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We develop a diffusion approximation for the queue-length stochastic process in the G/GI/n/m queueing model (having
a general arrival process, independent and identically distributed service times with a general distribution, n servers,
and m extra waiting spaces). We use the steady-state distribution of that diffusion process to obtain approximations for
steady-state performance measures of the queueing model, focusing especially upon the steady-state delay probability. The
approximations are based on heavy-traffic limits in which n tends to infinity as the traffic intensity increases. Thus, the
approximations are intended for large n.
For the GI/M/n/� special case, Halfin and Whitt (1981) showed that scaled versions of the queue-length process

converge to a diffusion process when the traffic intensity �n approaches 1 with �1 − �n�
√
n → 	 for 0 < 	 < �.

A companion paper, Whitt (2005), extends that limit to a special class of G/GI/n/mn models in which the number of
waiting places depends on n and the service-time distribution is a mixture of an exponential distribution with probability p
and a unit point mass at 0 with probability 1− p. Finite waiting rooms are treated by incorporating the additional limit
mn/

√
n → � for 0 < � � �. The approximation for the more general G/GI/n/m model developed here is consistent

with those heavy-traffic limits. Heavy-traffic limits for the GI/PH/n/� model with phase-type service-time distributions
established by Puhalskii and Reiman (2000) imply that our approximating process is not asymptotically correct for non-
exponential phase-type service-time distributions, but nevertheless, the heuristic diffusion approximation developed here
yields useful approximations for key performance measures such as the steady-state delay probability. The accuracy is
confirmed by making comparisons with exact numerical results and simulations.
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Introduction
The rapid growth of telephone call centers and more gen-
eral customer contact centers has generated renewed inter-
est in the performance of multiserver queueing models
when the number of servers is large; e.g., see Armony and
Maglaras (2004), Borst et al. (2004), Gans et al. (2003),
Garnett et al. (2002), Mandelbaum (2001), Whitt (2003),
and references therein.
Because these multiserver systems often have a very large

number of servers, it is natural to look for insight into sys-
tem performance by considering asymptotics as the num-
ber of servers is allowed to increase. Such limits were
established for the GI/M/n/� queueing model (with
renewal arrival process, exponential service times, n servers,
and unlimited waiting room) by Halfin and Whitt (1981),
for the more general GI/PH/n/� model (with phase-type
service times) by Puhalskii and Reiman (2000), and for
the M/M/n/� model with exponential customer abandon-
ment by Garnett et al. (2002). They considered a sequence
of models indexed by the number of servers, n, and let
n → � with the traffic intensities �n converging to one,
the critical value for stability. Interesting nondegenerate

limits occur when

√
n�1−�n�→ 	 for 0<	<� (0.1)

An important performance measure in this setting is the
delay probability, i.e., the steady-state probability that an
arriving customer finds all servers busy and must wait in
queue before starting service. For the GI/M/n/� model
(and presumably for the GI/PH/n/� model as well,
although it remains to be proved), if n→ � with condi-
tion (0.1) holding, then the associated sequence of delay
probabilities approaches a limit � strictly between 0 and 1.
Because the delay probabilities require no scaling by a
function of n for that limit, the delay probability tends to
be an especially useful performance measure, as suggested
by Whitt (1992).
For the M/M/n/� model, the delay-probability limit

has a relatively simple form,

�≡ ��	�= �1+	��	�/��	��−1� (0.2)

where 	 is the limit in (0.1), � is the cumulative distri-
bution function (CDF), and � is the probability density
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function (PDF) of a standard (mean 0, variance 1) normal
random variable; e.g., ��x� = P�N�0�1� � x�. The func-
tion � in (0.2) is a continuous, strictly convex, strictly
decreasing function on the positive halfline, with ��0�= 1
and ��	�→ 0 as 	→�; see Lemma B.1 of Borst et al.
(2004). For the M/M/n/� model, the asymptotic-delay-
probability function � in (0.2) plays a crucial role in further
analysis, as can be seen from the recent papers cited above.
Even though the asymptotic-delay-probability function �
in (0.2) arises in the limit as n→ �, it provides a good
approximation for the actual M/M/n/� delay probability
for all n provided that � is not too small (e.g., when the
actual delay probability is greater than or equal to 0.10; see
Table 13 in Whitt 1993).
Because the asymptotic-delay-probability function � in

(0.2) has proven to be so important for the Markovian
M/M/n/� system, we want to find analogs for non-
Poisson arrival processes, nonexponential service-time dis-
tributions, and finite waiting space. The present paper
addresses that problem. In this paper, we consider the gen-
eral G/GI/n/� model: We allow the arrival process to be a
general stationary (or asymptotically stationary) arrival pro-
cess (G), but we require that the service times be indepen-
dent and identically distributed (IID) and independent of
the arrival process (with a general probability distribution,
GI). In practice, nonexponential service-time distributions
are common, but arrival processes often can be regarded
as Poisson. Non-Poisson arrival processes commonly occur
when some of the arrivals are overflows from other systems
that are temporarily congested.
In this paper, we primarily focus on an approximation for

the steady-state delay probability and the steady-state prob-
ability that all servers are busy in the G/GI/n/� model.
These two quantities are equal with a Poisson arrival pro-
cess, but not more generally. However, they are asymptot-
ically equivalent in the heavy-traffic limit as n → �, so
we do not distinguish between them: Our approximation
applies to both. Even though we focus on the steady-state
delay probability, we also develop an approximation for the
entire queue-length (number in system) stochastic process
and its steady-state distribution.
We base our approximation for the queue-length process

on a heavy-traffic limit for the G/GI/n/� model with a
special H∗

2 service-time distribution, established in Whitt
(2005). (Related heavy-traffic limits for the G/D/n/�
model have recently been established by Jelenkovic et al.
2004.) The H∗

2 service-time distribution is a mixture of
an exponential distribution with probability p and a point
mass on 0 with probability 1 − p. The general form of
our proposed approximation for the queue-length process is
the form of the limit process obtained for the G/H∗

2 /n/m
model, namely, a convex piecewise-linear function of a dif-
fusion process. Interestingly, that process is not directly
a diffusion process, but because it is a relatively simple
function of a diffusion process, we call the overall approx-
imation a diffusion approximation. For applications, it is

significant that the approximating process has a tractable
steady-state distribution.
A major conclusion of Halfin and Whitt (1981),

expanded upon by Puhalskii and Reiman (2000), is that
the role of the service-time distribution in the many-server
heavy-traffic asymptotic regime (0.1) is very different from
its role in the more conventional fixed-number-of-servers
heavy-traffic limit with convergence to reflected Brownian
motion. In the conventional heavy-traffic limit, convergence
to a diffusion process requires that the service-time distri-
bution have a finite variance; then, the limit depends on the
service-time distribution beyond its mean only via its vari-
ance. (Other nondiffusion heavy-traffic limits are possible
in the conventional heavy-traffic regime when the service-
time distribution has infinite variance, but the limit pro-
cess and the scaling are then very different; e.g., see Whitt
2002.) Moreover, in the conventional heavy-traffic regime,
the standard congestion measures increase as the service-
time variance increases for any fixed service-time mean.
As we substantiate here by computer simulations, the situa-
tion is very different for the many-server asymptotic regime
(0.1). For example, in some multiserver settings, the delay
probability actually decreases as the service-time variance
increases for fixed service-time mean. Moreover, the same
multiserver approximations may be appropriate for service-
time distributions with infinite variance. We do not yet
adequately understand the impact of the service-time dis-
tribution beyond its mean upon the performance of multi-
server queues, but in this paper we make a step forward.
Another objective in this paper is to develop approxima-

tions for the case of a finite waiting room. To do so, we
again rely on heavy-traffic limits in Whitt (2005). Those
heavy-traffic limits involve the more general G/GI/n/mn

model with mn additional waiting places. An arrival find-
ing all servers busy and the waiting room full is blocked
and lost without affecting future arrivals. (We do not con-
sider abandonments or retrials here.) For the heavy-traffic
stochastic-process limits in the heavy-traffic regime (0.1),
it is necessary to let mn →� as n→� so that

mn/
√
n→ � for 0<��� (0.3)

For exponential service times, the results for finite wait-
ing rooms provide theoretical support and refinements
for heuristic diffusion approximations in §VII of Whitt
(1984a). Related asymptotic analysis of the M/M/n/m
model has recently been done by Massey and Wallace
(2004).
The rest of this paper is organized as follows: We start in

§1 by describing the development of the proposed approx-
imation of the delay probability in the G/GI/n/� model.
We state the stochastic-process limit obtained in Whitt
(2005) for the G/H∗

2 /n/m models in §2 and characterize
the steady-state distribution of that limit process in §3. We
then develop the heuristic diffusion approximation for the
G/GI/n/m model in §4.
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In §5, we evaluate the approximation for the delay prob-
ability in the GI/GI/n/� model by making comparisons
with exact numerical values from the tables of Seelen
et al. (1985). In §6, we describe simulations conducted
to evaluate other G/GI/n/� models, focusing especially
on heavy-tailed service-time distributions and nonrenewal
arrival processes. In §7, we develop and evaluate asso-
ciated approximations for the blocking probability in the
G/GI/n/m model. In §8, we make a few concluding
remarks.

1. The Delay Probability in
the G/GI/n/� Model

We now describe the evolution of our approximation of the
delay probability in the G/GI/n/� model, which general-
izes (0.2). As noted above, Halfin and Whitt (1981) actually
made some progress for more general models by estab-
lishing the heavy-traffic stochastic-process limit for the
GI/M/n/� model as well as the M/M/n/� model, but
they gave an incorrect expression for the steady-state dis-
tribution of the diffusion-process limit in the GI/M/n/�
case, which leads to an incorrect generalization of the
asymptotic-delay-probability function �. However, the cor-
rect formula for the asymptotic delay probability in
the GI/M/n/� model can easily be derived from the
diffusion-process parameters in Halfin and Whitt (1981);
e.g., it can be obtained from Browne and Whitt (1995).
As indicated in Example 18.1 of Browne and Whitt

(1995), the limiting diffusion process obtained in Halfin
and Whitt (1981) is a piecewise-linear diffusion process,
i.e., a diffusion process with piecewise-linear drift and dif-
fusion functions, with two linear components, correspond-
ing to the situations in the queueing model in which not all
servers are busy and when they are. The delay probability
corresponds to p2 in (18.3) and (18.5) there. It is found by
applying (18.5) and (18.6) (or, equivalently, (18.26)) with
§18.4.1 (when the servers are not all busy) and §18.4.3
(when the servers are all busy). We apply Browne and
Whitt (1995) again here in §3.
The corrected GI/M/n/� asymptotic-delay-probability

function is a minor modification of theM/M/n/� function
above; specifically,

�GI/M/n/� ≡ �GI/M/n/��	� c
2
a�= ��	/

√
z�� (1.1)

where z= �c2a+1�/2, with c2a being the squared coefficient
of variation (SCV, variance divided by the square of the
mean, assumed to be finite) of an interarrival time, 	 is
the limit in (0.1), and � is the M/M/n/� asymptotic-
delay-probability function in (0.2). From (1.1), we see that
the interarrival-time distribution beyond the mean enters in
only via the SCV c2a, just as in the central limit theorem for
the arrival counting process. Halfin and Whitt (1981) had
the incorrect formula ��	/z� instead of ��	/

√
z�. Unfor-

tunately, that incorrect formula has been repeated, e.g., in
Whitt (1992, 1993, 2002).

In the next section, we describe a new heavy-traffic
limit for the more general G/GI/n/� model with a nonre-
newal arrival process and a special nonexponential service-
time distribution, which we establish in a companion paper
Whitt (2005). The nonexponential service-time distribution
is the mixture of an exponential distribution with probabil-
ity p and a unit point mass at 0 with probability 1−p. This
special service-time distribution is mathematically appeal-
ing because, just like the exponential service-time distribu-
tion, it makes appropriate queue-length processes Markov
processes. Because this special distribution is an extremal
distribution among the class of hyperexponential (H2, mix-
tures of two exponentials) distributions (see Whitt 1984b),
we denote this class by H∗

2 .
Puhalskii and Reiman (2000) already established many-

server heavy-traffic limits for the more general (and more
difficult) GI/PH/n/� model with phase-type service-time
distributions, but the limit process there is a complicated
multidimensional diffusion process, whose steady-state dis-
tribution remains to be determined. Thus, we are motivated
to consider heuristic one-dimensional alternatives.
Clearly, the H∗

2 service-time distributions are rather spe-
cial, and cannot be regarded as similar to all service-time
distributions. However, they are natural abstractions for the
case in which the service-time distribution is the mixture of
two other distributions, one with a small mean and the other
with a large mean. More generally, they capture the behav-
ior of many heavy-tailed distributions (with finite mean),
such as lognormal and Pareto, that produce many small
values and a few occasional very large values. These heavy-
tailed distributions are being encountered more and more
frequently; e.g., measurements have suggested that service-
time distributions are lognormal; see Bolotin (1994), Gans
et al. (2003), and Brown et al. (2002).
For the G/H∗

2 /n/� model, formula (1.1) is still valid,
provided we appropriately modify the formula for z; in
particular,

�G/H∗
2 /n/� ≡ �G/H∗

2 /n/��	� c
2
a� p�= ��	/

√
z� (1.2)

for � in (0.2), 	 in (0.1), and

z≡ z�c2a� p�= 1+
p�c2a − 1�

2
= p�c2a + c2s �

2
� (1.3)

where c2s = �2/p�− 1 for an H∗
2 service-time distribution

and c2a is the scaling constant in an assumed functional
central limit theorem (FCLT) for the arrival process; see
(2.1) and (2.2) in §2. For a renewal arrival process, c2a is
just the SCV of an interarrival time.
Because z�c2a�1� = �c2a + 1�/2, approximation (1.2)

reduces to (1.1) in the G/M/n/� special case. Because
z�1� p�= 1 for all p, 0<p� 1, formula (1.2) supports the
approximation

�M/GI/n/� ≈ �M/M/n/� ≡ ��	�� (1.4)
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which is a longstanding approximation; e.g., see Hokstad
(1978), Nozaki and Ross (1978), §3.2 of Whitt (1993), and
Kimura (2000). The limit in (1.2) and the approximation in
(1.4) indicate that the delay probability in the M/GI/n/�
model should not be significantly altered by a heavy-tailed
service-time distribution, provided that it has finite mean.
However, as is well known, the service-time distribution
beyond its mean can have a significant impact on the distri-
bution of the conditional queue length given that all servers
are busy.
Formulas (1.2) and (1.3) are very useful to predict the

qualitative behavior of the delay probability as a func-
tion of the arrival-process and service-time variability. First,
because � is a decreasing function, ��	/

√
z� is an increas-

ing function of z. Second, using (1.2), we see that z is
always an increasing function of c2a. Moreover, we see that
z is an increasing (decreasing) function of c2s when c

2
a < 1

(c2a > 1), with all values falling between 1 and c
2
a.

As might be anticipated, however, the peculiar form of
this tractable H∗

2 nonexponential service-time distribution
causes the limit in (1.2) not to perform well as an approx-
imation for the performance of G/GI/n/� models with
typical nonexponential service-time distributions if we just
match the first two moments of the service-time distribu-
tion using (1.3). Thus, we develop a new heuristic one-
dimensional diffusion approximation that produces more
useful approximations for general G/GI/n/� models.
As in previous work, e.g., Whitt (1992), the heuris-

tic diffusion approximation is based on an infinite-server
approximation when all servers are not busy and a single-
server approximation when all servers are busy. In those
two regimes we rely on established heavy-traffic limits, so
that again heavy-traffic asymptotics play a key role. How-
ever, the specific method is new: We first determine an
approximating (function of a) diffusion process. Then, we
use the exact steady-state distribution of the approximating
process.
From the heuristic diffusion approximation for the

G/GI/n/� model, we obtain a relatively simple approxi-
mation for the delay probability, namely,

�G/GI/n/� ≡ �G/GI/n/��	� z�≈ ��	/
√
z�� (1.5)

where again � is the M/M/n/� asymptotic-delay-
probability function in (0.2) and 	 is the limit in (0.1). The
key new quantity is

z≡ z�c2a�G�≡ 1+ �c2a − 1���G�� (1.6)

where G is the service-time CDF, assumed to have finite
mean 1/�, Gc ≡ 1 − G is the associated complementary
CDF,

��G�≡�
∫ �

0
Gc�x�2 dx≡

∫ �
0 Gc�x�2 dx∫ �
0 Gc�x�dx

� (1.7)

and, just as in (1.3), c2a is the normalization constant in
a FCLT for the arrival process (assumed to hold, which
requires that c2a be finite).
From (1.6) we see that the service-time distribution

beyond its mean should have relatively little impact upon
the delay probability when c2a is near 1, which is consistent
with extensive simulation experience. On the other hand,
when c2a is not near 1, the service-time distribution beyond
its mean should have a significant impact on the delay
probability, and that impact is quantified approximately by
(1.5)–(1.7). It is worth noting that the service-time param-
eter ��G� is well defined for all service-time distributions
with finite mean. There is no requirement that the service
time have finite variance.
The parameter z in (1.6) is the asymptotic peakedness

that appears in approximations for G/GI/n/0 loss mod-
els; e.g., see Eckberg (1983, 1985) and Whitt (1984a).
It was used before for delay models in Whitt (1992).
The peakedness is the variance divided by the mean of
the steady-state queue length (again number in system)
in the associated G/GI/� model. From heavy-traffic lim-
its for the G/GI/� model, it follows that the peakedness
approaches the asymptotic peakedness as the arrival rate
increases; see §10.3 of Whitt (2002).
Just like the SCV, the peakedness and the asymptotic

peakedness are dimensionless parameters quantifying vari-
ability. The function ��G� in (1.7) can assume any value
between 0 and 1. The maximum value 1, yielding z= c2a,
is obtained when G is the CDF of a unit point mass
(a deterministic distribution, D). The value of ��G� tends
to decrease as the distribution gets more variable. For an
exponential service-time CDF G, ��G� = 1/2, yielding
z= �c2a + 1�/2.
As emphasized by our notation above, the approximation

for the delay probability in the general G/GI/n/� model
in (1.5) is consistent with the heavy-traffic limit for the
G/H∗

2 /n/� model in (1.2). In the previous special cases,
z coincides with the asymptotic peakedness for that model.
A natural candidate for a refined approximation (which we
do not investigate here) is obtained by replacing the asymp-
totic peakedness z in (1.6) with the actual peakedness and
the asymptotic-delay-probability function � in (0.2) with
the actual M/M/n/� (Erlang-C) delay probability. For
practical engineering purposes, we do not anticipate that
such a refinement would be too important, but that remains
to be determined.
From the discussion above, and consistent with intuition,

the G/GI/n/� model behaves much like the associated
G/GI/� model when the arrival rate ! and n increase so
that (0.1) holds. However, the delay-probability approxima-
tion in (0.2), (1.1), (1.2), and (1.5) are not exactly the same
as the direct infinite-server approximation for the delay
probability, which is �c�	/

√
z� for �c ≡ 1−�; e.g., see

§2.3 of Whitt (1992). The delay-probability approximation
is obtained here simply by replacing �c by �. Halfin and
Whitt (1981) observe in their Remark 1 that ��	���c�	�
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for all 	� 0. These formulas are asymptotically equivalent
as 	→�, but they are not always close; e.g., �c�0�= 05,
while ��0� = 1. The refinement—going from �c to �—
was used by Jennings et al. (1996) in their server-staffing
approximations for multiserver queues with time-varying
arrival rates. They observed that the refinement typically
improved the estimate by about 10%.

2. The Stochastic-Process Limit with
H∗
2 Service Times

In this section, we describe the heavy-traffic limit for the
G/H∗

2 /n/m model established in Whitt (2005). It involves
a sequence of G/H∗

2 /n/m models indexed by the number
of servers, n, with n→�.
We start with a rate-1 arrival counting process C ≡

#C�t�% t � 0& with associated interarrival times #Uk% k� 1&.
Our key assumption is that the arrival process satisfies a
FCLT. To state it, let ⇒ denote convergence in distribu-
tion and let D≡ �D� J1�≡D��0������ J1� be the function
space of right-continuous real-valued functions on the pos-
itive halfline with left limits, endowed with the customary
Skorohod (J1) topology; see Billingsley (1999) and Whitt
(2005). Let Cn be the random element of D defined by

Cn�t�≡ �C�nt�− nt�/
√
nc2a� t � 0� (2.1)

for some nonnegative scaling constant c2a. We assume that

Cn ⇒B in �D� J1�� (2.2)

where B is standard (zero drift, unit diffusion coefficient)
Brownian motion.
When the arrival process is a renewal process, the limit

(2.2) holds with c2a being the SCV of an interarrival time,
but the limit in (2.1) holds much more generally. When the
number of servers is n, we scale time in the arrival process,
letting the arrival process be

Cn�t�≡C�!nt�� t � 0� (2.3)

where !n is the arrival rate in model n (with n servers).
Equivalently, the interarrival times in model n are
Un�k ≡Uk/!n.
Let the H∗

2 service-time distribution be independent of n.
Let it have mean �−1, 0<�<�, so that the traffic inten-
sity as a function of n is �n = !n/�n. Let *

−1 be the mean
of the exponential component of the H∗

2 service-time dis-
tribution, so that �−1 = p*−1. The second moment of a ser-
vice time is thus 2p*−2, so that the SCV is c2s = �2/p�− 1.
Equivalently, p−1 = �c2s + 1�/2. The SCV c2s ranges from 1
to � as p decreases from 1 to 0.
Let Qn�t� be the queue length at time t, by which we

mean the number in the system, including both waiting
and in service. We assume that the stochastic process Qn

almost surely has sample paths in the function space D; in
particular, the process Qn provides no record of an arrival

with zero service time that can enter service upon arrival
and depart immediately. For the stochastic-process limit,
we construct scaled random elements of D by letting

Qn�t�≡ �Qn�t�− n�/
√
n� t � 0 (2.4)

There is no time scaling for Qn in (2.4) because the arrival
rate !n is allowed to grow directly.
We also must specify the initial conditions. Let Qn�0� be

an integer-valued random variable with

0�Qn�0�� n+mn (2.5)

that is independent of the arrival process #Cn�t�% t � 0&.
We assume that

Qn�0�⇒Q�0� as n→�� (2.6)

where Q�0� is a proper random variable and

Qn�0�≡ �Qn�0�− n�/
√
n (2.7)

Moreover, we assume that the min#n�Qn�0�& customers
initially in service have exponential service times with
mean *−1, while the �Qn�0�−n�+ customers initially wait-
ing in queue have the H∗

2 CDF. Finally, given that specifi-
cation, we assume that all service times are independent of
the initial state Qn�0� and of the arrival process.

Theorem 2.1 (The Stochastic-Process Limit forG/H∗
2 /

n/m�. For the family of G/H∗
2 /n/m models specified

above, suppose that the arrival rate !n and the number
of waiting spaces, mn, change with n so that (0.1) and
(0.3) hold with −�<	<� and 0<���. In addition,
suppose that the initial conditions are as specified above
with (2.5)–(2.7). Then,

Qn ⇒Q in �D� J1� as n→�� (2.8)

where

Q�t�≡ h�Qp�t��� t � 0� (2.9)

h�x�≡
{
x� x < 0�

x/p� 0� x� p��
(2.10)

and Qp is a diffusion process starting at Qp�0� =
h−1�Q�0�� with a reflecting upper barrier at p� if �<�
and an inaccessible upper boundary at infinity if �=�.
The diffusion process Qp has infinitesimal mean �drift
function�

m�x�=
{−p�	� 0� x < p��

−p��x+	�� x < 0�
(2.11)

and infinitesimal variance (diffusion function)

-2�x�= 2p�z� −�< x < p�� (2.12)

where

z= �p/2��c2a + �2/p�− 1�

= p�c2a + c2s �

2
= 1+ p�c2a − 1�

2
 (2.13)
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As elaborated upon in Remark 2.2 of Whitt (2005), the
limit process Q is not itself a diffusion process, but it
is relatively tractable. In particular, it is easy to obtain
the steady-state distribution of Q, as we show in the next
section.
In Whitt (2005) we also obtain the associated heavy-

traffic limit for the scaled version of the discrete-time
queue-length process at arrival epochs. The limit process
Qa is a time-scaled version of the limit process Q above,
i.e., Qa�t� = Q�t/��, so that the steady-state distribution
of the two limit processes are identical. Thus, in the heavy-
traffic limit, the probability that all servers are busy at an
arbitrary time is asymptotically equivalent to the asymp-
totic delay probability (the probability that an arrival must
wait before being served).

Remark 2.1 (The Character of a Heavy-Tailed Distri-
bution). To show that an H∗

2 service-time distribution
has some of the character of a heavy-tailed service-time
distribution when the parameter p is small, we compare
the impact on the queue-length process caused by an
H∗
2 service-time distribution with the impact caused by a

Pareto service-time distribution. The Pareto distribution we
consider has the complementary CDF

Gc�t�≡ �1+ t/�p− 1��−p� t � 0 (2.14)

for p > 1, which is scaled to have (finite) mean 1. This
Pareto distribution, denoted by Par�p�, has finite variance
if and only if p > 2. We consider the specific case p= 3/2,
yielding finite mean but infinite variance.
Even though the variance of Par�3/2� is infinite, the vari-

ability parameter ��G� in (1.7) is finite; in particular,

��Par�p��=
∫ �

0
�1+ t/�p− 1��−2p dt = p− 1

2p− 1 � (2.15)

so that ��Par�3/2��= 1/4, whereas

��H∗
2 �p��=

∫ �

0
p2e−2pt dt = p

2
� (2.16)

so that ��H∗
2 �01��= 1/20. Of course, with Poisson arrivals,

c2a = 1 so that z= 1 in both cases for z in (1.6).
To show the impact of these two service-time distri-

butions upon performance, we plot sample paths of the
queue-length process for the first 106 arrivals in the mod-
els M/H∗

2 �01�/n/� and M/Par�3/2�/n/� with != 100,
�= 1, and n= 105 in Figures 1 and 2. The plots are clearly
quite similar. In both cases, the excursions above n= 105
are substantially greater than in the case of M/M/n/�,
as can be seen from Figure 3. However, as predicted by
approximation (1.5), the delay probabilities are quite close
in these three examples. We elaborate on this point in §6;
e.g., see Table 4 and Figure 4.

Figure 1. A sample path of the queue-length process
for 106 arrivals in the M/H∗

2 /105 queue with
arrival rate ! = 100, service rate � = 1, and
parameter p= 01.
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3. The Steady-State Distribution of
the Limit Process

From Equations (2.9) and (2.10), we see that we can obtain
the steady-state random variable Q��� associated with the
limit process Q directly from the steady-state random vari-
able Qp��� associated with the diffusion process Qp. In
particular,

Q���=h�Qp����≡
{
Qp���� Qp���<0�

Qp���/p� 0�Qp����p�
(3.1)

From the form of the infinitesimal parameters in (2.11)
and (2.12), we recognize that the diffusion process Qp in

Figure 2. A sample path of the queue-length process
for 106 arrivals in the M/Par�3/2�/105
queue with arrival rate ! = 100 and service
rate �= 1.
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Figure 3. A sample path of the queue-length process
for 106 arrivals in the M/M/105 queue with
arrival rate != 100 and service rate �= 1.
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Theorem 2.1 is a piecewise-linear diffusion, as in Browne
and Whitt (1995). Thus, we can immediately write down
the limiting steady-state distribution of Qp when it exists.
It is easy to see that Qp�t�⇒Qp��� for a proper random
variable Qp��� if and only if either � <� or �=� and
	> 0.
Because we are allowing a finite waiting room, we need

to generalize the asymptotic-delay-probability function �
in (0.2). We now let � be the following function of the
two variables 	 and � obtained from the limits in (0.1) and
(0.3):

�≡ ��	���≡ �1+	��	�/��	��1− e−�	��−1 for 	 �= 0
(3.2)

The previous function in (0.2) appears as �� ≡ ���	� ≡
��	���. When �<�, we can allow 	� 0. For 	= 0, we
let

�0 ≡ �0���≡ �1+�−1√//2�−1 (3.3)

We state the result as a theorem; see Browne and Whitt
(1995) for a proof (drawing on basic diffusion-process the-
ory). The idea is that the piecewise-linear structure implies
that the distribution of Qp��� must be a truncated normal
for x < 0 and a truncated exponential for x > 0 (or uniform
in the case �<� and 	= 0). The weight on the exponen-
tial component, which is just �, is determined by requiring
that the two densities be continuous at 0; see (18.26) of
Browne and Whitt (1995).

Theorem 3.1 (The Steady-State Distribution of the
Limit Process). Let Qp be the diffusion process with
infinitesimal parameters in (2.11) and (2.12) and let Q be
the limit process defined in (2.9). Let 	 and � be the limits
in (0.1) and (0.3). Suppose that either � <� or � = �

and 	 > 0, so that Qp�t� ⇒ Qp��� and Q�t� ⇒ Q���
as t → �, where Qp��� and Q��� are proper random
variables.
If 	 �= 0, then

P�Q���� 0�= P�Qp���� 0�

= ��	/
√
z�p�/

√
z�� (3.4)

P�Q���� x �Q���� 0�

= P�Qp���� x �Qp���� 0�

=���x+	�/
√
z�/��	/

√
z�� (3.5)

and

P�Q���>x �Q����0�=P�Qp���>px �Q����0�

= e−px	/z−e−p�	/z

1−e−p�	/z
� 0�x<��

= e−x	/v−e−�	/v

1−e−�	/v
� 0�x<��

(3.6)

where � is the M/M/n/m asymptotic-delay-probability
function in (3.2), z is in (2.13), and

v≡ z

p
= c2a + c2s

2
 (3.7)

If 	= 0, then
P�Q���� 0�= P�Qp���� 0�= �0�p�/

√
z� (3.8)

for �0 in (3.3). Then,

P�Q���>x �Q����0�=P�Qp���>px �Qp����0�

=��−x�/�� 0�x<�� (3.9)

while formula (3.5) remains unchanged.

Corollary 3.1 (The Infinite-Waiting-Room Case). If,
in addition to the conditions of Theorem 3.1, � =� and
	> 0, then

P�Q��� > 0�= P�Qp��� > 0�

= ���	/
√
z�≡ ��	/

√
z��� (3.10)

and

P�Q���� x �Q���� 0�= P�Qp���� x �Qp���� 0�

=���x+	�/
√
z�/��	/

√
z�

(3.11)

for 	 in (0.1) and z in (2.13), implying that both formulas
depend on the parameter p only through the parameter z
in (2.13). Moreover,

P�Q��� > x �Q��� > 0�= e−	x/v (3.12)

for v in (3.7), so that

E�Q���+�= ���	/
√
z�
v

	
� (3.13)

implying that both formulas depend on the parameter p
only though the parameters z in (2.13) and v in (3.7).
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Remark 3.1 (The pdf). The steady-state distribution of
the diffusion process Q can also be characterized by its
PDF. If 	 �= 0, Q��� has the PDF

f �x�=
{
�1−�����x+	�/

√
z�/

√
z��	/

√
z�� x < 0�

��p	/z�e−px	/z�1− e−p�	/z�� 0� x� �

(3.14)

for �≡ ��	/
√
z�p�/

√
z� in (3.4) and z in (2.13). If 	= 0,

then Q��� has the PDF

f �x�=
{
�1−�0����x+	�/

√
z�/

√
z��	/

√
z�� x < 0�

�0/�� 0� x� �
(3.15)

for �0 ≡ �0�p�/
√
z� in (3.8).

Remark 3.2 (Understanding the Asymptotic-Delay-
Probability Formula). The asymptotic-delay-probability
functions in (3.2), (3.4), and (3.10) can be understood by
observing an underlying alternating-renewal-process struc-
ture. The queue-length process alternates between periods
spent above level n (an “above” time Xa

n ) and periods spent
below level n− 1 (a “below” time Xb

n ). This structure is
most straightforward in the case M/M/n/�, so consider
that case. Because Qn�t� is a Markov process, these
times are mutually independent. Thus, by a well-known
alternating-renewal-process result,

P�Qn��� > n�= EXa
n

EXa
n +EXb

n

= �1+ �EXb
n/EX

a
n��

−1 (3.16)

With the scaling in (0.1), where the arrival rate and ser-
vice rate are both of order O�n�, both EXa

n and EXb
n are

of order O�1/
√
n�. For the M/M/n/� model, Xa

n is dis-
tributed as the busy period in an M/M/1/� model with
service rate n�, so that

EXa
n =

1
n��1−��

∼ 1√
n�	

as n→�� (3.17)

where ∼ means the ratio of the two sides converges to 1 as
n→�, while EXb

n is the reciprocal of the blocking prob-
ability, say /n, in a M/M/n− 1/0 model, divided by the
arrival rate !n. We see where the ratio ��x�/��x� comes
from by recalling that

1/!nEX
b
n =/n ∼ �1/

√
n���	�/��	� as n→� (3.18)

under condition (0.1); e.g., see (15) of Srikant and Whitt
(1996) and the appendix of Whitt (1984a). Combining
(3.16)–(3.18), we obtain convergence to � in (0.2) in the
limiting regime (0.1).
A similar argument applies to the M/H∗

2 /n/� model,
as shown on page 207 of Whitt (1983). The mean EXb

n

for M/M/n/� above is divided by p in the M/H∗
2 /n/�

model, because when all servers are not busy in the

M/H∗
2 /n/� model, we can ignore all customers with zero

service times. Therefore, the queue-length process in that
region is a birth-and-death process with birth rate p!n and
death rate p�n, giving the M/M/n/� formula for EXb

n

above divided by p. Similarly, the mean EXa
n forM/M/n/�

above is also divided by p in the M/H∗
2 /n/� case, but

that is less obvious. TheM/H∗
2 /n/� model behaves like an

M/H∗
2 /1/� model when all servers are busy, where each

service time is an exponential with mean 1/np� with prob-
ability p and is 0 with probability 1−p. In the M/H∗

2 /1/�
model, the mean busy period is 1/n��1 − �n�, just as in
M/M/1/�. However, we must divide by p because, when
we calculate the first passage time from state n to state
n− 1, we need to condition on the first service time not
being 0. That produces the division by p. Thus, the over-
all analysis shows that the probability of delay in the
M/H∗

2 /n/� model is independent of p for all n.

Remark 3.3 (The Limit as p→ 0 forH∗
2 ). Intuitively, the

H∗
2 distributions acquire more of the character of heavy-

tailed distributions as p becomes very small. Thus, it is
interesting to observe how the steady-state distribution of
the limit process Q behaves as p ↓ 0 with the mean of the
service-time distribution held fixed. Thus, we index quan-
tities of interest by p here. We only consider the case in
which 	> 0.
First, if p ↓ 0, then zp → 1 from (1.3). Second, from

(3.7), if p ↓ 0, then vp → � and pvp → 1. Thus, all
formulas that depend on p only through z approach the
case of exponential service times (as if p = 1). For exam-
ple, the infinite-waiting-room formulas (3.10) and (3.11) in
Corollary 3.1 change only by having z→ 1.
Thus, the G/H∗

2 /n/� asymptotic delay probability
approaches the M/M/n/� asymptotic delay probability as
p ↓ 0 for any stationary arrival process. We emphasize that
this asymptotic property of the G/H∗

2 /n/� model is exact.
It may seem surprising that the G/H∗

2 /n/� asymptotic
delay probability approaches the M/M/n/� value as p ↓ 0
for any stationary arrival process satisfying a FCLT, so we
offer an intuitive explanation. First, when all servers are
not busy, we can act as if arrivals with zero service times
never occur, because they leave immediately upon arrival.
Thus, the interarrival time of customers with positive ser-
vice times is a geometric random sum of the initial interar-
rival times. There is an asymptotically increasing number of
interarrival times in this geometric random sum. As p ↓ 0,
the mean of this geometric random variable increases, caus-
ing the successive interarrival times to become independent.
Moreover, the properly scaled geometric random variable
converges to an exponential random variable. Second, we
have just noted in Remark 3.2 that the delay probability in
the M/H∗

2 /n/� model is independent of the parameter p.
In contrast, the expected queue length given that all

servers are busy when �=� tends to behave very differ-
ently: E�Qp���+�→� as p→ 0. More precisely,

E�Qp���+�∼ ��	�/p	 as p→ 0 (3.19)
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It is also interesting to consider the case � <�. Then,
referring to (3.4), we see that �p → 0. More precisely,

��	/
√
z�p�/

√
z�

∼ ��	�p��∼ p���	�

��	�
as p→ 0 (3.20)

These asymptotic relations produce effects we should antic-
ipate with heavy-tailed distributions.
Another interesting case is the H∗

2 /H
∗
2 /n/� model in

which the interarrival-time and service-time H∗
2 distribu-

tions have a common parameter p. Then, because c2a =
�2/p�−1 and ��H∗

2 �p��= p/2, we obtain the exact asymp-
totic result

zp = 2−p→ 2 as p ↓ 0 (3.21)

This limiting behavior can be verified by simulation, but it
is difficult for very small p because the overall variability
increases, causing the reliability of simulation estimates for
given run length to decrease as p decreases.

4. The Heuristic Approximation
for G/GI/n/m

We now seek an approximation for the queue-length process
and its steady-state distribution in the general G/GI/n/m
model, with general (GI) service times. From the stochastic-
process limits for the GI/PH/n/� model in Puhalskii and
Reiman (2000), we know that the scaled queue-length pro-
cess again converges to a nondegenerate limit, but the limit
for the scaled queue-length process is relatively compli-
cated. In those cases the limit can be expressed in terms
of a complicated multidimensional diffusion process, where
the dimension of the diffusion is the number of phases
in the phase-type service-time distribution. To generate
more tractable approximations, here we develop a heuris-
tic one-dimensional approximation with convenient explicit
formulas for all steady-state performance measures of inter-
est. Even though our approximation is not asymptotically
correct, we rely heavily on insights from heavy-traffic
stochastic-process limits. For background on heuristic dif-
fusion approximations, see Newell (1973), Halachmi and
Franta (1978), Whitt (1984a), and Kimura (1995, 2000,
2002).
Our starting point is an assumed limit for the scaled

queue-length process. We assume that our process of inter-
est is the queue-length process Qn�t�, where the number n
of servers is suitably large. (We are thinking of n= 100, but
the approximation may be good for much smaller n, e.g.,
n= 10.) Consequently, the first step of our approximation
is

Qn�t�≈ n+√
nQ�t�� (4.1)

where Q is a stochastic process for which we need to
develop an approximation.

As an approximation for the stochastic process Q in
(4.1), we use the same process Q, in Theorem 2.1, where
Q�t�= h�Qp�t�� for h in (2.10), but we choose appropri-
ate parameters for that process as a function of the more
general service-time distribution. We choose the param-
eters so that the new approximation is consistent with the
approximation for the G/H∗

2 /n/m model following from
Theorems 2.1 and 3.1.
As can be seen from Theorem 2.1, the stochastic pro-

cesses Qp and Q depend on five parameters: �, 	, �, z,
and p. (We can substitute v ≡ z/p for one of z or p.) As
before, we let 1/� be the mean service time and let 	 and
� be determined by the limits (0.1) and (0.3). We gener-
ate an approximation for the queue-length process in the
G/GI/n/m model by choosing appropriate values for the
two remaining parameters z and v.
In the heavy-traffic limits for the G/H∗

2 /n/m and
G/PH/n/m models, the arrival process influences the
asymptotic behavior only through the arrival rate and the
scaling parameter c2a appearing in the assumed FCLT. Thus,
it is natural to let the two parameters z and v depend on
the arrival process only through c2a. We require that of our
approximation.
We are relatively confident about our proposed approxi-

mation for the parameter z. To choose z, we focus on the
behavior of the process when x < 0 (when all servers are
not busy). To do so, we focus on the conditional distri-
bution P�Q��� � x � Q��� < 0� in (3.5), which is con-
ditional normal distribution, where the parameter z plays
the role of the variance. We base our approximation on
the associated heavy-traffic limit for the general G/GI/�
infinite-server model; see §10.3 of Whitt (2002) and ref-
erences cited there, notably Borovkov (1984). The limit
process with infinitely many servers has a normal steady-
state distribution. We let z be the ratio of the variance to
the mean of that steady-state normal distribution. That is
the asymptotic peakedness in (1.6). It is consistent with
the exact formula for z in (2.13) in the G/H∗

2 /n/m special
case.
Having chosen an approximation for the parameter z,

it remains to specify an approximation for the remaining
parameter v in (3.7). To generate an approximation for v,
we focus on the behavior of the process when x > 0, but
the approximation is more challenging when x > 0. When
the service-time distribution is M or H∗

2 , the queue behaves
exactly like a single-server queue when all servers are busy.
However, for other service-time distributions, the elapsed
service times of the customers in service play an important
role and the situation is more complicated. (That complex-
ity is captured by the limit in Puhalskii and Reiman 2000.)
Nevertheless, we exploit the single-server view. Thus, on

the interval �0� ��, we let the diffusion process act as a
reflecting Brownian motion with constant drift. We spec-
ify the (constant) infinitesimal variance by looking at the
“unreflected free process,” which is a scaled version of the
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arrival counting process minus the departure counting pro-
cess. The arrival process is straightforward, but the depar-
ture process is quite complicated. In fact, even though the
service times are assumed to be independent of the arrival
process, the departure process is actually dependent on the
arrival process. However, in our approximation we will act
as if they are independent.
To generate an initial approximation, we act as if all n

servers are busy all the time. That is at least temporar-
ily true when x > 0. Under that assumption, the departure
process would be the superposition of n IID service-time
counting processes. For any fixed n, that superposition pro-
cess obeys a FCLT with scaling constant c2s , where c

2
s is

the SCV of a service time, here assumed to be finite; see
§9.4 of Whitt (2002). That perspective leads to a diffusion
approximation for Q in the region x > 0 with infinitesi-
mal parameters just as in Remark 2.3 of Whitt (2005). In
particular, the infinitesimal mean (drift function) is

mQ�x�=−�	 for x > 0 (4.2)

and the infinitesimal variance (diffusion function) is

-2Q�x�=��c2a + c2s � for x > 0 (4.3)

In (4.3), c2a is the arrival-process variability parameter
obtained from the FCLT for the arrival process, as in (2.1)
and (2.2), and c2s is the service-time SCV.
This reasoning leads to a truncated exponential distribu-

tion for P�Q���� x �Q��� > 0�, just as in (3.6), with the
parameter v having exactly the same form as in (3.7), with
c2s now referring to the SCV of the general service-time
distribution. Clearly, this approximation is also consistent
with Theorems 2.1 and 3.1 in the G/H∗

2 /n/m special case.
It is significant that the proposed approximations for the

parameters z and v depend on the service-time distribution
in different ways in the general GI case. (That approach
was also used in Whitt 1992.) If we do use approximation
(1.6) for z and approximation (3.7) for v, then we immedi-
ately obtain the associated approximation for p:

p= z

v
= 2z
c2a + c2s

� (4.4)

where z is given by (1.6), c2a is the scaling constant in
the FCLT, as in (2.1) and (2.2), and c2s is the SCV of the
service-time distribution. Note that this associated approxi-
mation for p in (4.4) could yield p > 1, which is of course
inconsistent with the original H∗

2 model definition, but that
presents no problems for the stochastic process Q and its
steady-state distribution.
We find that the approximation for v in (3.7) works quite

well for low-to-moderate variability service times, but it
can seriously break down more generally (e.g., see Table 5).
Thus, we want to consider refinements. Another perspec-
tive is that a superposition of n IID renewal processes

converges to a Poisson process as n→� when the com-
ponent processes are rescaled to keep the total rate fixed;
see Theorem 9.8.1 of Whitt (2002). Naturally, this second
perspective leads us to the approximation in (3.7) with c2s
replaced by one. This second perspective is even supported
by stochastic-process limits for the departure process from
multiserver queues; see Whitt (1984c). These two perspec-
tives are not inconsistent, because they describe the super-
position process in different time scales; see Remark 9.8.1
of Whitt (2002). The superposition process behaves like
a Poisson process in a short time scale, but like a single
component renewal process in a long time scale.
These two perspectives lead to a compromise approxi-

mation that is a convex combination of the first two approx-
imations, i.e.,

v= �c2a +wc2s + 1−w�

2
� (4.5)

where w is an appropriate weight with 0 � w � 1. To
develop a candidate weight function w, we observe that
there is a third perspective, which has already proved use-
ful to study superposition arrival processes to queues. In
the third perspective, we apply the central limit theorem for
stochastic processes to the sum of n IID renewal processes;
see Theorems 7.2.3 and 7.2.4 of Whitt (2002). The third
perspective leads to approximating the departure process
by a non-Brownian Gaussian process. The third perspec-
tive also leads to an associated FCLT in which the num-
ber of component processes in the superposition increases
along with the time-and-space scaling; see §9.8 of Whitt
(2002). For superposition arrival processes to queues, there
is a stochastic-process limit in the limiting regime (0.1) we
are considering, where n is understood to be the number
of component arrival processes instead of the number of
servers; see Theorem 9.8.3 of Whitt (2002). That perspec-
tive might be relevant here, because if we reverse time, the
departure process behaves something like a superposition
arrival process.
The analysis of superposition arrival processes leads to

approximations of the form (4.5), where the weight w
is a strictly decreasing function of 	 = √

n�1 − �� with
w�0�= 1 and w���= 0. A specific function based on sim-
ulation experiments by Albin (1982, 1984) is

w≡w�	�= �1+ 4	2�−1 (4.6)

for 	=√
n�1−��; see page 333 of Whitt (2002). However,

we do not find a direct application of (4.6) to be effective.
However, the related experience with superposition

arrival processes can provide important insights. For exam-
ple, the stochastic-process limit for superposition arrival
processes in regime (0.1)—Theorem 9.8.3 of Whitt
(2002)—does not require that the interrenewal times in the
component renewal processes have finite second moment.
Thus, we can anticipate (what turns out to be the case in our
setting) that the same scaling works for multiserver queues
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with Pareto service times having finite mean but infinite
variance. Hence, we should allow the variability parameter v
to be well defined when c2s is infinite.
In summary, this analysis leads us to approximate z by

the asymptotic peakedness in (1.6), but to only propose a
tentative approximation for the variability parameter v. Our
tentative specification of v in the case of a finite service-
time SCV c2s is

v= c2a +wc2s + 1−w

2
(4.7)

for some weight function w, which is a decreasing function
of 	 with w�0� = 1 and w��� = 0. We primarily apply
the initial approximation in (3.7); i.e., (4.7) with w ≡ 1,
but we find situations in which alternatives in (4.7) can be
important. Our somewhat vague specification allows room
for refinement.
The final situation is less unsatisfactory than it may

appear, because in Corollary 3.1 we have shown for the
case �=� that the steady-state probability of being greater
than 0 (which corresponds to the delay probability in the
queueing model) actually depends on the parameters v and
p only through the parameter z. Hence, for the delay prob-
ability, we only need z.

Remark 4.1 (Rough Approximations of the Asymptotic
Peakedness). We can obtain further rough approximations
of the peakedness z in terms of the variability parameters
c2a and c2s to use in the heuristic diffusion approximation
by approximating the asymptotic peakedness z. However,
we advise caution: From the formula for the asymptotic
peakedness z in (1.6), we see that the service-time
distribution beyond the mean should have relatively little
impact upon z when c2a is near 1. However, when c2a is
not near 1, the service-time distribution beyond its mean
can have a big impact on z, and is quantified by ��G�
in (1.7), not by the SCV c2s . Nevertheless, the following
formulas are useful to obtain a quick picture of the impact
of service-time variability upon performance. They show
that ��G� tends to decrease as the service-time distribution
gets more variable with a fixed mean.
Because ��G�= 1 when the service-time distribution is

deterministic and ��G� = 1/2 when the service-time dis-
tribution is exponential, we propose the following linear
interpolation as an approximation for SCVs in between:

��c2s �≈1−�c2s /2� and

z�c2a�c
2
s �≈1+�c2a−1��1−�c2s /2��� 0�c2s �1 (4.8)

To treat distributions with c2s � 1, we can use H2 distri-
butions with balanced means (Hb

2 ). An H2 distribution with
mean 1/� has PDF

h�x�= p1e
−�1x +p2e

−�2x� x� 0� (4.9)

where 0 � p1 � 1, p1 + p2 = 1, and �p1/�1�+ �p2/�2� =
1/�. The Hb

2 PDF has balanced means; i.e., one of the two
remaining parameters is determined by the relation

2p1
�1

= 2p2
�2

= 1
�
� (4.10)

which implies that

pi =
[
1±

√
�c2s − 1�/c2s + 1�

]/
2 (4.11)

For this Hb
2 case, ��H

b
2 � = �c2s + 3�/4�c2s + 1�, so that

we obtain the general approximation

z�c2a�c
2
s �≈z�c2a�H

b
2 �=1+

�c2a−1��c2s +3�
4�c2s +1�

for c2s �1 (4.12)

Note that ��Hb
2 � increases to 1/2 as c

2
s decreases to its

lower limit c2s = 1, which is the exponential distribution,
while ��Hb

2 � decreases to 1/4 as c
2
s ↑�. Other H2 distri-

butions without balanced means can have arbitrarily small
values of �, as we saw for H∗

2 in (2.16).

5. Evaluating the GI/GI/n/�
Approximations

We start by evaluating the approximations for the delay
probability (PW) and the probability all servers are busy
(PB ≡ P�Qn��� � n�) in the GI/M/n/� model. By
the Poisson-Arrivals-See-Time-Averages (PASTA) prop-
erty, these quantities PW and PB coincide when the arrival
process is Poisson, but they do not otherwise. However, the
heavy-traffic limits imply that the (P)ASTA property holds
in that heavy-traffic limit for non-Poisson arrival processes.
So the asymptotic delay probability generates asymptot-
ically correct approximations for both PW and PB. The
extent to which PW and PB differ gives an indication of
the degree of accuracy possible for the approximation.
Because we are working in the asymptotic regime (0.1),

the natural approximation based on (1.2) is P�Qn��� �
n�≈ ��	/

√
z� for � in (0.2), z= �c2a + 1�/2, and

	=√
n�1−�� (5.1)

Indeed, we have been implicitly acting as if the value for
	 based on the limit in (0.1) is (5.1), and that is what we
usually use. However, we might approximate 	 differently.
As discussed in Whitt (1992), because it is the offered load
that is random rather than the number of servers, it is nat-
ural to think of

�!/��+	�
√
!/��≈ n (5.2)

rather than (5.1). Approximation (5.2) leads to the alterna-
tive approximation for 	,

	≈
√
n�1−�n�√

�n
 (5.3)
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Of course, in the limiting regime (0.1), the two specifica-
tions for 	 in (5.1) and (5.3) are asymptotically equivalent.
It can be helpful to compute both, because their difference
gives an indication of the likely precision.
For our numerical comparisons, we use exact results

from the tables in Seelen et al. (1985). The results are dis-
played in Table 1. The approximation reduces to (0.2) when
the arrival process is Poisson. In that case, it is well known
that the approximation for PW = PB performs quite well;

Table 1. A comparison of the GI/M/n/� approximations in (1.1) and (5.3) with exact values of the probability of
delay (PW) and the probability all servers are busy (PB) for various values of n, �, and interarrival-time
SCV c2a.

Delay probability Mean number waiting

Parameters Exact values Approximations Exact Approximations

n � c2a PW PB (1.1) (5.3) E��Q���− n�+� (5.7) and (5.6)

200 0.98 4.00 0803 0794 0794 0792 972 973
1.00 0692 0692 0689 0686 339 338
0.25 0619 0627 0620 0617 190 190

0.92 4.00 0367 0349 0361 0344 100 104
1.00 0170 0170 0176 0161 197 202
0.25 0090 0094 0098 0086 066 070

0.88 4.00 0191 0177 0196 0171 323 359
1.00 0049 0049 0055 0043 036 040
0.25 00142 00154 00185 00127 0067 0085

100 0.98 4.00 0861 0851 0850 0849 1042 1041
1.00 0775 0775 0771 0769 380 378
0.25 0717 0726 0718 0715 221 220

0.92 4.00 0515 0490 0500 0484 141 144
1.00 0312 0312 0314 0297 358 361
0.25 0208 0219 0218 0202 152 157

0.86 4.00 0272 0249 0273 0242 380 419
1.00 0094 0094 0104 0083 058 064
0.25 0037 0041 0047 0033 015 018

25 0.90 4.00 0690 0648 0658 0642 145 148
2.00 0593 0574 0577 0559 774 779
1.00 0508 0508 0504 0485 457 454
0.50 0442 0458 0449 0428 302 303
0.10 0367 0402 0386 0364 187 191

0.70 4.00 0225 0186 0244 0175 103 141
1.00 0064 0064 0085 0044 015 020
0.10 00116 00161 00254 00089 0016 0033

8 0.98 4.00 09670 09554 09559 09554 1170 1171
1.00 09361 09361 09309 09302 459 456
0.25 09132 09244 09132 09124 281 280

0.90 4.00 0834 0785 0794 0783 176 179
1.00 0702 0702 0689 0675 631 620
0.25 0610 0651 0620 0604 351 349

0.70 4.00 0502 0415 0478 0406 231 279
1.00 0271 0271 0290 0218 063 068
0.25 0150 0190 0196 0132 024 029

2 0.80 4.00 0854 0754 0794 0771 740 794
1.00 0711 0711 0689 0658 284 276
0.25 0594 0685 0620 0584 155 155

0.60 4.00 0663 0514 0620 0534 177 233
1.00 0450 0450 0457 0353 068 069
0.25 0284 0404 0361 0255 029 034

Notes. The peakedness is thus z = �c2
a +1�/2. Also compared are the approximation for the mean number waiting in (5.7) and (5.6) with exact

values. The exact values come from Seelen et al. (1985).

e.g., see Table 13 of Whitt (1993). We see that again for
the entries in which c2a = 1 in Table 1.
As approximations for PW and PB in Table 1, we plot the

approximation ��	/
√
z� in (1.1) based on both the standard

specification of 	 in (5.1) and the alternative in (5.3). The
modification in (5.3) always increases 	 and thus reduces
��	/

√
z�. As indicated above, the two values together give

a good indication of the accuracy. In many cases (but not
all), they bracket the exact values.
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In Table 1 we also compare a heavy-traffic approxi-
mation for the mean number waiting, E��Qn��� − n�+�
(using (5.1) for 	) with exact values . By Little’s law,
L = !W , we obtain an associated approximation for the
mean steady-state waiting time (before beginning service)
EWn���; i.e.,

EWn���=E��Qn���− n�+�/!n (5.4)

The direct heavy-traffic approximation based on (3.13) is

E��Qn���− n�+�≈ �
√
nv

	
= �v

1−�
(5.5)

for v in (4.7). When the service-time distribution is expo-
nential,

v= �c2a + 1�/2 (5.6)

for v in (4.7) and any weight function w. Thus, consistent
with the established limit in this case, we anticipate that
the approximation should perform better for exponential
service times.
To make the heavy-traffic approximation exact for the

M/M/n/� model for all � and still keep it asymptotically
correct, we multiply the approximation in (5.5) by � to get

E��Qn���− n�+�≈ ��v

1−�
 (5.7)

Table 2. A comparison of the G/GI/n/� approximation in (1.5) and the GI/M/n/� approximation in (1.2) (obtained
by treating c2s as 1) with exact values of the probability of delay (PW) and the probability all servers are busy
(PB) in the GI/GI/n/� model with nonexponential service-time distributions for n= 25, �= 09, and several
values of the interarrival-time SCV c2a and service-time SCV c2s .

Parameters Exact values Approximations Exact Approximation

c2a c2s z PW PB (1.5) GI/M/n/� E��Q���− n�+� (5.7)

0.1 0.0 0.10 0.058 0.103 0.071 0.386 0037 0032
0.5 0.50 0.336 0.360 0.366 0.449 089 082
1.0 1.00 0.479 0.479 0.505 0.505 241 227
2.0 2.00 0.615 0.593 0.624 0.577 567 562
4.0 4.00 0.730 0.688 0.721 0.658 129 130

0.1 0.5 0.44 0.308 0.349 0.338 0.386 094 092
0.5 0.69 0.415 0.434 0.431 0.449 200 194
1.0 1.00 0.500 0.500 0.505 0.505 351 341
2.0 1.62 0.601 0.580 0.591 0.577 666 665
4.0 2.87 0.706 0.663 0.677 0.658 135 137

0.1 2.5 0.65 0.420 0.447 0.419 0.386 439 490
0.5 0.80 0.472 0.485 0.462 0.449 566 624
1.0 1.00 0.522 0.522 0.505 0.505 732 795
2.0 1.39 0.594 0.574 0.565 0.577 108 114
4.0 2.18 0.680 0.637 0.637 0.658 180 186

0.1 4.0 0.69 0.441 0.465 0.431 0.386 689 795
0.5 0.83 0.485 0.498 0.468 0.449 823 948
1.0 1.00 0.529 0.529 0.505 0.505 995 114
2.0 1.35 0.592 0.575 0.559 0.577 133 151
4.0 2.05 0.672 0.633 0.628 0.658 202 226

Notes. Also evaluated is the approximation for the mean number waiting in (5.7) and (4.7) with w ≡ 1. The exact values come from Seelen
et al. (1985).

By Little’s law again, the expected steady-state number
of busy servers is !/� = n�n. Hence, we can apply (5.7)
to obtain the related approximation

EQn���≈ n�+ ��v

1−�
 (5.8)

We only evaluate the approximation in (5.7) because it is
more challenging.
Approximations for general GI/GI/n/� queues were

studied in Whitt (1993), but unfortunately the error in
the asymptotic-delay-probability limit in Halfin and Whitt
(1981) was perpetuated in Whitt (1993). In formula (3.2)
there, the Halfin-Whitt delay-probability approximation for
GI/M/n/� is given as ��	/z� instead of ��	/

√
z�. As

should be anticipated, the quality of the approximation
improves dramatically when this error is corrected. For
example, the new approximation performs much better in
Tables 15 and 16 in Halfin and Whitt (1981) for D/M/n/�
and Hb

2 /M/n/� queues.
We now evaluate the approximations for the delay prob-

ability in (1.5) and the mean number waiting in (5.7) for
GI/GI/n/� models with nonexponential service-time dis-
tributions. Now we are considering cases in which the dif-
fusion approximation is not asymptotically correct in the
heavy-traffic limit. For comparison, we again rely on tables
in Seelen et al. (1985). The results appear in Table 2.
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For the delay probability, we compare the new
G/GI/n/� approximation and the GI/M/n/� approxi-
mation (applied by ignoring the service-time SCV) to the
exact values of PW and PB. Again, half the difference
between PW and PB provides a lower bound on the worst
error in the approximation for these two quantities. The
new G/GI/n/� approximation does quite well. In fact,
the GI/M/n/� approximation itself does remarkably well
except when c2a is small. The general G/GI/n/� approxi-
mation does significantly better than theG/M/n/� approx-
imation when c2a is small.
For the mean number waiting, we let the variability

parameter v be as in (4.7) with weight w ≡ 1; i.e., here
v= �c2a+c2s �/2. The approximation slightly underestimates
the exact values when c2s < 1 and quite significantly over-
estimates the exact values when c2s > 1. When c2s = 40,
the approximation is consistently about 14% too high. The
approximation for the mean number waiting in the cases
with c2s > 1 become nearly exact if we use w = 08 in
(4.7). The direct approximation (with w = 1) performs
remarkably well when both c2a > 1 and c

2
s < 1. Overall, the

approximations in Table 2 seem sufficiently accurate to be
quite useful.

6. Simulations
To evaluate the approximations for more general
G/GI/n/� models, we conduct simulation experiments.
Table 2 only evaluates the approximations for renewal
arrival processes and service-time distributions with
c2s = 10 and c2s = 05. We also want to consider nonrenewal
arrival processes and other service-time distributions.

Table 3. Key variability parameters in several G/GI/n/� queues: the asymptotic peakedness z in
(1.6) and the variability parameter v in (4.7) with w ≡ 1 (v = �c2a + c2s �/2), where c

2
a is

understood to be the scale factor in the FCLT for the arrival process.

Service times

D M H∗
2 LN Par�3/2�

Arrival process c2s = 0 c2s = 1 c2s = 19 c2s = 19 c2s =�
D z — 050 098 078 075

c2a = 0 v — 050 950 950 �
Db5 z — 050 098 078 075

c2a = 0 v — 050 950 950 �
M z 100 100 100 100 100

c2a = 1 v 050 100 1000 1000 �
H∗
2 z 1900 1000 190 496 550

c2a = 19 v 950 1000 1900 1900 �
LN z 1900 1000 190 496 550

c2a = 19 v 950 1000 1900 1900 �
sup4Hb

2 z 1900 1000 190 496 550
c2a = 19 v 950 1000 1900 1900 �
Integral ��G� 100 050 005 022 025

Note. The process Db5 is a deterministic process with clusters of size 5, while sup4Hb
2 is the superposition of four IID

renewal processes with Hb
2 interarrival times with SCV c2

a = 19.

We consider two nonrenewal arrival processes. First, we
consider a deterministic process with local variability. For a
rate-1 process, we let the first four interarrival times be 0.1,
and then we let the fifth interarrival time be 4.6. We then
repeat, getting five arrivals in each interval �5n�5�n+ 1��
for positive integers n. We call this a deterministic batch
process with clusters of size 5, and refer to it as Db5. Even
though the Db5 process has more variability than the D
process, it too has asymptotic scaling constant c2a = 0 in the
FCLT for the arrival process, as in (2.1) and (2.2).
Our second nonrenewal process is the independent super-

position of four IID Hb
2 renewal processes, denoted by

sup4Hb
2 . We let the SCV be c2a = 19 in each component

process to match the SCV of the H∗
2 process with parameter

p= 01. In the FCLT for the superposition arrival process,
the scaling constant is the same as the SCV of a component
renewal process. An interarrival time in the superposition
process has a much smaller SCV; e.g., see Whitt (1982).
To examine more highly variable service-time distribu-

tions, we consider the lognormal (LN) and Pareto with
parameter p = 3/2 (Par�3/2�) in addition to H∗

2 with
parameter p = 01, yielding SCV c2s = 19. The lognormal
takes the form ea+bN�0�1�, where the parameters a and b are
chosen to yield the desired mean and SCV. We let the SCV
be 19 to match the H∗

2 distribution with parameter p= 01.
For the lognormal distribution, we calculate the parameter
��G� in (1.7) by numerical integration. (The parameter val-
ues of ��G� for all the service-time distributions considered
are given in the last row of Table 3.)
We conduct the simulations using Splus and Fortran,

exploiting recursive expressions for the departure times
from the multiserver queue in Berger and Whitt (1992b).
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Given the arrival times and departure times, we construct
the queue-length process at state-change times using the
method on page 210 of Whitt (2002); i.e., we first construct
a sequence of change times by sorting the arrival and depar-
ture times; then we construct a vector with a +1 associ-
ated with each arrival and a −1 associated with each depar-
ture, ordered according to the times of occurrence; then the
sequence of successive queue lengths at change times is the
associated cumulative-sum process. Because loops are not
efficient in Splus, we used Fortran to construct the queue-
length process from the arrival process and service times.
We conducted a simulation experiment with each combi-

nation of six arrival processes and five service-time distri-
butions. We considered four renewal arrival processes and
the two nonrenewal processes Db5 (c2a = 0) and sup4Hb

2

(c2a = 19) introduced above. The four renewal processes
had interarrival times distributed as D, M , and H∗

2 with
parameter p= 01 (c2a = 19) and LN with c2a = 19. The five
service-time distributions are D, M , and H∗

2 with p= 01
(c2s = 19), LN with c2s = 19 and Par�3/2�, which has infinite
variance. The variability parameters z in (1.6) and v in (4.7)
with w = 1 for these examples are displayed in Table 3.
Values of the service-time variability factor ��G� in (1.7)
appear in the last row. Note that ��G� is smallest for the
H∗
2 service-time distribution. Also note that the asymptotic

peakedness in the cases of highly variable arrival processes
is smallest for the H∗

2 service-time distribution.
Simulation results based on runs for 106 arrivals are

shown in Tables 4 and 5. The approximation for the proba-
bility that all servers are busy (PB) in (1.5) is compared to
the simulation estimates in Table 4. Based on subsequent
independent replications, we conclude that there is statisti-
cal precision only to about 10% in the more variable cases.

Table 4. A comparison of approximations using (1.5) with simulations estimates of the probability
all servers are busy (PB) in several G/GI/n/� queues with != 100, �= 1, and n= 115
(�= 0870) based on 106 arrivals.

Service times

D M H∗
2 LN Par�3/2�

Arrival process c2s = 0 c2s = 1 c2s = 19 c2s = 19 c2s =�
D approx. — 0029 0098 0072 0067

c2a = 0 sim. — 0024 0096 0070 0049

Db5 approx. — 0029 0098 0072 0067
c2a = 0 sim. — 0026 0106 0063 0052

M approx. 0105 0105 0105 0105 0105
c2a = 1 sim. 0095 0105 0102 0107 0102

H∗
2 approx. 0654 0549 0219 0416 0437

c2a = 19 sim. 0647 0576 0267 0474 0490

LN approx. 0654 0549 0219 0416 0437
c2a = 19 sim. 0635 0547 0220 0414 0409

sup4Hb
2 approx. 0654 0549 0219 0416 0437

c2a = 19 sim. 0623 0541 0228 0392 0398

Integral ��G� 100 050 005 022 025

Note. The process Db5 is a deterministic process with clusters of size 5, while sup4Hb
2 is the superposition of four IID

renewal processes with Hb
2 interarrival times with SCV c2

a = 19.

Consistent with Theorem 2.1, the simulations show that
nonrenewal arrival processes primarily affect congestion in
the regime (0.1) through their rate and the scaling constant
appearing in the FCLT, as in (2.1) and (2.2). The results for
the Db5 arrival process are similar to those for the D arrival
process, while the results for the sup4Hb

2 arrival process
are similar to the renewal arrival processes with c2a = 19.
The quality of the approximations for PB are consis-

tently good with the exception of the cases involving H∗
2

arrival processes, where the approximations are too high.
We have not been able to explain that discrepancy. Indepen-
dent replications yield similar values. Otherwise, the delay-
probability approximation seems consistently good across
all cases.
However, Table 5 shows that the approximations for the

mean conditional number waiting given that all servers are
busy, assuming w ≡ 1 in formula (4.7) for v, behave very
differently. These approximations are quite accurate for M
and H∗

2 service times, where the approximations have been
shown to be asymptotically correct, but the approximations
grossly overestimate the exact values for the highly variable
LN and Par�3/2� service-time distributions.
Indeed, the low simulation values with LN and Par�3/2�

service-time distributions are remarkable. The approxima-
tion for LN service times can be improved dramatically if
we use (4.7) with w= 018 (obtained by considering what
is needed in the case D/LN). The approximations change
to 14.2 for D and Db5 arrivals, 17.5 for M arrivals, and
77.6 for H∗

2 , LN, and sup4H
b
2 arrivals.

Since the Pareto(3/2) service-time distribution has an
infinite variance, c2s = �, the approximation in (4.7) for
v makes no sense. Based on (4.7), we would expect the
queue-length process to be unstable, but evidently that is
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Table 5. A comparison of approximations with simulation estimates of the mean conditional number
waiting given that all customers are busy in several G/GI/n/� queues with ! = 100,
�= 1, and n= 115 (�= 0870) based on 106 arrivals.

Service times

D M H∗
2 LN Par�3/2�

Arrival process c2s = 0 c2s = 1 c2s = 19 c2s = 19 c2s =�
D mean approx. — 33 635 635 �

mean sim. — 28 595 143 96
SD sim. — 31 525 2100 127

Db5 mean approx. — 33 635 635 �
mean sim. — 28 541 139 93
SD sim. — 31 528 207 127

M mean approx. 33 67 669 669 �
mean sim. 47 64 603 178 128
SD sim. 45 67 552 261 155

H∗
2 mean approx. 635 669 1270 1270 �

mean sim. 794 758 1144 632 649
SD sim. 761 768 1405 746 803

LN mean approx. 635 669 1270 1270 �
mean sim. 466 466 1117 490 407
SD sim. 394 470 1126 571 533

sup4Hb
2 mean approx. 635 669 1270 1270 �

mean sim. 659 644 1200 631 516
SD sim. 644 665 1278 794 600

Notes. The approximations use (5.7) (divided by �) with v in (4.7) and w ≡ 1. The process Db5 is a deterministic
process with clusters of size 5, while sup4Hb

2 is the superposition of four IID renewal processes with Hb
2 interarrival

times with SCV c2
a = 19.

not the case. In fact, quite reasonable approximations for
the cases with Pareto(3/2) service-time distributions can be
obtained by using the approximation v≈ 28. The approx-
imations change to 9.4 for D and Db5 arrivals, 12.7 for
M arrivals, and 72.9 for H∗

2 , LN, and sup4Hb
2 arrivals.

It remains to determine how to systematically define an
appropriate variability parameter v, but the evidence sug-
gests that it should be possible.
In Table 5 we display estimates of the standard devia-

tion (SD) of the conditional number waiting given that all
servers are busy as well as the mean. Because the estimates
of the SD differ relatively little from the estimates for the
mean, we conclude that the distribution is reasonably well
approximated by an exponential distribution. However, the
cases of the heavy-tailed LN and Par�3/2� service times
suggest that in those cases the distribution has a slightly
heavier tail, with an SCV of about 1.5 instead of 1.0. Cer-
tainly, the tail of the steady-state queue length is closer to
an exponential distribution than to the tail of the service-
time distribution itself. In Figure 4 we plot four estimates of
the steady-state density based on these simulations (ignor-
ing the discreteness), using the Splus nonparametric den-
sity estimator, to show that the steady-state distributions do
indeed have the claimed general form.
Many simulations of M/GI/100/� queues with non-

exponential service times, including lognormal service
times, have recently been conducted by Mandelbaum and

Schwartz (2002). Their results are consistent with what we
observed above.

7. Approximations for Blocking
Probabilities in G/GI/n/m

We now apply the diffusion approximation in §4 to gen-
erate an approximation for the blocking probability in the
G/GI/n/m queue. Because the diffusion process has a
reflecting barrier at �, which is not defined by a reflec-
tion map applied to a free process, the diffusion does not
directly experience any loss. However, we can define a loss
rate for the diffusion process by looking at the behavior of
the diffusion process in the neighborhood of the boundary.
For x > 0, the diffusion process acts like ordinary

Brownian motion with a drift. Thus, just as for the G/G/
1/m model in Berger and Whitt (1992a), we can apply the
reasoning on pages 86–92 in Harrison (1985) to motivate
defining the (long-run) loss rate (at the upper barrier �) of
the diffusion process Q as

rQ ≡ fQ������-
2
Q���

2
� (7.1)

where fQ��� is the PDF of Q��� in (3.14) or (3.15) and
-2Q��� is the infinitesimal variance of Q evaluated at the
upper boundary �. In the case 	 �= 0,

fQ������=
�	e−�	/v

v�1− e−�	/v�
 (7.2)
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Figure 4. Estimates of the steady-state density of the queue-length process (ignoring the discreteness) in four
GI/GI/n/� models with != 100, �= 1, and n= 115.
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Notes. The service times are exponential (M), lognormal (LN), Pareto(3/2), and H ∗
2 . The estimates are obtained from the Splus nonparametric density

estimator based on 106 arrivals in each case.

From (2.9), (2.10), and (2.12), we see that the infinitesimal
variance of Q evaluated at � is

-2Q���=
2�z
p

= 2�v (7.3)

Because Qn�t�≈ n+√
nQ�t� by the scaling in (2.4), we

approximate the loss rate in the queueing system by

rQn
≈√

nrQ (7.4)

Because the blocking probability equals the loss rate
divided by the arrival rate, we approximate the blocking
probability in the queueing system, denoted by /n, by

/n =
rQn

!n
≈ fQ������v

�n
√
n

 (7.5)

Remark 7.1 (A Conjectured Local Limit). We conjec-
ture that the approximation in (7.5) can be supported by a
local limit in the G/H∗

2 /n/m model under the conditions
of Theorem 2.1. That limit would state that

√
n/n ≡ P�Qa

n���= n+mn�→ f ���v (7.6)

as n → � for v = �c2a + c2s �/2. That is in the spirit of
Theorem 15 on page 226 of Borovkov (1976). For the case
of exponential service times, where the multiserver queue
with all servers busy behaves like a single-server queue,
Whitt (2004) has verified this conjecture when 	< 0.

Remark 7.2 (Comparison with the G/GI/n/0 Loss
Model). The same reasoning applies to the G/GI/n/0
loss model, but the blocking formula is quite different.
When x < 0, the diffusion behaves like an Ornstein-
Uhlenbeck process, not a Brownian motion. However, the
infinitesimal parameters are approximately constant in the
neighborhood of the upper boundary (now � = 0). We
thus use the same reasoning and define the loss rate of the
diffusion process as

rQ ≡ fQ������-
2
Q���

2
� (7.7)

just as in (7.1), except now �= 0.
From (3.14), we see that

fQ����0�=
��	/

√
z�√

z��	/
√
z�

(7.8)

when 	 �= 0. From (2.9), (2.10), and (2.13), we see that

-2Q�0�= 2p�z (7.9)

Hence, we obtain the blocking-probability approximation

/n ≈
p
√
z��	/

√
z�

�
√
n��	/

√
z�
 (7.10)

Formula (7.10) is p
√
� times the approximation in (15) of

Srikant and Whitt (1996). The factor of
√
� is removed

if we apply approximation (5.3). Moreover, that factor is
asymptotically negligible in the limiting regime (0.1). Thus,
we reproduce the previous blocking-probability approxima-
tion in Srikant and Whitt (1996) in the special case p= 1.
Otherwise, the formulas are different.
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We evaluate the approximations for both the delay prob-
ability and the blocking probability in GI/GI/n/m models
in Table 6. For these examples we let v be as in (4.7) with
w≡ 1. In Table 6 we make comparisons with exact values
from Seelen et al. (1985) for the GI/GI/25/10 model for
several different values of c2a, c

2
s , and �. The exact delay

probability values (PW) in Table 6 differ from those in
Seelen et al. (1985), because they display the conditional
delay probability given that the customer is admitted. Our
value of PW is computed from theirs, denoted by PW S , by

PW = PW S +PBL− �PW S��PBL� (7.11)

We regard the quality of the approximations as quite
good. However, the delay-probability approximation is sur-

Table 6. A comparison of the approximations with exact values of the delay probability (PW), the probability all servers
are busy (PB), and the blocking probability (PBL) in the GI/GI/n/m model with exponential (M) and Erlang
(E2, c

2
s = 05) service-time distributions for n= 25, m= 10 and various values of the interarrival-time SCV c2a

and the traffic intensity �.

Parameters Exact values Approximations

c2a c2s � PW PB PBL (3.4) and (3.8) (7.5)

4.00 1.00 1.5 0918 0883 0347 0890 0343
1.2 0800 0743 0212 0706 0213
1.0 0628 0561 0112 0502 0126
0.9 0502 0436 0067 0388 0088
0.8 0353 0297 0032 0279 0057
0.7 0205 0165 00110 0184 0034

1.00 1.00 1.5 0990 0990 0334 0994 0334
1.2 0913 0913 0176 0907 0175
1.0 0649 0649 0059 0615 0061
0.9 0414 0414 0021 0392 0025
0.8 0195 0195 00046 0199 00078
0.7 0063 0063 000054 0081 00018

0.25 1.00 1.5 09987 09990 0333 09997 0333
1.2 0965 0970 0169 0970 0169
1.0 0680 0705 0041 0669 0042
0.9 0355 0384 00079 0359 00101
0.8 0110 0126 000060 0132 000118
0.7 00182 0023 000002 00343 000012

4.00 0.50 1.5 0924 0891 0347 0916 0342
1.2 0812 0757 0212 0753 0211
1.0 0648 0581 0112 0561 0123
0.9 0527 0459 0067 0449 0085
0.8 0382 0321 0032 0338 0055
0.7 0230 0186 00109 0239 0033

1.00 0.50 1.5 0996 0996 0334 09989 0333
1.2 0944 0944 0172 0953 0171
1.0 0681 0681 0052 0680 0051
0.9 0427 0427 00160 0429 00170
0.8 0194 0194 00029 0211 00039
0.7 0061 0061 000028 0083 000067

0.25 0.50 1.5 09999 09999 0333 099999 0333
1.2 0990 0992 0167 0996 0167
1.0 0733 0758 0030 0738 0028
0.9 0336 0369 00030 0324 00027
0.8 0084 0101 000008 0083 000010
0.7 0011 00144 000000 00137 0000002

Note. The approximations have v in (4.7) with w ≡ 1. The exact values come from Seelen et al. (1985).

prisingly inaccurate when � = 1 and c2s = 1, where it is
supposed to be asymptotically correct.
The accuracy of the approximations may be less impres-

sive than we would wish, but it is important to recognize
that great accuracy is not required in many applications.
A principle application is server staffing. In that applica-
tion, great accuracy is not necessary because servers come
in integer quantities, and the performance measures tend to
change substantially with unit changes in the staffing.
We illustrate by showing how the approximation for the

blocking probability /n depends on the number of servers,
n, for several GI/GI/25/10 queues. We let Table 6 serve
as our base case: For �= 09, the arrival rate is != 225.
We change n, holding the arrival rate fixed at != 225.
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Table 7. The approximate blocking probability as a function of the number of servers
in four GI/GI/25/10 models with arrival rate ! = 225, as occurs in the
cases of Table 6 when �= 09.

Parameters Approximate blocking probabilities

n � M/M E2/E2 H2/E2, c
2
a = 40 M/H2, c

2
s = 10

21 1.07 0097 0077 0152 0157
22 1.02 0071 0046 0131 0133
23 0.98 0053 0027 0115 0115
24 0.94 0037 0014 0100 0097
25 0.90 0025 00065 0085 0081
26 0.87 0018 00034 0075 0069
27 0.83 0011 00013 0063 0055
28 0.80 00078 000063 0055 0046
29 0.78 00059 000037 0050 0040
30 0.75 00039 000016 0043 0033
40 0.56 000016 000000 00144 00057

We consider four cases: We consider the M/M/n/m
model, one less-bursty example and two more-bursty exam-
ples. The less-bursty example is the E2/E2/n/m model
with Erlang interarrival times and service times. Using
(4.8), we let the approximate peakedness be z≈ 0625. The
more-bursty examples are Hb

2 /E2/n/m with c2a = 40 and
M/Hb

2 /n/m with c2s = 10.
The results are shown in Table 7. First, we see that quan-

tifying the variability of a distribution beyond its mean can
be very important: There is greater disparity going from
M/M/n/m to one of the other models (changing columns)
than there is in adding or subtracting a server (changing
rows).
We also see that adding servers tends to have a greater

impact in the less-bursty examples: With greater variability,
the addition of a server causes a smaller decrease in the
blocking probability. For example, suppose that we want to
decrease the blocking probability from just less than 0.080
to just less than 0.040. For the M/M/25/10 model, we
would go from n= 22 to n= 24, an addition of two servers.
In contrast, for the M/H2/25/10 model, we would go from
n= 26 to n= 30, an addition of four servers.

8. Conclusions
We have developed a heuristic diffusion approximation for
the G/GI/n/m queue, intended for the case of large n,
which is supported by a heavy-traffic stochastic-process
limit for the special case of the G/H∗

2 /n/m model, estab-
lished in the companion paper Whitt (2005). Theorem 3.1
shows that the approximation yields relatively simple
explicit formulas for the steady-state performance measures
of interest.
Corollary 3.1 shows that the steady-state delay probabil-

ity and the conditional distribution of the number of busy
servers given that all servers are not busy in the G/H∗

2 /n/�
model depend on the parameter p only through the param-
eter z, which has a natural approximation by the asymptotic
peakedness in (1.6) in the G/GI/n/� model. Thus, there is

reason to expect that the approximations for these charac-
teristics perform well. Simulation experiments confirm that
the approximations for these quantities perform remarkably
well across a wide range of cases. We thus feel that we
have successfully met our main goal of generating a use-
ful approximation for the delay probability in G/GI/n/�
models.
Especially interesting are simulation results for multi-

server queues with heavy-tailed service-time distributions.
The simulations show that the congestion is much less than
might be expected. That is partly explained by the formula
for the asymptotic peakedness in (1.6) that plays an impor-
tant role in the approximations for the steady-state delay
probability. Much insight is provided by the value of the
integral ��G� in (1.7) for the heavy-tailed distributions.
Simulation results show that the diffusion approximation

with the variability parameter v = �c2a + c2s �/2 works well
for the mean steady-state number waiting for service-time
distributions with low-to-moderate variability. However,
the simulation results in Table 5 show that the diffusion
approximation with this parameter v grossly overestimates
the expected mean number waiting when the service-time
distribution is lognormal. That discrepancy disappears if
we use a refined approximation for v as in (4.7) with an
appropriate weight w. However, it remains to determine
a weight function w that produces good performance for
the mean number waiting across a wide range of cases. It
also remains to determine an appropriate parameter v for
heavy-tailed distributions, like the Pareto(3/2), that have
finite mean but infinite variance. Indeed, nothing has yet
been proved about the limiting behavior in that case.
Overall, we believe that we have developed a useful

approximation framework, but there remains much work
to do. It would be interesting to compare the results
here to those obtained from an algorithm to compute the
steady-state distribution of the multidimensional diffusion
in Puhalskii and Reiman (2000). For approximations (but
not for asymptotics), presumably lognormal and Pareto dis-
tributions can be effectively treated by approximating them
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by appropriate phase-type distributions, using algorithms
such as in Asmussen et al. (1996) and Feldmann and Whitt
(1998).
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