Appendix A

Regular Variation

Since we use regular variation at several places in this book, we give
a brief account here without proofs, collecting together the properties we
need. Bingham, Goldie and Teugels (1989) is the definitive treatment; it
contains everything here. Nice accounts also appear in Feller (1971) and
Resnick (1987).

We say that a real-valued function f defined on the interval (c,o00) for
some ¢ > 0 is asymptotically equivalent to another such function g (at infin-
ity) and write

flz)~g(z) as z— (A1)
if
f(z)/g(z) 1 as z— 0. (A.2)
We say that the real-valued function f has a power tail of index « (at infinity)
if
flz) ~Az* as z— (A.3)
for a non-zero constant A. Regular variation is a generalization of the power-
tail property that captures just what is needed in many mathematical set-
tings.

A positive, Lebesgue measurable real-valued function (on some interval

(c,00)) L is said to be slowly varying (at infinity) if

L(A\z) ~L(z) as z — oo foreach A>0. (A.4)

Examples of slowly varying functions are positive constants, functions that
converge to positive constants, logarithms and iterated logarithms. (Note
that logz is positive on (1, 00), while Loz = loglog z is positive on (e, 00).)
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The positive functions 2 4 sinz and e™*

happen that a slowly varying function experiences infinite oscillation in the
sense that

are not slowly varying. It can

liminf L(z) =0 and limsupL(z)= 0 ;

z—00 T—00

an example is
L(z) = exp{(In(1 + z))"/? cos((In(1 + z))"/?)} . (A.5)
It is significant that there is local uniform convergence in (A.4).

Theorem A.1l. (local uniform convergence) If L is slowly varying, then
L(Az)/L(z) — 1 as x — oo uniformly over compact \ sets.

Theorem A.2. (representation theorem) The function L is locally varying
if and only if

L(z) = c(z) exp ( / " (b(w) /u)du) . z>a, (A.6)

for some a > 0, where ¢ and b are measurable functions, c(z) — c(oc0) €
(0,00) and b(z) = 0 as £ — o0.

In general a slowly varying function need not be smooth, but it is always
asymptotically equivalent to a smooth slowly varying function; see p. 15 of
Bingham et al. (1989).

Theorem A.3. If L is slowly varying function, then there exists a slowly
varying function Ly with continuous derivatives of all orders (in C*°) such
that

L(z) ~ Lo(z) as z— oo .

If L is eventually monotone, then so is Ly.

We now turn to regular variation. A positive, Lebesgue measurable
function (on some interval (c,00)) is said to be regularly varying of index a,
and we write h € R(a), if

h(Az) ~ A%h(z) as z— oo forall A>0. (A7)

Of course, (A.7) holds whenever h has a power tail with index «, but it also
holds more generally.

The connection to slowly varying function is provided by the character-
ization theorem.
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Theorem A.4. (characterization theorem) If
h(Az) ~ g(A)h(z) as x— o0 (A.8)
for all X in a set of positive measure, then
(i) (A.8) holds for all X > 0,
(ii) there exists a number a such that g(A\) = A* for all \, and
(i1i) h(z) = z*L(x) for some slowly varying function L.

From Theorem A.4 (iii) we see that we could have defined a regularly
varying function in terms of a slowly varying function L. On the other
hand, (A.8) is an appealing alternative starting point, implying (A.7) and
the representation in terms of slowly varying functions. As a consequence
of Theorem A.4 (iii), we write h € R(0) when h is slowly varying.

We now indicate how the local-uniform-convergence property of R(0) in
Theorem A.1l extends to R.

Theorem A.5. (local uniform convergence) If h € R(«) and h is bounded
on each interval (0,c], then

h(Az)/h(z) = A% as z— oo
uniformly in A:
on each [a,b], 0<a<b<oo, ifa=0
on each (0,b], 0<b< oo, ifa>0

on each [a,00), 0<a< o0, if a <0.

The representation theorem for slowly varying functions in Theorem A.2
also extends to regularly varying functions.

Theorem A.6. (representation theorem) We have h € R(«) if and only if

h(z) = c(z) exp {/:(b(u)/u)du} Cz>a,

for some a > 0, where ¢ and b are measurable functions, c(r) — c(oc0) €
(0,00) and b(z) — a as z — oco.

We now present some closure properties.
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Theorem A.7. (closure properties) Suppose that hy € R(ay) and hy €
R(agz). Then:

(i) h$ € R(aay).

(ii) h1 + he € R(a) for a = max{a1, as}.

(iii) hihy € R(on + a2).

(iv) If, in addition, ho(z) — oo, then (hy o hy)(z) = hi(he(z)) € R(aras).

Regular variation turns out to imply local regularity conditions; see p.
18 of Bingham et al. (1989).

Theorem A.8. (local integrability theorem) If h € R(«) for some «, then
h and 1/h are both bounded and integrable over compact subintervals of
(c,0) for suitably large c.

It is significant that integrals of regularly varying functions are again
regularly varying with the same slowly varying function (i.e., the slowly
varying function passes through the integral).

Theorem A.9. (Karamata’s integral theorem) Suppose that L € R(0) and
that L is bounded on every compact subset of [c,00) for some ¢ > 0. Then

(a) for a > —1,
T xa—f—l
/ t*L(t)dt ~ L(z) as z— o0
c a+1
(b) for a < —1,
oo $a+1
/ t*L(t)dt ~ — L(z) as z—o00.
= a+1

It is also possible to deduce regular variation of functions from the
regular-variation properties of the integrals, i.e., the converse half of the
Karamata integral theorem; see p. 30 of Bingham et al. (1989).



