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Abstract

We consider a large-scale X call-center model – a stochastic model with two customer classes and two

associated service pools containing large numbers of agents, with each pool primarily dedicated to the

designated customer class, but with all agents cross-trained and allowed to serve the other class, even

though they may do so inefficiently or ineffectively. Under normal loads, we want class-i customers to

be served by type-i agents, but we activate sharing (serving the other class) when there is an unexpected

overload, allowing sharing in only one way at any time. We propose a fixed-queue-ratio assignment

rule with thresholds (FQR+T) for available agents. Assignments depend on a weighted-difference

stochastic process: D(t) ≡ Q1(t)− rQ2(t), where Qi(t) is the queue length of class-i customers and

r is a weighting factor, which management can set. Provided that there is no current sharing in the

other direction, an available agent in service pool 2 (1) serves the first class-1 (2) waiting customer

when D(t) ≥ κ1,2 (≤ −κ2,1), where κ1,2 and κ2,1 are threshold parameters that management can

set. We develop approximations to describe system performance when overloads occur, and perform

simulations to verify that the approximations are effective.
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1. Introduction

Unexpected Overloads. In this paper we propose a family of routing policies for assigning customers

to agents (servers) in call centers and other large-scale service systems, designed to automatically

respond to unexpected overloads whenever they occur by activating sharing.

In a typical call center, under normal circumstances, the arrival rates vary by time of day in a predictable

way, and the staffing responds to that anticipated pattern, typically with fixed staffing levels over short

time periods, such as half hours; see Gans et al. (2003) and Aksin et al. (2007) for background.

In addition, there are fluctuations about the arrival rates, so that the overall arrival process is well

modelled by a nonhomogeneous Poisson process. Ways to apply stationary stochastic models (in a

time-dependent way) to staff with the time-varying demand have been developed; see Green et al.

(2007).

In this paper we are concerned with deviations from that familiar pattern. We are thinking that the

arrival rates will usually be near their forecasted levels, but occasionally, for various reasons, there

will be unforeseen surges in demand (or unavailable service), going significantly beyond the usual

fluctuations. A demand surge might occur because of a catastrophic event in emergency response,

an intense television advertising campaign in retail, or a system failure experienced by an alternative

service provider. Such unexpected demand surges typically cause congestion that cannot be eliminated

entirely. Our goal is to help reduce that congestion by activating sharing (help from less loaded agents).

The X Model. In this paper we restrict attention to the X model, depicted in Figure 1. The X model

has two customer classes and two agent pools. We assume that each customer class has a service pool

primarily dedicated to it, but all agents are cross-trained, so that they can handle calls from the other

class, even though they may do so inefficiently or ineffectively. Under normal loading, we want each

class to be served by its designated agents, but we want to allow sharing when there are unexpected

unbalanced overloads, either when only one class is overloaded or when both classes are overloaded but

one is much more overloaded than the other. In some service systems, one customer class is considered

more important, so that we may want stronger sharing in one direction than the other. Thus we want a
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control that can separately control the extent of sharing in each direction. We may even want to allow

sharing in only one direction.

The X Call-Center Model
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Figure 1: The X model

Even though we only consider the X model, we are also interested in much more complex scenar-

ios. For example, there might be two separate multi-class multi-pool call centers, possibly located on

different continents, each with a traditional form of skill-based routing. We might then want one call

center to help the other when it is overloaded (in the unbalanced way), but not otherwise. In addition to

analyzing the X model for its own sake, we regard it as an idealization of this more general problem.

Thus, we provide insight into this more general problem as well.

FQR Routing. We suggest a modification of the fixed-queue-ratio (FQR) routing rule for multi-class

multi-pool systems proposed and analyzed by Gurvich and Whitt (2007). With two queues, FQR can

be implemented by considering a (weighted) queue-difference stochastic process

D(t) ≡ Q1(t)− rQ2(t), t ≥ 0, (1.1)

where Qi(t) is the class-i queue length at time t and r is a target-ratio parameter that management can

set. With FQR for the X model, a newly available agent in either service pool serves the customer at

the head of the class-1 queue if D(t) > 0, and serves the customer at the head of the class-2 queue

otherwise. The goal of FQR is to maintain a nearly constant queue ratio: Q1(t)/Q2(t) ≈ r throughout

time.
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The FQR control has two very desirable features for large-scale service systems, which makes it pos-

sible to reduce the multi-class multi-pool staffing (and performance analysis) problem to the well-

understood single-class single-pool staffing (and performance analysis) problem. First, FQR tends to

produce state-space collapse (SSC); for the X model, the two-dimensional vector queue-length pro-

cess (Q1(t), Q2(t)) tends to evolve as a one-dimensional process, determined by the total queue length

QΣ(t) ≡ Q1(t) + Q2(t). In particular,

(Q1(t), Q2(t)) ≈ (p1QΣ(t), p2QΣ(t)), where p1 =
r

1 + r
= 1− p2. (1.2)

Indeed, Gurvich and Whitt (2007) showed that, under regularity conditions, FQR achieves SSC asymp-

totically in the quality-and-efficiency-driven (QED) many-server heavy-traffic limiting regime. (See §2

for more on the QED regime.)

Second, with FQR, it is possible to choose the ratio parameter r (or, equivalently, the queue proportions

pi) in order to provide desired service-level differentiation. For example, we might want 80% of class-1

customers to wait less than 20 seconds, while 80% of class-2 customers wait less than 60 seconds. To

see how this can be done, let Ti be the class-i delay target (e.g., 20 seconds, which corresponds to 0.067

if we measure time in mean service times and they are 5 minutes); let Wi be the class-i waiting time;

let pi be the queue proportion determined by r. The following string of approximations show how the

individual class-i performance targets P (Wi > Ti) ≤ α, for both i, can be reduced into a single-class

single-pool performance target P (W > T ) ≤ α for an appropriate choice of the queue proportions pi

and the aggregate target T :

P (Wi > Ti) ≈ P (Qi > λiTi) ≈ P (piQΣ > λiTi) ≈ P

(
QΣ >

2∑

k=1

λkTk

)

≈ P

(
λW >

2∑

k=1

λkTk

)
≈ P (W > T ) ≤ α , (1.3)

where we define pi ≡ λiTi/(λ1T1 +λ2T2), λ ≡ λ1 +λ2 and T ≡ (λ1T1 +λ2T2)/(λ1 +λ2). The first

approximation in (1.3) follows by a heavy-traffic generalization of Little’s law, establishing that the

steady-state queue-length and waiting-time random variables are related approximately by Qi ≈ λiWi.

The second approximation in (1.3) is due to SSC: Qi ≈ piQΣ. The third approximation is obtained

by choosing pi as specified above. The fourth approximation in (1.3) follows from the heavy-traffic
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generalization of Little’s law once again, for the entire system: QΣ ≈ λW for λ as defined above,

where W is the waiting time for an arbitrary customer. The fifth and final approximation follows by

the appropriate definition of the aggregate target T , as defined above. With this reduction, we can

determine the overall staffing by using elementary established methods for the single-class single-pool

I model.

However, in our setting, if the service provided by non-designated agents is inefficient, then FQR is not

appropriate, because it produces too much sharing. (In that case, the conditions in the key theorems of

Gurvich and Whitt (2007) are violated.) Indeed, in the Appendix we show that, even if there is normal

loading without sharing, FQR can cause the queue length to explode without customer abandonment

if the service rates for serving the other class are less than the service rates for serving the designated

class, because it can make the model unstable by inducing undesired sharing.

The Proposed Control: FQR-T. In order to permit sharing only in in the presence of unbalanced

overloads, we suggest fixed-queue-ratio routing with thresholds (FQR-T). We introduce positive thresh-

olds κ1,2 and κ2,1. Upon service completion, a newly available type-2 agent serves the customer at the

head of the class-1 queue if D(t) ≥ κ1,2; a newly available type-1 agent serves the customer at the head

of the class-2 queue if D(t) ≤ −κ2,1; otherwise the agents serve only their own class. Upon arrival,

a class-i customer is routed to pool i if there are idle servers; otherwise the arrival goes to the end of

the class-i queue. An arrival might increase the queue to a point that sharing is activated. Then the first

customer in queue is served by the other class (presumably the agent that has been idle the longest).

In order to further prevent unwanted sharing, we also restrict the routing to one-way sharing at any

time. We do not allow a newly available type-2 agent to serve a waiting class-1 customer if there are

any type-1 agents busy serving class-2 customers. And similarly in the other direction.

Analyzing the Performance. The rest of this paper is devoted to developing tractable approximations

to show how the FQR-T control performs. Having relatively simple methods to predict the performance

makes FQR-T a more attractive control. These approximate performance descriptions provide a means

to select appropriate control parameters.
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The ability to analyze FQR-T depends on the SSC property that proved so useful to analyze FQR in

Gurvich and Whitt (2007). With appropriate parameters, under normal loading there is little sharing,

making the X model behave as two independent single-class single-pool I models, so that there clearly

is no SSC. Thus, without overloads, the system can be analyzed by standard methods. On the other

hand, in the presence of unbalanced overloads, there is substantial sharing. That typically causes both

classes to be overloaded after sharing, making the large-scale X model exhibit SSC. If class 1 is more

overloaded, then the queue lengths tend to be related approximately by Q1(t) ≈ rQ2(t) + κ1,2. If

instead class 2 is more overloaded, then we have Q1(t) ≈ rQ2(t) − κ2,1. Moreover, that overloading

tends to put large-scale systems in the efficiency-driven (ED) many-server heavy-traffic limiting regime,

so that we can accurately approximate the performance by deterministic fluid models and diffusion-

process refinements appropriate for the ED regime, as in Whitt (2004, 2006). As a consequence,

we obtain relatively simple normal approximations for the steady-state distribution of (Q1(t), Q2(t)),

whose accuracy is confirmed by simulation experiments.

As we explain in §2, and intend to show in subsequent papers, the approximations we develop in

this paper can be based on heavy-traffic stochastic-process limits involving the concepts of state-space

collapse and a heavy-traffic averaging principle, as in Coffman et al. (1995). However, we prove no

limit theorems here. Here we contribute by showing how state-space collapse and the heavy-traffic

averaging principle can be applied as engineering principles to better understand how large systems

perform, and heuristically develop useful quantitative performance approximations. We empirically

justify the approximations we develop by making extensive comparisons with simulations.

Organization of the Rest of the Paper. In §2 we introduce the model and discuss the efficiency-

driven (ED) many-server heavy-traffic limiting regime. In §3 we develop the deterministic fluid ap-

proximation for the steady-state performance. There are two important cases of unbalanced overloads:

(1) when both classes are overloaded after sharing, and (2) when one class is overloaded and the other

class remains underloaded even after the sharing. In §4 we develop the deterministic fluid approxi-

mation for the transient behavior in the fully-overloaded case; that is a system of ordinary differential

equations, based on the heavy-traffic averaging principle. In §5 we discuss two stochastic refinements to
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the deterministic approximations for the steady-state quantities. In §6 we compare our approximations

for mean values with simulations. In §7 we develop a diffusion approximation to generate approxi-

mations for the full steady-state distributions. In §8 we compare our distribution approximations with

simulations. Finally, in §9 we draw conclusions.

Additional material appears in an appendix. First, in §A we show that FQR alone, without thresholds,

can produce very bad performance even in normal loading when cross-trained service is inefficient. We

develop approximations for this case as well and show that they are accurate. Second, in §B we discuss

the advantage of the lower thresholds for very large systems to relax the one-way sharing restriction

in order to make the FQR-T control more adaptive. Finally, In §C we present additional simulations

results in order to give a broader picture of the performance of FQR-T.

2. The Model

In order to analyze the approximate performance of the X model with FQR-T routing, we consider a

Markovian model. Customers from the two classes arrive according to independent Poisson processes

with arrival rates λ1 and λ2. There is a queue for each customer class. We assume that waiting cus-

tomers have limited patience. A class-i customer will abandon if he does not start service before a

random time that is exponentially distributed with mean 1/θi.

There are two service pools, with pool j having mj homogeneous servers working in parallel. The

service times are mutually independent exponential random variables, but the mean may depend on

both the customer class and the service pool. The mean service time for a class-i customer served by

a type-j agent is 1/µi,j . Let the service times, abandonment times and arrival processes be mutually

independent. Let Qi(t) be the number of class-i customers in queue and let Zi,j(t) be the number of

type-j agents busy serving class-i customers, at time t. With the assumptions above, the stochastic

process (Qi(t), Zi,j(t); i = 1, 2; j = 1, 2) is a six-dimensional continuous-time Markov chain.

Our primary goal is to develop approximations for the steady-state random quantities Qi ≡ Qi(∞)

and Zi,j ≡ Zi,j(∞) in the presence of overloads. In particular, we show that (Q1, Q2) can be approxi-

mated by a bivariate normal distribution, having correlation 0 without unbalanced overloads and having
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correlation 1 under unbalanced overloads. We develop explicit formulas for the means and variances.

The ED Many-Server Heavy-Traffic Limiting Regime. In future work, we intend to show that the

approximations developed here are asymptotically correct in the efficiency-driven (ED) many-server

heavy-traffic limiting regime, but we do not establish any limits here. Nevertheless, this ED limiting

regime helps to understand how we get the approximations and when they should perform well.

The many-server heavy-traffic regimes can be specified by considering a sequence of models indexed

by n; we let a superscript denote the quantity associated with model n. The main idea is that the

system scale should grow. Accordingly, we assume that the arrival rates and numbers of servers grow

proportionally to n:

λ
(n)
i

n
→ λ̄i and

m
(n)
j

n
→ m̄j as n →∞, (2.1)

where λ̄i and m̄j are positive constants for i = 1, 2 and j = 1, 2. However, the behavior of individual

customers and agents should not change, so the individual abandonment rates θi and service rates µi,j

remain constant for all n.

For a Markovian model with one service pool, one customer class and customer abandonment, i.e.,

the M/M/m + M model, three different many-server heavy-traffic limiting regimes were identified in

Garnett et al. (2002): If the system is asymptotically overloaded, then it is called the efficiency-driven

(ED) limiting regime; if the system is asymptotically critically loaded, then it is called the quality-and-

efficiency-driven (QED) limiting regime; if the system is asymptotically underloaded, then it is called

the quality-driven (QD) limiting regime. Similar cases without abandonment had been specified by

Halfin and Whitt (1981). For one class and one pool, it is natural to let n be the total number of servers

(mn = n for all n, so that m̄ = 1 in (2.1)). Then the regimes are determined by the limit

lim
n→∞

(
1− ρ(n)

)√
n → β as n →∞, (2.2)

where ρ(n) ≡ λ(n)/nµ is the traffic intensity in model n. The regimes (i) ED, (ii) QED, and (iii) QD

then occur, respectively, if the limit in (2.2) holds with (i) β = −∞, (ii) −∞ < β < ∞, and (iii)

β = +∞.
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We will be concentrating on overloaded systems, i.e., the ED regime, which for the I model is dis-

cussed in Whitt (2004). That provides important background for our work on the X model here. In that

context we will consider the ED regime under the analog of the conventional more restrictive condition

that ρ(n) = ρ > 1. The ED regime is quite practical because even a small amount of customer abandon-

ment keeps the queue-length processes stable; the queue lengths have proper steady-state distributions

whenever the abandonment rates are positive.

Stochastic-Process Limits for Scaled Processes. We now indicate the kind of stochastic-process

limits that should hold as n → ∞ in the ED many-server heavy-traffic limiting regime specified by

(2.1) with ρ
(n)
i = ρi > 1 for at least one class i (making the system overloaded for at least one class).

Our descriptions will be useful when the system remains overloaded for at least one class after the

sharing. Paralleling (2.1), we assume that the thresholds are asymptotically proportional to n as well:

κ
(n)
1,2/n → κ̄1,2 > 0 as n →∞.

First, for deterministic fluid limits, we consider the scaled processes

Q̄
(n)
i (t) ≡ Q

(n)
i (t)
n

and Z̄
(n)
i,j (t) ≡ Z

(n)
i,j (t)
n

, t ≥ 0. (2.3)

We anticipate that these scaled processes converge as n →∞, with

(Q̄(n)
i (t), Z̄(n)

i,j (t), i = 1, 2; j = 1, 2) ⇒ (Q̄i(t), Z̄i,j(t), i = 1, 2; j = 1, 2) as n →∞, (2.4)

where ⇒ denotes convergence in distribution and the limit (Q̄i(t), Z̄i,j(t), i = 1, 2; j = 1, 2) evolves

as a deterministic dynamical system, in particular, as a six-dimensional ordinary differential equation

(ODE) or system of ODE’s. We emphasize that the overloaded ED regime is essential for this limit to

be meaningful. In the QD and QED regimes (with corresponding initial conditions) we expect these

limits to hold with a trival null (zero) limit Q̄i(t) = Z̄i,j(t) = 0 for all i, j, and t ≥ 0.

Since the limit process in (2.4) is deterministic, the mode of convergence ⇒ is equivalent to con-

vergence in probability; the limit is often referred to as a weak law of large numbers (WLLN) or a

functional WLLN (FWLLN). From this asymptotic perspective, we think of our deterministic fluid
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approximation as being

Q
(n)
i (t) ≈ nQ̄i(t) and Z

(n)
i,j (t) ≈ nZ̄i,j(t). (2.5)

Moreover, we anticipate that all processes have well-defined steady-state limits as t →∞ and that the

double limit in (2.4) as n →∞ and t →∞ (in any order) is valid and equals the limit as t →∞ of the

ODE, which is the unique stationary point for the ODE (but none of that will be proved here). From this

asymptotic perspective, we think of our deterministic fluid approximation for the steady-state random

variables Qi and Zi,j as being

Qi ≡ Q
(n)
i (∞) ≈ nQ̄i(∞) and Zi,j ≡ Z

(n)
i,j (∞) ≈ nZ̄i,j(∞) (2.6)

for some suitably large n, but we will not include the n in our heuristic development of the approxima-

tions.

We anticipate that there also will be associated stochastic limits that serve as refinements of the fluid

limits above. For these, we introduce the new scaled processes

Q̂
(n)
i (t) ≡ Q

(n)
i (t)− nQ̄i(t)√

n
and Ẑ

(n)
i,j (t) ≡ Z

(n)
i,j (t)− nZ̄i,j(t)√

n
, t ≥ 0. (2.7)

We anticipate that these scaled processes also converge as n →∞, with

(Q̂(n)
i (t), Ẑ(n)

i,j (t), i = 1, 2; j = 1, 2) ⇒ (Q̂i(t), Ẑi,j(t), i = 1, 2; j = 1, 2) as n →∞, (2.8)

where the limit (Q̂i(t), Ẑi,j(t), i = 1, 2; j = 1, 2) evolves as a stochastic process. From this new

asymptotic perspective, we think of our stochastic refinement of the fluid approximation as being

Q
(n)
i (t) ≈ nQ̄i(t) +

√
nQ̂i(t) and Z

(n)
i,j (t) ≈ nZ̄i,j(t) +

√
nẐi,j(t). (2.9)

Moreover, we again anticipate that all processes have well-defined steady-state limits as t → ∞ and

that the double limit in (2.8) as n → ∞ and t → ∞ (in any order) is valid and equals the limit as

t → ∞ of the stochastic limit in (2.8), which is the unique stationary distribution for the limiting

stochastic process (but again none of that will be proved here). From this asymptotic perspective, we
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think of our refined stochastic approximation for the steady-state quantities as being

Qi ≡ Q
(n)
i (∞) ≈ nQ̄i(∞)+

√
nQ̂i(∞) and Zi,j ≡ Z

(n)
i,j (∞) ≈ nZ̄i,j(∞)+

√
nẐi,j(∞) (2.10)

for some suitably large n.

Even though we do not prove any of these stochastic-process limits here, we do verify them empirically

with simulation by showing the performance for several values of n, in particular, for n = 25, 100 and

400. We see remarkable accuracy for n = 400 and surprisingly good rough approximations even for

n = 25.

Scaling of the Thresholds. Finally, we point out that the scaling itself provides very important in-

sights. For example, here the scaling is very important when we consider the thresholds for sharing.

Above, we have stipulated that κ
(n)
1,2/n → κ̄1,2 > 0, and we will scale that way in our simulation ex-

periments in order to see the statistical regularity as a function of n indicated by the stochastic-process

limits above. In particular, our examples have κ̄1,2 = 0.1. If there are n servers in pool 1, then that

threshold setting produces a delay burden (before sharing is activated) of only 0.1µ−1
1,1 (0.1 mean service

times) independent of n. (There are 0.1n customers being served at total rate µ1,1n.)

However, in applications we have one system (one value of n) for which we must choose thresholds.

There are two conflicting desires in the choice of the threshold values. On the one hand, we want the

threshold relatively small, so that we activate sharing as soon as possible if sharing is needed. On the

other hand, we want the threshold relatively large, so that we do not inadvertently cross over to sharing

the wrong way due to random fluctuations in the stochastic processes. Indeed, if the thresholds are too

small, then we can obtain the very bad behavior described in the Appendix.

Thus, we want threshold values that are neither too large nor too small. Fortunately, the scaling in

the stochastic-process limits provides guidance. They indicate that we could let the thresholds become

smaller, relatively, as n increases; i.e., the thresholds should increase with n, but we could let κ
(n)
1,2/n →

0. Since the random fluctuations should be asymptotically of order O(
√

n), we can simultaneously

achieve both objectives asymptotically if we let κ
(n)
1,2 grow like nδ for 1/2 < δ < 1. Then, in the

fluid scale, the threshold is asymptotically negligible, but at the same time the threshold will be large
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compared to the O(
√

n) stochastic fluctuations. This asymptotic analysis does not tell us what the

thresholds should be in any instance, but it suggests that we should be able to find effective threshold

levels for large systems. We verify the effectiveness of thresholds through simulations.

3. The Fluid Approximation for the Steady State of the X Model

In this section we develop the deterministic fluid approximation for the steady-state quantities Qi and

Zi,j in the X model with unbalanced overloads. These yield helpful quick approximations that perform

remarkably well, but we will also develop refinements in §5 and §7 that are more accurate. Here

we do not directly consider the many-server heavy-traffic limiting regime specified in (2.1) and we

do not introduce the scale factor n, but we are thinking of that regime with a suitably large n. The

approximations are intended for X model with many servers and associated high arrival rates.

Without loss of generality, when we consider the behavior under unbalanced overload, we assume that

class 1 is overloaded, and more so than class 2 if class 2 is also overloaded. We first specify the

conditions for class 1 to be overloaded, and then identify two different cases for class 2: after sharing,

class 2 is either overloaded or underloaded. (There is also a boundary case in which class 2 is critically

loaded, but we do not consider it.)

The Overloaded Conditions for Class 1. When we say that class 1 is overloaded, we mean that

λ1 > m1µ1,1, which is equivalent to ρ1 ≡ λ1/m1µ1,1 > 1, where ρ1 is the class-1 traffic intensity in

isolation. In other words, we assume that class 1 with pool 1 alone would produce an M/M/m + M

model in the ED regime, as in Whitt (2004). Since we have customer abandonment, the system is

stable. From Whitt (2004), we obtain the deterministic fluid approximation for the steady-state queue

length of class 1 alone, namely,

Qalone
1 ≈ λ1 −m1µ1,1

θ1
. (3.1)

This ED steady-state fluid approximation can be derived heuristically by simply equating the rates in

and out in equilibrium, assuming that there is a positive deterministic queue length Q1 for class 1 (the

fluid approximation):

rate in at queue 1 ≡ λ1 = m1µ1,1 + Q1θ1 ≡ rate out at queue 1 (3.2)
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We will use similar simple heuristic reasoning for the X model. The associated approximate potential

waiting time (for a customer with infinite patience) is W1 ≈ Q1/m1µ1,1 (expressed in units of mean

service times).

There are two cases for the less loaded class 2. We may either have class 2 also overloaded after the

sharing, but less so than class 1, or class 2 underloaded after the sharing.

3.1. The Fully-Overloaded Case: Class 2 Overloaded After Sharing

We now describe the conditions for class 2 to be overloaded after sharing. First, class 2 might be

overloaded alone. Paralleling the analysis above, that occurs if λ2 > m2µ2,2 or, equivalently, if

ρ2 ≡ λ2/m2µ2,2 > 1. Again, the system is still stable because of the abandonment. In that event,

the steady-state queue length of class 2 alone would be Qalone
2 ≈ (λ2 −m2µ2,2)/θ2. In order to have

sharing (class 2 helping class 1) in steady-state, we need Qalone
1 ≥ rQalone

2 + κ1,2.

The idea then is that there should be approximately a fixed level of sharing, with Z1,2 type-2 agents

serving class-1 customers. This level of sharing should make both classes 1 and 2 overloaded. First,

given Z1,2, by the same reasoning as before, the two individual queue lengths should be

Q1 =
λ1 − (m1µ1,1 + Z1,2µ1,2)

θ1
and Q2 =

λ2 − (m2 − Z1,2)µ2,2

θ2
. (3.3)

We also should have Q1 = rQ2 + κ1,2. Then it is easy to see that the desired amount of sharing is the

unique solution of the following linear equation in the single variable Z1,2:

Q1 = Qalone
1 − Z1,2µ1,2

θ1
= rQ2 + κ1,2 = r

(
Qalone

2 +
Z1,2µ2,2

θ2

)
+ κ1,2. (3.4)

Clearly, there is one and only one value of Z1,2 yielding equality, with D ≡ Q1 − rQ2 = κ1,2,

because at Z1,2 = 0 the left side is greater than the right side, by assumption, and the left (right) side

is decreasing (increasing) in Z1,2, so that there must be equality for one and only one value of Z1,2

(assuming strictly positive parameters). If the solution yields Z1,2 > m2, then the required sharing is

not possible. In that event, even if all class 2 agents work on class-1 customers, the overloads can not

be balanced in the desired way. However, if 0 ≤ Z1,2 ≤ m2, then we have found our desired answer.

All three variables Q1, Q2 and Z1,2 can equivalently be found by solving the following two equations

12



in two unknowns (Q1 and Z1,2):

Q1 =
λ1 − (m1µ1,1 + Z1,2µ1,2)

θ1
and Q2 =

Q1 − κ1,2

r
=

λ2 − (m2 − Z1,2)µ2,2

θ2
. (3.5)

Now suppose that class 2 alone is underloaded. We now seek conditions for there to be sharing, but

where class 2 becomes overloaded when it helps class 1. It is easy to see that this case is also covered

by the pair of equations in (3.5). The equations for Qi can be interpreted as balancing the rate in with

the rate out, assuming a fixed positive queue length for that class. The only requirement of the solution

to (3.5) is that 0 ≤ Z1,2 ≤ m2 and Q2 ≥ 0. We will then necessarily have Q1 = rQ2 + κ1,2.

Example 3.1. (canonical example) A canonical example has λi = 90, mi = 100, θi = 0.2, µi,j = 1

for all i and j, r = 1 and κ1,2 = κ2,1 = 10 without overloads, but then a shift to λ1 = 130 under an

unexpected overload for class 1. The simple fluid approximations yield Q1 ≈ 150 and Q2 ≈ 0 without

any sharing, and then Q1 ≈ Q2 ≈ 50 with FQR-T. The associated approximate potential waiting times

(expressed in mean service times) for class 1 are reduced from 1.5 to 0.5 at the expense of increasing

class-2 waiting times from 0 to 0.5. Simulation shows that this is indeed what happens, approximately.

3.2. The Spare-Capacity Case: Class 2 Underloaded After Sharing

The remaining case is the fortunate case when the class-2 load is low when the class-1 load is unex-

pectedly high. Then pool 2 might be able to help class 1 without penalty. Clearly, the FQR-T control

is very desirable in this case.

From the fluid model perspective (ignoring stochastic fluctuations), this case occurs if and only if we

can simultaneously have Q1 = κ1,2 − 1 and Q2 = 0. Assuming that there always are available agents

in pool 2, whenever Q1(t) = κ1,2, a type-2 agent immediately serves a class-1 customer. Hence, we

must have Q1(t) ≤ κ1,2 − 1.

In the fluid model, we achieve that value κ1,2 − 1 for Q1 if and only if Z1,2 serves to balance the rate

in and rate out at queue 1:

rate in at queue 1 ≡ λ1 = m1µ1,1 + (κ1,2 − 1)θ1 + Z1,2µ1,2 ≡ rate out at queue 1, (3.6)
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yielding

Z1,2 =
λ1 −m1µ1,1 − (κ1,2 − 1)θ1

µ1,2
, (3.7)

while still allowing queue 2 to be empty; i.e., so that

rate in at queue 2 ≡ λ2 ≤ µ2,2(m2 − Z1,2) ≡ maximum rate out at queue 2, (3.8)

in which case we still have Q2 = 0 along with Q1 = κ1,2−1. By (3.8), we necessarily have Z1,2 < m2.

4. The Fluid-Model System of ODE’s in the Fully Overloaded Case

We will now introduce the deterministic fluid-model ODE’s to approximate the evolution (transient

behavior) of the CTMC (Qi(t), Zi,j(t); i = 1, 2; j = 1, 2) in the fully overloaded case considered in

§3.1. From an asymptotic perspective, we think of this approximation being (2.5) stemming from the

FWLLN (2.4), but we develop the approximation directly, without considering a sequence of models.

4.1. A Heavy-Traffic Averaging Principle

The ODE’s (and the later stochastic refinements of the steady-state approximation) depend on a heavy-

traffic averaging principle, paralleling Coffman et al. (1995). Here we explain it and exploit it, but we

do not prove it.

In §3.1 we exploited SSC to deduce that Q1 ≈ rQ2 + κ1,2 in the fully-overloaded case. However, it is

evident that SSC does not actually occur in such a simple way. Instead, the queue-difference process

D(t) oscillates around the threshold κ1,2. The key observation is that the process D(t) moves in a

faster time scale than the other processes under consideration. In a very small amount of time, the fluid

processes Qi(t) and Zi,j(t) do not change much relative to their values (roughly the same order as the

number of servers), while D(t) moves rapidly between the two regions (−∞, κ1,2) and [κ1,2,∞), and

hence reaches a time-dependent steady-state very rapidly. (We assume that κ1,2 and κ2,1 are sufficiently

large that we can ignore the rare occasions when D(t) ≤ −κ2,1. Recall that we have one-way sharing.

Hence, D(t) can only be in the two regions: (−k2,1, k1,2) and [k1,2,∞).)

Since the process D(t) moves much faster than the other processes, we conclude that D(t) approxi-

mately reaches a time-dependent steady state instantaneously at each time t, where that steady-state
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distribution depends on the time-dependent quantities Qi(t) and Zi,j(t). It is perhaps better to write

Dt(s) because, for given t, the process is evolving in a faster time scale, denoted here by s. Let Dt(∞)

denote a random variable with that time-dependent steady-state distribution of the time-dependent BD

process, i.e., the distribution of Dt(s) as s →∞. We will then exploit the time-dependent probabilities

π1,2(t) ≡ P (Dt(∞) ≥ 0), t ≥ 0. (4.1)

This averaging principle allows us to regard Dt(s) approximately as a birth-and-death (BD) process,

with state space in Z, and birth and death rates that depend only on t. For each t, we can solve the BD

balance equations to find the steady-state distribution of Dt(s), i.e., the distribution of Dt(∞).

Let λ̂j(t) and µ̂j(t) be these birth and death rates, respectively. These should be regarded as fixed rates

operating in the fast time scale denoted by s. There are different formulas in the two regions. First, for

j ∈ (−k2,1, k1,2), the birth rates are

λ̂j(t) = λ1 + µ1,2Z1,2(t) + µ2,2Z2,2(t) + θ2Q2(t), (4.2)

corresponding to a class-1 arrival or a departure from the class-2 customer queue, caused by a type-2

agent service completion or by a class-2 customer abandonment. The death rates are

µ̂j(t) = λ2 + µ1,1m1 + θ1Q1(t), (4.3)

corresponding to a class-2 arrival or a departure from the class-1 customer queue, caused by a class-1

agent service completion or by a class-1 customer abandonment.

Next, for j ∈ [k1,2,∞), we have birth rates

λ̂j(t) = λ1 + θ2Q2(t), (4.4)

corresponding to a class-1 arrival or a departure from the class-2 customer queue caused by a class-2

customer abandonment. The death rates are

µ̂j(t) = λ2 + µ1,1m1 + µ1,2Z1,2(t) + Z2,2(t)µ2,2 + θ1Q1(t) (4.5)
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corresponding to a class-2 arrival or a departure from the class-1 customer queue, caused by a type-1

agent service completion or a type-2 agent service completion, or by a class-1 customer abandonment.

Thus, for each t, we solve the BD balance equations with (4.2)–(4.5) to solve for the distribution of

Dt(∞) and then the important quantity π1,2(t) in (4.1).

4.2. The ODE’s

Since we are considering the fully-overloaded case in §3.1, the arrival rates are sufficiently high that

both approximate queue lengths are positive in steady state. With that in mind, here we consider the

transient behavior of the fluid model under the assumption that all agents are busy, with some type-2

agents helping class-1. We are thus describing the transient behavior near equilibrium.

First, assuming that π1,2(t) and Z1,2(t) are given and fixed, we obtain ODE’s for the two queue-length

processes. Let ẋ denote the derivative; i.e.,

ẋ(t) ≡ dx(u)
du

|u=t . (4.6)

We let the derivative Q̇1(t) equal the rate of increase of Q1(t) minus its rate of decrease. The rate of

increase is simply the arrival rate to customer queue 1, λ1. The rate of decrease is more complicated.

First, there is the rate of abandonment from queue 1, which is Q1(t)θ1. Second, there is the rate of

decrease from queue 1 due to service completions by servers who will next take customers from queue

1. The rate of service completions by servers who will next take customers from customer queue

1 depends on the state of the weighted-difference stochastic process D(t). Exploiting the averaging

principle, we will not focus on the actual state, but instead focus on the average state, assuming that

the weighted-difference process oscillates relatively rapidly compared to the other processes. We thus

assume that a proportion π1,2(t) of the time the threshold k1,2 is exceeded, in which case all agents

will next select a waiting customer from customer queue 1. Thus, that portion of the decrease rate is

π1,2(t) (m1µ1,1 + Z1,2(t)µ1,2). There will be a corresponding, but different, rate of decrease for the

proportion of time 1− π1,2(t) that the weighted-difference process D(t) is below the threshold κ1,2.
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That reasoning leads to the two ODE’s for the queue-length processes:

Q̇1(t) = λ1 −Q1(t)θ1 − π1,2(t) (m1µ1,1 + Z1,2(t)µ1,2 + (m2 − Z1,2(t))µ2,2)

−(1− π1,2(t)) (m1µ1,1) (4.7)

and

Q̇2(t) = λ2 −Q2(t)θ2 − (1− π1,2(t)) ((m2 − Z1,2(t))µ2,2 + Z1,2(t)µ1,2) . (4.8)

Now we propose an approximating ODE for Z1,2(t), based on assuming that the proportion π1,2(t) can

be taken as given (depending on t) . This additional ODE is

Ż1,2(t) = π1,2(t)(m2 − Z1,2(t))µ2,2 − (1− π1,2(t))Z1,2(t)µ1,2 . (4.9)

Finally, assuming that the approximate time-dependent variables Q1(t), Q2(t) and Z1,2(t) are given,

we solve for the steady-state distribution of the BD process with birth and death rates in (4.2)–(4.5) to

calculate, first the distribution of Dt(∞) and then π1,2(t) ≡ P (Dt(∞) ≥ 0) as in (4.1).

To calculate all four quantities Q1(t), Q2(t), Z1,2(t) and π1,2(t), we suggest an iterative procedure. If

we are considering the transient behavior near steady-state, then it is natural to start by using the steady-

state (as t → ∞) values Q1, Q2 and Z1,2 from (3.5) as initial values of Q1(t), Q2(t) and Z1,2(t). We

then can calculate an initial value of π1,2(t) from the BD process with rates in (4.2)–(4.5). We can then

iterate.

We can find the steady-state values Q1, Q2 and Z1,2 themselves by simply setting the derivatives on

the left sides of the ODE’s (4.7) and (4.8) equal to 0 and imposing the steady-state SSC condition that

Q1 = rQ2 + κ1,2. It is easy to see that this method yields the same answers given in (3.4) and (3.5).

Then we can directly apply equation (4.9) to find the limiting value of π1,2(t) as t → ∞, denoted by

π1,2, namely,

π1,2 =
Z1,2µ1,2

Z1,2µ1,2 + (m2 − Z1,2)µ2,2
. (4.10)

For the special case in which µ1,2 = µ2,2, we have π1,2 = Z1,2/m2.
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5. Stochastic Refinements to the Deterministic Steady-State Fluid Approximation

In this section we present two stochastic refinements to the deterministic fluid-model approximations

for the steady-state quantities Qi and Z1,2. The first exploits the averaging principle to determine

the average weighted difference for the fully-overloaded case in §3.1. The second develops a BD

approximation for the steady-state queue length in the spare-capacity case of §3.2.

5.1. The Average Difference E[D] in the Fully-Overloaded Case

With the stochastic X model in the fully-overloaded case, SSC does not happen exactly; we do not get

precisely Q1 = rQ2 + κ1,2. Instead, under the overloading we are considering, the queue-difference

process D(t) oscillates around the threshold κ1,2. As discussed in §4.1 above, we can apply the heavy-

traffic averaging principle to find an approximating steady-state distribution of D(t) by treating it as

a BD process. Let D denote a random variable with the limit of these steady-state distributions as

t →∞.

We propose refining our fluid approximation by replacing the target difference κ1,2 by the mean E[D].

To find E[D] we solve the balance equations of the BD process above, and then take the mean

E[D] =
∞∑

j=−κ2,1

jP (D(∞) = j), (5.1)

where we start summing from −κ2,1 since D(∞) should be above −κ2,1 in steady-state. (In 4.1 we

observed that the BD should visit the third region (−∞,−κ2,1] only rarely.)

This calculation can be easily done if Q1, Q2 and Z1,2 are known. Since they depend on the value

E[D], we need to solve for them simultaneously. To do that, we propose a simple iterative algorithm

which solves the three equations

Q1 =
λ1 − (m1µ1,1 + Z1,2µ1,2)

θ1
, Q2 =

Q1 − E[D]
r

=
λ2 − (m2 − Z1,2)µ2,2

θ2
,

E[D] =
∞∑

j=−k2,1

jP (D = j). (5.2)

For the iterative procedure, it is natural to start with the values of Q1, Q2 and Z1,2 obtained from (3.5),

and then calculate the distribution of D and E[D]. We can then obtain new values of Q1, Q2 and Z1,2
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by solving (3.5) again with E[D] replacing κ1,2. We then can keep iterating. Experience indicates that

this iteration consistently converges in a few iterations (typically only two).

5.2. A BD-Process Refinement for the Spare-Capacity Case

For the case in which queue 2 has spare capacity, considered in §3.2, we also develop another refine-

ment, obtaining a non-degenerate approximation for the distribution of Q1. In this case, because of the

available agents in pool 2, as soon as Q1 hits the threshold κ1,2, an idle pool-2 agent serves a customer

from class 1. Thus, it is evident that we must have Q1 ≤ κ1,2 − 1.

Because of the averaging principle, it is not hard to estimate the approximate distribution of Q1. To

do so, we observe that we can regard the class-1 queue as evolving as a BD process. When the queue

length is j, the birth rate is a constant λ1, while the death rate is approximately m1µ1,1 + θ1j. For the

reason given, the birth rate is 0 when the queue is at κ1,2 − 1. The death rate should be small when

the queue length is small. For the approximation to be good, we do not want Q1 to spend much time

at very low levels, like 1 or 0. That can be verified approximately by looking at the approximate BD

steady-state distribution. In any case, we let the death rate be 0 when the queue length is 0. Our refined

approximation for the distribution of Q1 is the steady-state distribution of this finite-state BD process.

Since Qalone
1 = (λ1 −m1µ1,1)/θ1 > κ1,2, the birth rate always exceeds the death rate here. Indeed,

the BD process here for κ1,2 − 1−Q1(t) is stochastically bounded above by the queue-length process

in an M/M/1/κ1,2 − 1 queue, where κ1,2 − 1 serves as the size of a finite waiting room. If we take

the asymptotic perspective in §2, this stochastic bound shows that the difference κ1,2 − 1−Q1 should

be of order O(1) as n → ∞. Hence this adjustment should be asymptotically negligible in both the

diffusion scale (
√

n) and the fluid scale (n). However, the refinement can help in actual examples, even

large ones with 1000 servers in each pool.

As a refined deterministic fluid approximation, we use the mean value of the steady-state distribution

of the BD process here. However, by this method, we also obtain an estimate for the variance and

the entire distribution of Q1. The observed M/M/1 structure indicates that the distribution of κ1,2 −

1−Q1(t) should be approximately a truncated geometric distribution. That is quite different from the

19



approximate normal distribution we derive for the fully-overloaded case in the following subsection.

6. Simulation Experiments to Evaluate the Approximate Mean Values

6.1. The Overloaded Case

We have developed deterministic fluid approximations for the mean values in the fully overloaded case

via the solutions to the two equations in (3.5) and the three equations in (5.2). We now compare these

approximations to simulation estimates. In order to use the simulation to substantiate the conjectured

stochastic-process limits in §2, we choose parameters corresponding to scaled systems, indexed by n,

letting n take the values 25, 100 and 400. We have considered much larger n, such as n = 1000, but

from the results for n = 400, we see that accurate results will be obtained for all n larger than 400.

Our simulation examples throughout the paper will have parameters related to a base case that we

consider here. It has several parameters depending on n: mi ≡ m
(n)
i = n, λ1 ≡ λ

(n)
1 = 1.3n,

λ2 ≡ λ
(n)
2 = 0.9n and κ1,2 ≡ κ

(n)
1,2 = κ2,1 ≡ κ

(n)
2,1 = 0.1n. It also has several parameters independent

of n: θ1 = θ2 = 0.2, µ1,1 = µ2,2 = 1.0 and µ1,2 = µ2,1 = 0.8. The arrival rates are chosen to put class

1 in a focused overload, while class 2 is initially normally loaded or slightly underloaded. The rest of

the parameters are chosen to make a symmetric model, where serving the other class is less efficient.

In the appendix we present corresponding results for asymmetric models.

All simulation experiments are based on five independent replications of runs, each having 300, 000

arrivals. The independent replications make it possible to reliably estimate confidence intervals using

the t-statistic with 4 degrees of freedom. We give the average of the five simulation runs and the half-

width of the 95% confidence interval. The results for the base case above are presented in Table 1

below. Table 1 shows both the steady-state mean values and the associated scaled values (i.e., divided

by n). The unscaled values helps us evaluate the performance of the actual system, while the scaled

values show the convergence of the stochastic-process limits in (2.4). Table 1 clearly shows that the

level of accuracy grows as n gets larger, but even for relatively small systems, the fluid approximation

gives reasonable results, and important insight about the system behavior.

Table 1 also gives the approximation for the steady-state mean of the unscaled weighted-difference
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n=25 n=100 n=400

perf. meas. 2 equ. 3 equ. sim. 2 equ. 3 equ. sim. 2 equ. 3 equ. sim

E[Q1] 16.6 14.4 15.7 65.6 63.1 63.6 262.2 259.7 258.3
±0.3 ±1.9 ±5.0

E[Q1/n] 0.656 0.575 0.629 0.656 0.631 0.636 0.656 0.649 0.646
±0.013 ±0.019 ±0.013

E[Q2] 13.6 16.4 15.9 55.6 58.6 58.6 222.2 225.3 223.9
±0.4 ±1.8 ±5.0

E[Q2/n] 0.556 0.656 0.636 0.556 0.586 0.586 0.556 0.563 0.560
±0.016 ±0.018 ±0.013

E[D] − −2.0 −0.2 − 4.6 5.0 − 34.4 34.4
±0.3 ±0.1 ±0.04

κ1,2 −E[D] − 5.0 3.2 − 5.4 5.0 − 5.6 5.6
±0.3 ±0.1 ±0.04

E[Z1,2] 5.3 5.8 5.6 21.1 21.7 21.9 84.4 85.1 84.2
±0.1 ±0.04 ±1.2

E[Z1,2/n] 0.211 0.231 0.224 0.211 0.217 0.219 0.211 0.213 0.210
±0.003 ±0.004 ±0.003

Table 1: A comparison of the basic fluid approximations based on two equations in (3.5) and its
refinement based on the three equations in (5.2) with simulation results in the base case, having
m1 = m2 = 1.0n, λ1 = 1.3n, λ2 = 0.9n, µ1,1 = µ2,2 = 1.0, µ1,2 = µ2,1 = 0.8, θ1 = θ2 = 0.2 and
κ1,2 = κ2,1 = 0.1n (rounding up to the nearest integer if necessary).

process D(t), as developed in §5.1, and compares it to simulation results. The sixth row in the table

is especially insightful. It shows that E[D] is about the same distance from κ1,2 for each n, thus

strengthening our claim that D(t) should have fluctuations of order O(1) as n →∞.

In closing, we remark that rounding up to the nearest integer occurs for the thresholds κ1,2 when

n = 25. The simulations in the case n = 25 were conducted with κi,j = 3. In the table we chose

to show the solution using κ1,2 = 2.5 so as to make the scaled fluid solutions uniform. However, the

solution using κ1,2 = 3 is similar.

6.2. Independent Cases

One of our objectives is to avoid sharing without unbalanced overloads. That occurs in two scenarios:

(i) under normal loads, and (ii) under balanced overloads. In both of these cases our control makes the

X model operate approximately as two independent M/M/n + M systems, each operating in the QD
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or QED regime in the first scenario (depending on the actual load of each queue), or the ED regime

in the second scenario. As we show in the Appendix, if we use FQR without thresholds or one-way

sharing, then the underloaded system may become overloaded due to the slower service rates for the

other class, leading to serious performance degradation.

Table 2 shows results for a normally loaded case. We modify the base case used above only by changing

the arrival rates. Now the arrival rates are λ1 = λ2 = 0.98n. With this change, we have a fully

symmetric model, so we only show results for class 1. Since the arrival rates are close to the maximum

possible service rates miµi,i = 1.0n, the system should actually be regarded as critically loaded, but

since there is significant abandonment, the system is not too heavily loaded. In Table 2 we only show

the trivial null fluid approximations for the performance measures. In this case, we could obtain more

accurate performance approximations by exploiting the I-model approximations developed by Garnett

et al. (2002). Since E[Z1,2] is quite small in each case, we conclude that our control is effective in

preventing sharing here.

n=25 n=100 n=400

perf. meas. approx. sim. approx. sim. approx. sim.

E[Q1] 0 4.8 0 7.3 0 10.5
±0.3 ±1.0 ±2.6

E[Q1/n] 0 0.19 0 0.07 0 0.03
±0.01 ±0.01 ±0.01

E[D] 0 0.00 0 −0.15 0 0.10
±0.27 ±0.24 ±0.49

E[Z1,2] 0 1.3 0 1.9 0 1.3
±0.1 ±0.2 ±0.4

E[Z1,2/n] 0 0.052 0 0.019 0 0.003
±0.005 ±0.002 0.001

Table 2: A comparison of the trivial I-model fluid approximation with simulation results for the steady-
state performance measures in the case of balanced normal loading. The arrival rates are now λ1 =
λ2 = 0.98n.

Table 3 shows results for a balanced overloaded case. Again, we modify the base case used above

only by changing the arrival rates. Now the arrival rates are λ1 = λ2 = 1.2n. We again have a fully
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symmetric model, so we only show results for class 1. The fluid approximation for class 1 is

Qalone
i =

λi −miµi,i

θi
=

1.2n− n

0.2
= n.

Since E[Z1,2] is quite small in each case, we conclude that our control is again effective in preventing

sharing.

n=25 n=100 n=400

perf. meas. approx. sim. approx. sim. approx. sim.

E[Q1] 25 26.7 100 103.9 400 407.7
±0.5 ±1.9 ±7.1

E[Q1/n] 1 1.07 1 1.04 1 1.02
±0.02 ±0.02 ±0.02

E[D] 0 0.0 0 0.8 0 0.4
±0.4 ±0.7 ±3.2

E[Z1,2] 0 1.7 0 3.0 0 4.2
±0.0 ±0.2 ±1.7

E[Z1,2/n] 0 0.07 0 0.03 0 0.01
±0.00 ±0.00 ±0.00

Table 3: A comparison of the I-model fluid approximation with simulation results for the steady-state
performance measures in the case of balanced overloads. The arrival rates are now λ1 = λ2 = 1.2n.

6.3. The Spare-Capacity Case

For the spare capacity case, we modify the base case above to make queue-1 overloaded, while pool-2

has enough spare capacity to potentially serve all the extra class-1 customers. As before, we just change

the arrival rates, in this case to λ1 = 1.1n and λ2 = 0.8n.

It is easy to see that pool 2 has spare capacity (in the fluid scale). We can analyze the available capacity

from this deterministic-fluid-approximation perspective as follows: First, we observe that class 1 has

an extra arrival rate of 0.1n, whereas pool 2 has 0.2n “extra” service rate, assuming that 0.8n servers

are enough to take care of all the class-2 arrivals. Since pool-2 agents serve class-1 customers at rate

µ1,2 = 0.8, we initially estimate that we need to have at least 0.125n pool-2 agents working with

class-1 customers. However, upon further analysis, we see that the number of pool-1 agents needed is

actually less than that, because queue 1 will stabilize at κ1,2 = 0.1n, and thus θ1Q1 = 0.02n class-1
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customers will abandon. Hence, only about 0.105n pool-2 agents are needed to serve class 1. In any

case, pool 2 has spare capacity.

We compare the approximation from §3.2 with simulation results in Table 4. The approximations are

given in §3.2. Our initial approximation for Q1 from §3.2 is κ1,2 − 1, but that is not shown in Table 4.

Instead, we only show the BD refinement from §5.2. (The cruder approximation would yield values of

1.5, 9.0 and 39.0 in the first row.) We see that the refined approximation is much better for large n. For

the approximation of Z1,2, we use (3.7).

n=25 n=100 n=400

perf. meas. approx. sim. approx. sim. approx. sim.

E[Q1] 1.1 3.3 5.2 6.4 29.0 30.1
±0.1 ±0.6 ±0.5

E[Q1/n] 0.04 0.13 0.05 0.06 0.07 0.07
±0.00 ±0.01 ±0.00

E[Q2] 0 3.4 0 2.7 0 1.0
±0.05 ±0.5 ±0.2

E[Q2/n] 0 0.14 0 0.027 0 0.003
±0.00 ±0.005 ±0.000

E[Z1,2] 2.6 3.9 10.3 12.2 40.3 43.4
±0.1 ±0.5 ±1.2

E[Z1,2/n] 0.104 0.156 0.103 0.122 0.101 0.108
±0.007 ±0.007 ±0.003

Table 4: A comparison of the approximation for the steady-state performance measures in the spare-
capacity case with simulation results. The arrival rates are now λ1 = 1.1n and λ2 = 0.8n.

7. A Diffusion-Process Refinement in the Fully-Overloaded Case

In the fully-overloaded case, we now go beyond the deterministic fluid approximation in §3.1 and §5.1

to obtain a diffusion-process refinement, which yields a non-degenerate approximation for the steady-

state distribution. The approximating distribution is normal, where the means are the previous fluid

approximations themselves. In addition to this important characterization, we provide formulas for the

approximating variances or, equivalently, the standard deviations.
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Leveraging Known Results. We base our approximation on a special case for which we can do the

asymptotic analysis exactly, and extend the approximation heuristically to other cases. The special case

we can analyze exactly has θ1 = θ2 and µ1,2 = µ2,2 (with class 1 overloaded as usual). Under those

additional assumptions, the total queue length QΣ(t) ≡ Q1(t) + Q2(t) behaves the same as the queue

length in the M/M/m + M model in the ED regime, as analyzed in Whitt (2004). Since the system is

fully overloaded, we can assume that all the agents are busy all the time. Thus, the departure rate is the

constant value m1µ1,1 +m2µ2,2. The assumption that µ1,2 = µ2,2 implies that it does not matter which

class the type-2 agents are serving. Since the total arrival process is a superposition of two independent

Poisson processes, the total arrival process is directly a Poisson process with rate λ1 + λ2. Finally,

since θ1 = θ2, there is a common abandonment rate for both classes.

So in this special case we can directly obtain a FCLT like (2.8) for the total queue-length stochastic

process, using scaling as in (2.7). From Whitt (2004), we see that the appropriately scaled version of

the difference between the total queue length and its fluid approximation can be approximated by an

Ornstein-Uhlenbeck (OU) diffusion process with infinitesimal mean m(x) = −θ1x and infinitesimal

variance σ2 ≡ σ2(x) = 2(λ1 + λ2). It is well known that this OU process has a normal steady-state

distribution with mean zero and variance

V ar(QΣ) ≈ (λ1 + λ2)
θ1

. (7.1)

At this point, we invoke the SSC to get associated limits and approximations for the individual queue

lengths. (We are applying SSC without proof here.) We start from the approximation for (Q1, Q2) in

(5.2). Thus we invoke the SSC to get

Q1 ≈ r(QΣ + E[D])
1 + r

and Q2 ≈ QΣ − E[D]
1 + r

(7.2)

for the steady-state variables. That gives a joint normal distribution for (Q1, Q2) with correlation 1 and

individual variances

V ar(Q1) ≈ r2(λ1 + λ2)
(1 + r)2θ1

and V ar(Q2) ≈ (λ1 + λ2)
(1 + r)2θ1

. (7.3)
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A Heuristic Extension. Now we heuristically extend this same tractable OU approximation with a

normal steady-state distribution to more general cases. First, when µ1,2 6= µ2,2, we again act as if all

agents are busy all the time. The total service rate at time t is then m1µ1,1 + Z1,2(t)µ1,2 + (m2 −

Z1,2(t))µ2,2. To obtain the desired constant rate, we act as if Z1,2(t) is constant, assuming its deter-

mined deterministic steady-state fluid approximation. This is a heuristic approximation, because we are

ignoring the stochastic fluctuations in Z1,2. Experiments show that this simple approximation works

pretty well, but in the Appendix we show that, as n → ∞ in the ED regime, the infinitesimal mean

of the scaled queue-length process does in fact depend on the stochastic behavior of the scaled version

of the stochastic process Z1,2 (as we would expect); i.e., this heuristic extension is not asymptotically

correct as n →∞.

We also treat the abandonments in a similar way when θ1 6= θ2. We will approximate by a constant

abandonment rate applying to all customers. For this step we also will invoke SSC (ignoring the

difference), and assume that Q1(t) ≈ rQΣ(t)/(1 + r) (and similarly for Q2), just as in (1.2). Thus our

approximating constant abandonment rate to apply to the total queue length is

θ ≈ rθ1

1 + r
+

θ2

1 + r
. (7.4)

With the new approximating total service rate and average abandonment rate, we again are in the

domain of an OU approximation, with normal steady-state distribution. Paralleling (7.1), we obtain a

new approximate variance for the total queue length,

V ar(QΣ) ≈ (1 + r)(λ1 + λ2)
(rθ1 + θ2)

. (7.5)

Then SSC again gives a joint normal distribution for (Q1, Q2) with correlation 1. The individual

variances are approximated by

V ar(Q1) ≈ r2(λ1 + λ2)
(1 + r)(rθ1 + θ2)

and V ar(Q2) ≈ (λ1 + λ2)
(1 + r)(rθ1 + θ2)

. (7.6)
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8. Simulation Experiments to Evaluate the Approximate Distributions

8.1. The Unbalanced-Overload Case

We now compare the approximating steady-state distributions to simulation results. We again consider

the base case in Table 1 with λ1 = 1.3n and λ2 = 0.9n. The results are given in Table 5.

We give the standard-deviations of the total queue length QΣ = Q1 +Q2 as well as the two queues. As

before, we treat both the actual values and the scaled values, but now we are scaling in diffusion scale

(dividing by
√

n after subtracting the order-O(n) mean), as in (2.7), so that we will be substantiating

the stochastic-process limit in (2.8). To further substantiate both the stochastic-process limit and the

normal approximations, we also give the quantiles of the scaled queue lengths Q̂1 and Q̂2. To save

space, we omit the confidence intervals for the scaled standard deviations; these can be computed from

the confidence intervals of the actual queues by dividing the half widths by
√

n.

We also give the quantiles for the centered steady-state queue difference D̃ ≡ D − E[D]. (Table 1

already showed that the approximation for the mean E[D] is accurate for n ≥ 100.) The approximate

distribution of D is obtained from the BD process in §4.1. The quantiles of the distribution of D̃ pose a

problem, since D is integer-valued. We thus calculate a linear interpolation of two values. For example,

for the 0.05 quantile, we took the largest value d0 such that P (D̃ ≤ d0) < 0.05 and linearly interpolate

this value with the smallest value d1 such that P (D̃ ≤ d1) > 0.05. The linear interpolation becomes

just the weighted average of the two values d0 and d1. As in Table 1, D̃ is not scaled by any division.

To further illustrate how the approximations perform, we show two figures based on a simulation run

with n = 100 (the second case in Table 5). To show that SSC actually occurs with FQR-T, we show a

plot of a segment of the queue-length sample paths in Figure 2. We have centered about the means, so

that the average difference should be zero. To justify the normal approximation, we show a histogram

of the class-1 queue-length distribution in Figure 3.

8.2. The Balanced-Overload Case

In the balanced-overload case, we compare the simulation results to approximations based on the as-

sumption that the two queues operate independently, as we did in §6.2. The approximations are cal-
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n=25 n=100 n=400

perf. meas. Approx. Sim. Approx. Sim. Approx. Sim.

std(QΣ) 16.6 16.0 33.2 33.7 66.3 67.6
±0.3 ±1.4 ±2.9

std(Q̂Σ) 3.32 3.21 3.32 3.37 3.32 3.38

std(Q1) 8.3 8.8 16.6 17.2 33.2 33.9
±0.1 ±0.7 ±1.4

std(Q̂1) 1.66 1.75 1.66 1.72 1.66 1.7

std(Q2) 8.3 8.6 16.6 17.1 33.2 33.9
±0.1 ±0.7 ±1.5

std(Q̂2) 1.66 1.73 1.66 1.71 1.66 1.69

0.05 −2.72 −2.75 −2.72 −2.84 −2.72 −2.72
±0.06 ±0.11 ±0.19

0.25 −1.12 −1.27 −1.12 −1.14 −1.12 −1.18
Q̂1 ±0.08 ±0.03 ±0.08
quantiles 0.75 1.12 1.13 1.12 1.14 1.12 1.11

±0.08 ±0.08 ±0.08
0.95 2.72 2.97 2.72 2.82 2.72 2.92

±0.11 ±0.20 ±0.16

0.05 −2.72 −2.94 −2.72 −2.82 −2.72 −2.68
±0.14 ±0.15 ±0.21

0.25 −1.12 −1.18 −1.12 −1.14 −1.12 −1.17
Q̂2 ±0.08 ±0.04 ±0.06
quantiles 0.75 1.12 1.18 1.12 1.14 1.12 1.11

±0.07 ±0.09 ±0.08
0.95 2.72 2.90 2.72 2.80 2.72 2.91

±0.10 ±0.20 ±0.15

0.05 −17.4 −13.4 −18.4 −16.6 −19.5 −18.2
±0.7 ±0.6 ±0.6

0.25 −7.4 −6.0 −8.4 −7.6 −8.5 −8.0
centered D ±0.0 ±0.6 ±0.0
quantiles 0.75 −1.4 −0.8 −1.4 −1.0 −1.4 −1.0

±0.6 ±0.1 ±0.0
0.95 0.5 5.0 0.5 1.0 0.5 1.0

±1.8 ±0.1 ±0.0

Table 5: A comparison of the approximating distributions of steady-state performance measures in the
unbalanced-overload case with simulation results for the base case with λ1 = 1.3n and λ2 = 0.9n.
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Figure 2: State-space collapse for n = 100.

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Figure 3: Histogram of Q1 for n = 100.

culated using Whitt(2004). We simulated the same systems as before, again changing only the arrival

rates to λ1 = λ2 = 1.2n. The results are shown in Table 6.

Table 3 already showed that the two queues are not completely independent, because some agents are

serving customers from the other class. Thus there is some dependency between the queues. This

causes the queues to be somewhat larger than if the two service pools were operating independently,

because serving the other class is done somewhat inefficiently. However, the sharing is not altogether

bad: although there is some increase in the queues sizes (as shown in table 3), we also gain by de-

creasing the variance of the queues. From the efficiency point of view, we see a tradeoff between the

economies of scale provided by the sharing and the inefficiency caused by the slower service rates when

sharing.

For this reason, the simulations do not match approximations precisely, but the differences are not

large. Indeed, to show the differences more clearly, for the case n = 100 we added another column of

simulation results for an M/M/100 + M system having a Poisson arrival process with rate λ = 120.

(The simulations for the M/M/100 + M model were performed with the X model simulator, taking

κi,j = 400, thus assuring the difference between the two queues will not go above the thresholds.)

Table 6 shows that the simulation results for this case are much closer to the approximations. To

further illustrate the difference (and the resemblance), we show histograms of the distribution of Q1 in

the two cases in Figures 4 and 5. It is easy to see that the queues in both systems have a distribution
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that is very close to a normal distribution, and that the variance of the queue in the X model is smaller

than the variance of the queue in the M/M/100 + M system.

n=25 n=100 n=400

perf. meas. Approx. Sim. Approx. Sim. Sim. Approx. Sim.
X model Ind.

std(QΣ) 17.3 17.3 34.6 33.2 34.7 69.3 63.9
±0.5 ±2.6 ±0.7 ±3.9

std(Q̂Σ) 3.46 3.46 3.46 3.32 3.47 3.46 3.20

std(Q1) 12.2 10.37 24.5 20.4 24.7 49.0 38.1
±0.2 ±1.3 ±0.64 ±1.7

std(Q̂1) 2.45 2.07 2.45 2.04 2.47 2.45 1.91

0.05 −4.03 −3.38 −4.03 −3.35 −4.07 −4.03 −3.17
±0.07 ±0.26 ±0.13 ±0.26

0.25 −1.65 −1.38 −1.65 −1.37 −1.73 −1.65 −1.24
Q̂1 ±0.07 ±0.11 ±0.09 ±0.09
quantiles 0.75 1.65 1.30 1.65 1.35 1.69 1.65 1.30

±0.07 ±0.07 ±0.10 ±0.12
0.95 4.03 3.50 4.03 3.45 4.14 4.03 3.07

±0.07 ±0.20 0.09 ±0.05

Table 6: A comparison of approximations for the standard deviations and quantiles of the steady-state
queue lengths with simulation estimates in the balanced-overload case with λ1 = λ2 = 1.2n.
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Figure 4: A histogram for Q1 in the balanced-
overload case with n = 100, λi = 1.2n and
κ1,2 = 10.
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Figure 5: A histogram for the queue length in
an M/M/100 + M model.
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9. Conclusions

In this paper we proposed the FQR-T routing policy for the X model to activate sharing in response

to unbalanced overloads. The FQR-T control is appealing for several reasons: (1) it is simple and

easy to understand, (2) it is robust, not assuming specified arrival rates, (3) it requires only minimal

state information and processing, so that it is inexpensive to implement, and (4) its performance can be

analyzed.

We also demonstrated that the performance of the FQR-T control can be analyzed. For that purpose, we

developed tractable approximations, exploiting the fact that the overloading puts the system in the ED

many-server heavy-traffic limiting regime. Even though the approximations have a complicated basis,

supported by stochastic-process limits not established here, the approximations are relatively simple

and easy to apply.

From the theoretical point of view, the main contribution of this paper is the reduction of a complicated

mathematical model to more elementary and elegant approximate models, using the heavy-traffic av-

eraging principle in the development of the deterministic fluid approximation (the system of ODE’s

in §4.1) and state space collapse (SSC) in the diffusion approximations (and resulting approximate

normal distribution in §7). The relatively simple initial fluid approximation in §3 was refined in useful

ways in §5 and §7. The approximations reveal how the FQR-T performs and provides a means for

selecting the parameters in order to achieve performance objectives. We also conducted simulations to

show that both the FQR-T routing policy and the performance approximations perform as intended.

The whole discussion was limited to the two-class-two-pool X-model setting, but we believe that the

control and the results can be generalized to larger networks. Work is in progress to establish additional

results: First, we intend to show that the deterministic fluid approximation is asymptotically correct in

the many-server heavy-traffic ED regime, which involves justifying the heavy-traffic averaging princi-

ple in this context. Work is also in progress to extend the performance approximations to the X model

with non-exponential distributions, paralleling the previous results in Whitt (2006) for the single-class

single-pool I model.
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Appendix

This appendix contains additional material complementing the main paper. In §A we show that FQR

without thresholds or one-way sharing can produce poor performance for systems that are normally

loaded without sharing. In §B we show the advantage of having additional lower thresholds in order

to activate sharing in the other direction more quickly, so as to be more adaptive. In §C we present

additional simulation results, considering asymmetric models and more challenging boundary cases in

order to understand the limitations of the approximations.

A. Bad Behavior Without Thresholds

We have two objectives in this section. First, we want to demonstrate the need for the thresholds and

the one-way sharing, which are the key ingredients of the FQR-T routing policy. To do so, we show

that basic FQR, as in Gurvich and Whitt (2007), can perform poorly under normal loads, because it

can activate sharing that makes the system overloaded. When customers do not abandon, the system

becomes unstable and explodes because of the inefficient sharing. When customers do abandon, the

queue lengths stabilize at undesirably high levels. These bad properties are consistent with the positive

results in Gurvich and Whitt (2007), because the X model with service rates µi,j depending upon both

i and j is explicitly prohibited by the conditions in the theorems of Gurvich and Whitt (2007).

In addition to demonstrating that standard FQR can perform very poorly, we also develop new approxi-

mations, like those in the main paper, to describe the performance in this case. We will show that these

new approximations accurately predict the extreme performance degradation.

We will focus on the case of a symmetric model with r = 1. Then FQR reduces to the policy of serving

the longer queue (SLQ). It also reduces to our FQR-T control with thresholds set at κ1,2 = κ2,1 = 1 for

all n, without imposing the constraint of one-way sharing. Throughout this section we will refer to this

policy as the SLQ policy, which is a special case of the serve-the-longest-queue (SLQ) policy when

there are more than two queues. For the SLQ policy, it is important to specify how ties are broken,

because the control tends to make ties occur quite frequently. Here we are assuming that a server will

always serve a customer from his own class if the queue lengths are equal.
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The reason that we have to develop new approximations is that now the queue-difference stochastic

process D(t) in (1.1) can visit all three possible regions, which here are (−∞, 1], {0} and [1,∞).

Also, there can now be two-way sharing, so the potential inefficiency can be reached quite easily.

Hence we need to develop new fluid equations. We will exploit the symmetry in order to simplify the

analysis. We have also developed a more complicated system of equations describing the performance

of the asymmetric model when two-way sharing is allowed. The way to do that will be evident from

the analysis below.

There are two cases: with and without customer abandonment. We first consider the case of no cus-

tomer abandonment, and then afterwards the case of customer abandonment. For both, we will give

results for a symmetric X model with parameters:

mi = n, λi = 0.99n, µ ≡ µi,i = 1, and ν ≡ µ1,2 = µ2,1 = 0.8, (1.1)

where inefficiency can occur because ν < µ (serving the other class is less efficient). With these

parameters, if each service pool served only its own class, then the system would be stable, even

without abandonments.

No Customer Abandonment. We now show how to analyze such a symmetric X model with the

SLQ routing policy. To do so, we will work in the fluid scaling, dividing by n. For that purpose, let

z(t) ≡ Zi,i(t)/n, be the proportion of agents serving their own class in each of the pools, and let

q(t) ≡ Qi(t)/n. Since we consider the systems normalized by n, we take λ ≡ λi/n, so that in our

example above λ = 0.99. Because of the symmetry, we omit the class subscripts. To preserve the

symmetry, we assume that the initial conditions are symmetric as well.

We now develop ODE’s describing the evolution of z(t) and q(t). The reasoning is somewhat more

complicated than before, because now the queue-difference stochastic process D(t) should visit all

three regions (−∞,−κ2,1], (−κ2,1, κ1,2) and [κ1,2,∞), where κ1,2 = κ2,1 = 1. We will obtain

significant simplification by exploiting the symmetry.

We first find the time-dependent proportion of time that the two queues are equal. Let π(t) be that
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proportion, i.e.,

π(t) = P (Dt(∞) = 0), t ≥ 0. (1.2)

(See §4.1 for more details.) By symmetry, the amount of time queue 1 is bigger than queue 2 is equal to

the amount of time queue 1 is smaller than queue 2. Hence, (1− π(t))/2 is the amount of time queue

1 is bigger than queue 2.

We first write down the ODE for z. It is easy to see that

ż(t) = π(t)(1− z(t))ν +
1− π(t)

2
[ν − z(t)(µ + ν)] . (1.3)

In equilibrium, ż(∞) = 0, so that we get

z ≡ z(∞) =
ν(1 + π)

2νπ + (1− π)(µ + ν)
, (1.4)

where π ≡ π(∞). In our numerical example with µ = 1 and ν = 0.8, equation (1.4) becomes

z =
4 + 4π

9− π
. (1.5)

To find the value of z above, we need to solve for π. We will find an expression for π by approximating

the absolute difference process between the queues: {|D(t)| : t ≥ 0} by a BD process. For all states

j ≥ 1, the birth rate is λ̂j = λ, corresponding to an arrival at the larger queue, while the death rate is

µ̂j = λ + 2[zµ + (1− z)ν], corresponding to an arrival to the shorter queue, or any service completion

(since the newly available agent will take a customer from the larger queue). There is a different birth

rate when the two queues are equal. The birth rate (to make either of the queues longer) when the

difference is zero is λ̂0 = 2λ + 2[zµ + (1 − z)ν], where 2λ corresponds to an arrival to either of the

queues, while 2[zµ + (1− z)ν] corresponds to any service completion. Solving for the steady-state of

this BD process, we get

π =
1− ρ

1− ρ + λ̂0
µ̂

, (1.6)

where

ρ ≡ λ̂j

µ̂j
=

λ

λ + 2[zµ + (1− z)ν]
, j 6= 0. (1.7)
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Hence we get

π =
zµ + (1− z)ν

λ + 2zµ + 2(1− z)ν
. (1.8)

Solving the two equations (1.5) and (1.8) for π and z with the rates of our numerical example, we get

z = 0.61 (Zi,i = 61) and π = 0.32.

Using the values of z just determined, we can now find the deterministic fluid approximation for the

evolution of the queues, after z achieves its steady-state, and is fixed. In the fluid approximation work

flows to and out of the system in constant rate, hence the rate of change in the queue length is the arrival

rate minus the departure rate, yielding:

q̇(t) = λ− zµ− (1− z)ν,

so that

q(t) = q(0) + [λ− ν − (µ− ν)z]t, t ≥ 0.

Plugging the rates from our numerical example, we get

q(t) = q(0) + 0.068t, or

Q(t) = Q(0) + 6.8t, t ≥ 0. (1.9)

Figures 6 and 7 show the sample paths of Q1(t) and Z2,1(t), starting empty, in one simulation run. After

an initial transient period, the number of agents serving the other class fluctuates around 40%, while

the queue grows in an approximately linear rate. In Figure 7 we plot the number in queue together

with the approximating line in (1.9). The queue-length sample path and the straight line are almost

indistinguishable.

Table 7 has a comparison of the approximations described above with simulation results. As before, we

ran five simulations with five different random seeds. We give the averages of this five simulation runs,

together with the half width confidence intervals calculated using a t random variable with 4 degrees of

freedom. Since the system we are considering is completely symmetric, we only show the results for

Q1 and Z1,1; the results for Q2 and Z2,2 are identical.
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E[Q1] slope E[Z1,1] π

Approx. 6.8 61.0 0.32

Sim. 6.8 61.2 0.33
results ±0.4 ±0.6 ±0.00

Table 7: A comparison of approximations for the system performance with SLQ routing to simulation
results when there is no customer abandonment.
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Figure 6: Sample path of Z2,1(t) with SLQ,
but no abandonments.
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Figure 7: Sample path of Q1(t) with SLQ, but
no abandonments.
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Figure 8: Sample path of Z2,1(t) with SLQ,
with abandonments.
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Figure 9: Sample path of Q1(t) with SLQ,
with abandonments.

System With Abandonments. We now consider the case of customer abandonments. When we

consider the symmetric model with abandonments, we have a new ODE for the queue length:

q̇(t) = λ− z(t)µ− (1− z(t))ν − q(t)θ,
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Figure 10: Sample path of Z2,1(t) with FQR-
T, with abandonments.
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Figure 11: Sample path of Q1(t) with FQR-T,
with abandonments.

where θ ≡ θi, i = 1, 2 is the abandonment rate for both classes, which we take to be 0.2 in our example.

In steady-state, we have q̇(t) = 0, and thus, for q ≡ q(∞),

q =
λ− zµ− (1− z)ν

θ
. (1.10)

An initial approximation for q can use the same value of z we obtained before without abandonments.

If we use that same z in (1.5), then we get q = 0.34, which turns out to be quite accurate. However,

proceeding more carefully, we can incorporate the abandonment and investigate how it changes the

value of z. We see that it does so through the way it changes the value of π. To do the analysis, we

need to consider once again the birth and death rates of the process |D(∞)|: Let λ̂j be the birth rate,

and µ̂j be the death rate when the difference between the two queues is j. We then have

λ̂0 = 2λ + 2[zµ + (1− z)ν] + 2qθ,

corresponding to an arrival to either of the queues, service completion from either of the service pools

or an abandonment from either of the queues. For j > 0, we have birth rates

λ̂j = λ + qθ,

corresponding to an arrival to the longer queue, or an abandonment from the shorter queue, while the

death rates are

µ̂j = λ + 2[zµ + (1− z)ν] + qθ,
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corresponding to an arrival to the shorter queue, service completion from either of the service pools, or

an abandonment from the longer queue.

Solving the balance equations of the BD process gives us an expression for π in terms of z and q. Once

again we get

π =
1− ρ

1− ρ + λ̂0
µ̂

,

but where ρ is redefined as

ρ ≡ λ + qθ

λ + 2[zµ + (1− z)ν] + qθ
.

Hence

π =
zµ + (1− z)ν

λ + 2zµ + 2(1− z)ν + qθ
.

From equation (1.10), we get qθ = λ− zµ− (1− z)ν, thus

π =
zµ + (1− z)ν

2λ + zµ + (1− z)ν
. (1.11)

Solving the two equations (1.4) and (1.11) in the two unknowns π and z, we get z = 0.607 and

π = 0.318 in our numerical example. Plugging that value of z in equation (1.10), we get q = 0.343, or

Qi = 34.3 and Zi,i = 60.7. On average, 39.3 agents are serving customers from the other class, hence

the total service rate of each class reduces from 100µ = 100 to 60.7µ + 39.3ν = 92.14, which is less

than the arrival rate λi = 99. That explains why the system becomes congested.

In Table 8 we compare these new approximations to simulations. As before, we ran five independent

simulations, and use the t distribution with 4 degrees of freedom to construct the confidence intervals.

E[Q1] E[Z1,1] π

Approx. 34.3 60.7 0.32

Sim. 34.3 61.0 0.34
results ±0.8 ±0.0 ±0.01

Table 8: A comparison of approximations for the system performance with SLQ routing to simulation
results when there are customer abandonments.

Figures 8 and 9 show the sample paths of Q1(t) and Z2,1(t) taken from one simulation run. For contrast,

in Figures 10 and 11 we also show the sample paths of Q1(t) and Z2,1(t) in the same system, but with

39



the FQR-T control using κi,j = 10. With FQR-T, we get E[Z1,2] = 2.0 and E[Q1] = 9.4, so that the

average service rate for class i is now 98µ+2ν = 99.6, which is larger than the arrival rate λ1. Hence,

with FQR-T the system remains normally loaded, even though there is some sharing.

SLQ with One-Way Sharing We have seen that performance degrades seriously if we drastically

reduce the thresholds and eliminate the one-way sharing. It is natural to wonder what happens if we

only reduce the thresholds, keeping one-way sharing. We find that the performance is not nearly as bad

when we impose one-way sharing, but it still degrades significantly. We now illustrate that.

For the example above, we see that the total arrival rate is λ = λ1 + λ2 = 198, while the total rate out

is 200 without sharing, but with sharing the total rate out is 200− 0.02(Z1,2(t)+Z2,1(t)). We thus see

that the total rate in actually exceeds the total rate out whenever Z1,2(t) + Z2,1(t) > 10. The traffic

intensity varies from 0.99 with no sharing at all to 198/180 = 1.10 with full sharing. We have yet to

mathematically analyze the performance in this case, so we rely on simulation.

Figure 12 shows the class-1 queue-length process without abandonments over a long time interval, in

particular, for t = 25, 000, which corresponds to 5 × 106 arrivals to both queues. Without abandon-

ments, it is unclear whether the system is stable or not, but there is clearly significant congestion. We

estimate that Z1,2 = Z2,1 ≈ 3.6, indicating that the system is close to the critical boundary case. In

Figure 13 we show both Zi,j processes, during a short time interval, to make it easy to observe the way

the two processes oscillate.

We are also interested in the way the system behaves if we incorporate abandonments. For this purpose

we add an exponential patience distribution with rate θi = 0.2, for every customer from both classes.

Figure 14 shows a sample path of Q1(t), and figure 15 shows a sample path of Z2,1(t). The figures

suggest that one-way sharing is not much worse than FQR-T, at least when n = 100. Yet, for larger

systems, as the thresholds κi,j become larger, there will be less sharing in the balanced loading, and

the advantages of the FQR-T control will become more apparent. Simulation results for this case are

shown in table 9. The amount of sharing and the mean queue length are only slightly larger than the
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1 with SLQ modified by one-way sharing
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Figure 13: A plot of the Zi,j(t) processes in
a short time scale with SLQ modified by one-
way sharing when there are no abandonments.

estimates for FQR-T given above.
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Figure 14: The queue-length process at queue
1 with SLQ modified by one-way sharing
when there are abandonments.
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Figure 15: The Z2,1(t) process with SLQ
modified by one-way sharing when there are
abandonments.

E[Q1] E[Z2,1]

Average 11.0 2.8

conf. int. ±0.8 ±0.2

Table 9: Simulation results for the SLQ using one way sharing, when there are customers abandonments
with rate θ = 0.2.
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B. The Advantage of Lower Thresholds

It turns out that the one-way sharing restriction can cause problems in very large systems, making it

take too long to shift from sharing in one direction to share in the opposite direction when that becomes

desirable. To avoid that difficulty, we can also include lower thresholds τ1,2 and τ2,1: An available type-

2 agent is allowed to serve a class-1 customer only if the proportion of type-1 agents serving class-2

customers is below τ2,1 (and of course D(t) ≥ κ1,2). And similarly in the other direction. It suffices

for these lower thresholds to be quite small, e.g., about 1% of the number of servers.

Suppose the system is initialized with n servers from service-pool 1 serving class-2 customers, but

class-1 is more overloaded than class-2. (This can happen if the arrival rates change suddenly.) In that

circumstance, queue 1 may grow well above queue 2, but we have to wait until there are no longer

class-2 customers in pool-1 before sharing can be activated. The mean time to wait until pool-1 has no

more class-2 customers is

n∑

j=1

1
j · µ2,1

≈ log (n)
µ2,1

→∞ as n →∞. (2.1)

To activate sharing more quickly, we can modify the FQR-T control to include lower thresholds, as

specified above. The importance of the lower thresholds can be seen in Figures 16 and 17. These

figures show simulation results of an extreme example, to illustrate the value of the lower thresholds in

large systems. The parameters for this simulation are

m1 = m2 = 1000, λ1 = 1200, λ2 = 990, µ1,1 = µ2,2 = 1, µ1,2 = µ2,1 = 0.5,

κ1,2 = κ2,1 = 100, and r = 1.

With these parameters, queue 1 is overloaded, while queue 2 is underloaded. To respond to that unbal-

anced overload, we should have Z1,2 > 0 and Z2,1 = 0. However, we initialize the system with sharing

in the opposite way. Indeed, we consider an extreme example in which all of service pool 1 is initially

busy with customer from class-2, and none of the type-2 agents are busy serving class-1 customers. We

are interested in the time it takes the stochastic process Z2,1(t) to reach 0, so that the desired sharing

can begin. With lower thresholds of only τ1,2 = τ2,1 = 0.01, that time is reduced from about 21 mean
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service times to about 9 service times. Thus, clearing the last 1% without lower thresholds takes more

than half the time.

From Figures 16 and 17, it is also easy to see what happens in less extreme cases, such as we have

been considering in the main paper. For example, consider the base case discussed in §6 with results in

Table 1. In that case with λ1 = 1.3n and λ2 = 0.9n, we have Z1,2 ≈ 0.2n. Hence, it is reasonable to

assume that overload in one direction might lead to about 20% of the agents in pool 2 serving class-1

customers.

From that perspective, we might consider starting with only 20% sharing in the wrong direction. From

Figures 16 and 17, we see that, without a lower threshold, the time to activate sharing in the right

direction is about 21− 4 = 17. In contrast, with lower thresholds, it is about 9− 4 = 5. When we start

with a lower percentage of agents sharing the wrong way, the difference becomes even more dramatic,

because we eliminate a common initial period (here of length 4).
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Figure 16: Sample paths of Z1,2(t) and Z2,1(t) initialized incorrectly, without lower thresholds.
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Figure 17: Sample paths of Z1,2(t) and Z2,1(t) initialized incorrectly, with lower thresholds τ1,2 =
τ2,1 = 0.01.
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C. More Comparisons with Simulations

In this section we present additional simulation results in order to give a better picture of the way that

the FQR-T routing policy performs.

C.1. Different Primary Service Rates

In the main paper we assumed that the primary service rates for the two classes are identical, i.e., that

µ1,1 = µ2,2. Here we perform simulations to show what happens when they are not equal. In particular,

here we assume that

µ1,1 = 1 < 2 = µ2,2. (3.1)

There are different cases, depending on what we assume for the service rates for serving the other

class. Indeed, there are two main cases: we can assume that service-pool 2 is uniformly faster or

we can assume that class-1 tasks are uniformly harder (take longer). That is, the differences can be

determined primarily by the agents or primarily by the customers. We consider those two cases in turn.

In all cases, we consider variants of the same base case with n = 100. In particular, we have

m1 = m2 = 100, θ1 = θ2 = 0.2 and κ1,2 = κ2,1 = 10. (3.2)

We choose the service rates µi,j to represent different cases, and we choose the arrival rates λi to

make one class overloaded and the other class underloaded, just as in the main case with unbalanced

overloads.

C.1.1. One Service Pool Is Uniformly Faster

In some cases, one service pool might be faster than the other since it may consist of better trained

agents. To represent this first case, we let

µ1,2 = 1.6 and µ2,1 = 0.8 (3.3)

There are now two further subcases, depending on which class is overloaded. In the first subcase, class

1 is overloaded, while pool-2 is normally loaded. In particular, we let λ1 = 130 and λ2 = 190. Note

that since µ2,2 = 2, service pool 2 is indeed underloaded with this arrival rate. In the second subcase
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we let class 2 be the overloaded one. To achieve that, we let λ1 = 90 and λ2 = 230. The results are

shown in Table 10.

fluid Q1 overloaded Q2 overloaded

perf. meas. 2 equ. 3 equ. sim. 2 equ. 3 equ. sim.

E[Q1] 65.6 61.7 64.2 55.6 59.8 59.2
±2.3 ±2.2

E[Q2] 55.6 60.4 59.9 65.6 62.2 62.3
±2.7 ±2.2

E[Z1,2] 10.6 11.0 11.1 21.1 21.9 21.8
±0.2 ±0.5

distribution Q1 overloaded Q2 overloaded

perf. meas. approx. sim. approx. sim.

std(QΣ) 40.0 38.8 40.0 39.4
±2.8 ±3.3

std(Q1) 20.0 20.5 20.0 19.7
±1.7 ±1.7

std(Q2) 20.0 20.8 20.0 20.7
±1.5 ±1.6

Table 10: A comparison of the fluid approximations for the steady-state performance measures with
simulation results when pool-2 agents are uniformly faster. In both cases µ1,1 = 1, µ2,2 = 2, µ1,2 =
1.6, µ2,1 = 0.8, θi = 0.2 and κi,j = 10. On the LHS Q1 is overloaded: λ1 = 130, λ2 = 190. On the
RHS Q2 is overloaded: λ1 = 90, λ2 = 230.

C.1.2. Service of One Class Takes Uniformly Longer

We now consider a system in which class-1 customers are harder to handle; they require more service

time on average. In this case we let

µ1,2 = 0.8 and µ2,1 = 1.6 (3.4)

Again there are two further subcases, depending on which class is overloaded. In the first subcase, class

1 is overloaded, while pool-2 is normally loaded: λ1 = 130 and λ2 = 190. In the second subcase, class

2 is overloaded, while class 1 and pool-1 are normally loaded: λ1 = 90 and λ2 = 230. The results are

shown in table 11 below.

An important observation is that sharing in the first case, when Q1 is overloaded, is actually worse than
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not sharing at all from the perspective of total queue length. Without sharing, Q1 ≈ 150 and Q2 ≈ 0,

thus the proportion of customers lost due to abandonments is approximately θ1Q1 = 0.2 · 150 = 30.

In contrast, with sharing, both queues are bigger than 90, thus the proportion of customers lost is larger

than 0.2 · 180 = 36. Moreover, the total queue length is larger.

Another observation is that the variances when Q1 is overloaded are higher than the approximation,

whereas the variances in the other case are smaller. These two features tend to make sharing in the first

case undesirable. In cases like this we might want to have different thresholds, to make sure we share

quickly when Q2 is overloaded, and possibly not share at all when Q1 is overloaded.

fluid Q1 overloaded Q2 overloaded

perf. meas. 2 equ. 3 equ. sim. 2 equ. 3 equ. sim.

E[Q1] 95.7 91.2 93.6 23.1 25.6 26.6
±1.6 ±1.4

E[Q2] 85.7 95.2 94.3 33.1 29.1 32.3
±0.7 ±1.2

E[Z1,2] 13.6 14.5 14.4 14.6 15.1 15.0
±0.2 ±0.4

distribution Q1 overloaded Q2 overloaded

perf. meas. approx. sim. approx. sim.

std(QΣ) 40.0 41.1 40.0 33.3
±1.0 ±1.4

std(Q1) 20.0 20.6 20.0 16.5
±0.3 ±0.7

std(Q2) 20.0 21.8 20.0 18.4
±0.5 ±0.7

Table 11: A comparison of the fluid approximations for the steady-state performance measures with
simulation results when class-1 customers take longer to serve. In both cases µ1,1 = 1, µ2,2 = 2,
µ1,2 = 0.8, µ2,1 = 1.6, θi = 0.2 and κi,j = 10. On the LHS Q1 is overloaded: λ1 = 130, λ2 = 190.
On the RHS Q2 is overloaded: λ1 = 90, λ2 = 230.

C.2. Extreme Differences Between The Two Classes

The remaining simulation experiments are designed to test the limits of the FQR-T control. First, we

see how well our approximations perform when the classes are very different. To illustrate, here we let
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the abandonment rates for the two classes be very different. In particular, now we assume that θ1 À θ2.

(Recall that our diffusion approximations in §7 exploited equal abandonment rates in order to justify an

exact analysis.) In the numerical example in §8 we saw that in the overloaded case, when µi,j 6= µi,i,

our normal approximations for the steady-state distributions were quite a good approximation for the

true distributions of the queues.

To see what happens with very different abandonment rates, we modify the base case by letting θ1 = 1.0

and θ2 = 0.1. The numerical example we consider has the following rates:

λ1 = 1.3n, λ2 = 0.9n, µi,i = 1, µi,j = 0.8, θ1 = 1, θ2 = 0.1 and κi,j = 0.1n. (3.5)

In Figures 18 and 19 we show histograms of the distributions of Q1 and Q2, respectively. Two features

appear in the histograms, which did not appear in the previous examples. First, both queues have a mass

at zero. Second, the distribution of Q1 changes at a neighborhood of Q1 = 10, i.e., when Q1 ≈ κ1,2.

This jump in the distribution of Q1 occurs because Q2 has a large mass at zero. At such times, Q1

tends to be in the neighborhood of κ1,2. That is when customers from Q1 are sent to service pool 2.

These two features are not accounted for in our approximations, and thus our approximations in this

case are not as accurate as for previous cases. Nevertheless, as can be seen from the simulation results

in Tables 12 and 13, the approximations work remarkably well. The standard-deviation approximations

are very similar to the simulation results. It is just when we take a closer look at the distributions, and

consider the quantiles, that we see our approximations are not nearly exact, especially for Q2, which

has a large mass at zero, hence has a “less normal” distribution.

We should point out that the degradation in the performance of the approximation here is largely due

to class 1 becoming much less overloaded. Reasoning as for (3.1), we see that without any sharing the

class-1 queue length would be Q1 ≈ 150 when θ1 = 1.0, but only Q1 ≈ 30 when θ1 = 0.1. The

approximation would perform much better if we had taken the “easier case” with the abandonment

rates in (3.5) switched to θ1 = 0.1 and θ2 = 1.0, because then the system would have been even more

overloaded.
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Since D receives only integer values, we take the linear interpolation to approximate its distribution.

See §8 for more details.

n=25 n=100 n=400

perf. meas. 2 equ. 3 equ. sim. 2 equ. 3 equ. sim. 2 equ. 3 equ. sim

E[Q1] 5.3 4.7 6.0 21.1 20.3 20.9 84.4 83.6 83.9
±0.0 ±0.4 ±1.9

E[Q1/n] 0.211 0.19 0.24 0.211 0.203 0.209 0.211 0.209 0.209
±0.0 ±0.004 ±0.004

E[Q2] 2.3 10.5 6.9 11.1 20.9 19.2 44.4 55.0 54.6
±0.1 ±0.4 ±2.0

E[Q2/n] 0.111 0.42 0.27 0.111 0.201 0.192 0.111 0.137 0.136
±0.01 ±0.004 ±0.005

E[D] − −5.9 −0.9 − −0.6 1.7 − 28.7 29.3
±0.1 ±0.3 ±0.3

κ1,2 − E[D] − 15.9 3.9 − 10.6 8.3 − 11.3 10.7
±0.1 ±0.3 ±0.3

E[Z1,2] 2.7 3.5 3.1 11.1 12.1 12.0 44.4 45.5 44.9
±0.0 ±0.4 ±1.0

E[Z1,2/n] 0.111 0.14 0.12 0.111 0.121 0.120 0.111 0.114 0.112
±0.00 ±0.004 ±0.003

Table 12: A comparison of the fluid approximations for the steady-state performance measures with
simulation results with very different abandonment rates. Here, λ1 = 1.3n, λ2 = 0.9n, µ1,1 = µ2,2 =
1, µ1,2 = 0.8, θ1 = 0.1, θ2 = 1 and κ1,2 = 0.1n.
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Figure 18: Histogram for Q1 when θ1 À θ2
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Figure 19: Histogram for Q2 when θ1 À θ2
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n=25 n=100 n=400

perf. meas. Approx. Sim. Approx. Sim. Approx. Sim.

std(QΣ) 10 9.1 20 19.7 40 39.9
±0.1 ±0.7 ±2.2

std(Q̂Σ) 2 1.8 2 1.97 2 2.0

std(Q1) 5 4.9 10 9.9 20 19.8
±0.1 ±0.2 ±1.0

std(Q̂1) 1 1.0 1 0.099 1 1.0

std(Q2) 5 6.2 10 11.6 20 21.5
±0.1 ±0.3 ±1.1

std(Q̂2) 1 1.2 1 0.116 1 1.1

0.05 −1.65 −1.21 −1.65 −1.55 −1.65 −1.62
±0.01 ±0.04 ±0.06

0.25 −0.68 −0.81 −0.68 −0.45 −0.68 −0.43
Q̂1 ±0.01 ±0.79 ±0.07
quantiles 0.75 0.68 0.60 0.68 0.64 0.68 0.66

±0.01 ±0.04 ±0.03
0.95 1.65 1.8 1.65 1.68 1.65 1.66

±0.01 ±0.09 ±0.12

0.05 −1.65 −1.38 −1.65 −1.90 −1.65 −1.41
±0.02 ±0.06 ±0.86

0.25 −0.68 −1.10 −0.68 −0.86 −0.68 −0.75
Q̂2 ±0.11 ±0.04 ±0.06
quantiles 0.75 0.68 0.82 0.68 0.75 0.68 0.70

±0.02 ±0.07 ±0.06
0.95 1.65 2.30 1.65 2.07 1.65 1.80

±0.13 ±0.07 ±0.12

0.05 −28.5 −15.6 −33.5 −25.2 −36.5 −32.6
±0.7 ±0.6 ±1.1

0.25 −13.5 −7.0 −15.5 −12.4 −16.5 −15.4
centered D ±0.0 ±0.7 ±0.7
quantiles 0.75 −2.5 −1.0 −3.5 −2.0 −3.5 −3.0

±0.0 ±0.0 ±0.0
0.95 0.5 6.6 −0.5 1.0 −0.5 0.0

±0.7 ±0.0 ±0.0

Table 13: A comparison of the fluid approximations for the steady-state performance measures with
simulation results with very different abandonment rates. Here, λ1 = 1.3n, λ2 = 0.9n, µ1,1 = µ2,2 =
1, µ1,2 = 0.8, θ1 = 1, θ2 = 0.1 and κ1,2 = 0.1n.
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C.3. Challenging Intermediate Cases

More challenging cases occur when the parameter values put the system on the boundary between

when sharing is desired and not desired. In this section we consider such a boundary case. To do so, we

suppose that Qalone
1 ≈ κ1,2 while Q2 is critically (normally, but heavily) loaded. This scenario can be

regarded as an intermediate case, because we should have sharing if Qalone
1 > κ1,2, while we should not

have sharing if Qalone
1 < κ1,2. We thus should anticipate that neither SSC nor the independent-queue

approximation will be especially accurate.

The specific model we consider has n = 400 with mi = n = 400 servers in each service pool, and the

following parameters:

λ1 = 441, λ2 = 398, µi,i = 1, µi,j = 0.8, θi = 1 and κi,j = 40. (3.6)

Note that a simplified fluid approach would consider this system as one with spare capacity, just as in

§6.3, since service-pool 2 has two extra servers that can potentially serve 1.6 class-1 customers per unit

time, whereas Q1 has just one “extra arrival” per unit time (when we consider the fact that Q1 must be

at least 40 before the sharing is activated). However, unlike the case we have considered in §6.3, Q2 is

critically loaded, and thus becomes overloaded when class-1 customers are served in service-pool 2.

Figures 20 and 21 show histograms of the distributions of the two steady-state queue lengths. We see

that both distributions have a mass at zero, and are far from normal. In Figure 23 we reduce the vertical

axes to make it easier to observe the shape of the distribution of Q2. Figure 22 is a plot of the sample

paths of the two queue-length processes over a short time interval, both centered about their steady-

state means. We observe that even in this case there is a strong dependency between the two queues,

and that the SSC assumption is not far from reality. In fact, it seems that when both queues are positive,

they move together. It is only only when Q2(t) = 0 and Q1(t) > 0 that Q1(t) moves separately.

With these parameters in (3.6), we see that the two-equation fluid approximation in (3.5) fails badly.

First, we cannot find the desired fluid approximations for the Qi and Z1,2 using the two equations in

(3.5), since the system is operating in the spare-capacity regime. Indeed, if we use (3.5), then we get

52



Q1 = 39.7 and Q2 = −0.3. It is also easy to see that the spare-capacity approximations do not apply

here. If we use equation (3.7), then we get that Z1,2 = 2.5 which makes class-2 overloaded, and so

there is no spare capacity in service pool 2. We can modify (3.7), and assume Q1 = 40 (and not 39)

since pool-2 is heavily loaded. This will give us Z1,2 = 1.25 and Q2 = 0. However, that result is far

from the simulation results, as can be seen in Table 14.

On the other hand, we see that the three-equation approximation in (5.2) actually yields something

reasonable. It is in cases like this that we really see the value of the more complex three-equation

approximation in (5.2). Here this refined approximation is needed in order to obtain a reasonable

approximation.
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Figure 20: A histogram of Q1 in the interme-
diate case.
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Figure 21: A histogram of Q2 in the interme-
diate case.
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Figure 22: A plot of the queues centered about
their fluid.
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Figure 23: A closer look at Q2 in the interme-
diate case.
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fluid parameters spare 3 equ. sim

E[Q1] 40 27.1 31.5
±0.7

E[Q2] 0 15.4 14.2
±1.0

E[Z1,2] 1.6 17.4 12.6
±0.4

distribution spare SSC sim.

std(QΣ) 20.5 29.0 24.4
±0.6

std(Q1) 20.5 14.5 15.6
±0.5

std(Q2) − 14.5 13.7
±0.3

Table 14: A comparison of the fluid approximations with simulation results for the steady-state perfor-
mance measures in the intermediate case. In the “spare” column we solve equation (3.7) with a slight
modification, taking Q1 = 40 as described above. This makes Q2 = 0, and QΣ = Q1, hence both have
the same standard-deviations.

Lower Arrival Rates. The effectiveness of the three-equation approximation in the boundary case

with λ1 = 441 shows that it should also be not too bad for even lower arrival rates. We look at that

now. Table 15 below gives results for three cases with lower arrival rates for class 1. In all three

cases, we have kept the same parameter values as in (3.6), except that we change λ1. Now we consider

λ1 = 430, 420 and 415. As the load on Q1 becomes smaller, the three-equation approximation, and the

SSC assumption, become less accurate. Overall, we see that the three-equation fluid approximation for

E[Q1] and the SSC standard-deviation approximations work pretty well at the boundary (λ1 = 441)

and even slightly below the boundary (λ1 = 430), but then they deteriorate. However, the independent-

queue approximation is then good for E[Q1].

For λ1 = 415, it seems that the independent assumption gives better approximations for the distribu-

tions. In the table we also include the value of E[Z2,1] since as the loads get smaller, we start seeing

more sharing in the “wrong” direction. This makes our approximations even less accurate, since we

assume that Z2,1 = 0 in our approximations.

54



For the standard deviations, the SSC approximations remain pretty good for the individual queues,

while the independent approximation is pretty good for the total queue length. Although Q2 operates

in the OED regime when both queues are independent, we approximate its fluid at zero, hence we

approximate its standard deviation as being zero. We could do better in the independent case, using the

QED approximations for Q2 from Garnett et al. (2002). That would evidently make the independent

approximations perform well for λ1 = 415.

fluid λ1 = 430 λ1 = 420 λ1 = 415

perf. meas. ind. 3 equ. sim. ind. 3 equ. sim. ind. 3 equ. sim.

E[Q1] 30 18.8 24.9 20 9.8 18.2 15 7.7 15.9
±1.0 ±1.1 ±1.1

E[Q2] 0 12.0 10.8 0 2.1 8.7 0 3.8 8.6
±0.5 ±0.6 ±0.8

E[Z1,2] 0 14.0 8.1 0 4.1 4.4 0 5.8 3.1
±0.8 ±0.6 ±0.3

E[Z2,1] 0 0 0.07 0 0 0.19 0 0 0.34
±0.05 ±0.12 0.14

distribution λ1 = 430 λ1 = 420 λ1 = 415

perf. meas. ind. SSC sim. ind. SSC sim. ind. SSC sim.

std(QΣ) 20.1 28.8 22.6 20.5 28.6 19.8 20.4 28.5 20.2
±0.7 ±0.9 ±1.0

std(Q1) 20.1 14.4 15.4 20.5 14.3 14.4 20.4 14.3 14.4
±0.3 ±0.5 ±0.3

std(Q2) 0 14.4 12.8 0 14.3 11.4 0 14.3 11.9
0.6 ±0.5 ±0.7

Table 15: A comparison of the fluid approximations for the steady-state performance measures based
on the three equations in (5.2) with simulation results with reduced arrival rates for class 1.
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