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This note determines a priori bounds for B. L. Fox’s [I. Math. Anal. Appl. 
34 (1971), 665-6701 scheme of approximating discounted Markov programs, 
thus relining bounds recently obtained by D. J. White (Notes in Des&ion 
Theory No. 43, University of Manchester, 1977). The approximation scheme 
focuses careful attention on only a subset of the state space and uses a fixed 
function to characterize future returns outside the designated subset. The a 
priori bounds are useful to design the specific approximation, that is, to select the 
appropriate subset on which the approximation is based. 

1. INTRODUCTION AND SUMMARY 

The purpose of this note is to extend recent work by D. J. White [5] deter- 
mining a priori bounds for B. L. Fox’s [2] method of approximating discounted 
Markov programs. The basic idea in Fox’s scheme is to focus careful attention 
on only a subset of the state space and use a fixed function to characterize 
future returns outside the designated subset. Hopefully good decisions can be 
determined for many states inside the designated subset without examining the 
behavior outside the subset in detail. As noted in Whitt [6], two-sided a poste- 
riori bounds can be obtained by considering more than one fixed function 
characterizing future returns outside the designated subset. It is also significant 
that the approximation scheme is not limited to a finite subset of a countably 
infinite state space. For example, we could work with a finite subset of a large 
finite state space or a compact subset of a noncompact uncountably infinite 
state space. 

The object here, as in White [5], is to determine bounds on the difference 
between the optimal return function in the original model and the return 
associated with a policy generated from the approximate model, depending 
on the designated subset on which the approximation is based. The bounds 
can be used in turn to select the designated subset. 

As in White [S] the bounds on the error in the optimal return function here are 
based on uniform bounds (over all possible actions) of the Markov transition 
function. By means of such a “bounding transition function,” we can bound the 
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probabilities of leaving the designated subset, and thus bound the error in the 
optimal return function. We extend White [5] by providing sharper and more 
flexible bounds. 

For a broad survey of approximation methods in dynamic programming, 
see Morin [3]. 

2. THE BASIC MODEL 

We consider the standard discounted Markov program with finite or count- 
ably infinite state and action spaces. (It is easy to see that the cardinality assump- 
tion can be relaxed.) Thus, let the state space I and the action spaces Ki for i E I 
be nonempty subsets of the positive integers. Let the space d of stationary poli- 
cies be the Cartesian product of the action spaces. For each SEA, S(i) is the action 
in Ki used each time the process is in state i. Let r(i, K) be the one-step reward 
associated with using action K in state i, assumed to satisfy ] r(i, k)l < M for all 
K E Ki and i E I, and let g( j 1 i, K) be the probability of a one-step transition to 
state j from state i using action k. Let c be the discount factor, 0 < c < 1; let 
v6 be the return function associated with policy S E d and letf = sup{v,: S E O} 
be the optimal return function. A basic result (see Denardo [I]) is that the 
optimal return function f is the unique solution in the space of bounded func- 
tions (in the space Zoo) to the functional equation 

3. THE APPROXIMATION 

In the language of Whitt [6], we work with the lower approximation here. 
This is obtained by assuming, without loss of generality, that all one-step 
rewards are nonnegative and that the fixed function characterizing future 
returns outside the designated subset always assigns the value zero. We still let M 
represent the bound on the one-step rewards. 

Let the designated subset of the state space I be S. Then the return function 
vsS associated with the policy 6 in the approximate model is the unique bounded 
solution of the functional equation 

zg(i) = 0, ieI- S, 

(2) 

v,Ti) = y(i, S(i)) + c C g(j I i, S(i)) vas(i), i E S. 
jSI 
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Let the approximate optimal return function be p = sup(wsS, 6 E d}. Then f  is 
the unique bounded solution of the functional equation 

4. THE BOUNDS 

Since rfi, k) >, 0 for all k E KS and i E 1, vs(i) 3 z@(i) for all i, 6 and S. Hence, 
if 6 restricted to S is e-optimal in the approximation, then 

f(i) > va(i) 3 $(i) >, j(i) - E, iE S. (4) 

Hence, to study j Da(i) -f(i)\ for a policy 6 which is e-optimal in the approxima- 
tion, it suffices to focus on If(i) -j(i)\ . 

As an immediate consequence of (1) and (3), we obtain 

cf. (15) of White 151. We shall generate bounds using (5) in conjunction with a 
finite collection of nested subsets of the designated subset S. In particular, 
let S, ,..., S,,, be subsets of S such that 

$ = s, c s, c s, c -..~S,=SLI=S,,,. 

Let Sjc be the complement of Si in 1. We will bound the errors and transtions 
over these subsets by means of 

x, = sup{lf(i) -j(i)/: iE S,], 

4%, I &J = sup 
1 

1 g(j I i, 4: f3 E K, , i E %, , 
! 

1 < 1, < m, 
iEP 5 

(6) 
P(m + 1 / i) = 7r(S,” 1 S,), 

P(j I i) = QT(S~-~ 1 &) - 77(S,’ j S,), 1 <i, j<m. 

The function P is the bounding one-step transition function for transitions 
between the subsets S, ,..., S,: P(j I i) is the probability of a transition to 
Sj - S,-, from Si . Of course, we need some structure in order for P to be 
useful. In the worst case, P(m + 1 I i) = 1 for all i, which makes the bound 
below trivial. 
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Let x be the m-vector with components x,; let P be the m x m substochastic 
matrix with (i, j)th entry P( j 1 i); let b be the m-vector with components b, = 
(1 - c)-l MP(m + 1 1 j). S’ mce 
If(i) - f(i)1 < (1 - c)” M. 

0 < r(i, k) < M for all k E K, and if2l, 
Th e component b, obviously is a bound on the 

one-step probability of leaving S multiplied by a bound on the total error. Let I 
be the m x m identity matrix. 

THEOREM. x < (I - cP)-l cb. 

Proof. From (5), 

j 

m=m 
G ;:{ ;zE C C g(j I 6 R) If( + c C C g(j I i, k) If(j) - f(j)/ 

jSI-S n=1 3E.s,-s,, I 

< sup sup 
ieSl keK< ! 

C g(j I i, k) c( I - c)-l M + f 2 
jol-s n=1 ~ES,-s,-l 

g( j 1 i, k) cx, 1 

< P(m + 1 ] 2) c( 1 - c)-1 M + 2 P(n 1 I) cx, 
72-l 

< cbt + c t P(n 1 I) x, . 
n=1 

The semi-penultimate inequality holds because Xj < xj+i < (1 - c)-l M and 
the penultimate inequality holds because of the stochastic dominance associated 
with(6):foriES,andkEKi, 

m+1 m+1 

c 
?l=l 

yn jss;s _ g(i I i, 4 G C YmP+ 10 
I " 1 ?%=l 

ify, <ya < -4. < y,,+r , cf. p. 769 of Veinott [4]. 1 

EXAMPLE 1. Suppose Si = (l,...,j>, 1 <j < m. Then P(- 1 i) is the supre- 
mum in the sense of stochastic order among the subprobability distributions on 
(1 ,.a’, m} in the collection {g(* 1 j, k): 1 < j < i, k E &}. In other words, 

z=n 
C P(Z[i)=inf fg(l[j,R): 1 <j<i,kE& , 1 <n<m. 
Z=l I E=l I 
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EXAMPLE 2. Suppose there is some state in S, say s, such that there is a 
probability of at least E > 0 of reaching this state from every state in S in one 
transition under every action, i.e., g(s ( i, k) > E for all i E S and K E Ki . If we 
construct S, such that s E S, , then P(1, i) >, E for all i and j, 1 < i, j < m. 

EXAMPLE 3. Following White (1977), let 

l (N)=sup C 
1 

g(jIi,k):iEI,kEK+, . 
j>N+i I 

If, for i given, Sj = Cl,..., (j - 1) N + i}, then P(l ) j) + ... + P( j + 1 /j) > 
1 - E(N) for all j. Based on this limited information, the best possible bounding 
function P is P(m + 1 ( i) = e(N) = 1 - P(i + 1 ( i) for all i. The theorem here 
with this P yields White’s [S] bound. 

EXAMPLE 4. Suppose we wish to concentrate on a tixed initial state i and an 
approximation based on K iterations. We can select the designated subset S to 
achieve a specified bound on the error by using a cruder approximation which 
is similar to the one suggested by White [5]. First choose probabilities pj , 
1 < j < k, so that the bound B = (1 - c)-’ M (& cjpj + c”+l) is satis- 
factory. (For example, we could set pj = p for all j.) Then choose subsets Sj , 
1 < j < k, such that Sj = (1, 2 ,..., nj} and 

nj=min n>n,-,:sup 
I / 

~g(j:Z,k):KtK,,ZfS,-, 
I I 

<pj * 
j=n 

This procedure guarantess that the bound B is met, but the Theorem applied 
to the collection (S, ,..., S,} gives a better bound. 
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