and for the parameter pair (7', B) = (100,0.1)
with randomization parameter o = 0.08 and averaging para-
meter A = 0.2. Table 3 shows the approximations based
on setting z = 1 when z > 1, while Table 4 shows the
approximations involving U,(1). Tables 3 and 4 show that
the approximate staffing algorithm for By is remarkably
effective, just as for the stationary model in [35].

Figure 19 shows the simulation estimates of the By block-
ing probabilities in the nonstationary (H,),/M /s;/0 model
with the difficult parameter pair (10,0.01) with the staffing
algorithm of adding Uy (1) using randomization with o =
0.08. We again see cyclical fluctuations, but the plot looks
very similar to the corresponding B¢ plot. This suggests that
our staffing algorithm to stabilize By using ljs (1) is effective,
performing about as well as our algorithm for Bc.

8. CONCLUSION

In this article, we showed how to apply the MOL method
for setting staffing levels to stabilize the blocking proba-
bility in a G;/G1/s,;/0 many-server loss model with flexi-
ble staffing and non-Poisson time-varying arrivals. Figure 1
shows that the staffing levels can be very different for G, and
M, arrivals.
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Figure 19. Simulation estimates of the By blocking probabilities
in the nonstationary (H,),/M/s,/0 model using for the difficult
parameter pair (10,0.01) using randomization with o = 0.08.
[Color figure can be viewed at wileyonlinelibrary.com]

In Section 2, we developed the new staffing algorithm and
reviewed the extensive literature on which it is based. Five
theorems stated there provide key theoretical support for the
new algorithm, showing how to meet the significant chal-
lenges presented by the more general G, arrival processes.
The staffing algorithm is summarized in Section 3.3. In
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addition to the general approximation for the time-varying
blocking probability in (2.16), an important role is played
by an additional randomization about each staffing change
time, which follows [36]. Figure 2 shows that the blocking
oscillates wildly without this additional randomization. As
in [36], we also studied an alternative averaging approach,
in which we average the probabilities in a fixed interval of
length A about each staffing change time, and once again
found it to be equally effective, as illustrated by Table 1, but
we concentrated on the randomization method in the rest of
this article.

We used the composition construction for the arrival
process in Section 2.1 to obtain the relatively simple one-
parameter characterization of its stochastic variability, which
plays a key role in the supporting Theorems 2.1, 2.3, and
2.4, and in fitting the models to data, as discussed in Section
2.8. We also used the composition construction to efficiently
generate the arrivals, exploiting [43], which employs table
lookup from the inverse of the cuamulative arrival rate function
in (2.1). Conducting the simulation was challenging because
n = 10’ replications were required to reliably estimate small
blocking probabilities such as B = 0.01 at each time point in
aperiodic cycle of length 100. for B = 0.01, the total number
of arrivals over a single sinusoidal cycle in each experiment
was A x T x n = 10% x 10> x 103 = 10°.

In Section 4, we also examined the statistical precision. The
final statistical precision was about 10-15% relative error,
revealed by the width of the plots such as in Fig. 4. How-
ever, analysis of the statistical precision is complicated by the
remaining small-scale fluctuations about each staffing change
time, as discussed in Section 4.1.1. Table 2 gives representa-
tive confidence intervals for the estimates at five time points
based on four i.i.d. replications of the entire experiment.

In this article, we exposed how the performance of the
staffing algorithm depends on the structure of the model.
Broadly, there are three key factors: (i) scale, (ii) the QoS,
and (iii) the variability. Staffing tends to get more difficult for
smaller scale, higher QoS and higher variability.

Here the scale is captured by the average arrival rate A.
We took the scale to be large (but not extraordinarily large),
letting » = 100. We remark that there is evidence that the
stabilizing methods do extend to smaller scale; for example,
the case & = 20 was also considered in [36], the case A = 10
was also considered in [21, 35], and even smaller scale is con-
sidered in [8, 74]. The QoS is characterized by the blocking
probability target, with lower targets corresponding to higher
QoS. We consider both low QoS (B = 0.1) and high QoS
(B = 0.01). We also consider the higher targets B = 0.2, 0.4
and 0.8 in Section 5.

Most of our attention was devoted to the impact of the
variability, which takes two forms: (i) deterministic and (ii)
stochastic. Consistent with intuition, stabilizing performance
tends to get more difficult as the variability increases. The
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deterministic variability refers to the arrival-rate function.
For the sinusoidal arrival rate in (1.1), the extent of that vari-
ability is determined by the cycle length 7" and the relative
amplitude B; we kept 8 = 25 and considered lower vari-
ability with 7 = 100 and higher variability with 7 = 10.
(This characterization of higher variability breaks down in
the (uncommon in practice) limit as 7' gets extremely small,
because as T — 0, the performance approaches the sta-
tionary model with the average arrival rate. That is easy to
see because the performance is determined by the cumula-
tive arrival rate function, which then approaches a constant
function.)

The stochastic variability refers to the stochastic variability
inthe G, arrival process and the G I service-time distribution.
These are roughly characterized by the asymptotic variabil-
ity parameter ¢ in (2.2) and the service-time scv ¢2. Our
experience indicates, that as these increase, stabilization gets
more difficult. However, our approximation for the blocking
probability in (2.16), which draws on (2.6), (2.12), and (2.15)
actually depends on A(t), 2 and the full service-time cdf G in
arelatively complicated way. Beyond the offered load m () in
(2.6), the performance depends on the peakedness z in (2.12).

Our simulation experiments showed that our staffing algo-
rithm was consistently effective except when faced with the
worst cases of (i) high QoS, as captured by the low target
B = 0.01, (ii) higher deterministic variability, as captured
by the shorter period T = 10, and (iii) higher stochastic
variability. In particular, stabilization was achieved consis-
tently except in the case B = 0.01 and 7 = 10. Even in this
case, Fig. 7 (left) shows that there is no degradation for the
M, /M /s, /0 model, while Fig. 10 shows that the blocking is
too low for the (H,),/D/s;/0 model, but could be corrected
by simply removing 3 servers at all times.

The difficult cases were for the parameter pairs (7, B) =
(10,0.01), and all involve higher stochastic variability. Figure
6 treats the (H,),/M /s,/0 model, while Figs. 11 and 12 treat
the (H,),/G1/s;/0 models with H, or LN service. In these
cases, the stabilization was imperfect, but suitable for most
engineering applications, clearly much better than without
randomization as in Fig. 2. As explained in Section 6, there
is also a long warmup period with H, or LN service.

There are many remaining open problems. For stabilizing,
it remains to improve the performance in the difficult cases
with (T, B) = (10,0.01). We have shown that it is possi-
ble to do so through the heuristic refinement discussed in
Section 4.6, but it remains to develop better (more system-
atic and less complicated) algorithms. It remains to do more
on the harder problem of approximating the unstable perfor-
mance in systems with inflexible staffing, for example, as in
the promising direction of [46]. For the theoretical support,
it remains to establish versions of Theorems 2.4 and 2.5 to
more general models. It also remains to establish more sup-
porting theory for the time congestion, going beyond the case
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of M service, building on Section 6 of [35], which we have
discussed in Section 2.9 and Section 7.
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