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The Base Queueing Model

Gt/GI/St + GI

e Time-varying arrival rate A\(z) (the G¢)

(e.g., non-homogeneous Poisson)

o LLD. service times ~ G(x) = P(S < x) (the first GI)

Time-varying staffing level s(7) (the s¢)

LLD. abandonment times ~ F(x) = P(A < x) (the +GI)

First-Come First-Served (FCFS)

@ Unlimited waiting capacity



The Base Queueing Model

Performance measures of interest

@ Q(t): number waiting in queue at ¢

@ B(t): number in service at ¢

e X(t) = Q(r) + B(t): total number in system
e W(t): elapsed head-of-line waiting time

e V(1): potential waiting time



Realistic Models Features

Time-varying arrivals
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a financial services call center, from Green, Kolesar and Soares (2001)



Realistic Models Features

Non-exponential service and abandonment
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Brown et al. (2005): Statistical Analysis of a Telephone Call Center, JASA.



Pictures

A picture is worth n words.



The Overloaded G/GI /s + GI Fluid Queue in Steady State

The 2005 MIT talk. Operations Research, 2006, by W?

fluid density arriving time t in the past

in service in queue
A F()
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w+u w time t 0



The Evolution of the G,/GI /s, + GI Fluid Queue
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Deriving the ODE for the Head-of-the-Line Waiting Time

q(t, x) q(t+0,x)

N
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© Approximations for Time-Varying Many-Server Queues

@ The G,/GI/s, + GI Many-Server Fluid Queue with Alternating
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O Asymptotic Loss of Memory, Periodic Steady State (YL&W? 2011)
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Business Case: H&R Block

Service Center to Help Prepare Tax Returns

@ How many service representatives are needed?

o arrival rate = 100 per hour

@ expected service time = 1 hour
e expected patience time = #~! = 2 hours
o Erlang-A (M/M /s + M) model

@ Performance target: Minimum staffing such that P(W > 0) < 0.20



Business Case: H&R Block

Service Center to Help Prepare Tax Returns

o How many service representatives are needed?

@ arrival rate = 100 per hour

o expected service time = 1 hour

e expected patience time = ! =2

e Erlang-A (M /M /s + M) model

o offered load = 100 x 1 = 100 (expected number used if unlimited)
@ Square Root Staffing: s = 100 4+ /100 = 110,

e Performance: P(W > 0) = .19, P(W > .05) = .09, P(Ab) = .006,



Time-Varying Arrival Rate

o long-run average arrival rate = 100 per hour

expected service time = 1 hour

expected patience time = /! =2

from M /M /s + M model to M,/M /s, + M
@ How many service representatives are needed now?

@ Want to stabilize performance at similar level, e.g., P(W > 0) ~ 0.20

Jennings et al. (1996), Feldman et al. (2008), YL&W? (2012)



The Arrival Rate

Arrival Rate Function with Mean Service Time 1
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Square Root Staffing with PSA

Staffing by the Pointwise Stationary Approximation (PSA) with Mean Service Time 1
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The Offered Load: Expected Number Used If Unlimited

The Physics of ..., 1993, by S. G. Eick, W. A. Massey &W?

The Offered Load: How Many Servers Would be Used?
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Square Root Staffing with the Offered Load

The Two Staffing Methods Compared
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Simulation Comparison of the Two Staffing Methods
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NEW TOPIC: Same Model, But Inflexible Staffing
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@ The G,/GI/s; + GI Fluid Queue with Alternating Overloaded and

Underloaded Intervals  (Yunan Liu & W2, Queueing Systems, 2012)

© Numerical Examples: Comparisons with Simulations
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© Asymptotic Loss of Memory, Periodic Steady State

@ Networks of Fluid Queues with Proportional Routing



2. Approximations for Many-Server Queues

Approximation for the G¢/GI/s; + GI Stochastic Queueing Model

service facility

A ®

( t ) waiting room ’

arrival process ’ departures

—_— LEEL]] o | —
abandonmentl ’ G(X) - P(T < X)

s =
F o (T, service time)
F(x)=P(T, < x) s(t) servers

(T, time to abandon)



Fluid Approximation from Many-Server Heavy-Traffic limit




Fluid Approximation from MSHT limit

=
N

—

Q00 — =~
N
= =
|1

/
. EGOE K | oooo/ooooooo
]

Lol



Fluid Approximation from MSHT limit
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Many-Server Heavy-Traffic (MSHT) Limit

Increasing Scale Increasing Scale

e asequence of G;/GI/s; + GI models indexed by n,
@ arrival rate grows: \,(7)/n — A(z) asn — oo,
number of servers grows: s, (1)/n — s(t) as n — oo,

@ service-time cdf G and patience cdf /' held fixed independent of n

with mean service time 1: p~!' = foooxdG(x) =1.



Three Levels of Approximation

e FWLLN: deterministic fluid approximation for mean values
e FCLT: stochastic approximation for full distributions

e Engineering Refinements

Focusing on alternating overloaded and underloaded intervals.



MSHT Diffusion Limit

An SDE for W (Separation of Variability)

o /n(W,— W)= WinD,asn— oo

o dW(r) = H(t)W(r)dt
+J(1)dBs(t) + Jo(1)dB, (1) + Ix(t)d 5, (1)
o By: arrival process
e J3;: service times

e /3,: abandonment times

o o (1) = Var(W(1)) = [ (Jg(t, w) + 12(t,u) + I3 (1, u)) du

Many-Server Heavy-Traffic Limits for ..., YL&W? (2011)



EXAMPLE: Same Model, But Fixed Staffing

Same Arrival Rate, But Inflexible Staffing
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Performance for M;/M /100 + H, Model, § = 0.5

o
N
BN
N

B(
oo
o 0k OORr O

z o ‘ ‘ ‘ — : ‘ ——
= sim: E[W(1)], Var(W(t))
= 0.2 sim: E[V(D)], Var(V(t))
% . fluid and diff: w(t), o—a/(t)
<3 fluid and diff: v(1), o2(t)
3
>— . engg approx: we"9(t), 63&'9'20)
g o engg approx: ve"9(t), c\elng,z(t)
= © 2 4 & 8 10 12 14 IS
::‘>0'5 F :
© — sim: E[Q()], Var(Q()),
o L . . E[B(D)], V(B(t))
ﬂ id:
= 2 & 6 8 10 12 i Qé(zt) O
3 ~
ar ! m _____ enga approx: Q). eI,
g : engg approx: BE"9(), op gz(()

P 4
= 1F i TS,
= | [ [ ]
D o5l M M i
(]
= . ;
— 2 4 6 8 10 12 14 sim: Var(X(t))
Sl M~ T~ diff: oZ(t)
I I
S, . . . . . . .

o
N
IS
)
®
B
o
P
N)
P
IN
I
o



Fewer Servers: the M,/M /25 + H, Model, § = 0.5




OUTLINE: Main Talk Begins Here.

© Staffing Examples
© Approximations for Time-Varying Many-Server Queues

@ The G,/GI /s, + GI Many-Server Fluid Queue with Alternating OL and

UL Intervals  (Yunan Liu & W?, Queueing Systems, 2012)

© Numerical Examples: Comparisons with Simulations
© Extensions

© Asymptotic Loss of Memory, Periodic Steady State

@ Networks of Fluid Queues with Proportional Routing



What Are Fluid Models




What Are Fluid Models
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3. The G,/Gl /s, + GI Fluid Model

Model data: (A(f), s(¢), G(x), F(x)) and initial conditions.

service facility

A ( t ) waiting room

input flow departure flow

— | .

abandon mentl

G(x) = proportion

served by time x
F(x) = proportion
abandoning by time x

capacity S(t)



Important Issue: Feasibility of the Staffing Function

e Assume feasibility of s(7) in the fluid model.
e Algorithm developed to find minimum feasible staffing function.
e Assume server switching in the stochastic model.

o Let customers be forced out in the stochastic model. (rare)



The G,/GI /s, + GI Fluid Model

two-parameter functions or time-varying measures

Fluid content

fo (2, x) dx: quantity of fluid in service at ¢ for up to y

e Q(t,y) fo (2, x) dx: quantity of fluid in queue at 7 for up to y
Fluid densities

@ D(t,x)dx (q(t,x)dx) is the quantity of fluid in service (in queue) at time ¢

that have been so for a length of time x.



Model Data

° fo u) du — input over [0, 7].

e s(t) =s(0) + f u) du — service capacity at time ¢.

° = [y &(u) du — service-time cdf.

° = [; f(u) du — patience-time cdf.

° fo (0, x) dx — initial fluid content in service for up to y.
° fo (0, x) dx — initial fluid content in queue for up to y.

Smooth Model: Assume that (A, s, G, F, B(0, ), Q(0, -)) is differentiable

with piecewise-continuous derivative (\, s’, g,f, b(0, ), ¢(0,-)).



Key Fluid Dynamics

Fundamental Evolution Equations

o q(t+u,x+u)=q(tx)- F(;fc(j:)"),

0<x<w(t)—uu>0,t>0.

G(x+u)

® b(t+u,x+u)=>b(t,x) - 50

x>0,u>0,t>0.



Given ¢(z,x) and b(z, x),

@ Service completion rate: o ( fo (¢, x)hg(x)dx,

@ Abandonment rate: = [y q(t,x)hp(x)dx,

where hp(x) = L ) and he(x) = (é’;%

Na¥jNa¥

@ ¢(t,x) and b(t,x) determine everything!



Rate into service b( t.
(RIS)




Two Cases: Underloaded Intervals and Overloaded Intervals

B(t)<S(t)
b(1.0)= A1) iy | O
arrival G Ropadirs

(a) Underloaded: B(t)<S(), Q(t)=0

Q(t)>0 B(t)=5(t)
t.0)= service
Q( ' m S b(t,0) facility &.
arrival G departure
1
Fioall)
abancvionment

(b) Overloaded: B(t)=S5(t), Q()>0



First (Easy) Case: Underloaded Interval

B(t,y) in G,/GI/s;+ GI fluid model
<= B(t,y) in G,/GI/oo fluid model
< B(t,y) in M,;/GI/occ fluid model
<= E[B(t,y)] in M,/GI/oco stochastic model

We have formulas already (Eick, Massey & W?, 1993).



Second (Interesting) Case: Overloaded Interval

o Minimum feasible staffing function s* exceeding s.

o b satisfies fixed-point equation.

(Apply Banach contraction fixed point theorem.)
o w satisfies an ODE.

o PWT v obtained from BWT w via the equation:

v(t —w(t)) = w(t).



Flow enters service from left and leaves queue from right
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The ODE for the Boundary Waiting Time

/ o o b(Z,O)
wit) =1— 0w

o q(t,w(t)): density of fluid in queue the longest at ¢
o b(t,0): rate into service at ¢

o b(1,0)>(<) qlt, w(t)) = w'(1)<(>) 0



More on the ODE for the Waiting Time
q(t, x) q(t+0,x)
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© Staffing Examples
© Approximations for Time-Varying Many-Server Queues

@ The G,/GI/s; + GI Fluid Queue with Alternating Overloaded and

Underloaded Intervals  (Yunan Liu & W2, Queueing Systems, 2012)

© Numerical Examples: Comparisons with Simulations
© Extensions

© Asymptotic Loss of Memory, Periodic Steady State

@ Networks of Fluid Queues with Proportional Routing



Example: M;/M /s + M Fluid Queue, E[T,] = 2

Arrival rate A\(7) = 1 + 0.2 - sin(z) and fixed staffing s(r) = s = 1.05
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Comparison with Simulation of the M,/M /s + M Queue

n = 2000, single sample path (A(z) = 1000 + 200 - sin(¢), s = 1050)
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Comparison with Simulation: Smaller n

n = 100, 3 sample paths (A(z) = 100 4 20 - sin(t), s = 105)
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Comparison with Simulation: Approximate Mean Values

n = 100, average of 100 sample paths (A(t) = 100 + 20 - sin(z), s = 105)
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© Staffing Examples
© Approximations for Time-Varying Many-Server Queues

@ The G,/GI/s; + GI Fluid Queue with Alternating Overloaded and

Underloaded Intervals  (Yunan Liu & W2, Queueing Systems, 2012)

© Comparisons with Simulations
© Extensions

O Asymptotic Loss of Memory, Periodic Steady State (YL&W? 2011)
® Networks of Fluid Queues with Proportional Routing (YL&W? 2011)



SUMMARY

© Discussed approximations for time-varying many-server queues.
@ The time-varying G;/GlI /s; + GI fluid model is tractable and useful.
© Analyzed for the case of alternating OL and UL intervals.

© The algorithm involves: (i) a fixed-point equation for the fluid density

in service, and (ii) an ODE for the boundary waiting time.
© Extension for networks of fluid queues has been developed.
@ Asymptotic behavior as t — oo studied (ALOM).

@ Stochastic refinements based on FCLT have been & are being developed.



THE END
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1. Many-Server Heavy-Traffic Limits



The Queueing Variables

@ content processes: two-parameter stochastic processes
e B, (t,x) number in service at time 7 who have been there for time < x,

@ Q,(t,x) number in queue at time ¢ who have been there for time < x,

e W,(r) elapsed waiting time for customer at head of line (HOL),

e V, (1) potential waiting time for new arrival (virtual if infinitely patient),
@ A,(t) number to abandon in [0, 7],

@ E,(t) number to enter service in [0, 7],

@ S,(f) number to complete service in [0, 7],

Fluid scaling: ¥, = n~'Y,,.



MSHT fluid limit (FWLLN)

Theorem
(FWLLN) If ..., then

(Bu, On, Wu, Vii, A, Ep, S,) = (B,Q,w,v,AE.S) in D3 x D>,

as n — oo, where (B, Q,w,v,A, E,S) is deterministic, depending on the

model data (M, s, G, F,B(0,-),0(0,-)), with

y y
B(1,5) /0 b(t,x)dx, Qt) = /O g(t,x)dx, 130,50,

A(r)

/Ota(u) du, E(t)= /Otb(u,O) du, S(t)= /Ota(u) du.




The Three MSHT Limiting Regimes for Stationary Models

Let the traffic intensity be p, = A\ /Snpin = An/Sn-
@ Quality-and-Efficiency-Driven (QED) regime (critically loaded):

(1—p)vn—p as n—oo, —o0<f<oc.

@ Quality-Driven (QD) regime (underloaded): (1 — p,)y/n — .
e Efficiency-Driven (ED) regime (overloaded): (1 — p,)/n — —oc.

In fluid scale: QED: p =1, QD: p < 1 and ED: p > 1.



Separation of Time Scales

The MSHT limit causes a separation of time scales:

@ The relevant time scale is the mean service time, which is fixed.

@ Since the arrival rate grows, i.e., since \,(¢)/n — () as n — oo,

the arrival process matters in a long time scale, through its LLN and CLT.

@ The service-time cdf G and patience cdf /" matter.



2. The Stationary G/GI /s + GI Fluid Model

Model data: (A\(#).s(¢). G. F) and initial conditions.

service facility

A

input flow departure flow

— | .

aba ndonmentl

G(x) = proportion

served by time x
F(x) = proportion
abandoning by time x

waiting room

capacity S



The Overloaded Fluid Model in Steady State

The 2005 MIT talk.

fluid density arriving time t in the past

in service in queue
A F()
sG°(u)
w+u w time t 0




Simulations for the M/E, /24 + GI Model: A\ = 24

Two abandonment cdf’s: Erlang F, and lognormal LN(1,4), mean 1.

perf. E, LN(1,4)
meas. sim approx sim approx
P(A) 0.175  0.167 0.191 0.167
+.0003 £.0002
E[Q] 7.7 8.2 3.15 2.93
+.013 +.004
SCV[Q] 0.43 0.00 0.97 0.00
E[WI|S] | 0322  0.365 0.129 0.131
+.001 £.0002




3. The Time-Varying G,/GI /s; + GI Fluid Model

Model data: (A(f), s(¢), G(x), F(x)) and initial conditions.

service facility

A ( t ) waiting room

input flow departure flow

— | .

abandon mentl

G(x) = proportion

served by time x
F(x) = proportion
abandoning by time x

capacity S(t)



The Fluid Density in an Underloaded Interval

explicit expression:

b(t,x) = new content I, + old content 1,

_ G(x)

= G(X))\(t — X)l{xgt} + b(O,x — t)ml{x>t}.

transport PDE:
by(t,x) + by(t,x) = —hg(x)b(t, x)

with boundary conditions b(#,0) = A(¢) and initial values b(0, x).



The service-content density b(z, x)

@ During an underloaded interval,

b(t,x) = GO =0 ps) + (x(f) P05 =T,

@ During an overloaded interval,

b(t,x) = b(t —x, O)G(x)l{xg,} + +G(Gx(i) ) b(0,x — 1)1y

(i) With M service, o(t) = B(t) = s(t), b(t,0) = s'(t) + s(z).

(ii) With GI service, b(t,0) satisfies the fixed-point equation

b(t,0) = a(r)+ /Olb(t —x,0)g(x) dx,

where a(t) = 5'(t) + /0 b(0,y)g(t+y)/G(y) dy.



Non-Exponential Distributions Matter

Simulation comparison for the M;/GI /s + E, fluid model: (i) H; service (red
dashed lines), (ii) M service (green dashed lines), (iii) sample path from

simulation of queue with H; service based on n = 2000 (blue solid lines).
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Comparison with Simulation: Even Smaller n

n = 20, average of 100 sample paths (\(¢) = 20 + 4 - sin(t), s = 21)
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