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Effective numerical and simulation algorithms are developed to
compute the tight upper bound of the mean steady-state waiting time
in the GI/GI/1 queue given the first two moments of the interarrival-
time and service-time distributions. The upper bound is attained
asymptotically by two-point distributions as the upper mass point of
the service-time distribution increases and the probability decreases,
while one mass of the interarrival-time distribution is fixed at 0. The
algorithms are aided by reductions of these special queues to D/GI/1
and GI/D/1 models. One numerical algorithm exploits a negative
binomial recursive formula, while another exploits a discrete-time
Markov chain recursion. For simulations, in order to address the rare
event associated with the large service time, a key step is to exploit
the representation of the mean waiting time in terms of the idle-time
distribution, which is insensitive to the rare event of the large service
time. The computational efficiency of different methods is compared..

1. Introduction. In this paper we study numerical and simulation al-
gorithms for calculating the tight upper bound for the mean steady-state
waiting time in the GI/GI/1 queue with unlimited waiting room and the
first-come first-served service discipline, where the interarrival-time and service-
time distributions are partially characterized by their first two moments.
This bound can be used as a conservative (worst case) approximation or,
combined with the known lower bound, to determine the range of possible
values, which is useful in evaluating the quality of approximations.

This paper is a sequel to [5], which presented theoretical and numer-
ical evidence implying that the upper bound is attained asymptotically
by two-point interarrival-time and service-time distributions as the upper
mass point of the service-time distribution increases and the probability de-
creases (with the other mass approaching the mean), while one mass of the
interarrival-time distribution is fixed at 0. There is a long-standing interest
in these upper bounds, starting in [10] and continuing in [7], [8], [21] and
the references there. The algorithms here are also of interest because they
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are based on three different convenient alternative representations for the
mean waiting time E[W ] in the F0/Gu∗/1 extremal model.

1.1. The GI/GI/1 Model. There is a sequence of independent and iden-
tically distributed (i.i.d.) interarrival times {Un : n ≥ 1} each distributed as
U with cumulative distribution function (cdf) F , which is independent of a
sequence of i.i.d. service times {Vn : n ≥ 1}, each distributed as V with cdf
G. Let an interarrival time U have mean E[U ] ≡ λ−1 and squared coefficient
of variation (scv, variance divided by the square of the mean) c2a; let a service
time V have mean E[V ] ≡ τ and scv c2s. Assume that the second moments
exist, so that the scv’s c2a and c2s and the means are finite as well. Assume
that ρ ≡ λτ < 1, so that the model is stable. By choosing measuring units,
we let λ = 1, so that τ = ρ.

LetWn be the waiting time of customer n, i.e., the time from arrival until
starting service, assuming that the system starts empty with W0 ≡ 0, where
≡ denotes equality by definition. The sequence {Wn : n ≥ 0} satisfies the
Lindley recursion

(1.1) Wn+1 = [Wn + Vn − Un]
+, n ≥ 0,

where x+ ≡ max {x, 0}, Vn is the service time of customer n, Un is the
interarrival time between customers n and n+1, and a 0th customer arrives
at time 0 to find an empty system.

The waiting time of customer n, starting with an empty system, has mean

(1.2) E[Wn] =

n
∑

k=1

E[S+
k ]

k
<∞,

where Sk ≡ X1 + · · · + Xk and Xk ≡ Vk − Uk, k ≥ 1, while the steady-
state waiting time W has mean equal to the associated infinite sum, which
converges under the finite second moment assumption; e.g., see §§X.1-X.2
of [3] or (13) in §8.5 of [6].

For numerical computation of E[W ], formula (1.2) is unattractive, be-
cause it indicates that we need to calculate an infinite sum of terms, each of
which involves a k-fold convolution integral. Effective algorithms avoid that
computational approach. One way to proceed is to apply numerical trans-
form inversion with the Pollaczek contour integral representation, as in (5)
of [1], i.e.,

(1.3) E[W ] =
1

2πi

∫

C

log {1− φ(z)}dz
z
,
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where i ≡
√
−1, z is a complex variable,

(1.4) φ(z) ≡ E[ez(V−U)]

and C is a contour in the complex plane to the left of, and parallel to, the
imaginary axis, and to the right of any singularities of log{1 − φ(z)} in the
left half plane. As a regularity condition, we assume that the transform φ in
(1.4) is analytic in the complex plane for z is the strip |z| < δ for some δ > 0.
As in many probability applications, convolution is avoided by considering
the transform in (1.4).

Unfortunately, our model with two-point distributions does not satisfy the
regularity condition; e.g., see §14 of [2]. As shown in [1], that difficulty can
be avoided by asymptotic arguments. That was illustrated by calculating
the cumulants and distribution of W in the Ek/Ek/1 for a wide range of k,
even up to k = 104. In this paper, we will derive model reductions that will
also enable us to avoid direct convolution in other ways.

1.2. Bounds and Extremal GI/GI/1 Queues. The classical upper bound
(UB) for the steady-state mean is the Kingman [10] bound,

(1.5) E[W ] ≤ ρ2([c2a/ρ
2] + c2s)

2(1− ρ)
.

An improvement is provided by the Daley [7] UB, which replaces the term
c2a/ρ

2 by (2− ρ)c2a/ρ, i.e.,

(1.6) E[W ] ≤ ρ2([(2 − ρ)c2a/ρ] + c2s)

2(1− ρ)
.

Both of these bounds are asymptotically correct in heavy traffic, i.e.,

(1.7) lim
ρ→1

(1− ρ)E[W ](ρ)] = (c2a + c2s)/2.

In fact, the heavy-traffic limit does much more, showing that the scaled
waiting-time distribution is asymptotically exponential and thus is asymp-
totically fully characterized by its mean.

Theorem 4 of [5] shows, for distributions with bounded support, that
the UB is attained at interarrival-time and service-time distributions each
with support on at most three points. Afterwards, [5] conducts numerical
optimization and simulations within that special class of distributions to
show that the UB is attained by E[W (F0, Gu∗)], where F0 is the two-point
distribution with one mass on 0, while Gu∗ is shorthand for the limit of
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E[W (F0, Gu)] as Ms → ∞, where Gu is the two-point distribution with one
mass at the upper boundary Ms. The purpose of this paper is to present
algorithms to efficiently calculate or estimate E[W (F0, Gu∗)].

To elaborate, the UB interarrival-time cdf with mean m1 and second
moment m2 = m2

1(c
2
a + 1), referred to here as F0, is attained at the two-

point interarrival-time distribution with probability mass c2a/(1+c
2
a) at 0 and

probability mass 1/(c2a + 1) at (m2/m1) = m1(c
2
a + 1). The LB interarrival-

time cdf, referred to here as Fu is attained at the two-point interarrival-
time distribution with probability mass c2a/(c

2
a + (r− 1)2) at Ma, the upper

bound of the support, and mass (r − 1)2/(c2a + (r − 1)2) on 1 − c2a/(r − 1)
for r ≡ Ma/m1. (For these, we scale so that m1 = 1. We use the notation
G0 and Gu for the corresponding service-time cdf’s G with support [0,Ms],
where scale so that m1 = ρ.)

Under the assumption that E[W (F0, Gu∗)] is indeed the tight UB, Theo-
rem 1 of [5] provides a new UB, which is an improvement to the UB formulas
in (1.5) and (1.6), namely,

(1.8) E[W (F0, Gu∗)] ≤ 2(1− ρ)ρ/(1 − δ)c2a + ρ2c2s
2(1 − ρ)

,

where δ ∈ (0, 1) and δ = exp(−(1− δ))/ρ)). Tables 1 and 2 of [5] show that
the new bound (1.8) is very accurate, but it is not tight.

The lower bound (LB), which has long been known, see [16], §5.4 of [15],
§V of [18], Theorem 3.1 of [8] and references there, has explicit formula

(1.9) E[W (LB)] =
ρ2((1 + c2s)ρ− 1)+

2(1− ρ)
,

The LB is not attained at a two-point distribution. The LB is attained
asymptotically by D/A3/1 distribution as Ma → ∞, where A3 denotes any
three-point service-time distribution that concentrates all mass on nonnegative-
integer multiples of the deterministic interarrival time. Of course, the deter-
ministic distribution does not have the given scv c2a (unless c2a = 0); the LB
arises as the limit of two-point interarrival-time distributions with one mass
approaching the mean from below, while the other mass point grows (and
associated probability decreases).

1.3. Efficient Algorithms. Our purpose in this paper is to develop and
evaluate algorithms to compute E[W ] in the extremal F0/Gu∗/1 queue. That
involves computing the limit of E[W ] in the F0/Gu/1 model with finite
support as Ms → ∞. This is challenging because the large service time is a
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rare event. For example, simulating the Lindley recursion via inverse method
is not so effective to estimate E[W ] accurately.

In §2 we first show that the tight UB E[W (F0, Gu∗)] provides a significant
improvement over previous bounds by comparing the estimates of the tight
UB associated with c2a = c2s = 4.0 and c2a = c2s = 0.5, as estimated by the
[12] simulation algorithm. Then we show that effective algorithms can be
developed if we transform the problem. In §3 we introduce our first model
reduction. Drawing on [9] or [17], we show that the mean waiting time in
any F0/G/1 model can be expressed in terms of the mean waiting time
in an associated D/G/1 model with a new service-time distribution. Then,
drawing on [8], in §4 we introduce a second model reduction. We show that
the mean waiting time in any F/Gu∗/1 model can be expressed in terms of
the mean waiting time in an associated F/D/1 model. In §5 we use the first
representation to produce the first effective numerical algorithm involving
the negative binomial distribution.

For further progress, following [11], [12] and [21], in §6 we review the
representation of the mean waiting time E[W ] in terms of the parameter
vector (1, c2a, ρ, c

2
s) and the idle-time distribution. When combined with the

idle-time representation, this yields other convenient ways calculate or esti-
mate E[W ] via numerical algorithms and simulations. In §7 we develop an
algorithm for computing the first two moments of the idle-time distribution
based on the first passage time in a finite-state discrete-time Markov chain.
We then study three simulation algorithms in §8 and draw conclusions in
§9.

2. A Comparison of Different Bounds and Approximations. To
show that the new UB E[W (F0, Gu∗)] provides a significant improvement,
we compare the estimates of the tight UB for in the GI/GI/1 model with
given first two moments associated with c2a = c2s = 4.0 and c2a = c2s =
0.5, as estimated by the [12] simulation algorithm, to other bounds and
approximations in Tables 1 and 2. Comparisons for the associated mixed
cases c2a = 4.0, c2s = 0.5 and c2a = 0.5, c2s = 4.0 appear in Tables 16 and 17.

The estimated UB is the “Tight UB” in these tables, while the LB is
(1.9), the new UB is (1.8), the [7] bound is (1.6) and the [10] bound is (1.5).
The common heavy-traffic (HT) approximation is

(2.1) E[W ] ≈ ρ2(c2a + c2s)

2(1− ρ)
.

The MRE is the maximum relative error between the new bound in (1.8)
and the estimated tight UB. Example 1 in §2 of [5] shows that this new UB
is not tight for GI/M/1, using exact calculations as in [18].
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Table 1

A comparison of the bounds and approximations for the steady-state mean E[W ] as a
function of ρ for the case c2a = c2s = 4.0 and c2s = 4.0.

ρ Tight LB HTA Tight UB UB Approx δ MRE Daley Kingman
(1.9) (2.1) (1.8) (1.6) (1.5)

0.10 0.00 0.044 0.422 0.422 0.000 0.003% 0.44 2.24
0.20 0.00 0.200 0.904 0.906 0.007 0.19% 1.00 2.60
0.30 0.00 0.514 1.499 1.51 0.041 0.60% 1.71 3.11
0.40 0.00 1.07 2.304 2.33 0.107 0.94% 2.67 3.87
0.50 0.25 2.00 3.470 3.51 0.203 1.15% 4.00 5.00
0.60 1.00 3.60 5.295 5.35 0.324 1.07% 6.00 6.80
0.70 2.42 6.53 8.441 8.52 0.467 0.93% 9.33 9.93
0.80 5.50 12.80 14.92 15.02 0.629 0.67% 16.00 16.40
0.90 15.25 32.40 34.72 34.84 0.807 0.35% 36.00 36.20
0.95 35.13 72.20 74.62 74.76 0.902 0.18% 76.00 76.10
0.98 95.05 192.1 194.6 194.7 0.960 0.07% 196.0 196.0
0.99 195.0 392.0 394.5 394.7 0.980 0.04% 396.0 396.0

Table 2

A comparison of the bounds and approximations for the steady-state mean E[W ] as a
function of ρ for the case c2a = c2s = 0.5.

ρ Tight LB HTA Tight UB UB Approx δ MRE Daley Kingman
(1.9) (2.1) (1.8) (1.6) (1.5)

0.10 0.00 0.006 0.053 0.053 0.000 0.04% 0.056 0.281
0.20 0.00 0.025 0.113 0.113 0.007 0.53% 0.125 0.325
0.30 0.00 0.064 0.184 0.189 0.041 2.35% 0.214 0.389
0.40 0.00 0.133 0.280 0.291 0.107 3.82% 0.333 0.483
0.50 0.00 0.250 0.414 0.439 0.203 5.71% 0.500 0.625
0.60 0.00 0.450 0.637 0.669 0.324 4.78% 0.750 0.850
0.70 0.00 0.817 1.017 1.060 0.467 4.53% 1.17 1.24
0.80 0.00 1.600 1.822 1.877 0.629 2.95% 2.00 2.05
0.90 1.08 4.050 4.295 4.355 0.807 1.38% 4.50 4.53
0.95 3.54 9.03 9.284 9.344 0.902 0.65% 9.50 9.51
0.98 11.0 24.0 24.27 24.34 0.960 0.27% 24.5 24.5
0.99 23.5 49.0 49.27 49.34 0.980 0.14% 49.5 49.5

From these tables, we see that the range UB − LB is remarkably wide,
which largely can be explained by the LB, which does not depend on the
arrival scv c2a. We also see that the heavy-traffic approximation and all the
UBs tend to agree in HT, but not in light traffic. Moreoever, we see signif-
icant improvement going from the [10] bound in (1.5) to the [7] bound in
(1.6) to the new UB in (1.8). The MRE in the [7] bound for these cases is
about 14% at ρ = 0.5.

In closing this section, we emphasize that it remains to prove: (i) that
(1.8) is a legitimate UB and (ii) that the mean E[W (F0, Gu∗)] estimated for
the tight UB here is indeed the tight UB. Theorem 1 of [5] proves (i) under
the assumption that (ii) is correct. Nevertheless, we have provided strong
numerical evidence that the F0/Gu∗/1 model yields the tight UB. If that
can be accepted, then formula (1.8) serves as an excellent approximation
formula.
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3. The Reduction of F0/GI/1 to D/GI/1. In this section we show
that, for any service-time cdfG, the mean waiting time in the F0/GI/1 queue
can be expressed in terms of the mean waiting time in an associated D/G/1
queue with a new service-time distribution. The key observation is that the
F0/G/1 queue corresponds to theD/G/1 queue with batch arrivals; then the
new service-time cdf is the sum of the service times in the batch. However,
we need to do other adjustments as well.

Let F0 be the two-point upper bound extremal distribution with mean 1
and mass p ≡ 1/(c2a + 1) on c2a + 1 and mass 1 − p on 0. Let RS(V, p) be a
random variable distributed as

(3.1) RS(V, p)
d
=

N(p)
∑

k=1

Vk,

where N(p) is a geometric random variable on the positive integers, having
mean E[N(p)] = 1/p and {Vk : k ≥ 1} is a sequence of i.i.d. random variables
distributed as a service time V . Let D(x) be a deterministic random variable
assuming the constant value x. For the interarrival times, we will consider
x = 1/p = (c2a + 1).

Theorem 3.1. For the F0(p)/GI/1 model with service time V having
mean ρ and scv c2s, the mean steady-state waiting time can be expressed as

E[W (F0(p)/GI/1)] = E[W (D(1/p)/RS(V, p)/1)] + (E[N(p)]− 1)E[V ]

= E[W (D(1/p)/RS(V, p)/1)] + ρ(1− p)/p

= E[W (D(1/p)/RS(V, p)/1)] + ρc2a.(3.2)

where RS(V, p) is the geometric random sum in (3.1).

Proof.. The F0 interarrival time means that a random number of arrivals,
distributed asN(p), arrive at deterministic intervals with deterministic value
1/p = c2a + 1. So the model has batch arrivals. The result in (3.2) follows
from [9] or Theorem 1 of [17], which states that the delay of an arbitrary
customer in the batch is distributed the same as the delay of the last cus-
tomer in the batch when the batch-size distribution is geometric. Because
E[W (D(1/p)/RS(V, p)/1)] is the expected delay of the first customer in a
batch, we need to add the second term in (3.2) to get the delay of the last
customer in the batch; e.g., see §III of [17].

To work with the D(1/p)/RS(V, p)/1 model, we want the mean and vari-
ance of the random sum RS(V, p) in (3.1).
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Lemma 3.1. (random sum moments) Given that V has mean ρ and scv
c2s, the mean and variance of the random sum RS(V, p) in (3.1) are

(3.3) E[RS(V, p)] = E[N(p)]E[V ] =
ρ

p
= ρ(c2a + 1)

and

(3.4) V ar(RS(V, p)) = ρ2c2s(c
2
a + 1) + ρ2c2a(1 + c2a).

Hence,

c̄2s ≡ V ar(RS(V, p))

E[RS(V, p)]2
=
ρ2c2s(c

2
a + 1) + ρ2c2a(1 + c2a)

ρ2(1 + c2a)
2

=
c2a + c2s
1 + c2a

.(3.5)

Proof.. We apply the standard formulas for random sums from p. 113 of
[14]. For the variance,

V ar(RS(V, p)) = V ar(V )E[N ] + (E[V ])2V ar(N) =
ρ2c2s
p

+
ρ2(1− p)

p2

= ρ2c2s(1 + c2a) + ρ2c2a(1 + c2a),(3.6)

as claimed.

Theorem 3.2. For the D(1/p)/RS(V, p)/1 model, the Kingman upper
bound on the mean steady-state waiting time is

E[W (D(p)/RS(V, p)/1)] ≤ ρE[RS(V, p)]((c̄2a/ρ
2) + c̄2s)

2(1− ρ)

=
ρ2(1 + c2a)c̄

2
s

2(1 − ρ)
=
ρ2(c2a + c2s)

2(1 − ρ)
.(3.7)

Hence, the associated upper bound for the F0(p)/GI/1 model is

E[W (F0/GI/1)] ≤ ρ2(c2a + c2s)

2(1− ρ)
+ ρc2a =

ρ2(Ac2a + c2s)

2(1 − ρ)
,(3.8)

where

(3.9) A ≡ A(ρ, c2a) ≡ 1 +
2(1 − ρ)

ρ
=

2

ρ
− 1,

which makes (3.8) coincide with the Daley [7] bound.
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Proof. We exploit Theorem 3.1, which provides the representation (3.2).
Then observe, with the aid of Lemma 3.1, that the [10] bound for
E[W (D(1/p)/RS(V, p)/1)] is given by the first term on the first line of
(3.8).

4. The Reduction of GI/Gu
∗/1 to GI/D/1. Daley proposed an-

other decomposition that can be used to avoid the rare event of the large
service time Ms. It allows us to reduce the model F/Gu∗/1 to F/D/1 for
arbitrary F . It is reviewed in (10.2) of [8] without proof, referring to an
unpublished manuscript. Let Dm denote a deterministic cdf with mass 1 on
m.

Theorem 4.1. (the Daley decomposition in (10.2) of [8]) Consider the
GI/Gu/1 model with arbitrary interarrival-time cdf F and two-point service-
time cdf Gu ≡ Gu(Ms). Then

lim
Ms→∞

E[W (F,Gu)] = E[W (F,Dρ)] + lim
Ms→∞

E[W (D1, Gu)].

= E[W (F,Dρ)] +
ρ2c2s

2(1− ρ)
.(4.1)

Proof.. We only give a brief overview. We do a regenerative analysis to
compute the mean waiting time, looking at successive busy cycles starting
empty. We exploit the classic result that the steady-state mean waiting time
is the expected sum of the waiting times over one cycle divided by the
expected length of one cycle; e.g., see §3.6 and §3.7 of [13].

As Ms increases, the two-point cdf Gu ≡ Gu(Ms) necessarily places prob-
ability of order O(1/M2

s ) on Ms and the rest of the mass on a point just less
than the mean service time, ρ. For very large Ms, there will be only rarely,
with probability of order O(1/M2

s ), a large service time of order O(Ms). In
the limit, most customers never encounter this large service time, so that we
get a contribution to the overall mean E[W ] corresponding to E[W (F,Dρ)]
in the first term on the right in (4.1).

On the other hand, the total impact of the very large waiting time of order
Ms is roughly the area of the triangle with height O(Ms) and width O(Ms),
which itself is O(M2

s ). When combined with the O(1/M2
s ) probability, this

produces an additional O(1) impact on the steady-state mean, which is given
by the second term on the right in (4.1). Moreover, because we can use a law-
of-large-numbers argument to treat this large service time, the asymptotic
impact of that large service time is independent of the interarrival-time cdf
beyond its mean, so we can substitute D1 for the original interarrival-time
cdf F with mean 1 in the second term.
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Corollary 4.1. (decomposition of the upper bound) For the GI/GI/1
model with extremal interarrival-time cdf F0 and extremal service-time cdf
Gu∗ ,

E[W (F0, Gu∗)] ≡ lim
Ms→∞

E[W (F0, Gu)] = E[W (F0,Dρ)] +
ρ2c2s

2(1− ρ)
.

Corollary 4.1 implies that calculating the UB of E[W ] is equivalent to
calculating F0/D/1, which has deterministic service time. Clearly, this makes
the UB much easier to estimate by classical simulation methods.

Corollary 4.2. (tightness of Kingman’s bound) For the GI/GI/1 model
with interarrival-time cdf D and extremal service-time cdf Gu∗,

E[W (F0, Gu∗)] ≡ lim
Ms→∞

E[W (D,Gu)] = E[W (D1,Dρ)] +
ρ2c2s

2(1 − ρ)
=

ρ2c2s
2(1− ρ)

,

so that Kingman’s bound is asymptotically attained by D/Gu(Ms)/1 asMs →
∞.

Finally, we can combine Theorem 3.1 and Corollary 4.1 to obtain

Corollary 4.3. (overall decomposition of the upper bound) For the
GI/GI/1 model with extremal interarrival-time cdf F0 and extremal service-
time cdf Gu∗ ,

E[W (F0, Gu∗)] = E[W (D(1/p)/RS(D(ρ), p)/1)] + ρc2a +
ρ2c2s

2(1− ρ)
.

5. The Negative Binomial Numerical Algorithm. In this section
we apply Corollary 4.3 to obtain an efficient algorithm for computing the
UB E[W (F0, Gu∗)]. Corollary 4.3 implies that it suffices to compute E[W ]
in the D(1/p)/RS(D(ρ), p)/1 model. The representation of the service time
as a geometric random sum allows us to express E[W ] directly in terms
of the negative binomial (NB) distribution, without having to perform any
convolutions.

Let NB(n, p) be a conventional negative binomial random variable with
parameter pair (n, p) for nonnegative integer n and 0 < p < 1, which has
probability mass function (pmf)

(5.1) pk(n, p) ≡ P (NB(n, p) = k) ≡
(

(n+ k − 1)!

k!(n− 1)!

)

(1− p)npk, n ≥ 0,
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with mean and variance

(5.2) E[NB(n, p)] =
np

1− p
and V ar(NB(n, p)) =

np

(1− p)2
.

As often with the NB pmf, because of the factorials, it is convenient to
use a recursive algorithm for computation. In the first version we initialize
the recursion at k = 0, letting P(NB(n, 1 − p) = 0) = pn. Then, we can
apply the recursion

(5.3) P(NB(n, 1−p) = k) = P(NB(n, 1−p) = k−1)(n+k−1)/k)(1−p),

where p = 1/(1 + c2a).
However, for the parameter p = 1/(c2a +1) already defined by F0, we end

up with negative binomial parameter 1− p. Let ⌊x⌋ be the greatest integer
less than or equal to x.

Lemma 5.1. (NB representation) For the D(1/p)/RS(D(ρ), p)/1 model,

(5.4) Sn
d
= ρ(NB(n, 1− p) + n)− (n/p),

for Sn in (1.2), so that

E[W ] = ρ

∞
∑

n=1

n−1
E[(NB(n, 1− p) + n− (n/pρ))+]

= ρ

∞
∑

n=1

n−1
∞
∑

k=0

P (NB(n, 1− p) = k)(cn − n+ k)+

= ρ
∞
∑

n=1

n−1
∞
∑

k=0

P (NB(n, 1− p) > ⌊cn⌋ − n+ k)(5.5)

for c ≡ 1/pρ > 1, from which E[W (F0/Gu∗/1)] is obtained from Corollary
4.3.

Proof. First, note that our geometric random variable N(p) in (3.1) takes
values in the positive integers, while NB takes values in the nonnegative in-
tegers. Recall that the sum of n i.i.d. geometric random variables is negative
binomial, so that the connection to our geometric random variable N(p) on

the positive integers is N(p) − 1
d
= NB(1, 1 − p). Then, for i.i.d. variables

Nk(p)
d
= N(p),

(5.6) N1(p) + · · ·+Nn(p)
d
= n+NB(n, 1− p).
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Hence, the partial sums Sn in §1.1 satisfies (5.4) so that we obtain (5.5) by
(1.2). For the second line in (5.5), we use the representation of the mean in
terms of the complementary cdf, as on p. 46 of [13].

Appropriately truncated versions of the final double sum in (5.5) can then
readily be computed. That is illustrated for the middle display in (5.5) in
Algorithm 1 below.

Algorithm 1 Basic Negative Binomial Recursion (k in outer loop)

1: Initially set E[W ]← ρc2a +
ρ2c2

s

2(1−ρ)
and p = (1 + c2a)

−1.

2: for k ∈ [K] do

3: S(k)← 0, nbpdf ← p(1− p)k

4: for n ∈ [n] do
5: S(k)← S(k) + nbpdf max((n+ k)ρ− n/p, 0)/n
6: nbpdf ← nbpdf(n+k

n
)p

7: E[W ]← E[W ] + S(k)

8: Output E[W ]

To explain Algorithm 1, recall that we are applying Corollary 4.3 to ob-
tain an efficient algorithm for computing the UB E[W (F0, Gu∗)]. Thus we
initialize by the constant term that depends only on the vector (c2a, ρ, c

2
s).

We add that to E[W (D(1/p)/RS(D(ρ), p)/1)], which is computed by the
recursion.

It now remains to consider how to do the truncations. First, consider the
truncation of the sum on k for given n. For given n,

E[NB(n, 1− p)] ≡ m(n) =
n(1− p)

p
and

V ar(NB(n, 1− p)) ≡ σ2(n) =
n(1− p)

p2
.(5.7)

For large n, NB(n, 1 − p) is asymptotically Gaussian by the central limit
theorem, so for very large n, only O(

√
n) values of k need be considered. In

particular, is should suffice to considerm(n)−aσ(n) ≤ cn+k ≤ m(n)+aσ(n)
for, e.g., a = 8. However, we need to add a term for small k. For cn + k ≤
m(n)− aσ(n), we let P (NB(n, 1− p) > ⌊cn⌋+ k) = 1. That means we add
(m(n)− aσ(n)) ∧ cn ∨ 0, where a ∧ b ≡ min {a, b} and a ∨ b ≡ max {a, b}.

Finally, the relevant values of n depend on the traffic intensity ρ and other
model parameters. For heavy traffic (large ρ), we can use the approximation
(2.1) to estimate the relevant n. Moreover, given that the heavy-traffic limit
of the waiting-time distribution is exponential, we can see the relevant range
of n.
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5.1. Performance of the Negative Binomial Algorithm. We set different
truncation levels K and N to study the computational accuracy and effort
of the Negative Binomial (NB) algorithm.

In the experiment, set the truncation level N =1E+03 andK from 1E+03
to 8E+03 to execute Algorithm 1. (It is good to have k in the outer loop
because p = 1/(1 + c2a) < 0.5.) The results are shown in Table 3 for a range
of traffic intensities from ρ = 0.10 to ρ = 0.99. Also shown for comparison in
the last two columns are the simulation estimates from the highly accurate
[12] simulation method, as given in Table 10.

For ρ ≤ 0.90, the recursive algorithm with truncation level N = 1000,K =
3000 performs well, but for ρ ≥ 0.95, the numerical values of E[W ] converge
as K increases but are not not close to the simulation results.

Table 3

Performance of the Basic Negative Binomial Algorithm with Different Truncation Levels

Algorithm Procedure 1 with N = 1000 Minh and Sorli Algorithm

ρ\K 1E+03 2E+03 4E+03 8E+03 T = 1E + 07 95%CI
0.1 0.422229 0.422229 0.422229 0.422229 0.422 7.79E-05
0.2 0.903885 0.903885 0.903885 0.903885 0.904 1.30E-04
0.3 1.499234 1.499234 1.499234 1.499234 1.499 1.71E-04
0.4 2.304105 2.304105 2.304105 2.304105 2.304 1.90E-04
0.5 3.470132 3.470132 3.470132 3.470132 3.470 2.25E-04
0.6 5.294825 5.294825 5.294825 5.294825 5.294 2.43E-04
0.7 8.441305 8.441305 8.441305 8.441305 8.442 3.05E-04
0.8 14.916481 14.916937 14.916937 14.916937 14.917 3.22E-04
0.9 34.276662 34.673925 34.718140 34.718140 34.722 5.17E-04
0.95 66.874413 71.232241 73.264743 73.264743 74.621 7.11E-04
0.98 139.659440 152.638886 162.915010 162.915010 194.556 9.29E-04
0.99 245.012809 262.661919 278.499123 278.499123 394.532 1.45E-03

5.2. Refinement to the Negative Binomial Algorithm for Heavy-traffic.
The difficulty in heavy traffic occurs because as ρ increases, we need larger
values of n. For extremely large n, as is needed in heavy traffic, pn and
(1 − p)n are eventually very small numbers. That causes the probability to
become too small to be represented in the implemented floating point num-
ber system. Hence, in heavy traffic the basic recursive algorithm broke down
because the large values of n caused underflow.

As when computing the steady-state of the birth-and-death processes,
e.g. as in §7 of [20], for very large n we can uncounter underflow problems if
we start the recursion at 0, but it can be avoided by starting the recursion
elsewhere. We avoid the underflow problem by doing two recursions, one up
and the other down, starting from the mean. From the central limit theorem,
we know that the NB distribution is approximately Gaussian with a mean
near its mode. In particular,

(5.8) NB(n, 1− p) ≈ N (m(n), σ2(n)) as n→ ∞.
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for m(n) and σ2(n) in (5.7). Hence for large n suffices to consider only a
modest range of k, i.e., of order O(

√
n). As a consequence, for large N , we

consider k ≤ m(n) + 20
√
N in the implementation.

Here is how we proceed: For fixed n ≤ N , we start from mean in (5.3)
and let the P(NB(n, 1−p) = n(1−p)/p) = 1 and then do recursive formula
(5.3) up and down separately. Define mean n(1−p)/p bym(n). The two-part
recursion going up and down becomes

P(NB(n, 1− p) = m(n) + j)

= P(NB(n, 1− p) = m(n) + j − 1)(n +m(n) + j − 1)/(m(n) + j)(1 − p),

P(NB(n, 1− p) = m(n)− j)

= P(NB(n, 1− p) = m(n)− j + 1)/(n +m(n)− j)(m(n) − j + 1)/(1 − p)

for j ≥ 1. Afterwards, we normalize the values that obtained from the above
recursion to get probabilities of P (NB(n, 1− p) = k) for any k given n.

As in Algorithm 1, in Algorithm 2 we apply Corollary 4.3 to obtain an
efficient algorithm for computing the UB E[W (F0, Gu∗)]. Thus we initialize
by the constant term that depends only on the vector (c2a, ρ, c

2
s).

Algorithm 2 Negative Binomial Recursion (Up and Down from the Mean)

1: Initially set E[W ]← ρc2a +
ρ2c2

s

2(1−ρ)
, p = (1 + c2a)

−1, and m(n) = n(1− p)/p.

2: for n ∈ [1, N ] do

3: nbpdf(1, m(n))← 1
4: for k ∈ [m(n)− 20

√
N,m(n)] do

5: nbpdf(1, k − 1)← nbpdf(1, k)/(n+ k − 1)(k)/(1− p)

6: for k ∈ [m(n), m(n) + 20
√
N − 1] do

7: nbpdf(1, k + 1)← nbpdf(1, k)(n+ k)/(k + 1)(1− p)

8: Normalize nbpdf to obtain P(NB(n, 1− p) = k)
9: S(n)←∑

k
P(NB(n, 1− p) = k)max((n+ k)ρ− n/p, 0)

10: E[W ]← E[W ] + S(n)/n

11: Output E[W ]

We now carefully compare the negative binomial pmf values generated
from the basic recursion (5.3) used in Algorithm 1 with the values obtained
in the new up-down recursion used in Algorithm 2 in Table 4. We focus on
the terms after m(n) and report the values from the termm(n) tom(n)+10.
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Table 4

Comparison of the basic and up-down recursions for generating values of the negative
binomial pmf in Algorithms 1 and 2

k n1 = 10 n2 = 10 k n1 = 100 n2 = 100 k n1 = 1000 n2 = 1000

40 0.0279638 0.0279638 400 0.0089128 0.0089128 4000 0 0.0028207
41 0.0272818 0.0272818 401 0.0088906 0.0088906 4001 0 0.0028200
42 0.0265023 0.0265023 402 0.0088641 0.0088641 4002 0 0.0028192
43 0.0256394 0.0256394 403 0.0088333 0.0088333 4003 0 0.0028182
44 0.0247071 0.0247071 404 0.0087983 0.0087983 4004 0 0.0028170
45 0.0237188 0.0237188 405 0.0087592 0.0087592 4005 0 0.0028158
46 0.0226875 0.0226875 406 0.0087160 0.0087160 4006 0 0.0028144
47 0.0216256 0.0216256 407 0.0086689 0.0086689 4007 0 0.0028128
48 0.0205443 0.0205443 408 0.0086179 0.0086179 4008 0 0.0028111
49 0.0194542 0.0194542 409 0.0085631 0.0085631 4009 0 0.0028093
50 0.0183647 0.0183647 410 0.0085047 0.0085047 4010 0 0.0028074

For n ≤ 100, the results from the two methods agree to all digits shown,
but a significant difference occurs when n = 1000. At n = 1000, underflow
occurs in Algorithm 1, which causes the errors we saw for large ρ in Table
3.

5.3. Performance Studies for the Refined Negative Binomial Algorithm.
First, Algorithm 2 is also very efficient for ρ ≤ 0.95. Table 5 shows that
the new algorithm is effective if we increase N from 1, 000 to 10, 000 as ρ
increases.

Table 5

Performance of Algorithm 2 with Different Truncation Levels

Algorithm 2 Minh and Sorli Algorithm

ρ\N 2E+03 4E+03 8E+03 1.6E+04 2E+04 T = 1E + 07 95%CI
0.1 0.422229 0.422229 0.422229 0.422229 0.422229 0.422 7.79E-05
0.2 0.903885 0.903885 0.903885 0.903885 0.903885 0.904 1.30E-04
0.3 1.499234 1.499234 1.499234 1.499234 1.499234 1.499 1.71E-04
0.4 2.304105 2.304105 2.304105 2.304105 2.304105 2.304 1.90E-04
0.5 3.470132 3.470132 3.470132 3.470132 3.470132 3.470 2.25E-04
0.6 5.294825 5.294825 5.294825 5.294825 5.294825 5.294 2.43E-04
0.7 8.441305 8.441305 8.441305 8.441305 8.441305 8.442 3.05E-04
0.8 14.916937 14.916937 14.916937 14.916937 14.916937 14.917 3.22E-04
0.9 34.721476 34.721484 34.721484 34.721484 34.721484 34.722 5.17E-04
0.95 74.552341 74.619631 74.620917 74.620937 74.620937 74.621 7.11E-04

The numerical algorithm is more efficient than the simulation. It requires
no more than 30 seconds cpu time in the worse case (N = 2E+04, ρ = 0.95)
ro produce more than 10 decimal places accuracy, while the MS simulation
algorithm only attain 1E-04 confidence interval level for 0.5 ≤ ρ ≤ 0.95 while
producing 3 decimal places accuracy within around 30 seconds cpu times.

Next, we apply Algorithm 2 for the heavy-traffic cases with ρ = 0.98
and ρ = 0.99. To do so, we restrict the range of k to k ≤ m(n) + 20

√
N

for the purpose of setting smaller N . Table 6 below shows that the poor
performance of the NB algorithm in Table 3 has been improved dramatically
by the alternative algorithm.
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Table 6

Performance of Algorithm 2 in Heavy Traffic

Agorithm 2 for Heavy-Traffic Minh and Sorli Algorithm

ρ\N 1E+04 2E+04 3E+04 4E+04 T = 1E + 07
0.98 194.0544167173 194.5385548017 194.5559125683 194.5567071265 194.556 9.29E-04

5E+04 1E+05 2E+05 3E+05
0.98 194.5567179973 194.5567742874 194.5567742874 194.5567742874 194.556 9.29E-04
ρ\N 1E+04 3E+04 5E+04 1E+05 T = 1E + 07
0.99 372.0880005430 372.0880005430 391.8858614678 394.5238008176 394.532 1.45E-03

2E+05 3E+05 4E+05 5E+05
0.99 394.5331823499 394.5331886695 394.5331886695 394.5331886695 394.532 1.45E-03

Remark 5.1. Our experiments suggest that it suffices to setN = Θ(1/(1−
ρ)3) to obtain highly accurate results.

Remark 5.2. Since the service-time variabiity parameter c2s is not used
in 2, Table 5 and Table 6 can be reused to compute E[W (F0/Gu∗/1)] with
any other c2s via Corollary 4.3.

6. Exploiting the Idle-Time Representation. To develop alterna-
tive algorithms, following [11], [12] and [21], we relate the mean waiting time
given the first two moments of the interarrival time and service time to the
first two moments of the idle time I. In §6.1 we review the basic relation.
in §6.2 we discuss the implications of the relation when we let Ms → ∞. In
§6.3 we show the advantage of combining Theorem 6.1 and Corollary 4.1.
Later, in §7 we apply the representation to develop a new numerical algo-
rithm based on computing absorption probabilities in finite-state discrete-
time Markov chains (DTMCs).

6.1. The Basic Representation. The key relation is in

Theorem 6.1. (the idle-time representation, Theorem 1 of [11]) In the
GI/GI/1 queue with cdf’s F and G having parameter 4-tuple (1, c2a, ρ, c

2
s),

(6.1) E[W ] ≡ E[W (F,G)] = ψ(1, c2a, ρ, c
2
s)− φ(I),

where

(6.2) ψ(1, c2a, ρ, c
2
s) ≡

E[(U − V )2]

2E[U − V ]
=
ρ2([c2a/ρ

2] + c2s)

2(1− ρ)
+

1− ρ

2

and

(6.3) φ(I) ≡ φ(F,G) =
E[I2]

2E[I]
= E[Ie],
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with I being the steady-state idle time and Ie being a random variable with
the associated stationary excess distribution (as in renewal theory).

Notice that E[W ] depends on the model distributions F and G beyond
the parameter vector (1, c2a, ρ, c

2
s) only through φ(I) = E[Ie] in (6.3). For the

M/GI/1 model, I is distributed as F , φ(I) = 1 and simple algebra yields
the exact Pollaczek-Khintchine formula. In general, the first term on the
right in (6.2) is the [10] upper bound. For the [10] bound to be obtained,
the second term on the right in (6.2) would have to be exactly cancelled by
the second term on the right in (6.1).

6.2. The Limit as Ms → ∞. This section is based on the notion that
the upper bound is obtained as the limit of E[W ] within the F0/Gu/1 model
as Ms → ∞. Because the mean waiting time is not continuous as Ms → ∞,
but the idle-time distribution is, we approach the upper bound via the idle
time.

We can apply Theorem 3.1 to obtain a limit within the decomposition. For
that purpose, let φ(I;A,B) denote φ(I) for the model with interarrival time
A and service time B. We will consider A = D(1/p) and B = RS(D(ρ), p).

Theorem 6.2. (limit within the decomposition) For the F0/Gu/1 model
with parameter vector (1, c2a, ρ, c

2
s) and service-distribution support [0,Ms],

lim
Ms→∞

E[W (F0/Gu/1)] = ψ(1, c2a, ρ, c
2
s)− φ(I; 1, c2a, ρ, 0).(6.4)

In other words, the first term in (6.1) is independent of Ms and thus is
unchanged by the limit on Ms, whereas the second term changes, consistent
with the distribution Gu approaching D(ρ), and having the limiting mean
but 0 variance. As a consequence,

lim
Ms→∞

E[W (F0/Gu/1)] = ψ(1, c2a, ρ, c
2
s) + ρc2a − lim

Ms→∞

φ(I)

= ψ(1, c2a, ρ, c
2
s) + ρc2a − φ(I;D(1/p), RS(D, p)),

= ψ(1, c2a, ρ, c
2
s) + ρc2a − φ(I; (1 + c2a), 0, ρ(1 + c2a), c̄

2
s)(6.5)

where φ(I;D(1/p), RS(D, p)) means (6.3) for the D(1/p), RS(D, p))/1 model
and the parameter vector for that model is ((1 + c2a), 0, ρ(1 + c2a), c̄

2
s) for

(6.6) c̄2s ≡
c2a

1 + c2a
.

Theorem 6.2 implies that it only remains to evaluate the idle-time term
φ(I) in the last line of (6.5) for the D(p)/RS(D, p)/1 model, for which the
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only randomness is in the random sum in the service times. The random
sum is a geometric random sum of constants in this case. When we apply
the [12] method for simulation, it suffices to reduce variance by ignoring the
large Ms. We treat the service times as D with mean ρ. But, when we do
so, we have to make adjustments in the final formulas as indicated above.

Corollary 6.1. (one waiting time in terms of the other) For the F0/Gu/1
model with support bound Ms and parameter vector (1, c2a, ρ, c

2
s),

lim
Ms→∞

E[W (F0/Gu/1)] = E[W (D(1/p)/RS(D(ρ), p)/1)] + ρc2a +
ρ2c2s

2(1 − ρ)

= E[W (D(1/p)/RS(D(ρ), p)/1)] +
ρ2(Bc2a + c2s)

2(1 − ρ)
(6.7)

for

(6.8) B ≡ (2/ρ) − 2.

6.3. Combining Theorem 6.1 and Corollary 4.1. Combining Theorem 6.1
and Corollary 4.1, we obtain

Corollary 6.2. (reduction to idle time) For the GI/GI/1 model with
extremal interarrival-time cdf F0 and extremal service-time cdf Gu∗,

E[W (F0, Gu∗)] ≡ lim
Ms→∞

E[W (F0/Gu/1)]

=
c2a + ρ2c2s
2(1 − ρ)

+
1− ρ

2
− φ(I; 1, c2a, ρ, c

2
s),(6.9)

where I is the idle time in an F0/Gu∗/1 queue or, equivalently, in a F0/D/1
queue for an appropriate D.

Corollary 6.2 shows that to determine the UB E[W (F0/Gu∗/1)], it suf-
fices to calculate the term φ(I; 1, c2a, ρ, c

2
s) in (6.3) for the F0/D/1 model via

effective algorithms. In contrast, Theorem 6.2 concludes that it suffices to
calculate φ in (6.3) for the D/RS(D(ρ), p)/1 model, but we see that these
are equivalent, because we can go from one to the other by applying The-
orem 3.1. Thus we conclude that §3 and §4 are two different ways to reach
essentially the same conclusion.
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7. Computing the Distribution and Moments of the Idle Time.

Theorem 6.2 implies that the steady-state mean waiting time E[W ] in the ex-
tremal F0/Gu∗/1 model can be expressed in terms of the first two moments of
the steady-state idle time I in theD(1/p)/RS(D, p)/1 model and the param-
eter vector (1, c2a, ρ, c

2
s). In this section we show how to develop algorithms

to calculate the distribution and moments of I in the D(1/p)/RS(D, p)/1
model based on a random walk representation.

7.1. A Random Walk Absorption Representation of the Idle-Time. For
the reduced model D(1/p)/RS(D, p)/1, the steady-state idle time can be
expressed in terms of a random walk {Yk : k ≥ 0} defined in terms of the
recursion,

(7.1) Yk+1 = Yk + ρNk − (1 + c2a), k ≥ 1, Y0 ≡ 0.

The random variables ρNk− (1+c2a) are the steps of the random walk. Each
step is the net input of work from one arrival time to the next. Because Nk

take values on the positive integers, the possible steps are kρ− (1 + c2a) for
k ≥ 1, so that ρNk − (1 + c2a) ≥ ρ− (1 + c2a).

As long as Yk ≥ 0, Yk represents the work in the system at the time of the
kth arrival, starting empty. The number of customers served in that busy
cycle, Nc, and the length of a busy cycle, C, are then

(7.2) Nc = inf {k ≥ 1 : Yk ≤ 0} and C = Nc(1 + c2a).

The associated idle-time random variable is distributed as

(7.3) I
d
= −YNc , so that 0 ≤ I ≤ c2a + 1− ρ.

7.2. An Idle-Time Simulation Algorithm. Given N i.i.d. copies of I, each
obtained via (7.1)-(7.3), we can estimate the cdf FI(x) ≡ P(I ≤ x), x ≥ 0,
by the empirical cdf

(7.4) F̄I(x) ≡ N−1
N
∑

i=1

I(Ii ≤ x).

To estimate the pth moment E[Ip], we can compute the sample mean, using

(7.5) ĪN ≡ ρR−1
R
∑

i=1

N−1
N
∑

i=1

Ii,

where R is the number of replications.
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7.3. A DTMC Numerical Algorithm. If the traffic intensity ρ and the
interarrival time 1 + c2a are integer multiples of a common δ > 0, then the
steps of the random walk are confined to a lattice subset of the real line
and the possible values of the idle time lie in a finite subset. In particular,
consider the alternative recursion

(7.6) Zk+1 = Zk + ρNk/δ − (1 + c2a)/δ, k ≥ 1, Z0 ≡ 0.

Clearly, each step in (7.1) is divided by δ in (7.6). Hence, Yk = δZk, k ≥ 0.
However, now Zk takes values in the integers. We assume that ρ and the
interarrival time 1 + c2a are indeed integer multiples of a common δ and we
use the largest δ with that property.

Thus, from (7.2) The number of customers served in that busy cycle, Nc,
and the length of a busy cycle, C, are then

(7.7) Nc = inf {k ≥ 1 : Zk ≤ 0} and C = Nc(1 + c2a)δ.

The associated idle-time random variable is thus distributed as

(7.8) I
d
= −δZNc .

However, before hitting a nonpositive value, the random walk now must
start in some nonnegative integer state. If the workload RW visits positive
states, then it must start from a strictly positive integer, but we could have
two idle times in a row. Then we could start in 0. Hence, we have

(7.9) 0 ≤ −ZNc ≤
1 + c2a − ρ

δ
and 0 ≤ I ≤ 1 + c2a − ρ.

Given the alternative recursion in (7.6), the random walk takes values
in the integers, so we can calculate the distribution of I by calculating the
absorption probabilities of a DTMC with integer state space. The absorption
can take place on a finite subset of nonpositive integers. Specifically, the
state space is the set S ≡ {k : k ≥ ρ/δ − (1 + c2a)/δ} with absorbing
states {k : −1 ≥ k ≥ ρ/δ − (1 + c2a)/δ}. We obtain a finite DTMC by
truncating the state space at some level N ; i.e., let the truncated state
space be ST ≡ {k : ρ/δ − (1 + c2a)/δ ≤ k ≤ N}, let all transitions that
initially go above N go instead to N , so that P is a legitimate DTMC.

As usual, let Q be the square submatrix of transition probabilities be-
tween transient states and let R be the submatrix of one-step transition
probabilities from the transient states to the absorbing states. Let the fun-
damental matrix be (I −Q)−1. Then the absorption probabilities are given
by B ≡ (I − Q)−1R. The first column of B corresponds to the absorption
probabilities starting at state 0. We thus can use it to compute the moments
E[I] and E[I2].
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7.4. Numerical Experiments for the DTMC Algorithm. To illustrate the
DTMC numerical algorithm, we consider the example with c2a = 4. First,
Table 7 shows the results of the DTMC numerical algorithm for two values
of ρ: 0.5 and 0.8. The required values of δ for these two cases are 1 and 0.2,
respectively. We also show the performance for other (smaller) candidate δ,
which satisfy the integer requirement, but make the state space larger.

Table 7

Performance of DTMC(N) with Different Truncation Levels N and δ

ρ = 0.8 ρ = 0.5

N\δ 0.2 0.1 0.5 0.25 0.1
1 14.831987 14.831987 3.456240 3.436333 3.436333
10 14.862050 14.842114 3.469846 3.473675 3.467565
100 14.913166 14.904170 3.470132 3.470132 3.470163
500 14.916936 14.916816 3.470132 3.470132 3.470132
1000 14.916937 14.916936 3.470132 3.470132 3.470132
2000 14.916937 14.916937 3.470132 3.470132 3.470132
5000 14.916937 14.916937 3.470132 3.470132 3.470132

Table 7 shows that both the truncation level N and the scale factor δ
have an impact on E[W ], but the algorithm converges with six decimal
accuracy when N reaches 5E+03. The running time of algorithm depends
on truncation level N . Constructing the N × N transition matrix requires
computation of order O((N +X)2) = O(N2), while computing the inverse
matrix of Q. which is done by Gaussian elimination, requires O(N3). Hence,
the overall complexity of the algorithm is O(N3).

To elaborate, Table 8 shows the performance of the DTMC algorithm as
a function of N for other ρ. The appropriate δ is used in each case.

Table 8

Performance of DTMC Algorithm for Other Traffic Levels

N\ρ 0.95 0.90 0.70 0.60 0.40 0.30

1E+00 74.512312 34.621172 8.372901 5.243412 2.289971 1.493015
1E+01 74.512312 34.696376 8.381077 5.267151 2.296621 1.498390
1E+02 74.568945 34.719782 8.434009 5.294671 2.304104 1.499233
5E+02 74.608460 34.719782 8.441300 5.294825 2.304105 1.499234
1E+03 74.616306 34.721369 8.441305 5.294825 2.304105 1.499234
2E+03 74.619898 34.721484 8.441305 5.294825 2.304105 1.499234
5E+03 74.620917 34.721484 8.441305 5.294825 2.304105 1.499234
1E+04 74.620917 34.721484 8.441305 5.294825 2.304105 1.499234

Finally, Table 9 shows the corresponding performance for ρ = 0.99, for
which we need δ = 0.01, leading to a larger number of possible idle times.
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Given that the scale is 0.01, there are 102 possible idle time values, ranging
from 0.00 to 4.01 in increments of 0.01, as indicated in (7.9). We report the
results for different N .

Table 9

Performance of DTMC(N) for ρ = 0.99

δ\N 1E+02 5E+02 1E+03 2E+03 3E+03

0.01 394.420259 394.476457 394.496173 394.511729 394.518208

δ\N 5E+03 1E+04 2E+04 4E+04 6E+04

0.01 394.524273 394.529090 394.531611 394.533189 394.533189

Compared with performance of NB algorithm in this case, the DTMC
algorithm is less efficient. The DTMC algorithm needs more than 1E+05
seconds CPU time for N ≥ 2E + 04 to attain six decimal places accuracy
for ρ = 0.99. In contrast, with only 7E+03 seconds cpu time, the NB can
attains more than 15 decimal places accuracy. That advantage also holds
for lower traffic intensities. For ρ = 0.8, NB only needs around 0.7 seconds
CPU time for 15 decimal places accuracy while DTMC requires around 20
seconds cpu time with N = 2000.

8. Simulation Algorithms and Experiments. In this section we
compare three different simulation algorithms for estimating the extremal
mean steady-state waiting time E[W (F0, Gu∗)]: (i) the standard Monte Carlo
(MC) algorithm, (ii) the Minh-Sorli [12] (MS) algorithm and (iii) the method
from §7.2 based on simulating a discrete-time random walk.

8.1. The Simulation Algorithms. We now describe the three simulation
algorithms.

8.1.1. Multiple Replications. In order to estimate the overall statistical
precision as well as to improve it, for each simulation experiment, we perform
multiple (usually 20− 40) i.i.d. replications of the entire experiment. Thus,
E[W ] is estimated by the sample average

(8.1) W̄R ≡ R−1
R
∑

i=1

W̄[i],

where W̄[i] is the estimate from the ith replication and R is the number of
replications.
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By using multiple i.i.d. replications, we can construct confidence intervals
in the standard way. In particular, the sample variance is

(8.2) S2 ≡ (1/(R − 1))
R
∑

i=1

(W̄[i] − W̄R)
2,

so that the halfwidth of the confidence interval is CIL = t∗S/
√
R where

t∗ ≡ t(R)∗ is the critical value of the Student statistical t-test with R − 1
degrees of freedom. We use a 95% confidence interval, so t(20)∗ = 2.09.
To show the numerical and simulation methods accuracy, we compare the
different computational methods with 95% confidence interval.

8.1.2. The Standard Monte Carlo Algorithm. The standard Monte-Carlo
simulation method to estimate the mean steady-state waiting time in the
GI/GI/1 queue exploits the Lindley recursion in (1.1). For each successive
customer (indexed by n), we obtain a realization of the random variableWn.
The steady-state mean waiting time can be estimated by the sample average

(8.3) W̄ ≡ W̄ (N) ≡ N−1
N
∑

n=1

Wn.

From (1.2), we see that the expected value of the estimate W̄ (N) approaches
the limit from below as N increases. Because the sequence {Wn : n ≥ 0}
is a regenerative process, with empty times serving as regeneration points,
we can apply the strong law of large numbers to deduce that the estimator
is consistent as N → ∞. As an alternative, we could use the regenerative
approach in §IV.4 of [4].

In some cases, in order to reduce the estimation bias, within each replica-
tion we look at the long-run average after deleting an initial portion to allow
the system to approach steady state. We exploit the two point distributions
to simplify the event generation. In the simulation algorithm, the successive
events are classified in three ways: (i) arrival is next, (ii) departure is next
and (iii) next event occurs after given time T , where T is total simulation
length.

The computational precision gradually improves as N → ∞. Unfortu-
nately, the algorithm is not efficient for F0/Gu/1 with large Ms, primarily
because the large service times are rare events, which cause significant prob-
lems; e.g., see §VI of [4] and §XIII.7 of [3]. Moreover, the standard simulation
method is not efficient under heavy traffic levels because of its slow conver-
gence; e.g., see [19].
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8.1.3. The Minh-Sorli [12] Simulation Algorithm. In [12] another simu-
lation algorithm was proposed to address the difficulty in heavy traffic. The
idea is to exploit Theorem 6.1. In particular, we exploit the the discrete
event simulation method to estimate the first two moments of the steady
state idle period I; i.e., we exploit (6.1) and estimate φ(I) in (6.3). In the
simulation algorithm, the successive events are classified in three ways: (i)
arrival is next, (ii) departure is next and (iii) next event occurs after given
time T , where T is total simulation length.

Thus, within each replication we estimate E[I] and E[I2] and then apply
Theorem 6.1 to obtain an associated estimate of E[W ]. We then compute
confidence intervals for this alternative estimate of E[W ] by performing mul-
tiple replications, as described in §8.1.1.

8.2. Comparison of the Three Simulation Algorithms. We now apply and
compare our three simulation algorithms to estimate the mean steady-state
waiting time in the extremal F0/Gu∗/1 queue: (i) the standard Monte Carlo
(MC) algorithm, (ii) the [12] (MS) algorithm and (iii) the method from §7.2
based on simulating a discrete-time random walk.

Estimates of E[W ] for the F0/Gu∗/1 model by the three algorithms are
shown in Table 10. These are for the case c2a = c2s = 4.0 and Ms = 1000 for
MC algorithm andMs = ∞ for other two simulation algorithms. Results are
reported for a range of traffic intensities ranging from ρ = 0.1 to ρ = 0.99.

We now describe the simulation parameters for each algorithm. The MC
method had truncation levelN =1E+07 in (8.3) andR = 20 i.i.d replications
in (8.1.1). The MS method had total run length T =1E+06 again with
R = 20 iid replications. (We used all idle periods that fall within that time
interval.)

Table 10 shows the simulation estimates from all three approaches. Table
10 shows that the simulation methods are mutually confirming, but that the
confidence intervals are quite different. The accuracy is ordered by MS >
RW > MC with MS being best.
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Table 10

Comparison of Three Different Simulation Algorithms

simulation estimates of E[W (F0/Gu∗ )] for c2a = c2s = 4

ρ MC UB 95% CI Length MS UB 95% CI Length RW UB 95% CI Length

0.10 0.422 5.08E-04 0.422 7.79E-05 0.422 9.28E-04
0.20 0.904 2.29E-03 0.904 1.30E-04 0.903 1.64E-03
0.30 1.484 4.44E-03 1.499 1.71E-04 1.498 1.47E-03
0.40 2.310 1.47E-02 2.304 1.90E-04 2.305 1.68E-03
0.50 3.472 2.15E-02 3.470 2.25E-04 3.472 2.00E-03
0.60 5.276 5.39E-02 5.294 2.43E-04 5.295 3.14E-03
0.70 8.381 7.80E-02 8.442 3.05E-04 8.442 2.62E-03
0.80 15.016 1.54E-01 14.917 3.22E-04 14.919 3.13E-03
0.90 34.525 4.60E-01 34.722 5.17E-04 34.720 1.95E-03
0.95 76.059 1.24E+00 74.621 7.11E-04 74.621 2.26E-03
0.98 193.206 3.07E+00 194.556 9.29E-04 194.558 2.75E-03
0.99 394.763 1.02E+01 394.532 1.45E-03 394.532 2.62E-03

8.2.1. Simulation Efficiency. To compare statistical efficiency and com-
putational effectiveness, we consider the MC method with three different
N , the RW method with three different N , and the MS method with three
different total simulation time T . For each, 95% confidence intervals as a
function of these parameters as well as the number R of replications num-
bers and the traffic intensity ρ are reported in Table 11.
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Table 11

A Comparison of Three Simulation Methods

Confidence Interval Length for the MC method as a Function of N , R and ρ

N = 5E + 04 N = 1E + 05 N = 1E + 06
R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 5.03E-01 2.60E+00 1.08E+01 3.73E-01 3.33E+00 1.09E+01 1.78E-01 4.88E-01 2.78E+00
30 4.85E-01 2.73E+00 1.11E+01 2.41E-01 1.25E+00 6.91E+00 1.42E-01 3.26E-01 2.90E+00
40 3.90E-01 1.48E+00 9.27E+00 2.66E-01 1.16E+00 4.60E+00 1.28E-01 2.85E-01 2.63E+00
50 3.95E-01 1.55E+00 6.34E+00 3.37E-01 1.04E+00 4.91E+00 1.07E-01 3.47E-01 1.79E+00
60 4.42E-01 1.10E+00 8.84E+00 2.61E-01 1.15E+00 5.14E+00 6.86E-02 3.41E-01 1.58E+00
70 3.32E-01 1.16E+00 7.32E+00 2.59E-01 8.35E-01 4.49E+00 8.67E-02 2.61E-01 1.52E+00
80 3.18E-01 1.29E+00 7.82E+00 2.78E-01 7.22E-01 5.18E+00 8.88E-02 2.78E-01 1.31E+00
90 3.87E-01 1.07E+00 6.35E+00 2.61E-01 9.79E-01 4.28E+00 7.33E-02 2.85E-01 1.29E+00
100 2.99E-01 1.04E+00 4.78E+00 2.14E-01 8.15E-01 3.76E+00 8.02E-02 2.22E-01 1.33E+00

Confidence Interval Length for the RW method with Number of Copies N

N = 100 N = 500 N = 1000
R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9
20 1.77E-02 2.90E-02 2.27E-02 9.47E-03 1.06E-02 9.12E-03 8.13E-03 6.52E-03 7.43E-03
30 1.85E-02 1.83E-02 1.80E-02 6.78E-03 9.34E-03 7.82E-03 5.86E-03 5.07E-03 7.74E-03
40 1.51E-02 1.66E-02 1.73E-02 6.51E-03 8.11E-03 7.92E-03 5.25E-03 4.34E-03 6.14E-03
50 1.35E-02 1.49E-02 1.75E-02 5.84E-03 6.36E-03 7.06E-03 4.27E-03 3.97E-03 4.14E-03
60 1.21E-02 1.17E-02 1.39E-02 4.79E-03 6.02E-03 5.65E-03 3.49E-03 4.54E-03 4.24E-03
70 1.11E-02 1.30E-02 1.24E-02 4.81E-03 5.37E-03 5.84E-03 2.95E-03 3.44E-03 4.17E-03
80 1.14E-02 1.20E-02 1.11E-02 4.92E-03 3.90E-03 5.01E-03 3.08E-03 3.52E-03 3.78E-03
90 8.84E-03 9.94E-03 9.84E-03 4.18E-03 4.34E-03 4.62E-03 2.93E-03 3.15E-03 3.99E-03
100 8.30E-03 8.50E-03 1.09E-02 3.95E-03 4.22E-03 4.46E-03 2.95E-03 3.30E-03 3.42E-03

Confidence Interval Length for the MS method with Simulation Length T

T = 1E + 03 T = 1E + 04 T = 1E + 05
R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 1.88E-02 1.91E-02 2.42E-02 5.51E-03 7.87E-03 9.33E-03 1.34E-03 2.01E-03 3.16E-03
30 1.31E-02 1.47E-02 3.78E-02 4.50E-03 5.27E-03 9.97E-03 9.59E-04 1.36E-03 2.43E-03
40 1.01E-02 1.56E-02 2.67E-02 4.04E-03 4.78E-03 8.65E-03 1.19E-03 1.56E-03 2.94E-03
50 1.04E-02 1.39E-02 2.25E-02 3.35E-03 4.02E-03 7.47E-03 8.93E-04 1.46E-03 2.11E-03
60 9.72E-03 1.21E-02 2.39E-02 2.60E-03 3.51E-03 6.65E-03 7.58E-04 1.03E-03 1.91E-03
70 9.32E-03 8.66E-03 1.87E-02 2.51E-03 3.74E-03 5.96E-03 8.77E-04 1.16E-03 1.99E-03
80 8.55E-03 9.71E-03 1.78E-02 2.07E-03 3.31E-03 7.06E-03 8.62E-04 1.16E-03 1.70E-03
90 6.85E-03 8.56E-03 1.59E-02 2.22E-03 3.30E-03 5.74E-03 7.13E-04 9.58E-04 1.57E-03
100 7.74E-03 8.46E-03 1.81E-02 2.14E-03 3.04E-03 4.72E-03 7.49E-04 8.71E-04 1.37E-03

The MS and RW methods are based on sample means from i.i.d. samples
and thus are unbiased estimators, but that is not the case for MC. So the
bias is also a concern, especially for high ρ. Thus, the MC method is even
worse than shown. To illustrate the problem, we compare the RW and MC
algorithms for ρ = 0.99 in Table 12. Table 12 shows the large error for
smaller N with MC, but no problem at all with RW.

Table 12

A Comparison between MC and RW Simulation for ρ = 0.99

N = 1E + 02 N = 1E + 02 N = 5E + 02 N = 5E + 02 N = 1E + 03 N = 1E + 03

R = 100 E[W ] 95% CIL E[W ] 95% CIL E[W ] 95% CIL
RW 394.533 1.02E-02 394.530 4.57E-03 394.535 3.29E-03

N = 5E + 04 N = 5E + 04 N = 1E + 05 N = 1E + 05 N = 1E + 06 N = 1E + 06

R = 100 E[W ] 95% CIL E[W ] 95% CIL E[W ] 95% CIL
MC 182.41 2.43E+01 261.62 3.30E+01 385.48 3.34E+01

After comparing the computational outcomes from these three tables,
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we see that the MS algorithm clearly is more efficient than the other two
simulation algorithms. To elaborate, we describe the computational effort.
With 100 seconds of CPU time and 100 iid replications, the MS method
can reach 1E-04 95% confidence interval length for most of the traffic levels,
while the MC can only have 1E-03 confidence interval length.

Expressed differently, in order to achieve 1E-03 or 1E-02 confidence inter-
val length for all traffic levels, the MS method needs at most needs CPU com-
putational time less than 1 second, but RW needs several seconds. The MC
method is the worst method which has bad performance in computational
cost and accuracy typically for heavy traffic. Even though it takes more
than 200 seconds CPU time with 100 replications and N=1E+06 copies, the
confidence interval length can still be large than 1 for some heavy traffic
levels.

Finally, the MC and MS methods are far easier to generalize. The MC
method applies to many models, while the MS method applies to anyGI/GI/1
queue, but the RWmethod depends on the detailed special structure. Hence,
there exist more strict requirements to implement the RW method.

8.3. Simulation Comparisons for Three Related Models. In order to bet-
ter understand the c0mputational issues provided by the extremal F0/Gu∗/1
model, we now compare the MC and MS algorithms on three different mod-
els: (i) the F0/Gu/1 with Ms = 1000, (ii) the F0/D/1 model (avoiding the
rare large service time) and (iii) the reduced D(1/p)/RS(D(ρ), p)/1 model
obtained from the model reductions.

8.3.1. A Monte Carlo Simulation Comparison for Three Queues. We
now compare MC simulation performance for three queues F0/Gu/1 with
Ms = 103, F0/D/1 and D/RS(ρ, p)/1 for traffic level ρ = 0.5, 0.7, 0.9 and
report the confidence interval length based on statistical T test.
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Table 13

A Comparison of Monte-Carlo simulation for Two Queues

Confidence Interval Length for MC for F0/Gu/1 with Ms = 1000
N = 5E + 04 N = 1E + 05 N = 1E + 06

R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 5.03E-01 2.60E+00 1.08E+01 3.73E-01 3.33E+00 1.09E+01 1.78E-01 4.88E-01 2.78E+00
40 3.90E-01 1.48E+00 9.27E+00 2.66E-01 1.16E+00 4.60E+00 1.28E-01 2.85E-01 2.63E+00
60 4.42E-01 1.10E+00 8.84E+00 2.61E-01 1.15E+00 5.14E+00 6.86E-02 3.41E-01 1.58E+00
80 3.18E-01 1.29E+00 7.82E+00 2.78E-01 7.22E-01 5.18E+00 8.88E-02 2.78E-01 1.31E+00
100 2.99E-01 1.04E+00 4.78E+00 2.14E-01 8.15E-01 3.76E+00 8.02E-02 2.22E-01 1.33E+00

Confidence Interval Length for MC for F0/D/1
N = 5E + 04 N = 1E + 05 N = 1E + 06

R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 4.60E-03 4.99E-03 1.40E-02 1.72E-03 1.54E-03 3.39E-03 4.25E-04 7.84E-04 1.23E-03
40 3.41E-03 4.31E-03 7.89E-03 1.18E-03 1.36E-03 2.57E-03 3.16E-04 4.25E-04 8.54E-04
60 2.94E-03 3.77E-03 6.14E-03 8.50E-04 1.30E-03 2.22E-03 2.93E-04 3.50E-04 6.49E-04
80 2.63E-03 3.30E-03 5.49E-03 8.19E-04 1.01E-03 1.83E-03 2.56E-04 2.85E-04 4.96E-04
100 2.43E-03 2.89E-03 5.31E-03 8.18E-04 9.07E-04 1.40E-03 1.87E-04 2.86E-04 4.45E-04

Confidence Interval Length of MC for D(1/p)/RS(D(ρ), p)/1
N = 5E + 04 N = 1E + 05 N = 1E + 06

R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9
20 6.19E-03 3.40E-02 4.76E-01 4.61E-03 2.08E-02 3.23E-01 1.61E-03 7.61E-03 8.19E-02
40 3.29E-03 2.66E-02 2.92E-01 2.61E-03 2.00E-02 2.19E-01 1.04E-03 6.46E-03 7.13E-02
60 3.03E-03 1.79E-02 2.80E-01 2.07E-03 1.16E-02 1.68E-01 7.27E-04 4.79E-03 6.03E-02
80 2.62E-03 1.89E-02 2.10E-01 2.04E-03 1.19E-02 1.47E-01 5.75E-04 3.67E-03 4.63E-02
100 2.82E-03 1.57E-02 1.90E-01 1.63E-03 9.84E-03 1.23E-01 6.19E-04 3.14E-03 4.83E-02

As expected, Table 13 shows that the model reduction makes the Monte-
Carlo simulation more efficient and accurate. Typically, the simulation is
most accurate for F0/D/1.

8.3.2. A Minh-Sorli Simulation Comparison for Three Queues.. We have
shown MS method has the same performance for the two queues F0/D/1
and F0/Gu/1 as Ms → ∞ in §4. So we compare the simulation performance
for F0/Gu/1 with given Ms = 1000, F0/D/1 and the queue D/RS(ρ, p)/1.
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Table 14

A Comparison of Minh-Sorli simulation for Three Queues

Confidence Interval Length of MS for F0/Gu/1

T = 5E + 04 T = 1E + 05 T = 1E + 06
R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9
20 1.88E-02 1.91E-02 2.42E-02 5.51E-03 7.87E-03 9.33E-03 1.34E-03 2.01E-03 3.16E-03
40 1.01E-02 1.56E-02 2.67E-02 4.04E-03 4.78E-03 8.65E-03 1.19E-03 1.56E-03 2.94E-03
60 9.72E-03 1.21E-02 2.39E-02 2.60E-03 3.51E-03 6.65E-03 7.58E-04 1.03E-03 1.91E-03
80 8.55E-03 9.71E-03 1.78E-02 2.07E-03 3.31E-03 7.06E-03 8.62E-04 1.16E-03 1.70E-03
100 7.74E-03 8.46E-03 1.81E-02 2.14E-03 3.04E-03 4.72E-03 7.49E-04 8.71E-04 1.37E-03

Confidence Interval Length of MS for F0/D/1

T = 5E + 04 T = 1E + 05 T = 1E + 06
R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9
20 4.07E-03 5.04E-03 1.13E-02 3.61E-03 3.96E-03 8.32E-03 1.05E-03 1.33E-03 2.86E-03
40 3.28E-03 4.12E-03 6.79E-03 2.20E-03 2.23E-03 4.18E-03 6.46E-04 8.24E-04 1.72E-03
60 2.57E-03 2.77E-03 6.67E-03 1.75E-03 2.91E-03 3.66E-03 4.85E-04 6.94E-04 1.49E-03
80 2.22E-03 3.05E-03 4.51E-03 1.59E-03 2.04E-03 3.44E-03 5.04E-04 6.27E-04 1.06E-03
100 1.65E-03 2.63E-03 4.27E-03 1.32E-03 1.51E-03 3.49E-03 4.43E-04 5.28E-04 9.82E-04

Confidence Interval Length of MS for D(1/p)/RS(D(ρ), p)/1

T = 5E + 04 T = 1E + 05 T = 1E + 06
R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9
20 4.60E-03 5.74E-03 1.10E-02 2.43E-03 4.16E-03 9.07E-03 9.40E-04 9.97E-04 2.54E-03
40 3.82E-03 3.26E-03 6.97E-03 2.43E-03 3.22E-03 5.97E-03 7.31E-04 9.14E-04 1.88E-03
60 2.48E-03 3.33E-03 6.66E-03 1.77E-03 2.34E-03 4.26E-03 5.40E-04 6.64E-04 1.37E-03
80 1.89E-03 2.48E-03 4.68E-03 1.68E-03 2.06E-03 3.11E-03 5.18E-04 6.36E-04 1.16E-03
100 1.89E-03 2.56E-03 3.95E-03 1.16E-03 1.51E-03 3.20E-03 4.33E-04 5.36E-04 9.18E-04

The Minh-Sorli algorithm for all queues have the almost same simula-
tion accuracy, typically F0/D/1 and D/RS(ρ, p)/1 are slightly better than
F0/Gu/1. Regarding the computational effort, the cpu time is around 20−
100 seconds for F0/D/1 while that is around 50−300 seconds forD/RS(ρ, p)/1
when R increases from 20 to 100. So The model reduction makes the Minh-
Sorli algorithm more efficient.

Tables 13 and 14 show that the inter-arrival-time and service-time model
reductions both make the algorithms more accurate and efficient, but the
service-time reduction is slightly better. Moreover, the Minh-Sorli simulation
outperforms Monte-Carlo simulation for any of the three models.

8.3.3. The Idle-Time Distribution in Two Queues. We apply the Minh-
Sorli [12] simulation algorithm to compare the first two moments of steady-
state idle time for the extremal queue F0/Gu∗/1 queue and the M/M/1
queue.

For theM/M/1 model with λ = 1, it is well known that both I and Ie are
exponential with mean 1 for all ρ, so that E[I] = 1, E[I2] = 2 and E[Ie] = 1
for all ρ. Nevertheless, as an independent check, we apply the MS algorithm
to both the M/M/1 and F0/Gu∗/1 models. The results are shown in Table
15.

Figure 1 shows an estimate of the steady-state idle-time distribution by
MS. To get good precision, we increase T to T = 5E + 09 under ρ = 0.99.
We remark that this is also the steady-state idle-time distribution for model
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Table 15

A Comparison of the idle-time Distribution in the F0/Gu∗/1 and M/M/1 queues, using
the Minh-Sorli [12] algorithm with T = 1E + 06

ρ = 0.8 ρ = 0.99

F0/Gu∗/1

R E[I ] E[I2] E[Ie] E[I ] E[I2] E[Ie]

20 2.453 7.766 1.583 2.111 6.298 1.492
40 2.452 7.765 1.583 2.114 6.307 1.492
60 2.452 7.763 1.583 2.114 6.304 1.491
80 2.451 7.760 1.583 2.114 6.309 1.492
100 2.451 7.760 1.583 2.113 6.306 1.492

ρ = 0.8 ρ = 0.99

M/M/1

R E[I ] E[I2] E[Ie] E[I ] E[I2] E[Ie]

20 1.000 1.999 1.000 1.000 2.003 1.001
40 0.999 1.997 0.999 0.999 1.994 0.997
60 1.000 1.999 1.000 1.002 2.002 0.999
80 1.000 1.999 1.000 1.001 2.005 1.001
100 1.000 2.001 1.000 1.000 2.002 1.001

F0/D/1.

Fig 1. Simulation estimates of the steady-state idle-time distribution in the F0/Gu∗/1
model under traffic level ρ = 0.99.

9. Conclusions. In this paper we developed numerical and simulation
algorithms to compute the mean steady waiting time E[W ] in the extremal
GI/GI/1 queue given the first two moments of the interarrival-time and
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service-time distributions, as specified by the parameter vector (1, c2a, ρ, c
2
s).

In [5] we showed that E[W ] is attained (asymptotically) in the F0/Gu∗/1
model, involving two-point distributions. In §2 we present evidence that the
tight upper bound provides a significant improvement over previous upper
bounds.

Our algorithms are based on three different convenient alternative rep-
resentations for the mean waiting time E[W ] in the F0/Gu∗/1 extremal
model. In §3 and §4, we showed that it suffices to calculate E[W ] in the
D(1/p)/RS(D(ρ), p)/1 model, where p = 1/(1 + c2a) and the service time is
a geometric random sum of deterministic values taking the value ρ.

In §5 we developed effective numerical algorithms to compute the mean
steady-state waiting time E[W (D(1/p)/RS(D(ρ), p)/1] using recursive al-
gorithms for the negative binomial distribution. We also conducted experi-
ments showing that they are effective. We exposed and resolved an underflow
problem that can arise in heavy traffic.

In §6 we showed that it also suffices the compute the first two moments of
the steady-state idle-time distribution in the D(1/p)/RS(D(ρ), p)/1 model.
Theorem 6.2 shows that the idle time is better behaved than the waiting
time as the extremal service mass increases. In §7 we showed that effective
numerical and simulation algorithms can be developed based on this ap-
proach as well, but so far this approach does not seem better than the NB
algorithm in §5.

In §8 we studied three possible simulation algorithms for estimating E[W ]
in the F0/Gu∗/1 model: the standard monte Carlo simulation (MC) and two
methods exploiting the idle-time representation: the Minh-Sorli [12] algo-
rithm and a new algorithm based on a discrete time random walk (RW). We
showed that both MS and RW provide significant improvement over MC,
but that MS tends to be best.

Overall, we found that, first, the reductions are powerful for simplifying
the algorithms and, second, that the refined negative-binomial numerical
algorithm in §5 and the Minh-Sorli [12] simulation algorithm in §8 are most
effective for computing E[W (D(1/p)/RS(D(ρ), p)/1].

10. Appendix. We now present additional results to supplement the
main paper. Tables 16 and 17 are analogs of Tables 1 and 2 for the mixed
cases c2a = 4.0, c2s = 0.5. and c2a = 0.5, c2s = 4.0.
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Table 16

A comparison of the unscaled bounds and approximations for the steady-state mean E[W ]
as a function of ρ for the case c2a = 4.0 and c2s = 0.5

ρ Tight LB HTA Tight UB UB Approx δ MRE Daley Kingman
(1.9) (2.1) (1.8) (1.6) (1.5)

0.10 0.00 0.025 0.403 0.403 0.000 0.00% 0.425 2.23
0.15 0.00 0.060 0.607 0.607 0.001 0.06% 0.660 2.36
0.20 0.00 0.113 0.816 0.818 0.007 0.21% 0.913 2.51
0.25 0.00 0.188 1.04 1.04 0.020 0.45% 1.19 2.69
0.30 0.00 0.289 1.27 1.28 0.041 0.76% 1.49 2.89
0.35 0.00 0.424 1.54 1.55 0.070 1.10% 1.82 3.12
0.40 0.00 0.600 1.83 1.86 0.107 1.31% 2.20 3.40
0.45 0.00 0.828 2.18 2.21 0.152 1.63% 2.63 3.73
0.50 0.00 1.13 2.60 2.64 0.203 1.51% 3.13 4.13
0.55 0.00 1.51 3.08 3.14 0.261 1.89% 3.71 4.61
0.60 0.00 2.03 3.71 3.78 0.324 1.79% 4.43 5.23
0.65 0.00 2.72 4.51 4.59 0.393 1.62% 5.32 6.02
0.70 0.00 3.68 5.56 5.66 0.467 1.74% 6.48 7.08
0.75 0.00 5.06 7.07 7.17 0.546 1.39% 8.06 8.56
0.80 0.00 7.20 9.29 9.42 0.629 1.31% 10.40 10.80
0.85 0.28 10.84 13.04 13.17 0.716 0.93% 14.24 14.54
0.90 1.08 18.23 20.53 20.67 0.807 0.68% 21.83 22.03
0.95 3.54 40.61 43.00 43.17 0.902 0.39% 44.41 44.51
0.98 11.02 108.0 110.5 110.7 0.960 0.17% 112.0 112.0
0.99 23.51 220.5 223.0 223.2 0.980 0.09% 224.5 224.5

Table 17

A comparison of the unscaled bounds and approximations for the steady-state mean E[W ]
as a function of ρ for the case c2a = 0.5 and c2s = 4.0

ρ Tight LB HTA Tight UB UB Approx δ MRE Daley Kingman
(1.9) (2.1) (1.8) (1.6) (1.5)

0.10 0.00 0.025 0.072 0.072 0.000 0.03% 0.075 0.300
0.15 0.00 0.060 0.128 0.128 0.001 0.03% 0.135 0.347
0.20 0.00 0.113 0.200 0.201 0.007 0.30% 0.213 0.413
0.25 0.00 0.188 0.292 0.294 0.020 0.68% 0.313 0.500
0.30 0.00 0.289 0.409 0.414 0.041 1.07% 0.439 0.614
0.35 0.00 0.424 0.558 0.565 0.070 1.32% 0.599 0.762
0.40 0.00 0.600 0.746 0.757 0.107 1.48% 0.800 0.950
0.45 0.011 0.828 0.986 1.00 0.152 1.58% 1.05 1.19
0.50 0.250 1.13 1.29 1.31 0.203 1.91% 1.38 1.50
0.55 0.569 1.51 1.69 1.72 0.261 1.45% 1.79 1.90
0.60 1.000 2.03 2.21 2.24 0.324 1.40% 2.33 2.43
0.65 1.589 2.72 2.91 2.95 0.393 1.26% 3.04 3.13
0.70 2.427 3.68 3.88 3.92 0.467 1.23% 4.03 4.10
0.75 3.63 5.06 5.25 5.33 0.546 1.41% 5.44 5.50
0.80 5.50 7.20 7.42 7.48 0.629 0.74% 7.60 7.65
0.85 8.71 10.8 11.18 11.13 0.716 0.48% 11.3 11.3
0.90 15.3 18.2 18.47 18.53 0.807 0.32% 18.7 18.7
0.95 35.1 40.6 40.87 40.93 0.902 0.15% 41.1 41.1
0.98 95.1 108.0 108.3 108.4 0.960 0.06% 108.5 108.5
0.99 195.0 220.5 220.8 220.9 0.980 0.03% 221.0 221.0
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