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Abstract

We develop a diffusion approximation for the queue-length stochastic process in the G/GI/n/m

queueing model (having a general arrival process, independent and identically distributed ser-

vice times with a general distribution, n servers and m extra waiting spaces). We use the

steady-state distribution of that diffusion process to obtain approximations for steady-state

performance measures of the queueing model, focusing especially upon the steady-state delay

probability. The approximations are based on heavy-traffic limits in which n tends to infinity

as the traffic intensity increases. Thus the approximations are intended for large n.

For the GI/M/n/∞ special case, Halfin and Whitt (1981) showed that scaled versions

of the queue-length process converge to a diffusion process when the traffic intensity ρn ap-

proaches 1 with (1− ρn)
√

n → β for 0 < β < ∞. A companion paper, Whitt (2004a), extends

that limit to a special class of G/GI/n/mn models in which the number of waiting places

depends on n and the service-time distribution is a mixture of an exponential distribution

with probability p and a unit point mass at 0 with probability 1− p. Finite waiting rooms are

treated by incorporating the additional limit mn/
√

n → κ for 0 < κ ≤ ∞. The approximation

for the more general G/GI/n/m model developed here is consistent with those heavy-traffic

limits. Heavy-traffic limits for the GI/PH/n/∞ model with phase-type service-time distribu-

tions established by Puhalskii and Reiman (2000) imply that our approximating process is not

asymptotically correct for non-exponential phase-type service-time distributions, but neverthe-

less the heuristic diffusion approximation developed here yields useful approximations for key

performance measures, such as the steady-state delay probability. The accuracy is confirmed

by making comparisons with exact numerical results and simulations.
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The rapid growth of telephone call centers and more general customer contact centers

has generated renewed interest in the performance of multiserver queueing models when the

number of servers is large; e.g., see Armony and Maglaras (2003), Borst, Mandelbaum and

Reiman (2003), Gans, Koole and Mandelbaum (2002), Garnett, Mandelbaum and Reiman

(2002), Mandelbaum (2001), Whitt (2003) and references therein.

Since these multiserver systems often have a very large number of servers, it is natural

to look for insight into system performance by considering asymptotics as the number of

servers is allowed to increase. Such limits were established for the GI/M/n/∞ queueing

model (with renewal arrival process, exponential service times, n servers and unlimited waiting

room) by Halfin and Whitt (1981), for the more general GI/PH/n/∞ model (with phase-type

service times) by Puhalskii and Reiman (2000) and for the M/M/n/∞ model with exponential

customer abandonment by Garnett, Mandelbaum and Reiman (2002). They considered a

sequence of models indexed by the number of servers, n, and let n → ∞ with the traffic

intensities ρn converging to 1, the critical value for stability. Interesting nondegenerate limits

occur when
√

n(1− ρn) → β for 0 < β < ∞ . (0.1)

An important performance measure in this setting is the delay probability, i.e., the steady-

state probability that an arriving customer finds all servers busy and must wait in queue before

starting service. For the GI/M/n/∞ model (and presumably for the GI/PH/n/∞ model as

well, although it remains to be proved), if n → ∞ with condition (0.1) holding, then the

associated sequence of delay probabilities approaches a limit α strictly between 0 and 1. Since

the delay probabilities require no scaling by a function of n for that limit, the delay probability

tends to be an especially useful performance measure, as suggested by Whitt (1992).

For the M/M/n/∞ model, the delay-probability limit has a relatively simple form,

α ≡ α(β) = [1 + βΦ(β)/φ(β)]−1 , (0.2)

where β is the limit in (0.1), Φ is the cumulative distribution function (cdf) and φ is the

probability density function (pdf) of a standard (mean 0, variance 1) normal random variable;

e.g., Φ(x) = P (N(0, 1) ≤ x). The function α in (0.2) is a continuous strictly-convex strictly-

decreasing function on the positive halfline, with α(0) = 1 and α(β) → 0 as β → ∞; see

Lemma B.1 of Borst et al. (2003). For the M/M/n/∞model, the asymptotic-delay-probability

function α in (0.2) plays a crucial role in further analysis, as can be seen from the recent papers

cited above. Even though the asymptotic-delay-probability function α in (0.2) arises in the
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limit as n →∞, it provides a good approximation for the actual M/M/n/∞ delay probability

for all n provided that ρ is not too small (e.g., when the actual delay probability is greater

than or equal to 0.10; see Table 13 in Whitt (1993)).

Since the asymptotic-delay-probability function α in (0.2) has proven to be so important

for the Markovian M/M/n/∞ system, we want to find analogs for non-Poisson arrival pro-

cesses, non-exponential service-time distributions and finite waiting space. The present paper

addresses that problem: In this paper we consider the general G/GI/n/∞ model: We allow

the arrival process to be a general stationary (or asymptotically stationary) arrival process

(G), but we require that the service times be independent and identically distributed (IID)

and independent of the arrival process (with a general probability distribution, GI). In prac-

tice, non-exponential service-time distributions are common, but arrival processes often can be

regarded as Poisson. Non-Poisson arrival processes commonly occur when some of the arrivals

are overflows from other systems that are temporarily congested.

In this paper we primarily focus on an approximation for the steady-state delay probability

and the steady-state probability that all servers are busy in the G/GI/n/∞ model. These two

quantities are equal with a Poisson arrival process, but not more generally. However, they

are asymptotically equivalent in the heavy-traffic limit as n → ∞, so we do not distinguish

between them: our approximation applies to both. Even though we focus on the steady-state

delay probability, we also develop an approximation for the entire queue-length (number in

system) stochastic process and its steady-state distribution.

We base our approximation for the queue-length process on a heavy-traffic limit for the

G/GI/n/∞ model with a special H∗
2 service-time distribution, established in Whitt (2004a).

(Related heavy-traffic limits for the G/D/n/∞ model have recently been established by Je-

lenkovic, Mandelbaum and Momcilovic (2002).) The H∗
2 service-time distribution is a mixture

of an exponential distribution with probability p and a point mass on 0 with probability 1− p.

The general form of our proposed approximation for the queue-length process is the form of the

limit process obtained for the G/H∗
2/n/m model, namely, a convex piecewise-linear function

of a diffusion process. Interestingly, that process is not directly a diffusion process, but since

it is a relatively simple function of a diffusion process, we call the overall approximation a

diffusion approximation. For applications, it is significant that the approximating process has

a tractable steady-state distribution.

A major conclusion of Halfin and Whitt (1981), expanded upon by Puhalskii and Reiman

(2000), is that the role of the service-time distribution in the many-server heavy-traffic asymp-
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totic regime (0.1) is very different from its role in the more conventional fixed-number-of-servers

heavy-traffic limit with convergence to reflected Brownian motion. In the conventional heavy-

traffic limit, convergence to a diffusion process requires that the service-time distribution have a

finite variance; then the limit depends on the service-time distribution beyond its mean only via

its variance. (Other non-diffusion heavy-traffic limits are possible in the conventional heavy-

traffic regime when the service-time distribution has infinite variance, but the limit process

and the scaling are then very different; e.g., see Whitt (2002).) Moreover, in the conventional

heavy-traffic regime, the standard congestion measures increase as the service-time variance

increases for any fixed service-time mean. As we substantiate here by computer simulations,

the situation is very different for the many-server asymptotic regime (0.1). For example, in

some multiserver settings, the delay probability actually decreases as the service-time variance

increases for fixed service-time mean. Moreover, the same multiserver approximations may

be appropriate for service-time distributions with infinite variance. We do not yet adequately

understand the impact of the service-time distribution beyond its mean upon the performance

of multiserver queues, but in this paper we make a step forward.

Another objective in this paper is to develop approximations for the case of a finite waiting

room. To do so, we again rely on heavy-traffic limits in Whitt (2004a). Those heavy-traffic

limits involve the more general G/GI/n/mn model with mn additional waiting places. An

arrival finding all servers busy and the waiting room full is blocked and lost without affecting

future arrivals. (We do not consider abandonments or retrials here.) For the heavy-traffic

stochastic-process limits in the heavy-traffic regime (0.1), it is necessary to let mn → ∞ as

n →∞ so that

mn/
√

n → κ for 0 < κ ≤ ∞ . (0.3)

For exponential service times, the results for finite waiting rooms provide theoretical support,

and refinements, for heuristic diffusion approximations in Section VII of Whitt (1984a). Re-

lated asymptotic analysis of the M/M/n/m model has recently been done by Massey and

Wallace (2002).

Here is how the rest of the paper is organized: We start in Section 1 by describing the

development of the proposed approximation of the delay probability in the G/GI/n/∞ model.

We state the stochastic-process limit obtained in Whitt (2004a) for the G/H∗
2/n/m models in

Section 2 and characterize the steady-state distribution of that limit process in Section 3. We

then develop the heuristic diffusion approximation for the G/GI/n/m model in Section 4.

In Section 5 we evaluate the approximation for the delay probability in the GI/GI/n/∞
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model by making comparisons with exact numerical values from the tables of Seelen, Tijms

and van Hoorn (1985). In Section 6 we describe simulations conducted to evaluate other

G/GI/n/∞ models, focusing especially on heavy-tailed service-time distributions and non-

renewal arrival processes. In Section 7 we develop and evaluate associated approximations for

the blocking probability in the G/GI/n/m model. In Section 8 we make a few concluding

remarks.

1. The Delay Probability in the G/GI/n/∞ Model

We now describe the evolution of our approximation of the delay probability in the G/GI/n/∞
model, which generalizes (0.2). As noted above, Halfin and Whitt (1981) actually made some

progress for more general models by establishing the heavy-traffic stochastic-process limit for

the GI/M/n/∞ model as well as the M/M/n/∞ model, but they gave an incorrect expression

for the steady-state distribution of the diffusion-process limit in the GI/M/n/∞ case, which

leads to an incorrect generalization of the asymptotic-delay-probability function α. However,

the correct formula for the asymptotic delay probability in the GI/M/n/∞ model can easily

be derived from the diffusion-process parameters in Halfin and Whitt (1981); e.g, it can be

obtained from Browne and Whitt (1995).

As indicated in Example 18.1 of Browne and Whitt (1995), the limiting diffusion process

obtained in Halfin and Whitt (1981) is a piecewise-linear diffusion process, i.e., a diffusion

process with piecewise-linear drift and diffusion functions, with two linear components, corre-

sponding to the situations in the queueing model in which not all servers are busy and when

they are. The delay probability corresponds to p2 in (18.3) and (18.5) there. It is found by

applying (18.5) and (18.6) (or, equivalently, (18.26)) with Sections 18.4.1 (when the servers

are not all busy) and Section 18.4.3 (when the servers are all busy). We apply Browne and

Whitt (1995) again here in Section 3.

The corrected GI/M/n/∞ asymptotic delay-probability function is a minor modification

of the M/M/n/∞ function above, specifically,

αGI/M/n/∞ ≡ αGI/M/n/∞(β, c2
a) = α(β/

√
z) , (1.1)

where z = (c2
a + 1)/2 with c2

a being the squared coefficient of variation (SCV, variance divided

by the square of the mean, assumed to be finite) of an interarrival time, β is the limit in (0.1)

and α is the M/M/n/∞ asymptotic-delay-probability function in (0.2). From (1.1), we see

that the interarrival-time distribution beyond the mean enters in only via the SCV c2
a, just as
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in the central limit theorem for the arrival counting process. Halfin and Whitt (1981) had the

incorrect formula α(β/z) instead of α(β/
√

z). Unfortunately, that incorrect formula has been

repeated, e.g., in Whitt (1992, 1993, 2002).

In the next section we describe a new heavy-traffic limit for the more general G/GI/n/∞
model with a non-renewal arrival process and a special non-exponential service-time distribu-

tion, which we establish in a companion paper Whitt (2004a). The non-exponential service-

time distribution is the mixture of an exponential distribution with probability p and a unit

point mass at 0 with probability 1−p. This special service-time distribution is mathematically

appealing because, just like the exponential service-time distribution, it makes appropriate

queue-length processes Markov processes. Since this special distribution is an extremal distri-

bution among the class of hyperexponential (H2, mixtures of two exponentials) distributions,

see Whitt (1984b), we denote this class by H∗
2 .

Puhalskii and Reiman (2000) already established many-server heavy-traffic limits for the

more general (and more difficult) GI/PH/n/∞ model with phase-type service-time distribu-

tions, but the limit process there is a complicated multidimensional diffusion process, whose

steady-state distribution remains to be determined. Thus we are motivated to consider heuris-

tic one-dimensional alternatives.

Clearly, the H∗
2 service-time distributions are rather special, and cannot be regarded as

similar to all service-time distributions. However, they are natural abstractions for the case in

which the service-time distribution is the mixture of two other distributions, one with a small

mean and the other with a large mean. More generally, they capture the behavior of many

heavy-tailed distributions (with finite mean), such as lognormal and Pareto, that produce many

small values and a few occasional very large values. These heavy-tailed distributions are being

encountered more and more frequently; e.g., measurements have suggested that service-time

distributions are lognormal; see Bolotin (1994), Koole and Mandelbaum (2001) and Brown et

al. (2002).

For the G/H∗
2/n/∞ model, formula (1.1) is still valid, provided we appropriately modify

the formula for z; in particular,

αG/H∗
2 /n/∞ ≡ αG/H∗

2/n/∞(β, c2
a, p) = α(β/

√
z) (1.2)

for α in (0.2), β in (0.1) and

z ≡ z(c2
a, p) = 1 +

p(c2
a − 1)
2

=
p(c2

a + c2
s)

2
, (1.3)
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where c2
s = (2/p) − 1 for an H∗

2 service-time distribution and c2
a is the scaling constant in an

assumed functional central limit theorem (FCLT) for the arrival process; see (2.1) and (2.2) in

Section 2. For a renewal arrival process, c2
a is just the SCV of an interarrival time.

Since z(c2
a, 1) = (c2

a + 1)/2, approximation (1.2) reduces to (1.1) in the G/M/n/∞ special

case. Since z(1, p) = 1 for all p, 0 < p ≤ 1, formula (1.2) supports the approximation

αM/GI/n/∞ ≈ αM/M/n/∞ ≡ α(β) , (1.4)

which is a longstanding approximation; e.g., see Hokstad (1978), Nozaki and Ross (1978),

Section 3.2 of Whitt (1993) and Kimura (2000). The limit in (1.2) and the approximation in

(1.4) indicate that the delay probability in the M/GI/n/∞ model should not be significantly

altered by a heavy-tailed service-time distribution, provided that it has finite mean. However,

as is well known, the service-time distribution beyond its mean can have a significant impact

on the distribution of the conditional queue length given that all servers are busy.

The two formulas (1.2) and (1.3) are very useful to predict the qualitative behavior of the

delay probability as a function of the arrival-process and service-time variability. First, since

α is a decreasing function, α(β/
√

z) is an increasing function of z. Second, using (1.2), we

see that z is always an increasing function of c2
a. Moreover, we see that z is an increasing

(decreasing) function of c2
s when c2

a < 1 (c2
a > 1), with all values falling between 1 and c2

a.

As might be anticipated, however, the peculiar form of this tractable H∗
2 non-exponential

service-time distribution causes the limit in (1.2) not to perform well as an approximation for

the performance of G/GI/n/∞ models with typical non-exponential service-time distributions

if we just match the first two moments of the service-time distribution, using (1.3). Thus, we

develop a new heuristic one-dimensional diffusion approximation that produces more useful

approximations for general G/GI/n/∞ models.

As in previous work, e.g., Whitt (1992), the heuristic diffusion approximation is based on an

infinite-server approximation when all servers are not busy and a single-server approximation

when all servers are busy. In those two regimes we rely on established heavy-traffic limits,

so that again heavy-traffic asymptotics play a key role. However, the specific method is new:

We first determine an approximating (function of a) diffusion process. Then we use the exact

steady-state distribution of the approximating process.

From the heuristic diffusion approximation for the G/GI/n/∞model, we obtain a relatively

simple approximation for the delay probability, namely,

αG/GI/n/∞ ≡ αG/GI/n/∞(β, z) ≈ α(β/
√

z) , (1.5)
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where again α is the M/M/n/∞ asymptotic-delay-probability function in (0.2) and β is the

limit in (0.1). The key new quantity is

z ≡ z(c2
a, G) ≡ 1 + (c2

a − 1)η(G) , (1.6)

where G is the service-time cdf, assumed to have finite mean 1/µ, Gc ≡ 1−G is the associated

complementary cdf,

η(G) ≡ µ

∫ ∞

0
Gc(x)2 dx ≡

∫∞
0 Gc(x)2 dx∫∞
0 Gc(x) dx

, (1.7)

and, just as in (1.3), c2
a is the normalization constant in a FCLT for the arrival process (assumed

to hold, which requires that c2
a be finite).

From (1.6) we see that the service-time distribution beyond its mean should have relatively

little impact upon the delay probability when c2
a is near 1, which is consistent with extensive

simulation experience. On the other hand, when c2
a is not near 1, the service-time distribution

beyond its mean should have a significant impact on the delay probability, and that impact

is quantified approximately by (1.5)–(1.7). It is worth noting that the service-time parameter

η(G) is well defined for all service-time distributions with finite mean. There is no requirement

that the service time have finite variance.

The parameter z in (1.6) is the asymptotic peakedness that appears in approximations for

G/GI/n/0 loss models; e.g., see Eckberg (1983, 1985) and Whitt (1984a). It was used before

for delay models in Whitt (1992). The peakedness is the variance divided by the mean of

the steady-state queue length (again number in system) in the associated G/GI/∞ model.

From heavy-traffic limits for the G/GI/∞ model, it follows that the peakedness approaches

the asymptotic peakedness as the arrival rate increases; see Section 10.3 of Whitt (2002).

Just like the SCV, the peakedness and the asymptotic peakedness are dimensionless pa-

rameters quantifying variability. The function η(G) in (1.7) can assume any value between 0

and 1. The maximum value 1, yielding z = c2
a, is obtained when G is the cdf of a unit point

mass (a deterministic distribution, D). The value of η(G) tends to decrease as the distribution

gets more variable. For an exponential service-time cdf G, η(G) = 1/2, yielding z = (c2
a +1)/2.

As emphasized by our notation above, the approximation for the delay probability in the

general G/GI/n/∞ model in (1.5) is consistent with the heavy-traffic limit for the G/H∗
2/n/∞

model in (1.2). In the previous special cases, z coincides with the asymptotic peakedness for

that model. A natural candidate for a refined approximation (which we do not investigate

here) is obtained by replacing the asymptotic peakedness z in (1.6) with the actual peakedness
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and the asymptotic-delay-probability function α in (0.2) with the actual M/M/n/∞ (Erlang-

C) delay probability. For practical engineering purposes, we do not anticipate that such a

refinement would be too important, but that remains to be determined.

From the discussion above, and consistent with intuition, the G/GI/n/∞ model behaves

much like the associated G/GI/∞ model when the arrival rate λ and n increase so that (0.1)

holds. However, the delay-probability approximation in (0.2), (1.1), (1.2) and (1.5) are not

exactly the same as the direct infinite-server approximation for the delay probability, which

is Φc(β/
√

z) for Φc ≡ 1 − Φ; e.g., see Section 2.3 of Whitt (1992). The delay-probability

approximation here is obtained simply by replacing Φc by α. Halfin and Whitt (1981) observe

in their Remark 1 that α(β) ≥ Φc(β) for all β ≥ 0. These formulas are asymptotically

equivalent as β → ∞, but they are not always close; e.g., Φc(0) = 0.5, while α(0) = 1. The

refinement - going from Φc to α - was used by Jennings et al. (1996) in their server-staffing

approximations for multi-server queues with time-varying arrival rates. They observed that

the refinement typically improved the estimate by about 10%.

2. The Stochastic-Process Limit with H∗
2 Service Times

In this section we describe the heavy-traffic limit for the G/H∗
2/n/m model established in

Whitt (2004a). It involves a sequence of G/H∗
2/n/m models indexed by the number of servers,

n, with n →∞.

We start with a rate-1 arrival counting process C ≡ {C(t) : t ≥ 0} with associated interar-

rival times {Uk : k ≥ 1}. Our key assumption is that the arrival process satisfies a functional

central limit theorem (FCLT). To state it, let ⇒ denote convergence in distribution and let

D ≡ (D, J1) ≡ D([0,∞),R, J1) be the function space of right-continuous real-valued functions

on the positive halfline with left limits, endowed with the customary Skorohod (J1) topology;

see Billingsley (1999) and Whitt (2004a). Let Cn be the random element of D defined by

Cn(t) ≡ [C(nt)− nt]/
√

nc2
a, t ≥ 0, (2.1)

for some nonnegative scaling constant c2
a. We assume that

Cn ⇒ B in (D,J1) , (2.2)

where B is standard (zero drift, unit diffusion coefficient) Brownian motion.

When the arrival process is a renewal process, the limit (2.2) holds with c2
a being the SCV

of an interarrival time, but the limit in (2.1) holds much more generally. When the number of
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servers is n, we scale time in the arrival process, letting the arrival process be

Cn(t) ≡ C(λnt), t ≥ 0 , (2.3)

where λn is the arrival rate in model n (with n servers). Equivalently, the interarrival times

in model n are Un,k ≡ Uk/λn.

Let the H∗
2 service-time distribution be independent of n. Let it have mean µ−1, 0 < µ < ∞,

so that the traffic intensity as a function of n is ρn = λn/µn. Let ν−1 be the mean of the

exponential component of the H∗
2 service-time distribution, so that µ−1 = pν−1. The second

moment of a service time is thus 2pν−2, so that the SCV is c2
s = (2/p) − 1. Equivalently,

p−1 = (c2
s + 1)/2. The SCV c2

s ranges from 1 to ∞ as p decreases from 1 to 0.

Let Qn(t) be the queue length at time t, by which we mean the number in system, including

both waiting and in service. We assume that the stochastic process Qn almost surely has sample

paths in the function space D; in particular, the process Qn provides no record of an arrival

with zero service time that can enter service upon arrival and depart immediately. For the

stochastic-process limit, we construct scaled random elements of D by letting

Qn(t) ≡ [Qn(t)− n]/
√

n, t ≥ 0 . (2.4)

There is no time scaling for Qn in (2.4) because the arrival rate λn is allowed to grow directly.

We also must specify the initial conditions. Let Qn(0) be an integer-valued random variable

with

0 ≤ Qn(0) ≤ n + mn (2.5)

that is independent of the arrival process {Cn(t) : t ≥ 0}. We assume that

Qn(0) ⇒ Q(0) as n →∞ , (2.6)

where Q(0) is a proper random variable and

Qn(0) ≡ [Qn(0)− n]/
√

n . (2.7)

Moreover, we assume that the min{n,Qn(0)} customers initially in service have exponential

service times with mean ν−1, while the [Qn(0)− n]+ customers initially waiting in queue have

the H∗
2 cdf. Finally, given that specification, we assume that all service times are independent

of the initial state Qn(0) and the arrival process.

Theorem 2.1. (The stochastic-process limit for G/H∗
2/n/m.) For the family of G/H∗

2/n/m

models specified above, suppose that the arrival rate λn and the number of waiting spaces, mn,
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change with n so that (0.1) and (0.3) hold with −∞ < β < ∞ and 0 < κ ≤ ∞. In addition,

suppose that the initial conditions are as specified above with (2.5)-(2.7). Then

Qn ⇒ Q in (D,J1) as n →∞ , (2.8)

where

Q(t) ≡ h(Qp(t)), t ≥ 0, (2.9)

h(x) ≡
{

x, x < 0,
x/p, 0 ≤ x ≤ pκ ,

(2.10)

and Qp is a diffusion process starting at Qp(0) = h−1(Q(0)) with a reflecting upper barrier at

pκ if κ < ∞ and an inaccessible upper boundary at infinity if κ = ∞. The diffusion process

Qp has infinitesimal mean (drift function)

m(x) =
{ −pµβ, 0 ≤ x < pκ,
−pµ(x + β), x < 0 ,

(2.11)

and infinitesimal variance (diffusion function)

σ2(x) = 2pµz , −∞ < x < pκ , (2.12)

where

z = (p/2)(c2
a + (2/p)− 1) =

p(c2
a + c2

s)
2

= 1 +
p(c2

a − 1)
2

. (2.13)

As elaborated upon in Remark 2.2 of Whitt (2004a), the limit process Q is not itself a

diffusion process, but it is relatively tractable. In particular, it is easy to obtain the steady-

state distribution of Q, as we show in the next section.

In Whitt (2004a) we also obtain the associated heavy-traffic limit for the scaled version of

the discrete-time queue-length process at arrival epochs. The limit process Qa is a time-scaled

version of the limit process Q above, i.e., Qa(t) = Q(t/µ), so that the steady-state distribution

of the two limit processes are identical. Thus, in the heavy-traffic limit, the probability all

servers are busy at an arbitrary time is asymptotically equivalent to the asymptotic delay

probability (the probability that an arrival must wait before being served).

Remark 2.1. The character of a heavy-tailed distribution. To show that an H∗
2 service-time

distribution has some of the character of a heavy-tailed service-time distribution when the

parameter p is small, we compare the impact on the queue-length process caused by an H∗
2

service-time distribution with the impact caused by a Pareto service-time distribution. The

Pareto distribution we consider has the complementary cdf

Gc(t) ≡ (1 + t/(p− 1))−p, t ≥ 0 , (2.14)
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for p > 1, which is scaled to have (finite) mean 1. This Pareto distribution, denoted by Par(p),

has finite variance if and only if p > 2. We consider the specific case p = 3/2, yielding finite

mean but infinite variance.

Even though the variance of Par(3/2) is infinite, the variability parameter η(G) in (1.7) is

finite; in particular,

η(Par(p)) =
∫ ∞

0
(1 + t/(p− 1))−2p dt =

p− 1
2p− 1

, (2.15)

so that η(Par(3/2)) = 1/4, whereas

η(H∗
2 (p)) =

∫ ∞

0
p2e−2pt dt =

p

2
, (2.16)

so that η(H∗
2 (0.1)) = 1/20. Of course, with Poisson arrivals, c2

a = 1 so that z = 1 in both cases

for z in (1.6).

To show the impact of these two service-time distributions upon performance, we plot sam-

ple paths of the queue-length process for the first 106 arrivals in the models M/H∗
2 (0.1)/n/∞

and M/Par(3/2)/n/∞ with λ = 100, µ = 1 and n = 105 in Figures 1 and 2. The plots are

clearly quite similar. In both cases, the excursions above n = 105 are substantially greater

than in the case of M/M/n/∞, as can be seen from Figure 3. However, as predicted by ap-

proximation (1.5), the delay probabilities are quite close in these three examples. We elaborate

on this point in Section 6; e.g., see Table 4 and Figure 4.

3. The Steady-State Distribution of the Limit Process

From equations (2.9) and (2.10), we see that we can obtain the steady-state random variable

Q(∞) associated with the limit process Q directly from the steady-state random variable

Qp(∞) associated with the diffusion process Qp. In particular,

Q(∞) = h(Qp(∞)) ≡
{

Qp(∞), Qp(∞) < 0,
Qp(∞)/p, 0 ≤ Qp(∞) ≤ pκ ,

(3.1)

From the form of the infinitesimal parameters in (2.11) and (2.12), we recognize that the

diffusion process Qp in Theorem 2.1 is a piecewise-linear diffusion, as in Browne and Whitt

(1995). Thus, we can immediately write down the limiting steady-state distribution of Qp

when it exists. It is easy to see that Qp(t) ⇒ Qp(∞) for a proper random variable Qp(∞) if

and only if either κ < ∞ or κ = ∞ and β > 0.

Since we are allowing a finite waiting room, we need to generalize the asymptotic-delay-

probability function α in (0.2). We now let α be the following function of the two variables β

11
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Figure 1: A sample path of the queue-length process for 106 arrivals in the M/H∗
2/105 queue

with arrival rate λ = 100, service rate µ = 1 and parameter p = 0.1.
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Figure 2: A sample path of the queue-length process for 106 arrivals in the M/Par(3/2)/105
queue with arrival rate λ = 100 and service rate µ = 1.
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Figure 3: A sample path of the queue-length process for 106 arrivals in the M/M/105 queue
with arrival rate λ = 100 and service rate µ = 1.

and κ obtained from the limits in (0.1) and (0.3):

α ≡ α(β, κ) ≡ [1 + βΦ(β)/φ(β)(1− e−κβ)]−1 for β 6= 0 . (3.2)

The previous function in (0.2) appears as α∞ ≡ α∞(β) ≡ α(β,∞). When κ < ∞, we can

allow β ≤ 0. For β = 0, we let

α0 ≡ α0(κ) ≡ [1 + κ−1
√

π/2]−1 . (3.3)

We state the result as a theorem; see Browne and Whitt (1995) for a proof (drawing on

basic diffusion-process theory). The idea is that the piecewise-linear structure implies that the

distribution of Qp(∞) must be a truncated normal for x < 0 and a truncated exponential for

x > 0 (or uniform in the case κ < ∞ and β = 0). The weight on the exponential component,

which is just α, is determined by requiring that the two densities be continuous at 0; see (18.26)

of Browne and Whitt (1995).

Theorem 3.1. (The steady-state distribution of the limit process.) Let Qp be the

diffusion process with infinitesimal parameters in (2.11) and (2.12) and let Q be the limit

process defined in (2.9). Let β and κ be the limits in (0.1) and (0.3). Suppose that either

13



κ < ∞ or κ = ∞ and β > 0, so that Qp(t) ⇒ Qp(∞) and Q(t) ⇒ Q(∞) as t → ∞, where

Qp(∞) and Q(∞) are proper random variables.

If β 6= 0, then

P (Q(∞) ≥ 0) = P (Qp(∞) ≥ 0) = α(β/
√

z, pκ/
√

z) , (3.4)

P (Q(∞) ≤ x|Q(∞) ≤ 0) = P (Qp(∞) ≤ x|Qp(∞) ≤ 0)

= Φ((x + β)/
√

z)/Φ(β/
√

z) (3.5)

and

P (Q(∞) > x|Q(∞) ≥ 0) = P (Qp(∞) > px|Q(∞) ≥ 0)

=
e−pxβ/z − e−pκβ/z

1− e−pκβ/z
, 0 ≤ x < κ ,

=
e−xβ/v − e−κβ/v

1− e−κβ/v
, 0 ≤ x < κ , (3.6)

where α is the M/M/n/m asymptotic-delay-probability function in (3.2), z is in (2.13) and

v ≡ z

p
=

c2
a + c2

s

2
. (3.7)

If β = 0, then

P (Q(∞) ≥ 0) = P (Qp(∞) ≥ 0) = α0(pκ/
√

z) (3.8)

for α0 in (3.3). Then

P (Q(∞) > x|Q(∞) ≥ 0) = P (Qp(∞) > px|Qp(∞) ≥ 0)

= (κ− x)/κ, 0 ≤ x < κ , (3.9)

while formula (3.5) remains unchanged.

Corollary 3.1. (The infinite-waiting-room case.) If, in addition to the conditions of The-

orem 3.1, κ = ∞ and β > 0, then

P (Q(∞) > 0) = P (Qp(∞) > 0) = α∞(β/
√

z) ≡ α(β/
√

z,∞) (3.10)

and

P (Q(∞) ≤ x|Q(∞) ≤ 0) = P (Qp(∞) ≤ x|Qp(∞) ≤ 0)

= Φ((x + β)/
√

z)/Φ(β/
√

z) (3.11)
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for β in (0.1) and z in (2.13), implying that both formulas depend on the parameter p only

through the parameter z in (2.13). Moreover,

P (Q(∞) > x|Q(∞) > 0) = e−βx/v (3.12)

for v in (3.7), so that

E[Q(∞)+] = α∞(β/
√

z)
v

β
, (3.13)

implying that both formulas depend on the parameter p only though the parameters z in (2.13)

and v in (3.7).

Remark 3.1. The pdf. The steady-state distribution of the diffusion process Q can also be

characterized by its pdf. If β 6= 0, Q(∞) has the pdf

f(x) =
{

(1− α)φ((x + β)/
√

z)/
√

zΦ(β/
√

z), x < 0,

α(pβ/z)e−pxβ/z(1− e−pκβ/z), 0 ≤ x ≤ κ,
(3.14)

for α ≡ α(β/
√

z, pκ/
√

z) in (3.4) and z in (2.13). If β = 0, then Q(∞) has the pdf

f(x) =
{

(1− α0)φ((x + β)/
√

z)/
√

zΦ(β/
√

z), x < 0,
α0/κ, 0 ≤ x ≤ κ,

(3.15)

for α0 ≡ α0(pκ/
√

z) in (3.8).

Remark 3.2. Understanding the asymptotic-delay-probability formula. The asymptotic-delay-

probability functions in (3.2), (3.4) and (3.10) can be understood by observing an underlying

alternating-renewal-process structure. The queue-length process alternates between periods

spent above level n (an “above” time Xa
n) and periods spent below level n − 1 (a “below”

time Xb
n). This structure is most straightforward in the case M/M/n/∞, so consider that

case. Since Qn(t) is a Markov process, these times are mutually independent. Thus, by a

well-known alternating-renewal-process result,

P (Qn(∞) > n) =
EXa

n

EXa
n + EXb

n

= [1 + (EXb
n/EXa

n)]−1. (3.16)

With the scaling in (0.1), where the arrival rate and service rate are both order O(n), both

EXa
n and EXb

n are of order O(1/
√

n). For the M/M/n/∞ model, Xa
n is distributed as the

busy period in an M/M/1/∞ model with service rate nµ, so that

EXa
n =

1
nµ(1− ρ)

∼ 1√
nµβ

as n →∞ , (3.17)
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where ∼ means the ratio of the two sides converges to 1 as n →∞, while EXb
n is the reciprocal

of the blocking probability, say πn, in a M/M/n− 1/0 model, divided by the arrival rate λn.

We see where the ratio φ(x)/Φ(x) comes from by recalling that

1/λnEXb
n = πn ∼ (1/

√
n)φ(β)/Φ(β) as n →∞ (3.18)

under condition (0.1); e.g., see (15) of Srikant and Whitt (1996) and the appendix of Whitt

(1984a). Combining (3.16)–(3.18), we obtain convergence to α in (0.2) in the limiting regime

(0.1).

A similar argument applies to the M/H∗
2/n/∞ model, as shown on p. 207 of Whitt (1983).

The mean EXb
n for M/M/n/∞ above is divided by p in the M/H∗

2/n/∞ model, because when

all servers are not busy in the M/H∗
2/n/∞ model, we can ignore all customers with zero service

times. Therefore, the queue-length process in that region is a birth-and-death process with

birth rate pλn and death rate pµn, giving the M/M/n/∞ formula for EXb
n above divided by

p. Similarly, the mean EXa
n for M/M/n/∞ above is also divided by p in the M/H∗

2/n/∞
case, but that is less obvious. The M/H∗

2/n/∞ model behaves like an M/H∗
2/1/∞ model

when all servers are busy, where each service time is an exponential with mean 1/npµ with

probability p and is 0 with probability 1− p. In the M/H∗
2/1/∞ model, the mean busy period

is 1/nµ(1 − ρn), just as in M/M/1/∞. However, we must divide by p because, when we

calculate the first passage time from state n to state n − 1, we need to condition on the first

service time not being 0. That produces the division by p. Thus, the overall analysis shows

that the probability of delay in the M/H∗
2/n/∞ model is independent of p for all n.

Remark 3.3. The limit as p → 0 for H∗
2 . Intuitively, the H∗

2 distributions acquire more of

the character of heavy-tailed distributions as p becomes very small. Thus it is interesting to

observe how the steady-state distribution of the limit process Q behaves as p ↓ 0 with the

mean of the service-time distribution held fixed. Thus we index quantities of interest by p

here. We only consider the case in which β > 0.

First, if p ↓ 0, then zp → 1 from (1.3). Second, from (3.7), if p ↓ 0, then vp → ∞ and

pvp → 1. Thus, all formulas that depend on p only through z approach the case of exponential

service times (as if p = 1). For example, the infinite-waiting-room formulas (3.10) and (3.11)

in Corollary 3.1 change only by having z → 1.

Thus, the G/H∗
2/n/∞ asymptotic delay probability approaches the M/M/n/∞ asymptotic

delay probability as p ↓ 0 for any stationary arrival process. We emphasize that this asymp-

totic property of the G/H∗
2/n/∞ model is exact. It may seem surprising that the G/H∗

2/n/∞
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asymptotic delay probability approaches the M/M/n/∞ value as p ↓ 0 for any stationary

arrival process satisfying a FCLT, so we offer an intuitive explanation. First, when all servers

are not busy, we can act as if arrivals with 0 service times never occur, because they leave

immediately upon arrival. Thus the interarrival time of customers with positive service times

is a geometric random sum of the initial interarrival times. There is an asymptotically increas-

ing number of interarrival times in this geometric random sum. As p ↓ 0, the mean of this

geometric random variable increases, causing the successive interarrival times to become inde-

pendent. Moreover, the properly-scaled geometric random variable converge to an exponential

random variable. Second, we have just noted in Remark 3.2 that the delay probability in the

M/H∗
2/n/∞ model is independent of the parameter p.

In contrast, the expected queue length given that all servers are busy when κ = ∞ tends

to behave very differently: E[Qp(∞)+] →∞ as p → 0. More precisely,

E[Qp(∞)+] ∼ α(β)/pβ as p → 0 . (3.19)

It is also interesting to consider the case κ < ∞. Then, referring to (3.4), we see that

αp → 0. More precisely,

α(β/
√

z, pκ/
√

z) ∼ α(β, pκ) ∼ pκφ(β)
Φ(β)

as p → 0 . (3.20)

These asymptotic relations produce effects we should anticipate with heavy-tailed distributions.

Another interesting case is the H∗
2/H∗

2/n/∞ model in which the interarrival-time and

service-time H∗
2 distributions have a common parameter p. Then, since c2

a = (2/p) − 1 and

η(H∗
2 (p)) = p/2, we obtain the exact asymptotic result

zp = 2− p → 2 as p ↓ 0 . (3.21)

This limiting behavior can be verified by simulation, but it is difficult for very small p because

the overall variability increases, causing the reliability of simulation estimates for given run

length to decrease, as p decreases.

4. The Heuristic Approximation for G/GI/n/m

We now seek an approximation for the queue-length process and its steady-state distribu-

tion in the general G/GI/n/m model, with general (GI) service times. From the stochastic-

process limits for the GI/PH/n/∞ model in Puhalskii and Reiman (2000), we know that

the scaled queue-length process again converges to a nondegenerate limit, but the limit for
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the scaled queue-length process is relatively complicated. In those cases the limit can be ex-

pressed in terms of a complicated multidimensional diffusion process, where the dimension of

the diffusion is the number of phases in the phase-type service-time distribution. In order to

generate more tractable approximations, here we develop a heuristic one-dimensional approxi-

mation with convenient explicit formulas for all steady-state performance measures of interest.

Even though our approximation is not asymptotically correct, we rely heavily on insights from

heavy-traffic stochastic-process limits. For background on heuristic diffusion approximations,

see Newell (1973), Halachmi and Franta (1978), Whitt (1984a) and Kimura (1995, 2000, 2002).

Our starting point is an assumed limit for the scaled queue-length process. We assume

that our process of interest is the queue-length process Qn(t) where the number n of servers

is suitably large. (We are thinking of n = 100, but the approximation may be good for much

smaller n, e.g., n = 10.) Consequently, the first step of our approximation is

Qn(t) ≈ n +
√

nQ(t) , (4.1)

where Q is a stochastic process for which we need to develop an approximation.

As an approximation for the stochastic process Q in (4.1), we use the same process Q, in

Theorem 2.1. where Q(t) = h(Qp(t)) for h in (2.10), but we choose appropriate parameters for

that process as a function of the more general service-time distribution. We choose the param-

eters so that the new approximation is consistent with the approximation for the G/H∗
2/n/m

model following from Theorems 2.1 and 3.1.

As can be seen from Theorem 2.1, the stochastic processes Qp and Q depend on five

parameters: µ, β, κ, z and p. (We can substitute v ≡ z/p for one of z or p.) As before, we let

1/µ be the mean service time and let β and κ be determined by the limits (0.1) and (0.3). We

generate an approximation for the queue-length process in the G/GI/n/m model by choosing

appropriate values for the two remaining parameters z and v.

In the heavy-traffic limits for the G/H∗
2/n/m and G/PH/n/m models, the arrival process

influences the asymptotic behavior only through the arrival rate and the scaling parameter c2
a

appearing in the assumed FCLT. Thus it is natural to let the two parameters z and v depend

on the arrival process only through c2
a. We require that of our approximation.

We are relatively confident about our proposed approximation for the parameter z. To

choose z, we focus on the behavior of the process when x < 0 (when all servers are not busy).

To do so, we focus on the conditional distribution P (Q(∞) ≤ x|Q(∞) < 0) in (3.5), which is

conditional normal distribution, where the parameter z plays the role of the variance. We base
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our approximation on the associated heavy-traffic limit for the general G/GI/∞ infinite-server

model; see Section 10.3 of Whitt (2002) and references cited there, notably Borovkov (1984).

The limit process with infinitely many servers has a normal steady-state distribution. We let

z be the ratio of the variance to the mean of that steady-state normal distribution. That is

the asymptotic peakedness in (1.6). It is consistent with the exact formula for z in (2.13) in

the G/H∗
2/n/m special case.

Having chosen an approximation for the parameter z, it remains to specify an approxima-

tion for the remaining parameter v in (3.7). To generate an approximation for v, we focus

on the behavior of the process when x > 0, but the approximation is more challenging when

x > 0. When the service-time distribution is M or H∗
2 , the queue behaves exactly like a

single-server queue when all servers are busy. However, for other service-time distributions,

the elapsed service times of the customers in service play an important role and the situation is

more complicated. (That complexity is captured by the limit in Puhalskii and Reiman (2000).)

Nevertheless, we exploit the single-server view. Thus, on the interval [0, κ], we let the

diffusion process act as a reflecting Brownian motion with constant drift. We specify the

(constant) infinitesimal variance by looking at the “unreflected free process” which is a scaled

version of the arrival counting process minus the departure counting process. The arrival

process is straightforward, but the departure process is quite complicated. In fact, even though

the service times are assumed to be independent of the arrival process, the departure process

is actually dependent on the arrival process. However, in our approximation we will act as if

they are independent.

To generate an initial approximation, we act as if all n servers are busy all the time. That is

at least temporarily true when x > 0. Under that assumption, the departure process would be

the superposition of n IID service-time counting processes. For any fixed n, that superposition

process obeys a FCLT with scaling constant c2
s, where c2

s is the SCV of a service time, here

assumed to be finite; see Section 9.4 of Whitt (2002). That perspective leads to a diffusion

approximation for Q in the region x > 0 with infinitesimal parameters just as in Remark 2.3

of Whitt (2004a). In particular, the infinitesimal mean (drift function) is

mQ(x) = −µβ for x > 0 (4.2)

and the infinitesimal variance (diffusion function) is

σ2
Q(x) = µ(c2

a + c2
s) for x > 0 . (4.3)
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In (4.3), c2
a is the arrival-process variability parameter obtained from the FCLT for the arrival

process, as in (2.1) and (2.2), and c2
s is the service-time SCV.

This reasoning leads to a truncated exponential distribution for P (Q(∞) ≥ x|Q(∞) > 0),

just as in (3.6), with the parameter v having exactly the same form as in (3.7), with c2
s now

referring to the SCV of the general service-time distribution. Clearly, this approximation is

also consistent with Theorems 2.1 and 3.1 in the G/H∗
2/n/m special case.

It is significant that the proposed approximations for the parameters z and v depend on

the service-time distribution in different ways in the general GI case. (That approach was

used in Whitt (1992) too.) If we do use approximations (1.6) for z and (3.7) for v, then we

immediately obtain the associated approximation for p:

p =
z

v
=

2z

c2
a + c2

s

, (4.4)

where z is given by (1.6), c2
a is the scaling constant in the FCLT, as in (2.1) and (2.2), and c2

s

is the SCV of the service-time distribution. Note that this associated approximation for p in

(4.4) could yield p > 1, which is of course inconsistent with the original H∗
2 model definition,

but that presents no problems for the stochastic process Q and its steady-state distribution.

We find that the approximation for v in (3.7) works quite well for low-to-moderate vari-

ability service times, but it can seriously break down more generally (e.g., see Table 5). Thus

we want to consider refinements. Another perspective is that a superposition of n IID renewal

processes converges to a Poisson process as n →∞ when the component processes are rescaled

to keep the total rate fixed; see Theorem 9.8.1 of Whitt (2002). Naturally, this second perspec-

tive leads us to the approximation in (3.7) with c2
s replaced by 1. This second perspective is

even supported by stochastic-process limits for the departure process from multiserver queues;

see Whitt (1984c). These two perspectives are not inconsistent, because they describe the

superposition process in different time scales; see Remark 9.8.1 of Whitt (2002). The superpo-

sition process behaves like a Poisson process in a short time scale, but like a single component

renewal process in a long time scale.

These two perspectives lead to a compromise approximation that is a convex combination

of the first two approximations, i.e.,

v =
(c2

a + wc2
s + 1− w)
2

, (4.5)

where w is an appropriate weight with 0 ≤ w ≤ 1. To develop a candidate weight function

w, we observe that there is a third perspective, which has already proved useful to study
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superposition arrival processes to queues. In the third perspective, we apply the central limit

theorem for stochastic processes to the sum of n IID renewal processes; see Theorems 7.2.3

and 7.2.4 of Whitt (2002). The third perspective leads to approximating the departure process

by a non-Brownian Gaussian process. The third perspective also leads to an associated FCLT

in which the the number of component processes in the superposition increases along with the

time-and-space scaling; see Section 9.8 of Whitt (2002). For superposition arrival processes

to queues, there is a stochastic-process limit in the limiting regime (0.1) we are considering,

where n is understood to be the number of component arrival processes instead of the number

of servers; see Theorem 9.8.3 of Whitt (2002). That perspective might be relevant here, because

if we reverse time, the departure process behaves something like a superposition arrival process.

The analysis of superposition arrival processes leads to approximations of the form (4.5),

where the weight w is a strictly decreasing function of β =
√

n(1 − ρ) with w(0) = 1 and

w(∞) = 0. A specific function based on simulation experiments by Albin (1982, 1984) is

w ≡ w(β) = [1 + 4β2]−1 , (4.6)

for β =
√

n(1 − ρ); see p. 333 of Whitt (2002). However, we do not find a direct application

of (4.6) to be effective.

However, the related experience with superposition arrival processes can provide important

insights. For example, the stochastic-process limit for superposition arrival processes in regime

(0.1) – Theorem 9.8.3 of Whitt (2002) – does not require that the interrenewal times in the

component renewal processes have finite second moment. Thus, we can anticipate (what turns

out to be the case in our setting) that the same scaling works for multiserver queues with

Pareto service times having finite mean but infinite variance. Hence, we should allow the

variability parameter v to be well defined when c2
s is infinite.

In summary, this analysis leads us to approximate z by the asymptotic peakedness in (1.6),

but to only propose a tentative approximation for the variability parameter v. Our tentative

specification of v in the case of a finite service-time SCV c2
s is

v =
c2
a + wc2

s + 1− w

2
(4.7)

for some weight function w, which is a decreasing function of β with w(0) = 1 and w(∞) = 0.

We primarily apply the initial approximation in (3.7), i.e., (4.7) with w ≡ 1, but we find

situations in which alternatives in (4.7) can be important. Our somewhat vague specification

allows room for refinement.
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The final situation is less unsatisfactory than it may appear, because in Corollary 3.1 we

have shown for the case κ = ∞ that the steady-state probability of being greater than 0

(which corresponds to the delay probability in the queueing model) actually depends on the

parameters v and p only through the parameter z. Hence, for the delay probability, we only

need z.

Remark 4.1. Rough approximations of the asymptotic peakedness. We can obtain further

rough approximations of the peakedness z in terms of the variability parameters c2
a and c2

s to

use in the heuristic diffusion approximation by approximating the asymptotic peakedness z.

However, we advise caution: From the formula for the asymptotic peakedness z in (1.6), we see

that the service-time distribution beyond the mean should have relatively little impact upon

z when c2
a is near 1. However, when c2

a is not near 1, the service-time distribution beyond

its mean can have a big impact on z, and is quantified by η(G) in (1.7), not by the SCV

c2
s. Nevertheless, the following formulas are useful to obtain a quick picture of the impact

of service-time variability upon performance. They show that η(G) tends to decrease as the

service-time distribution gets more variable with a fixed mean.

Since η(G) = 1 when the service-time distribution is deterministic and η(G) = 1/2 when

the service-time distribution is exponential, we propose the following linear interpolation as an

approximation for SCV’s in between:

η(c2
s) ≈ 1− (c2

s/2) and z(c2
a, c

2
s) ≈ 1 + (c2

a − 1)(1− (c2
s/2)), 0 ≤ c2

s ≤ 1 . (4.8)

To treat distributions with c2
s ≥ 1, we can use H2 distributions with balanced means (Hb

2).

An H2 distribution with mean 1/µ has pdf

h(x) = p1e
−µ1x + p2e

−µ2x, x ≥ 0 , (4.9)

where 0 ≤ p1 ≤ 1, p1 + p2 = 1 and (p1/µ1) + (p2/µ2) = 1/µ. The Hb
2 pdf has balanced means,

i.e., one of the two remaining parameters is determined by the relation

2p1

µ1
=

2p2

µ2
=

1
µ

, (4.10)

which implies that

pi = [1±
√

(c2
s − 1)/c2

s + 1) ]/2 . (4.11)

For this Hb
2 case, η(Hb

2) = (c2
s + 3)/4(c2

s + 1), so that we obtain the general approximation

z(c2
a, c

2
s) ≈ z(c2

a,H
b
2) = 1 +

(c2
a − 1)(c2

s + 3)
4(c2

s + 1)
for c2

s ≥ 1 . (4.12)
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Note that η(Hb
2) increases to 1/2 as c2

s decreases to its lower limit c2
s = 1, which is the

exponential distribution, while η(Hb
2) decreases to 1/4 as c2

s ↑ ∞. Other H2 distributions

without balanced means can have arbitrarily small values of η, as we saw for H∗
2 in (2.16).

5. Evaluating the GI/GI/n/∞ Approximations

We start by evaluating the approximations for the delay probability (PW ) and the proba-

bility all servers are busy (PB ≡ P (Qn(∞) ≥ n)) in the GI/M/n/∞ model. By the Poisson-

Arrivals-See-Time-Averages (PASTA) property, these quantities PW and PB coincide when

the arrival process is Poisson, but they do not otherwise. However, the heavy-traffic limits im-

ply that the ASTA property holds in that heavy-traffic limit for non-Poisson arrival processes.

So the asymptotic delay probability generates asymptotically correct approximations for both

PW and PB. The extent to which PW and PB differ gives an indication of the degree of

accuracy possible for the approximation.

Since we are working in the asymptotic regime (0.1), the natural approximation based on

(1.2) is P (Qn(∞) ≥ n) ≈ α(β/
√

z) for α in (0.2), z = (c2
a + 1)/2 and

β =
√

n(1− ρ) . (5.1)

Indeed, we have been implicitly acting as if the value for β based on the limit in (0.1) is (5.1)

and that is what we usually use. However, we might approximate β differently. As discussed

in Whitt (1992), since it is the offered load that is random rather than the number of servers,

it is natural to think of

(λ/µ) + β(
√

λ/µ) ≈ n (5.2)

rather than (5.1). Approximation (5.2) leads to the alternative approximation for β,

β ≈
√

n(1− ρn)√
ρn

. (5.3)

Of course, in the limiting regime (0.1), the two specifications for β in (5.1) and (5.3) are

asymptotically equivalent. It can be helpful to compute both, because their difference gives

an indication of the likely precision.

For our numerical comparisons, we use exact results from the tables in Seelen, Tijms and

van Hoorn (1985). The results are displayed below in Table 1. The approximation reduces to

(0.2) when the arrival process is Poisson. In that case it is well known that the approximation

for PW = PB performs quite well; e.g., see Table 13 of Whitt (1993). We see that again for

the entries in which c2
a = 1 in Table 1.
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As approximations for PW and PB in Table 1, we plot the approximation α(β/
√

z) in

(1.1) based on both the standard specification of β in (5.1) and the alternative in (5.3). The

modification in (5.3) always increases β and thus reduces α(β/
√

z). As indicated above, the

two values together give a good indication of the accuracy. In many cases (but not all) they

bracket the exact values.

In Table 1 we also compare a heavy-traffic approximation for the mean number waiting,

E[(Qn(∞) − n)+] (using (5.1) for β) with exact values . By Little’s law, L = λW , we obtain

an associated approximation for the mean steady-state waiting time (before beginning service)

EWn(∞); i.e.,

EWn(∞) = E[(Qn(∞)− n)+]/λn . (5.4)

The direct heavy-traffic approximation based on (3.13) is

E[(Qn(∞)− n)+] ≈ α
√

nv

β
=

αv

1− ρ
(5.5)

for v in (4.7). When the service-time distribution is exponential,

v = (c2
a + 1)/2 (5.6)

for v in (4.7) and any weight function w. Thus, consistent with the established limit in this

case, we anticipate that the approximation should perform better for exponential service times.

To make the heavy-traffic approximation exact for the M/M/n/∞ model for all ρ and still

keep it asymptotically correct, we multiply the approximation in (5.5) by ρ to get

E[(Qn(∞)− n)+] ≈ αρv

1− ρ
. (5.7)

By Little’s law again, the expected steady-state number of busy servers is λ/µ = nρn.

Hence we can apply (5.7) to obtain the related approximation

EQn(∞) ≈ nρ +
αρv

1− ρ
. (5.8)

We only evaluate the approximation in (5.7) because it is more challenging.

Approximations for general GI/GI/n/∞ queues were studied in Whitt (1993), but unfor-

tunately the error in the asymptotic-delay-probability limit in Halfin and Whitt (1981) was

perpetuated in Whitt (1993). In formula (3.2) there the Halfin-Whitt delay-probability ap-

proximation for GI/M/n/∞ is given as α(β/z) instead of α(β/
√

z). As should be anticipated,

the quality of the approximation improves dramatically when this error is corrected. For ex-

ample, the new approximation performs much better in Tables 15 and 16 there for D/M/n/∞
and Hb

2/M/n/∞ queues.
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Parameters Delay Probability Mean Number Waiting
exact approximations exact approximation

n ρ c2
a PW PB (1.1) (5.3) E[(Q(∞)− n)+] (5.7) and (5.6)

200 0.98 4.00 .803 .794 .794 .792 97.2 97.3
1.00 .692 .692 .689 .686 33.9 33.8
0.25 .619 .627 .620 .617 19.0 19.0

0.92 4.00 .367 .349 .361 .344 10.0 10.4
1.00 .170 .170 .176 .161 1.97 2.02
0.25 .090 .094 .098 .086 0.66 0.70

0.88 4.00 .191 .177 .196 .171 3.23 3.59
1.00 .049 .049 .055 .043 0.36 0.40
0.25 .0142 .0154 .0185 .0127 0.067 0.085

100 0.98 4.00 .861 .851 .850 .849 104.2 104.1
1.00 .775 .775 .771 .769 38.0 37.8
0.25 .717 .726 .718 .715 22.1 22.0

0.92 4.00 .515 .490 .500 .484 14.1 14.4
1.00 .312 .312 .314 .297 3.58 3.61
0.25 .208 .219 .218 .202 1.52 1.57

0.86 4.00 .272 .249 .273 .242 3.80 4.19
1.00 .094 .094 .104 .083 0.58 0.64
0.25 .037 .041 .047 .033 0.15 0.18

25 0.90 4.00 .690 .648 .658 .642 14.5 14.8
2.00 .593 .574 .577 .559 7.74 7.79
1.00 .508 .508 .504 .485 4.57 4.54
0.50 .442 .458 .449 .428 3.02 3.03
0.10 .367 .402 .386 .364 1.87 1.91

0.70 4.00 .225 .186 .244 .175 1.03 1.41
1.00 .064 .064 .085 .044 0.15 0.20
0.10 .0116 .0161 .0254 .0089 0.016 0.033

8 0.98 4.00 .9670 .9554 .9559 .9554 117.0 117.1
1.00 .9361 .9361 .9309 .9302 45.9 45.6
0.25 .9132 .9244 .9132 .9124 28.1 28.0

0.90 4.00 .834 .785 .794 .783 17.6 17.9
1.00 .702 .702 .689 ,675 6.31 6.20
0.25 .610 .651 .620 .604 3.51 3.49

0.70 4.00 .502 .415 .478 .406 2.31 2.79
1.00 .271 .271 .290 .218 0.63 0.68
0.25 .150 .190 .196 .132 0.24 0.29

2 0.80 4.00 .854 .754 .794 .771 7.40 7.94
1.00 .711 .711 .689 .658 2.84 2.76
0.25 .594 .685 .620 .584 1.55 1.55

0.60 4.00 .663 .514 .620 .534 1.77 2.33
1.00 .450 .450 .457 .353 0.68 0.69
0.25 .284 .404 .361 .255 0.29 0.34

Table 1: A comparison of the GI/M/n/∞ approximations in (1.1) and (5.3) with exact values
of the probability of delay (PW ) and the probability all servers are busy (PB) for various
values of n, ρ and interarrival-time SCV c2

a. (The peakedness is thus z = (c2
a + 1)/2.) Also

compared are the approximation for the mean number waiting in (5.7) and (5.6) with exact
values. The exact values come from Seelen, Tijms and van Hoorn (1985).
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parameters exact values approximations exact approximation
c2
a c2

s z PW PB (1.5) GI/M/n/∞ E[(Q(∞)− n)+] (5.7)
0.1 0.0 0.10 .058 .103 .071 .386 0.037 0.032
0.5 0.50 .336 .360 .366 .449 0.89 0.82
1.0 1.00 .479 .479 .505 .505 2.41 2.27
2.0 2.00 .615 .593 .624 .577 5.67 5.62
4.0 4.00 .730 .688 .721 .658 12.9 13.0
0.1 0.5 0.44 .308 .349 .338 .386 0.94 0.92
0.5 0.69 .415 .434 .431 .449 2.00 1.94
1.0 1.00 .500 .500 .505 .505 3.51 3.41
2.0 1.62 .601 .580 .591 .577 6.66 6.65
4.0 2.87 .706 .663 .677 .658 13.5 13.7
0.1 2.5 0.65 .420 .447 .419 .386 4.39 4.90
0.5 0.80 .472 .485 .462 .449 5.66 6.24
1.0 1.00 .522 .522 .505 .505 7.32 7.95
2.0 1.39 .594 .574 .565 .577 10.8 11.4
4.0 2.18 .680 .637 .637 .658 18.0 18.6
0.1 4.0 0.69 .441 .465 .431 .386 6.89 7.95
0.5 0.83 .485 .498 .468 .449 8.23 9.48
1.0 1.00 .529 .529 .505 .505 9.95 11.4
2.0 1.35 .592 .575 .559 .577 13.3 15.1
4.0 2.05 .672 .633 .628 .658 20.2 22.6

Table 2: A comparison of the G/GI/n/∞ approximation in (1.5) and the GI/M/n/∞ approxi-
mation in (1.2) (obtained by treating c2

s as 1) with exact values of the probability of delay (PW )
and the probability all servers are busy (PB) in the GI/GI/n/∞ model with non-exponential
service-time distributions for n = 25, ρ = 0.9 and several values of the interarrival-time SCV c2

a

and service-time SCV c2
s. Also evaluated is the approximation for the mean number waiting in

(5.7) and (4.7) with w ≡ 1. The exact values come from Seelen, Tijms and van Hoorn (1985).

We now evaluate the approximations for the delay probability in (1.5) and the mean number

waiting in (5.7) for GI/GI/n/∞ models with non-exponential service-time distributions. Now

we are considering cases in which the diffusion approximation is not asymptotically correct in

the heavy-traffic limit. For comparison, we again rely on tables in Seelen et al. (1985). The

results appear in Table 2.

For the delay probability, we compare the new G/GI/n/∞ approximation and the GI/M/n/∞
approximation (applied by ignoring the service-time SCV) to the exact values of PW and PB.

Again, half the difference between PW and PB provides a lower bound on the worst error in

the approximation for these two quantities. The new G/GI/n/∞ approximation does quite

well. In fact, the GI/M/n/∞ approximation itself does remarkably well except when c2
a is

small. The general G/GI/n/∞ approximation does significantly better than the G/M/n/∞
approximation when c2

a is small.
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For the mean number waiting, we let the variability parameter v be as in (4.7) with weight

w ≡ 1; i.e., here v = (c2
a + c2

s)/2. The approximation slightly underestimates the exact values

when c2
s < 1 and quite significantly overestimates the exact values when c2

s > 1. When

c2
s = 4.0, the approximation is consistently about 14% too high. The approximation for the

mean number waiting in the cases with c2
s > 1 become nearly exact if we use w = 0.8 in

(4.7). The direct approximation (with w = 1) performs remarkably well when both c2
a > 1 and

c2
s < 1. Overall, the approximations in Table 2 seem sufficiently accurate to be quite useful.

6. Simulations

In order to evaluate the approximations for more general G/GI/n/∞ models, we conduct

simulation experiments. Table 2 only evaluates the approximations for renewal arrival processes

and service-time distributions with c2
s = 1.0 and c2

s = 0.5. We also want to consider non-renewal

arrival processes and other service-time distributions.

We consider two non-renewal arrival processes. First we consider a deterministic process

with local variability. For a rate-1 process, we let the first four interarrival times be 0.1 and

then we let the fifth interarrival time be 4.6. We then repeat, getting 5 arrivals in each interval

[5n, 5(n + 1)] for positive integers n. We call this a deterministic batch process with clusters

of size 5, and refer to it as Db5. Even though the Db5 process has more variability than the

D process, it too has asymptotic scaling constant c2
a = 0 in the FCLT for the arrival process,

as in (2.1) and (2.2).

Our second non-renewal process is the independent superposition of 4 IID Hb
2 renewal

processes, denoted by sup4Hb
2. We let the SCV be c2

a = 19 in each component process in

order to match the SCV of the H∗
2 process with parameter p = 0.1. In the FCLT for the

superposition arrival process, the scaling constant is the same as the SCV of a component

renewal process. An interarrival time in the superposition process has a much smaller SCV;

e.g., see Whitt (1982).

To examine more-highly-variable service-time distributions, we consider the lognormal

(LN) and Pareto with parameter p = 3/2 (Par(3/2)) in addition to H∗
2 with parameter

p = 0.1, yielding SCV c2
s = 19. The lognormal takes the form ea+bN(0,1), where the parameters

a and b are chosen to yield the desired mean and SCV. We let the SCV be 19 to match the

H∗
2 distribution with parameter p = 0.1. For the lognormal distribution, we calculate the

parameter η(G) in (1.7) by numerical integration. (The parameter values of η(G) for all the

service-time distributions considered are given in the last row of Table 3.)
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We conduct the simulations using Splus and Fortran, exploiting recursive expressions for

the departure times from the multiserver queue in Berger and Whitt (1992b). Given the arrival

times and departure times, we construct the queue-length process at state-change times using

the method on p.210 of Whitt (2002); i.e., we first construct a sequence of change times by

sorting the arrival and departure times; then we construct a vector with a +1 associated

with each arrival and a −1 associated with each departure, ordered according to the times of

occurrence; then the sequence of successive queue lengths at change times is the associated

cumulative-sum process. Since loops are not efficient in Splus, we used Fortran to construct

the queue-length process from the arrival process and service times.

We conducted a simulation experiment with each combination of six arrival processes and

five service-time distributions. We considered four renewal arrival processes and the two non-

renewal processes Db5 (c2
a = 0) and sup4Hb

2 (c2
a = 19) introduced above. The four renewal

processes had interarrival times distributed as D, M , H∗
2 with parameter p = 0.1 (c2

a = 19) and

LN with c2
a = 19. The five service-time distributions are D, M , H∗

2 with p = 0.1 (c2
s = 19),

LN with c2
s = 19 and Par(3/2), which has infinite variance. The variability parameters z in

(1.6) and v in (4.7) with w = 1 for these examples are displayed in Table 3. Values of the

service-time variability factor η(G) in (1.7) appear in the last row. Note that η(G) is smallest

for the H∗
2 service-time distribution. Also note that the asymptotic peakedness in the cases of

highly variable arrival processes is smallest for the H∗
2 service-time distribution.

Simulation results based on runs for 106 arrivals are shown in Tables 4 and 5. The approx-

imation for the probability all servers are busy (PB) in (1.5) is compared to the simulation

estimates in Table 4. Based on subsequent independent replications, we conclude that there is

statistical precision only to about 10% in the more variable cases.

Consistent with Theorem 2.1, the simulations show that non-renewal arrival processes

primarily affect congestion in the regime (0.1) through their rate and the scaling constant

appearing in the FCLT, as in (2.1) and (2.2). The results for the Db5 arrival process are

similar to those for the D arrival process, while the results for the sup4Hb
2 arrival process are

similar to the renewal arrival processes with c2
a = 19.

The quality of the approximations for PB are consistently good with exception of the cases

involving H∗
2 arrival processes, where the approximations are too high. We have not been able

to explain that discrepancy. Independent replications yield similar values. Otherwise, the

delay-probability approximation seems consistently good across all cases.

However, Table 5 shows that the approximations for the mean conditional number waiting
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given that all servers are busy, assuming w ≡ 1 in formula (4.7) for v, behave very differently.

These approximations are quite accurate for M and H∗
2 service times, where the approximations

have been shown to be asymptotically correct, but the approximations grossly overestimate

the exact values for the highly variable LN and Par(3/2) service-time distributions.

Indeed, the low simulation values with LN and Par(3/2) service-time distributions are

remarkable. The approximation for LN service times can be improved dramatically if we

use (4.7) with w = 0.18 (obtained by considering what is needed in the case D/LN). The

approximations change to 14.2 for D and Db5 arrivals, 17.5 for M arrivals and 77.6 for H∗
2 ,

LN and sup4Hb
2 arrivals.

Since the Pareto(3/2) service-time distribution has an infinite variance, c2
s = ∞, so the

approximation in (4.7) for v makes no sense. Based on (4.7), we would expect the queue-

length process to be unstable, but that evidently is not the case. In fact, quite reasonable

approximations for the cases with Pareto(3/2) service-time distributions can be obtained by

using the approximation v ≈ 2.8. The approximations change to 9.4 for D and Db5 arrivals,

12.7 for M arrivals and 72.9 for H∗
2 , LN and sup4Hb

2 arrivals. It remains to determine how to

systematically define an appropriate variability parameter v, but the evidence suggests that it

should be possible.

In Table 5 we display estimates of the standard deviation (SD) of the conditional number

waiting given that all servers are busy as well as the mean. Since the estimates of the SD differ

relatively little from the estimates for the mean, we conclude that the distribution is reasonably

well approximated by an exponential distribution. However, the cases of the heavy-tailed LN

and Par(3/2) service times suggest that in those cases the distribution has a slightly heavier

tail, with an SCV of about 1.5 instead of 1.0. Certainly the tail of the steady-state queue-

length is closer to an exponential distribution than to the tail of the service-time distribution

itself. In Figure 4 we plot four estimates of the steady-state density based on these simulations

(ignoring the discreteness), using the Splus nonparametric density estimator, to show that the

steady-state distributions do indeed have the claimed general form.

Many simulations of M/GI/100/∞ queues with non-exponential service times, including

lognormal service times, have recently been conducted by Mandelbaum and Schwartz (2002).

Their results are consistent with what we observed above.

29



service times
D M H∗

2 LN Par(3/2)
arrival process c2

s = 0 c2
s = 1 c2

s = 19 c2
s = 19 c2

s = ∞
D z – 0.50 0.98 0.78 0.75

c2
a = 0 v – 0.50 9.50 9.50 ∞
Db5 z – 0.50 0.98 0.78 0.75

c2
a = 0 v – 0.50 9.50 9.50 ∞
M z 1.00 1.00 1.00 1.00 1.00

c2
a = 1 v 0.50 1.00 10.00 10.00 ∞
H∗

2 z 19.00 10.00 1.90 4.96 5.50
c2
a = 19 v 9.50 10.00 19.00 19.00 ∞
LN z 19.00 10.00 1.90 4.96 5.50

c2
a = 19 v 9.50 10.00 19.00 19.00 ∞

sup4Hb
2 z 19.00 10.00 1.90 4.96 5.50

c2
a = 19 v 9.50 10.00 19.00 19.00 ∞

integral η(G) 1.00 0.50 0.05 0.22 0.25

Table 3: Key variability parameters in several G/GI/n/∞ queues: the asymptotic peakedness
z in (1.6) and the variability parameter v in (4.7) with w ≡ 1 (v = (c2

a + c2
s)/2), where c2

a

is understood to be the scale factor in the FCLT for the arrival process. The process Db5 is
a deterministic process with clusters of size 5, while sup4Hb

2 is the superposition of four IID
renewal processes with Hb

2 interarrival times with SCV c2
a = 19.

service times
D M H∗

2 LN Par(3/2)
arrival process c2

s = 0 c2
s = 1 c2

s = 19 c2
s = 19 c2

s = ∞
D approx. – .029 .098 .072 .067

c2
a = 0 sim. – .024 .096 .070 .049
Db5 approx. – .029 .098 .072 .067

c2
a = 0 sim. – .026 .106 .063 .052

M approx. .105 .105 .105 .105 .105
c2
a = 1 sim. .095 .105 .102 .107 .102

H∗
2 approx. .654 .549 .219 .416 .437

c2
a = 19 sim. .647 .576 .267 .474 .490

LN approx. .654 .549 .219 .416 .437
c2
a = 19 sim. .635 .547 .220 .414 .409

sup4Hb
2 approx. .654 .549 .219 .416 .437

c2
a = 19 sim. .623 .541 .228 .392 .398

integral η(G) 1.00 0.50 0.05 0.22 0.25

Table 4: A comparison of approximations using (1.5) with simulations estimates of the proba-
bility all servers are busy (PB) in several G/GI/n/∞ queues with λ = 100, µ = 1 and n = 115
(ρ = 0.870) based on 106 arrivals. The process Db5 is a deterministic process with clusters of
size 5, while sup4Hb

2 is the superposition of four IID renewal processes with Hb
2 interarrival

times with SCV c2
a = 19.
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service times
D M H∗

2 LN Par(3/2)
arrival process c2

s = 0 c2
s = 1 c2

s = 19 c2
s = 19 c2

s = ∞
D mean approx. – 3.3 63.5 63.5 ∞

mean sim. – 2.8 59.5 14.3 9.6
SD sim. – 3.1 52.5 21.00 12.7

Db5 mean approx. – 3.3 63.5 63.5 ∞
mean sim. – 2.8 54.1 13.9 9.3

SD sim. – 3.1 52.8 20.7 12.7
M mean approx. 3.3 6.7 66.9 66.9 ∞

mean sim. 4.7 6.4 60.3 17.8 12.8
SD sim. 4.5 6.7 55.2 26.1 15.5

H∗
2 mean approx. 63.5 66.9 127.0 127.0 ∞

mean sim. 79.4 75.8 114.4 63.2 64.9
SD sim. 76.1 76.8 140.5 74.6 80.3

LN mean approx. 63.5 66.9 127.0 127.0 ∞
mean sim. 46.6 46.6 111.7 49.0 40.7

SD sim. 39.4 47.0 112.6 57.1 53.3
sup4Hb

2 mean approx. 63.5 66.9 127.0 127.0 ∞
mean sim. 65.9 64.4 120.0 63.1 51.6

SD sim. 64.4 66.5 127.8 79.4 60.0

Table 5: A comparison of approximations with simulation estimates of the mean conditional
number waiting given that all customers are busy in several G/GI/n/∞ queues with λ = 100,
µ = 1 and n = 115 (ρ = 0.870) based on 106 arrivals. The approximations use (5.7) (divided
by α) with v in (4.7) and w ≡ 1. The process Db5 is a deterministic process with clusters of
size 5, while sup4Hb

2 is the superposition of four IID renewal processes with Hb
2 interarrival

times with SCV c2
a = 19.

31



queue length

de
ns

ity

100 200 300 400

0.
0

0.
01

0.
02

0.
03

0.
04

M/M/115

queue length

de
ns

ity

100 200 300 400

0.
0

0.
01

0.
02

0.
03

0.
04

M/LN/115

queue length

de
ns

ity

100 200 300 400

0.
0

0.
01

0.
02

0.
03

M/H*2/115

queue length

de
ns

ity

100 200 300 400

0.
0

0.
01

0.
02

0.
03

0.
04

M/Par(3/2)/115

Figure 4: Estimates of the steady-state density of the queue-length process (ignoring the
discreteness) in four GI/GI/n/∞ models with λ = 100, µ = 1 and n = 115. The service times
are exponential (M), lognormal (LN), Pareto(3/2) and H∗

2 . The estimates are obtained from
the Splus nonparametric density estimator based on 106 arrivals in each case.
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7. Approximations for Blocking Probabilities in G/GI/n/m

We now apply the diffusion approximation in Section 4 to generate an approximation for

the blocking probability in the G/GI/n/m queue. Since the diffusion process has a reflecting

barrier at κ, which is not defined by a reflection map applied to a free process, the diffusion does

not directly experience any loss. However, we can define a loss rate for the diffusion process

by looking at the behavior of the diffusion process in the neighborhood of the boundary.

For x > 0, the diffusion process acts like ordinary Brownian motion with a drift. Thus, just

as for the G/G/1/m model in Berger and Whitt (1992a), we can apply the reasoning on pages

86-92 in Harrison (1985) to motivate defining the (long-run) loss rate (at the upper barrier κ)

of the diffusion process Q as

rQ ≡ fQ(∞)(κ)σ2
Q(κ)

2
, (7.1)

where fQ(∞) is the pdf of Q(∞) in (3.14) or (3.15) and σ2
Q(κ) is the infinitesimal variance of

Q evaluated at the upper boundary κ. In the case β 6= 0,

fQ(∞)(κ) =
αβe−κβ/v

v(1− e−κβ/v)
. (7.2)

From (2.9), (2.10) and (2.12), we see that the infinitesimal variance of Q evaluated at κ is

σ2
Q(κ) =

2µz

p
= 2µv . (7.3)

Since Qn(t) ≈ n +
√

nQ(t) by the scaling in (2.4), we approximate the loss rate in the

queueing system by

rQn ≈
√

nrQ . (7.4)

Since the blocking probability equals the loss rate divided by the arrival rate, we approximate

the blocking probability in the queueing system, denoted by πn, by

πn =
rQn

λn
≈ fQ(∞)(κ)v

ρn
√

n
. (7.5)

Remark 7.1. A conjectured local limit. We conjecture that the approximation in (7.5) can

be supported by a local limit in the G/H∗
2/n/m model under the conditions of Theorem 2.1.

That limit would state that

√
nπn ≡ P (Qa

n(∞) = n + mn) → f(κ)v (7.6)

as n → ∞ for v = (c2
a + c2

s)/2. That is in the spirit of Theorem 15 on p. 226 of Borovkov

(1976). For the case of exponential service times, where the multiserver queue with all servers
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busy behaves like a single-server queue, this conjecture has been verified when β < 0 by Whitt

(2004b).

Remark 7.2. Comparison with G/GI/n/0 loss model. The same reasoning applies to the

G/GI/n/0 loss model, but the blocking formula is quite different. When x < 0, the diffusion

behaves like an Ornstein-Uhlenbeck process, not a Brownian motion. However, the infinitesimal

parameters are approximately constant in the neighborhood of the upper boundary (now κ =

0). We thus use the same reasoning and define the loss rate of the diffusion process as

rQ ≡ fQ(∞)(κ)σ2
Q(κ)

2
, (7.7)

just as in (7.1) except now κ = 0.

From (3.14), we see that

fQ(∞)(0) =
φ(β/

√
z)√

zΦ(β/
√

z)
(7.8)

when β 6= 0. From (2.9), (2.10) and (2.13), we see that

σ2
Q(0) = 2pµz . (7.9)

Hence we obtain the blocking-probability approximation

πn ≈ p
√

zφ(β/
√

z)
ρ
√

nΦ(β/
√

z)
. (7.10)

Formula (7.10) is p
√

ρ times the approximation in (15) of Srikant and Whitt (1996). The factor

of
√

ρ is removed if we apply approximation (5.3). Moreover, that factor is asymptotically

negligible in the limiting regime (0.1). Thus we reproduce the previous blocking probability

approximation in Srikant and Whitt (1996) in the special case p = 1. Otherwise the formulas

are different.

We evaluate the approximations for both the delay probability and the blocking probability

in GI/GI/n/m models in Table 6. For these examples we let v be as in (4.7) with w ≡ 1. In

Table 6 we make comparisons with exact values from Seelen et al. (1985) for the GI/GI/25/10

model for several different values of c2
a, c2

s and ρ. The exact delay probability values (PW ) in

Table 6 differ from those in Seelen et al. (1985), because they display the conditional delay

probability given that the customer is admitted. Our value of PW is computed from theirs,

denoted by PWS , by

PW = PWS + PBL− (PWS)(PBL) . (7.11)
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parameters exact values approximations
c2
a c2

s ρ PW PB PBL (3.4) and (3.8) (7.5)
4.00 1.00 1.5 .918 .883 .347 .890 .343

1.2 .800 .743 .212 .706 .213
1.0 .628 .561 .112 .502 .126
0.9 .502 .436 .067 .388 .088
0.8 .353 .297 .032 .279 .057
0.7 .205 .165 .0110 .184 .034

1.00 1.00 1.5 .990 .990 .334 .994 .334
1.2 .913 .913 .176 .907 .175
1.0 .649 .649 .059 .615 .061
0.9 .414 .414 .021 .392 .025
0.8 .195 .195 .0046 .199 .0078
0.7 .063 .063 .00054 .081 .0018

0.25 1.00 1.5 .9987 .9990 .333 .9997 .333
1.2 .965 .970 .169 .970 .169
1.0 .680 .705 .041 .669 .042
0.9 .355 .384 .0079 .359 .0101
0.8 .110 .126 .00060 .132 .00118
0.7 .0182 .023 .00002 .0343 .00012

4.00 0.50 1.5 .924 .891 .347 .916 .342
1.2 .812 .757 .212 .753 .211
1.0 .648 .581 .112 .561 .123
0.9 .527 .459 .067 .449 .085
0.8 .382 .321 .032 .338 .055
0.7 .230 .186 .0109 .239 .033

1.00 0.50 1.5 .996 .996 .334 .9989 .333
1.2 .944 .944 .172 .953 .171
1.0 .681 .681 .052 .680 .051
0.9 .427 .427 .0160 .429 .0170
0.8 .194 .194 .0029 .211 .0039
0.7 .061 .061 .00028 .083 .00067

0.25 0.50 1.5 .9999 .9999 .333 .99999 .333
1.2 .990 .992 .167 .996 .167
1.0 .733 .758 .030 .738 .028
0.9 .336 .369 .0030 .324 .0027
0.8 .084 .101 .00008 .083 .00010
0.7 .011 .0144 .00000 .0137 .000002

Table 6: A comparison of the approximations with exact values of the delay probability
(PW ), the probability all servers are busy (PB) and the blocking probability (PBL) in the
GI/GI/n/m model with exponential (M) and Erlang (E2, c2

s = 0.5) service-time distributions
for n = 25, m = 10 and various values of the interarrival-time SCV c2

a and the traffic intensity
ρ. The approximations have v in (4.7) with w ≡ 1. The exact values come from Seelen, Tijms
and van Hoorn (1985).
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We regard the quality of the approximations as quite good. However, the delay-probability

approximation is surprisingly inaccurate when ρ = 1 and c2
s = 1, where it is supposed to be

asymptotically correct.

The accuracy of the approximations may be less impressive than we would wish, but it

is important to recognize that not too much accuracy is required in many applications. A

principle application is server staffing. In that application, great accuracy is not required

because servers come in integer quantities, and the performance measures tend to change

substantially with unit changes in the staffing.

We illustrate by showing how the approximation for the blocking probability πn depends

on the number of servers, n, for several GI/GI/25/10 queues. We let Table 6 serve as our

base case: For ρ = 0.9, the arrival rate is λ = 22.5. We change n holding the arrival rate fixed

at λ = 22.5.

We consider four cases: We consider the M/M/n/m model, one less-bursty example and

two more-bursty examples. The less-bursty example is the E2/E2/n/m model with Erlang

interarrival times and service times. Using (4.8), we let the approximate peakedness be z ≈
0.625. The more bursty examples are Hb

2/E2/n/m with c2
a = 4.0 and M/Hb

2/n/m with c2
s = 10.

The results are shown in Table 7. First we see that quantifying the variability of a distribu-

tion beyond its mean can be very important: There is greater disparity going from M/M/n/m

to one of the other models (changing columns) than there is in adding or subtracting a server

(changing rows).

We also see that adding servers tends to have a greater impact in the less-bursty examples:

With greater variability, the addition of a server causes a smaller decrease in the blocking

probability. For example, suppose that we want to decrease the blocking probability from just

less than 0.080 to just less than 0.040. For the M/M/25/10 model, we would go from n = 22

to n = 24, an addition of 2 servers. In contrast, for the M/H2/25/10 model, we would go from

n = 26 to n = 30, an addition of 4 servers.

8. Conclusions

We have developed a heuristic diffusion approximation for the G/GI/n/m queue, intended

for the case of large n, which is supported by a heavy-traffic stochastic-process limit for the

special case of the G/H∗
2/n/m model, established in the companion paper Whitt (2004a).

Thorem 3.1 shows that the approximation yields relatively simple explicit formulas for the

steady-state performance measures of interest.
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parameters approximate blocking probabilities
n ρ M/M E2/E2 H2/E2, c2

a = 4.0 M/H2, c2
s = 10

21 1.07 .097 .077 .152 .157
22 1.02 .071 .046 .131 .133
23 0.98 .053 .027 .115 .115
24 0.94 .037 .014 .100 .097
25 0.90 .025 .0065 .085 .081
26 0.87 .018 .0034 .075 .069
27 0.83 .011 .0013 .063 .055
28 0.80 .0078 .00063 .055 .046
29 0.78 .0059 .00037 .050 .040
30 0.75 .0039 .00016 .043 .033
40 0.56 .00016 .00000 .0144 .0057

Table 7: The approximate blocking probability as a function of the number of servers in four
GI/GI/25/10 models with arrival rate λ = 22.5, as occurs in the cases of Table 6 when ρ = 0.9.

Corollary 3.1 shows that the steady-state delay probability and the conditional distribution

of the number of busy servers given that all servers are not busy in the G/H∗
2/n/∞ model

depend on the parameter p only through the parameter z, which has a natural approximation by

the asymptotic peakedness in (1.6) in the G/GI/n/∞ model. Thus there is reason to expect

that the approximations for these characteristics to perform well. Simulation experiments

confirm that the approximations for these quantities perform remarkably well across a wide

range of cases. We thus feel that we have successfully met our main goal of generating a useful

approximation for the delay probability in G/GI/n/∞ models.

Especially interesting are simulation results for multiserver queues with heavy-tailed service-

time distributions. The simulations show that the congestion is much less than might be ex-

pected. That is partly explained by the formula for the asymptotic peakedness in (1.6) that

plays an important role in the approximations for the steady-state delay probability. Much

insight is provided by the value of the integral η(G) in (1.7) for the heavy-tailed distributions.

Simulation results show that the diffusion approximation with the variability parameter v =

(c2
a + c2

s)/2 work well for the mean steady-state number waiting for service-time distributions

with low-to-moderate variability. However, the simulation results in Table 5 show that the

diffusion approximation with this parameter v grossly overestimates the expected mean number

waiting when the service-time distribution is lognormal. That discrepancy disappears if we use

a refined approximation for v as in (4.7) with an appropriate weight w. However, it remains to

determine a weight function w that produces good performance for the mean number waiting

across a wide range of cases. It also remains to determine an appropriate parameter v for
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heavy-tailed distributions, like the Pareto(3/2), that have finite mean but infinite variance.

Indeed, nothing has yet been proved about the limiting behavior in that case.

Overall, we believe that we have developed a useful approximation framework, but there

remains much work to do. It would be interesting to compare the results here to those obtained

from an algortihm to compute the steady-state distribution of the multidimensional diffusion

in Puhalskii and Reiman (2000). For approximations (but not for asymptotics), presumably

lognormal and Pareto distributions can be effectively treated by approximating them by ap-

propriate phase-type distributions, using algorithms such as in Asmussen, Nerman and Olsson

(1996) and Feldmann and Whitt (1998).
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