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Abstract

We consider the standard single-server queue with unlimited waiting space and the first-in

first-out service discipline, but without any explicit independence conditions on the interarrival

and service times. We find conditions for the steady-state waiting-time distribution to have

small-tail asymptotics of the form x − 1 logP(W > x) → − θ∗ as x → ∞ for θ∗ > 0. We require

only stationarity of the basic sequence of service times minus interarrival times and a Ga
..
rtner-

Ellis condition for the cumulant generating function of the associated partial sums, i.e.,

n − 1 log Ee θS n → ψ(θ) as n → ∞, plus regularity conditions on the decay rate function ψ. The

asymptotic decay rate θ∗ is the root of the equation ψ(θ) = 0. This result in turn implies a

corresponding asymptotic result for the steady-state workload in a queue with general

nondecreasing input. This asymptotic result covers the case of multiple independent sources, so

that it provides additional theoretical support for a concept of effective bandwidths for admission

control in multi-class queues based on asymptotic decay rates.

Key words: single-server queue, waiting time, workload, tail probabilities, small-tail asymptotics,

large deviations, cumulant generating function, counting process, effective bandwidths, admission

control, high-speed networks, asynchronous transfer mode.



1. Introduction and Summary

We are pleased to be able to contribute to this Festschrift in honor of Lajos Taka ́ cs on his 70th

birthday. In this paper we try to emulate Taka ́ cs by seeking the essential mathematics underlying

a probability problem of applied relevance. Like Taka ́ cs (1962, 1963, 1967), we focus on the

single-server queue.

In particular, we focus on small-tail asymptotics for the steady-state waiting time W and the

steady-state workload L. We find general conditions under which

x − 1 logP(W > x) → − θ∗ as x → ∞ (1.1)

for θ∗ > 0, and similarly for L. We call the constant θ∗ in (1.1) the asymptotic decay rate. The

following elementary proposition helps put (1.1) in perspective. It is easily proved using

integration by parts; e.g., p. 150 of Feller (1971).

Proposition 1. For any random variable Z and positive constant θ∗ , the following are

equivalent:

(i) x − 1 logP(Z > x) → − θ∗ as x → ∞;

(ii) sup {θ ≥ 0 : Ee θZ < ∞} = θ∗;

(iii) For all ε > 0, there is an x 0 ≡ x 0 (ε) such that

e − (θ∗ + ε) x ≤ P(Z > x) ≤ e − (θ∗ − ε) x for all x > x 0 .

There is currently great interest in small-tail asymptotics such as in (1.1) because of possible

applications to the design and control of emerging high-speed communication networks. In

particular, it has been recognized that asymptotic decay rate functions (defined below) that

determine asymptotic decay rates such as θ∗ in (1.1) may be used to create effective bandwidths

for admission control and other network resource allocation problems; see Gibbens and Hunt

(1991), Kelly (1991), Guerin, Ahmadi and Naghshineh (1991), Chang (1993), Whitt (1992),
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Elwalid and Mitra (1992), Sohraby (1992), Chang, Heidelberger, Juneja and Shahubuddin (1992)

and references in these sources. The last reference also illustrates how the asymptotic decay rates

may be used to speed up simulations. Our approach here is most closely rated to the papers by

Whitt (1992), Chang (1993) and Chang et al. (1992). In particular, the results here provide

theoretical support for the procedures in Whitt (1992).

In many cases, a stronger limit than (1.1) holds, namely,

e θ∗ xP(W > x) → α∗ as x → ∞ (1.2)

for positive constants θ∗ and α∗ . Then we call α∗ the asymptotic constant. It is easy to see that

(1.2) implies (1.1) but not conversely. An M/G/1 queue for which (1.1) holds but (1.2) does not

appears in Example 5 of Abate, Choudhury and Whitt (1992a). Then

P(W > x) ∼ αx − 3/2 e − θ∗ x as x → ∞, where f (x) ∼g(x) means that f (x)/ g(x) → 1. In this

paper we focus on the weaker form (1.1). For work focusing on (1.2), see Abate, Choudhury and

Whitt (1992a,b,c), Asmussen (1989, 1993), Asmussen and Perry (1992), Elwalid and Mitra

(1992, 1993), Neuts (1986), Stern and Elwalid (1991), Tijms (1986), van Ommeren (1988) and

references in these sources.

When (1.2) holds, a natural approximation for the tail probabilities is P(W > x) ∼∼α∗ e − θ∗ x

for x not too small. Since the asymptotic constant α∗ in (1.2) is often not easy to obtain, Abate,

Choudhury and Whitt (1992a) suggest the simple approximation α∗ ∼∼θ∗ EW. For some purposes,

e.g., for percentiles, even α∼∼1 is satisfactory. In many cases, α∗ ∼∼1 produces a bound, i.e.,

P(W > x) ≤ e − θ∗ x; see p. 269 of Asmussen (1987) and Chang (1993). These exponential

approximations can also be used with (1.1), even though (1.1) does not provide as much support

as (1.2). However, Example 5 of Abate, Choudhury and Whitt (1992a) shows that the quality of

the approximation provided by the asymptotics can deteriorate dramatically when (1.1) holds but

(1.2) does not. Moreover, for the admission control problem, it is important to note that the



- 3 -

quality of the approximations for the tail probabilities provided by the simple one-term

exponential approximations also can deteriorate dramatically when the number of independent

sources increases; see Choudhury, Lucantoni and Whitt (1993a,b).

In this first section, we present our main result and discuss its implications. We give proofs in

Sections 2-8 and an example in Section 9. In §1.1 we state our main result for W; in §1.2 we

discuss some implications and related results; in §1.3 we state our main results for L, which

follow directly from the results for W by discretizing the processes; and in §1.4 we give sufficient

conditions for W and L to have the same logarithmic asymptotics. This involves the logarithmic

asymptotics of the time-stationary and customer-stationary (embedded-stationary or Palm-

stationary) versions of the arrival process. In §1.5 we discuss logarithmic asymptotics for

steady-state queue lengths.

1.1 The Main Result

Let {X n : n ≥ 1 } be a sequence of real-valued random variables and define the associated

waiting-time sequence {W n : n ≥ 0 } recursively by letting W 0 = 0 and

W n + 1 = [W n + X n + 1 ] + , n ≥ 0 , (1.3)

where [x] + = max {x, 0 }. Let S 0 = 0 and S n = X 1 + . . . + X n , n ≥ 1. Let = = > denote

convergence in distribution.

Theorem 1. Let {X n : n ≥ 1 } be strictly stationary. If there exists a function ψ and positive

constants θ∗ and ε∗ such that

(i) n − 1 log Ee θS n → ψ(θ) as n → ∞ for θ − θ∗ < ε∗ , (1.4)

(ii) ψ is finite in a neighborhood of θ∗ and differentiable at θ∗ with ψ(θ∗ ) = 0 and

ψ′ (θ∗ ) > 0 , and (1.5)

(iii) Ee θ∗ S n < ∞ for n ≥ 1, (1.6)

then W n = = > W as n → ∞ and (1.1) holds.
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A significant feature of Theorem 1 is that there are no independence or Markov assumptions.

Instead, we have condition (1.4) involving the asymptotic behavior of the cumulant generating

functions of the partial sums S n , as in the Ga
..
rtner (1977)–Ellis (1984) theorem of large deviations

theory; see p. 14 of Bucklew (1990). (For a discussion of the connection to cumulants, see

Choudhury and Whitt (1992).) Indeed, our proof of Theorem 1 follows large deviations theory,

using exponential changes of measure. For additional background on large deviations theory, see

Dembo and Zeitouni (1992) and Shwartz and Weiss (1993). Theorem 3.9 (ii) of Chang (1993),

which was obtained independently and concurrently, is a result closely related to Theorem 1; his

model can be thought of as the D/G/1 special case.

The conditions in Theorem 1 are very general, but they are not necessary, as we show in

Example 1 in §9.

A (familiar) key step in proving Theorem 1 is representing W n as the maximum of reverse-

time partial sums; i.e.,

W n = S n −
0≤k≤n
min S k =

0≤k≤n
max {S n − S k } , (1.7)

so that, when we extend {X n } to a doubly infinite stationary sequence {X n : − ∞ < n < ∞},

W n is distributed as M̃ n ≡ max { S̃ k : 0 ≤ k ≤ n}, where S̃ 0 = 0 and S̃ k = X − 1 + . . . + X − k . The

conditions in Theorem 1 obviously apply to S̃ k as well as S k because Ee θ S̃ k = Ee θS k . Since the

stationarity is required only for this step, we obtain Theorem 1 immediately from the following

result for maxima of partial sums M n = max {S k : 0 ≤ k ≤ n}, which does not require

stationarity. We prove the following result in §2.

Theorem 2. Let {X n : n ≥ 1 } be a sequence of real valued random variables (not necessarily

stationary or mutually independent). If there exists a function ψ and positive constants θ∗ and ε∗

such that (1.4)–(1.6) hold and
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n→ ∞
lim sup Ee θX n < ∞ for θ < ε∗ , (1.8)

then M n → M w.p.1 as n → ∞ and

x − 1 logP(M > x) → − θ∗ as x → ∞ . (1.9)

Note that condition (1.8) in Theorem 2 is not needed if {X n } is stationary, because then (1.8)

is implied by (1.6) in the case n = 1. For this, recall that Ee θ 1 Z < ∞ when Ee θ 2 Z < ∞ and

θ 1 < θ 2 for any random variable Z by Ho
..

lder’s inequality; see (21) on p. 47 of Chung (1974).

Also note that condition (1.6) is clearly necessary in Theorem 2, because M ≥ S n for all n.

Hence, Ee θ∗ M = ∞ if Ee θ∗ S n = ∞ for any n.

We remark that we have also proved a version of Theorem 2 with condition (1.8) replaced by

Ee θS n < ∞ for n ≥ 1 for some θ with θ > θ∗ . This alternative condition might be preferred in

Theorem 2, but it would require that we strengthen (1.6) in Theorem 1.

In Theorem 1 we have assumed that the basic sequence {X n } is stationary. However, this is

not a great restriction because the focus is on the steady-state waiting time W. Given the

distribution of W, it is usually possible to choose a stationary version of any given basic sequence

{X n } such that W n = = > W as n→ ∞; e.g., see p. 13 of Borovkov (1976). Of course, the conditions

in Theorem 1 apply to this stationary version. However, under regularity conditions,

nonstationary versions and stationary versions of the basic sequence will couple so that the

conditions for one enable us to verify the conditions for the other.

In other words, W typically does not depend on the initial part of the basic sequence {X n }.

In contrast, the maximum M in Theorem 2 clearly does depend on the entire sequence {X n }. For

a simple example, suppose that {X n : n ≥ 2 } is i.i.d. with a good distribution, but

P(X 1 > x) ∼Ax − p . Then X 1 influences the tail behavior of S n for all n and M, but not that of W.
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An important role is played by the function ψ in Theorem 1; we call it the (asymptotic)

decay-rate function. It is significant that ψ is necessarily convex where it is finite, because

logEe θZ is convex where it is finite for any random variable Z, as can easily be seen by applying

Ho
..

lder’s inequality. It is important to distinguish the decay-rate function ψ from the associated

large deviations rate function I(x), defined by

I(x) =
θ

sup {θx − ψ(θ) } ; (1.10)

e.g., see Chapter 1 of Bucklew (1990). The functions φ and I are intimately related. Indeed, they

are convex conjugates of each other; see p. 183 of Bucklew (1990).

1.2 Implications and Related Results

The conditions of Theorems 1 and 2 are easy to check when the basic sequence {X n } is i.i.d.

This special case includes the GI/GI/1 queue (with i.i.d. service times independent of i.i.d.

interarrival times), for which it is possible to obtain the stronger result (1.2); e.g., see p. 269 of

Asmussen (1987). For early results in this direction, see Smith (1953) and Theorems V.10.1 and

VI.6.1 of Keilson (1965). Asmussen (1987, 1993) refers to the history in risk theory. In this

GI/GI/1 case, Abate, Choudhury and Whitt (1992d) have shown that it is also easy to compute the

tail probabilities by numerical transform inversion, numerically integrating a contour integral

representation for Ee − θW .

Corollary 1. If {X n : n ≥ 1 } is i.i.d., EX < 0,

Ee θ∗ X = 1 (1.11)

and Ee θX < ∞ for − ε < θ < θ∗ + ε for some ε > 0, then the conditions of Theorems 1 and 2

hold with ψ(θ) = log Ee θX , so that (1.1) and (1.9) hold.

Proof. Note that n − 1 log Ee θS n = Ee θX 1 = ψ(θ) when {X n } is i.i.d. Since ψ( 0 ) = 1,

ψ′ ( 0 ) = EX < 0 and ψ is convex, ψ′ (θ∗ ) > 0.
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Thus, for the GI/GI/1 queue, it is easy to see what the decay rate function ψ is. For example,

in the M/M/1 queue with service rate1 and arrival rate ρ, ψ(θ) = − log [ ( 1 − θ) ( 1 + θ/ρ) ]; for

the D/M/1 queue, ψ(θ) = − log ( 1 − θ) − θ/ρ; and for the M/D/1 queue,

ψ(θ) = θ − log ( 1 + θ/ρ).

It is worth pointing out that the logarithmic asymptotics in (1.1) tend to be robust. In general,

weak convergence of distributions does not imply that large deviations asymptotics converge.

However, in this context, weak convergence plus uniform integrability does imply that the

cumulant generating function converges, and the logarithmic asymptotics here depends only on

the location of the root (and not, for example, the slope at the root). We illustrate by stating a

concrete result in the context of Corollary 1.

Corollary 2. Let {Xn
γ : n ≥ 1 } be i.i.d. for each γ > 0, where X1

γ = = > X1
0 as γ → 0 and

Ee θX1
γ

< M for some θ > θ0
∗ and some finite M, for all γ. If X1

γ satisfies the conditions of

Corollary 1 for each γ ≥ 0, then (1.1) holds for each γ ≥ 0 and θγ
∗ → θ0

∗ as γ → 0.

Proof. Since X1
γ = = > X1

0 as γ → 0, e θX1
γ

= = > e θX1
0

as γ → 0. The uniform moment bound implies

the uniform integrability needed to obtain Ee θX1
γ

→ Ee θX1
0

as γ → 0 for all θ < θ0
∗ + ε for

some ε.

In order to understand what the asymptotic decay rate θ∗ in (1.1) primarily depends upon, and

sometimes to compute θ∗ , it is useful to consider heavy-traffic asymptotic expansions for θ∗

based on expanding the function ψ(θ) in a Taylor series expansions about 0. Such heavy-traffic

asymptotic expansions are established in Abate, Choudhury and Whitt (1992a), Abate and Whitt

(1992) and Choudhury and Whitt (1992). Since logEe θS n is the cumulant generating function of

S n , the derivatives of ψ(θ) are the asymptotic cumulants of S n . To illustrate, we establish the

first term of the heavy-traffic expansion here. The first term coincides with the familiar decay rate

associated with exponential heavy-traffic limits; see Kingman (1962), Iglehart and Whitt (1970)

and Choudhury and Whitt (1992).
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Corollary 3. Consider a family of models indexed by ρ, 0 < ρ < 1. Suppose that the

assumptions of Theorem 1 hold for each ρ and

(i) EX n (ρ) = − ( 1 − ρ),

(ii) n − 1 VarS n (ρ) → σ2 as n → ∞, 0 < σ2 < ∞, and

(iii) n − 1 E(S n (ρ) − ( 1 − ρ) n)3 → γ as n → ∞, − ∞ < γ < ∞.

Then (1.1) holds with

θ∗ (ρ) =
σ2

2 ( 1 − ρ)_ _______ + o( 1 − ρ) as ρ → 1 .

Proof. Since logEe θS n is the cumulant generating function of S n , we can apply Taylor’s theorem

to obtain

n − 1 logEe θS n = − θ( 1 − ρ) +
2n

θ2 Var (S n )_ _________ + o(θ2 ) as θ → 0

uniformly in ρ and η, using condition (iii) to get the uniformity in n; e.g., see (4′) on p. 268 of

Chung (1974). Hence

ψ(θ) = − θ( 1 − ρ) +
2

θ2 σ2
_____ + o(θ2 ) as θ → 0

uniformly in ρ, so that the desired conclusion follows.

Another easy case is when the partial sums S n are Gaussian (but possibly dependent) for all n.

When S n is Gaussian, Theorem 1 takes a very simple form. In particular, then (1.1) holds with

θ∗ in Corollary 3. The Gaussian assumption holds approximately in an E k / E m /1 queue for

suitably large k and m. (As usual, E k stands for Erlang of order k.) A direct Gaussian

approximation has also been proposed and studied by Addie and Zuckerman (1993). This

analysis provides additional justification for the heavy-traffic approximation, because it does not

(at least directly) require a high traffic intensity.
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Corollary 4. Suppose that S n is Gaussian with negative mean m n and finite variance σn
2 for all

n ≥ 1. If m n / n → m and σn
2 / n → σ2 as n → ∞, where m < 0 < σ2 , then the conditions of

Theorem 2 hold with ψ(θ) = θm + θ2 σ2 /2, so that (1.9) holds with θ∗ = − 2m /σ2 > 0. If,

in addition, the basic sequence {X n } is stationary, then the conditions of Theorem 1 hold, so that

(1.1) holds.

Proof. Recall that Eexp (θS n ) = exp (θm n + θ2 σ2 /2 ) when S n is Gaussian with mean m n and

variance σn
2 .

In queueing theory, (1.3) is the familiar Lindley equation associated with a single-server

queue with unlimited waiting room and the first-in first-out service discipline. Then

X n = V n − U n where, for n ≥ 1, V n is the service time of customer n and U n is the interarrival

time between customers n and n + 1. With this indexing, we begin with a first customer arriving

at an empty system.

Another queueing model that leads to the representation X n = V n − U n is the queue length

in a discrete-time single-server queue. Then we interpret V n as the number of arrivals at epoch n

and U n as the number of potential departures at epoch n. For this representation to be valid, we

usually require special Markov or deterministic assumptions in the service process, or

‘‘autonomous service;’’ see p. 235 of Borovkov (1976). We use this below in §1.3. For the

ATM networks it is often reasonable to assume deterministic service, so that this Lindley

equation representation is indeed appropriate. For example, if there is at most one service

completion at each epoch, then U n = 1 for all n. This model variant is considered by Chang

(1993), Sohraby (1992) and Chang et al. (1992). Chang (1993) also focuses on the Ga
..
rtner-Ellis

condition in (1.4).

Given Theorems 1 and 2, we want to know when the conditions are satisfied. In the queueing

context, the conditions can be expressed in terms of the two sequences {U n : n ≥ 1 } and
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{V n : n ≥ 1 } separately when the sequences {U n } and {V n } are independent. (However, note

that such independence is not required in Theorem 1.)

To state the result, let Sn
v = V 1 + . . . + V n and let Sn

u = U 1 + . . . + U n .

Proposition 2. Suppose that X n = V n − U n , where {V n : n ≥ 1 } and {U n : n ≥ 1 } are

independent sequences of nonnegative random variables (without independence or stationarity

assumptions for each sequence). If there exist functions ψ v and ψ u and positive constants θ∗ , ε∗

and M such that

(i) n − 1 log Ee θSn
v

→ ψ v (θ) as n → ∞ for θ − θ∗ < ε∗ , (1.12)

(ii) ψ v is finite in a neighborhood of θ∗ and differentiable at θ∗ , (1.13)

(iii) Ee θ∗ Sn
v

< ∞ for n ≥ 1, (1.14)

(iv) Ee θV n < M for n ≥ 1 and all θ < ε∗ , (1.15)

(v) n − 1 log Ee − θSn
u

→ ψ u ( − θ) as n → ∞, for θ − θ∗ < ε∗ , (1.16)

(vi) ψ u is finite in a neighborhood of − θ∗ and differentiable at − θ∗ , (1.17)

(vii) Ee − θU n < M for n ≥ 1 and all θ < ε∗ and (1.18)

(viii) ψ(θ∗ ) = 0 and ψ′ (θ∗ ) > 0 for ψ(θ) = ψ v (θ) + ψ u ( − θ) , (1.19)

then {X n } satisfies conditions (1.4)–(1.6) and (1.8) with decay rate function ψ, so that (1.9)

holds. If, in addition, { (U n ,V n ) } is stationary, then {X n } is stationary and (1.1) holds.

Proof. By the independence,

Ee θS n = Ee θ(Sn
v − Sn

u ) = Ee θSn
v

Ee − θSn
u

,

so that

log Ee θS n = log Ee θSn
v

+ log Ee − θSn
u

.

Since Sn
u ≥ 0, Ee − θSn

u

≤ 1. Similarly, Ee θX n = Ee θV n Ee − θU n . Hence, it is clear that the

assumed conditions here imply the conditions in Theorem 1.
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Assuming that the arrival and service processes are independent, Proposition 2 shows that we

can treat them separately, in the sense that the overall decay-rate function ψ is the sum of the

component decay rate funcitons, as indicated in (1.19). This separability is a basic feature of the

heavy-traffic limits in Iglehart and Whitt (1970) and in the effective bandwidth approximations;

see Elwalid and Mitra (1992, 1993), Stern and Elwalid (1991) and Whitt (1992). To obtain

further results for these separate processes, it is useful to have a relation between the asymptotics

for a counting process and the asymptotics for its inverse partial sum process. For this purpose,

we apply a result from Glynn and Whitt (1993).

Let {T n : n ≥ 0 } be a nondecreasing sequence of random variables with T 0 = 0. We think

of T n as the arrival epoch of customer n in the queue; then T n = U 1 + . . . + U n . let

{N(t) : t ≥ 0 } be the associated counting process defined by

N(t) = max {n ≥ 0 : T n ≤ t} , t ≥ 0 . (1.20)

The (familiar) key relation between T n and N(t) that we exploit is

{N(t) ≥ n} = {T n ≤ t} (1.21)

for all nonnegative n and t.

A process {Z(t) : t ≥ 0 } will be said to satisfy the Ga
..
rtner-Ellis condition with decay rate

function ψ if

t→ ∞
lim t − 1 log Ee θZ(t) = ψ(θ) for all θ ∈R . (1.22)

For a discrete-time process, we let t run through the positive integers in (1.22).

The associated decay rate function ψ will be said to satisfy the auxiliary large deviations (LD)

regularity conditions if (1.23)–(1.26) below hold:

β ≡ inf {θ : ψ(θ) = + ∞} > 0 , (1.23)
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ψ is differentiable everywhere in ( − ∞ , β) , (1.24)

θ ↑ β
limψ′ (θ) = + ∞ , and (1.25)

θ ↑ β
limψ(θ) = ψ(β) . (1.26)

The conditions (1.22)–(1.26) are standard in the large deviations literature. In particular,

under conditions (1.22)–(1.26), the process {Z(t) : t ≥ 0 } satisfies the Ga
..
rtner (1977) – Ellis

(1984) theorem, i.e., the large deviations principle holds for {Z(t) : t ≥ 0 } with rate function I

in (1.10); see pp. 42-50 of Dembo and Zeitouni (1992).

The following result is proved in Glynn and Whitt (1993). let ψ − 1 be the inverse function of

ψ. Note that ψ is nondecreasing, and strictly increasing where it is finite. Hence, for x and y

finite, ψ − 1 (y) = x if and only if ψ(x) = y.

Theorem 3. If the counting process {N(t) : t ≥ 0 } satisfies (1.22)–(1.26), then the inverse

partial sum process {T n : n ≥ 0 } does too, with the possible exception of (1.22) for θ = β T .

Similarly, if {T n : n ≥ 0 } satisfies (1.22)–(1.26), then {N(t) : t ≥ 0 } does too, with the possible

exception of (1.22) for θ = β N . In particular, then (1.22) holds for both processes, i.e.,

t→ ∞
lim t − 1 log Ee θN(t) = ψ N (θ) (1.27)

and

n→ ∞
lim n − 1 log Ee θT n = ψ T (θ) (1.28)

both hold (with the noted exceptions) and

ψ N (θ) = − ψT
− 1 ( − θ) , (1.29)

where they are finite.
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Thus, subject to regularity conditions, given the Ga
..
rtner-Ellis asymptotics for one of N or T,

we obtain the Ga
..
rtner-Ellis asymptotics for the other directly and have the inverse relation (1.29).

This parallels previous relations between other limits for N and T; e.g., see Iglehart and Whitt

(1971), §7 of Whitt (1980), Theorems 3 and 6 of Glynn and Whitt (1988a) and Theorem 1 of

Glynn and Whitt (1988b).

For example, we can apply Theorem 3 to obtain the Ga
..
rtner-Ellis limit (1.28) for the partial

sums Sn
u from the Ga

..
rtner-Ellis limit (1.27) for the counting process N(t) derived for batch

Markovian arrival processes in Theorem 1 of Choudhury and Whitt (1992). Abate, Choudhury

and Whitt (1992c) obtain (1.2) for BMAP/GI/1 queues, while the results here yield (1.1) for

BMAP/G/1 queues, without requiring that the service times be i.i.d. Sufficient conditions for

(1.22) in terms of embedded regenerative structure are also given in Theorem 7 of Glynn and

Whitt (1993).

We now show that deterministic sequences provide upper bounds on θ∗ when {U n } and

{V n } are independent sequences; see §8 of Abate, Choudhury and Whitt (1993a) for related

results. We use the queueing notation G/G/1 to refer to a general stationary sequence

{ (U n ,V n ) } of interarrival times and service times.

Proposition 3. Among G/G/1 models satisfying the assumptions of Proposition 2, the asymptotic

decay rate θ∗ is maximized (a) by deterministic service times among all stationary service-time

sequences {V n } with given mean EV n , and (b) by deterministic interarrival times among all

stationary interarrival-times sequences {U n } with given mean EU n .

Proof. By Jensen’s inequality, Ee θZ ≥ e θEZ for any random variable Z, so that

logEe θSn
v

≥ loge θESn
v

= nθ EV 1 and logEe − θSn
u

≥ loge θESn
u

= nθEU 1 . Hence, if ψv
D and and

ψu
D denote the decay rate functions in the deterministic cases, then ψ v (θ) ≥ ψv

D (θ) and

ψ u ( − θ) ≥ ψu
D ( − θ) for all θ > 0, so that the roots in (1.19) must be ordered as indicated.
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More generally, we can establish stochastic comparisons between any two G/G/1 systems.

Proposition 4. Consider two G/G/1 queues satisfying the assumptions of Theorem 1. If

Ee θSn
1

≤ Ee θSn
2

for all θ ≥ 0 and all n suitably large, then θ2
∗ ≤ θ1

∗ .

Proof. The condition implies that ψ 1 (θ) ≤ ψ 2 (θ) for all θ ≥ 0. Hence, the roots θi
∗ of

ψ i (θ) = 0 must be ordered by θ2
∗ ≤ θ1

∗ .

As in Whitt (1992), when {U n } and {V n } are independent, we can characterize the arrival

and service decay rate functions ψ u ( − θ) and ψ v (θ) from the asymptotic decay rates θ∗ observed

in G/D/1 and D/G/1 queues. To do this, we must consider all possible arrival rates ρ,

0 < ρ < 1, so that the asymptotic decay rate θ∗ becomes a function θ∗ (ρ), 0 < ρ < 1. Let

ψ u ( − θ) refer to the case in which EU n = 1 and let the case of arrival rate ρ be obtained by

considering interarrival times U n /ρ for all n, i.e., simple time scaling.

Proposition 5. For G/G/1 models satisfying the assumptions of Proposition 2, (a) the arrival

asymptotic decay rate function ψ u ( − θ) with arrival rate 1 is determined by the decay rate θ∗ (ρ)

in G/D/1 models with arrival rate ρ, 0 < ρ < 1, i.e., by the equation

ψ u ( − θ∗ (ρ)/ρ) + θ∗ (ρ) = 0 , 0 < ρ < 1 . (1.30)

(b) The service asymptotic decay rate function ψ v (θ) with service rate 1 is determined by the

decay rate θ∗ (ρ) in D/G/1 models with arrival rate ρ, 0 < ρ < 1, i.e., by the equation

ψ v (θ∗ (ρ) ) − θ∗ (ρ)/ρ = 0 . (1.31)

Proof. Note that ψ n ( − θ) is a decreasing convex function with ψu′ ( 0 ) = − 1. Hence, the values

of ψ u ( − θ) for θ > 0 are determined by the intersection with all lines through the origin with

slopes less than − 1. This is provided by (1.30), after making the change of variables

θ(ρ) = θ∗ (ρ)/ρ. Similarly, ψ v (θ) is an increasing convex function with ψv′ ( 0 ) = 1. Hence,

the values of ψ v (θ) for θ > 0 are determined by the intersection with all lines through the origin

with slope greater than + 1. This is determined by (1.31).
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Since Chang’s (1993) model is equivalent to the D/G/1 special case, his equation a ∗ (θ) = c

in (64) and the proof of Theorem 3.9 (ii) should coincide with (1.31), and it does.

1.3 A Continuous-Time Analog: The Workload

We can apply Theorems 1 and 2 to obtain corresponding results for continuous-time workload

processes; we will only discuss the analog of Theorem 1. Paralleling (1.7), suppose that we have

a continuous-time workload process {L(t) :t ≥ 0 } defined in terms of a continuous-time net

input process {Y(t) :t ≥ 0 } by applying the usual reflection map, i.e.,

L(t) = Y(t) − inf {Y(s) : 0 ≤ s ≤ t} , t ≥ 0 , (1.32)

with L( 0 ) = 0. Moreover, let the net input process be defined in terms of a total input process

{I(t) :t ≥ 0 } with nondecreasing sample paths by

Y(t) = I(t) − t , t ≥ 0 . (1.33)

In the G/G/1 queue, I(t) represents the total work in service time to arrive in the interval [ 0 ,t],

i.e., the sum of all service times of all arrivals in [ 0 ,t], but here I(t) can be more general. For

example, this formulation includes fluid models such as the Markov modulated fluid models in

Elwalid and Mitra (1992) as a special case (without directly requiring the Markov assumption).

Paralleling Theorem 1, we will work with a version of I(t) that has stationary increments. We

prove the following result in §4.

Theorem 4. Let the net input process {Y(t) :t ≥ 0 } have stationary increments with

EY(t) = (ρ − 1 ) t where ρ < 1. If there exists a function ψ and positive constants θ∗ and ε∗

such that the analogs of (1.4) and (1.6) hold, i.e., if

t − 1 logEe θY(t) → ψ(θ) as t → ∞ for θ − θ∗ < ε∗ (1.34)

and
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Ee θ∗ Y(t) < ∞ for all t > 0 , (1.35)

and if (1.5) holds for this ψ, then L(t) = = > L as to t → ∞ and

x − 1 logP(L > x) → − θ∗ as x → ∞ . (1.36)

Theorem 4 easily applies to superpositions of independent processes, as we now show.

Proposition 6. Consider the workload process L(t) in (1.32) and (1.33) with

I(t) = I 1 (t) + . . . + I n (t), where I 1 (t) , . . . , I n (t) are mutually independent nondecreasing

processes each with stationary increments satisfying

t − 1 logEe θI i (t) → ψ i (θ) for θ − θ∗ < ε∗ .

and

Ee θ∗ I i (t) < ∞ for all t > 0 and i .

If (1.5) holds for

ψ(θ) = ψ 1 (θ) + . . . + ψ n (θ) − θ ,

then the conditions of Theorem 4 hold, so that (1.36) holds.

Proof. By the independence,

logEe θY(t) = logEe θI1 (t) + . . . + logEe θIn (t) − θt .

The following proposition treats the standard case in queueing, in which the total input I(t) is

the sum of all the service times of all arrivals in the interval [ 0 ,t]. We prove the following in §7.

Proposition 7. Consider a total input process defined by

I(t) =
i = 1
Σ

A(t)
V i , t ≥ 0 , (1.37)

Suppose that {V n } is independent of {A(t) },
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n − 1 log Ee
θ

i = 1
Σ

n

V i

→ ψ v (θ) as n → ∞ for all θ in a neighborhood of θ̂

and

t − 1 logEe θA(t) → ψ A (θ) as t → ∞ for all θ in a neighborhood of ψ(θ̂)

where ψ A is continuous at ψ v (θ̂). Then

t − 1 log Ee θ̂I(t) → ψ A (ψ v (θ̂) ) as t → ∞ .

Results related to Propositions 6 and 7 also appear in Chang (1993).

1.4 Palm Equivalence for the Ga
..

rtner-Ellis Limits: Relating W and L:

The asymptotics for W and L differ, in part, because W is based on the customer-stationary

(embedded-stationary or Palm-stationary) sequence {U n } while L is based on the counting

process {A(t) } with stationary increments, which is associated with the time-stationary sequence,

say {Un
∗ }, connected by the Palm transformation, e.g., see Franken et al. (1981). However, we

anticipate that we should have θW
∗ = θL

∗ . To establish that relation, we would like to have Palm

equivalence for the Ga
..
rtner-Ellis limits, i.e., we would like to be able to say that

n − 1 logEe θSn
u

→ ψ u (θ) as n → ∞ if and only if n − 1 logEe θSn
u∗

→ ψu
∗ (θ) as n → ∞ and

ψ u = ψu
∗ , where Sn

u∗ = U1
∗ + . . . + Un

∗ , n ≥ 1. We establish a weaker result here. We show that

if both limits hold with the limit functions ψ u and ψu
∗ satisfying regularity conditions, then

ψ u = ψu
∗ . We then use this property to provide conditions under which θL

∗ = θW
∗ .

We start by relating the asymptotics for L and W when the service times are i.i.d. As in

Theorem 2 and §2 of Abate, Choudhury and Whitt (1992b), we apply the generalized Taka ́ cs

(1963) relation between W and L in a G/GI/1 queue (with i.i.d. service times that are independent

of the arrival process); see (1.38) below and (4.5.9) on p. 129 of Franken et al. (1981).

Proposition 8. In a G/GI/1 queue, (1.1) holds if and only if (1.36) holds and θW
∗ = θL

∗ .
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Proof. The generalized Taka ́ cs relation yields

Ee θL = 1 − ρ + ρEe θWEe θV e , (1.38)

where V e has the stationary-excess or equilibrium-residual-life distribution associated with the

service-time distribution. By Proposition 3 here, Theorem 10 of Abate, Choudhury and Whitt

(1992a) and Lemma 1 of Abate, Choudhury and Whitt (1992b), Ee θV e < ∞ if Ee θW < ∞.

We now apply Proposition 8 to obtain a form of Palm equivalence for the Ga
..
rtner-Ellis limits.

We prove the following result in §5.

Theorem 5. Let A(t) be a counting process associated with a non-deterministic time-stationary

sequence {Un
∗ } and let Sn

u be the partial sums associated with the corresponding customer-

stationary sequence {U n }. Assume that the decay-rate function associated with A, ψ A , satisfies

the auxiliary LD regularity conditions (1.23)–(1.26) with limit of support β A in (1.23). Assume

that

Ee θA(t) < ∞ for all t > 0 and θ < β A (1.39)

and

t − 1 logEe θA(t) → ψ A (θ) as t → ∞ for θ < β A . (1.40)

Assume that

n − 1 logEe − θSn
u

→ ψ u ( − θ) as n → ∞ for all θ > 0 , (1.41)

where ψ u ( − θ) is finite and differentiable for all θ > 0. Then

ψ u ( − θ) = ψu
∗ ( − θ) = − ψA

− 1 (θ) for all θ > 0 . (1.42)

We now relate the logarithmic asymptotics for W and L in a general G/G/1 queue when the

arrival and service processes are independent (but the service times need not be i.i.d.). We prove

the following result in §6.
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Theorem 6. Consider a G/G/1 queue in which the service times {V n } are stationary and

independent of the arrival process. Let the arrival process satisfy the assumptions of Theorem 5.

Let the service decay rate function ψ v satisfy the auxiliary LD regularity conditions (1.23)–(1.26)

with limit of support β v in (1.23). Assume that

Ee θSn
v

< ∞ for all n ≥ 1 and θ < β v (1.43)

and

n − 1 logEe θSn
v

→ ψ v (θ) as n → ∞ for θ < β v . (1.44)

Then (1.1) and (1.36) both hold with θW
∗ (ρ) = θL

∗ (ρ) for each ρ, 0 < ρ < 1.

1.5 Queue Lengths

In this section we discuss the logarithmic asymptotics for the steady-state queue length

(number in system). Let Q and Q a be the steady-state queue length at an arbitrary time and at an

arrival epoch, respectively, which we assume are well defined. As in §1.3, let G/GI/1 mean i.i.d.

service times that are independent of general stationary interarrival times. We prove the

following in §8.

Proposition 9. In the G/GI/1 queue, (1.1) holds if and only if the the analogs of (1.1) hold for Q

and Q a , in which case

θQ
∗ = QQ a

∗ = log Ee θW
∗ V 1 = ψ v (θW

∗ ) . (1.45)

2. Proof of Theorem 2

In this section we prove Theorem 2. For this purpose, we perform a change of measure for

each n. In particular, for each n ≥ 1, let Pn
∗ be the probability measure on R n defined by
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Pn
∗ (dx 1 , . . . , dx n ) =

Eexp (θ∗ S n )

exp (θ∗ S n )___________ P(X 1 ∈dx 1 , . . . , X n ∈dx n )

= exp (θ∗ S n − ψ n (θ∗ ) ) P(X 1 ∈dx 1 , . . . , X n ∈dx n ) , (2.1)

where ψ n (θ) = log Eexp (θS n ) and ψ n (θ∗ ) < ∞ for n ≥ 1 by (1.6).

We base our proof on the following strengthened form of the weak law of large numbers.

This is closely related to claim 1 on p. 17 of Bucklew (1990) in his proof of the Ga
..
rtner-Ellis

theorem. However, we only make assumptions locally around θ∗ , whereas Bucklew’s

assumptions are more global. We will need the cases k = 0 and k = 1 in our proof of

Theorem 2. We prove Theorem 7 in §3.

Theorem 7. Let k be a fixed nonnegative integer. Under the conditions of Theorem 2 (excluding

(1.8) if k = 0), for each ε > 0 there exists n 0 and η ≡ η(ε) ∈[ 0 , 1 ) such that

Pn
∗ 



 n

S n − k_ ____ − ν > ε




≤ ηn for n ≥ n 0 . (2.2)

Since M n is nondecreasing, M n → M w.p.1. The desired result (1.9) implies that M must be

proper. Since P(M > x) = P(T(x) < ∞), where

T(x) = inf {n ≥ 0 : S n > x} , (2.3)

it suffices to show that

x − 1 log P(T(x) < ∞) → − θ∗ as x → ∞ . (2.4)

Let x be the greatest integer less than or equal to x and let x be the least integer greater than

or equal to x. Now, for ε and ν given, and any x and n(ε),



- 21 -

P(T(x) < ∞) =
j = 1
Σ
∞

P(T(x) = j)

≤
j = 1
Σ

n(ε)
P(T(x) = j) +

j = n(ε) + 1
Σ

x( 1 − ε)/ν
P(T(x) = j)

+
j = x( 1 − ε)/ν

Σ
x( 1 + ε)/ν

P(T(x) = j) +
j = x( 1 + ε)/ν

Σ
∞

P(T(x) = j) . (2.5)

Given ε, we choose n(ε) in (2.5) so that for all n ≥ n(ε) we simultaneously have

n − 1 ψ n (θ∗ ) < min { −
2

log η_ _____ , ε} (2.6)

and

Pn
∗ 



n − 1 S n − k − ν >

1 + ε
ε ν_ ____





≤ ηn (2.7)

for k = 0 and 1 for some η with 0 ≤ η < 1. This is possible because of assumption (1.4) and

Theorem 7.

For the first term in (2.5),

P(T(x) = j) ≤ P(S j > x)

≤ Ej
∗ [ exp ( − θ∗ S j + ψ j (θ∗ ) ) ; S j > x]

≤ exp ( − θ∗ x) Ej
∗ [ exp (ψ j (θ∗ ) ) ; S j > x]

≤ exp ( − θ∗ x) exp (ψ j (θ∗ ) ) . (2.8)

We use (1.6) to ensure that (2.8) is finite.

For the second term in (2.5), note that (starting with the reasoning in (2.8))

P(T(x) = j) ≤ exp ( − θ∗ x) Ej
∗ [ exp (ψ j (θ∗ ) ) ; S j > x] ,

where
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Ej
∗ [ exp (φ j (θ∗ ) ; S j > x] ≤ exp





j



 2

− log η_ ______









Pj
∗ (S j > x)

≤ exp



j

2
( − log η)_ ________





Pj
∗ 



S j >

1 − ε
ν j_ ____





≤ exp



j

2
( − log η)_ ________





Pj
∗ 



( j − 1 S j − ν >

1 − ε
ν_ ____ − ν





≤ exp



j

2
( − log η)_ ________





Pj
∗ 



j − 1 S j − ν >

1 + ε
ε ν_ ____





≤ exp




j



 2

− log η_ ______









η j ≤ exp



j

2
log_ ___ η





. (2.9)

Hence,

j = n(ε) + 1
Σ

x( 1 − ε)/ν
P(T(x) = j) ≤ exp ( − θ∗ x)

j = 1
Σ
∞

η j /2 ≤ exp ( − θ∗ x) ( 1 − √ η ) − 1 . (2.10)

For the third term in (2.5),

P(T(x) = j) ≤ exp ( − θ∗ x) Ej
∗ [ expψ j (θ∗ ) ; S j > x] , (2.11)

where

Ej
∗ [ exp (ψ j (θ∗ ) ) ; S j > x] ≤ exp (ψ j (θ∗ ) ) ≤ exp ( jε) ≤ exp (εx( 1 + ε)/ν) . (2.12)

For the fourth term in (2.5),

P(T(x) = j) ≤ P(S j − 1 ≤ x , S j > x)

≤ Ej
∗ [ exp ( − θ∗ S j + ψ j (θ∗ ) ; S j − 1 ≤ x , S j > x]

≤ exp ( − θ∗ x) exp (ψ j (θ∗ ) Pj
∗ (S j − 1 ≤ x) ,

where
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Pj
∗ (S j − 1 ≤ x) ≤ P j




S j − 1 ≤

1 + ε
ν j_ ____





= Pj
∗ 


 j

S j − 1_ ____ ≤
1 + ε

ν_ ____




≤ Pj
∗ 



 j

S j − 1_ ____ − ν >
1 + ε
ε ν_ ____





≤ η j

by Theorem 5 with k = 1. Since ψ j (θ∗ ) ≤ − ( log η)/2 by (2.6) for j in this sum,

j = x( 1 + ε)/ν
Σ
∞

P(T(x) = j) ≤ exp ( − θ∗ x)
j = 0
Σ
∞

η j /2 ≤ exp ( − θ∗ x) ( 1 − √ η ) − 1 . (2.13)

Combining (2.5), (2.8), (2.10), (2.12) and (2.13), we obtain

P(T(x) < ∞) ≤ exp ( − θ∗ x){
j = 1
Σ

n(ε)
exp (ψ j (θ∗ ) ) + ( 1 − √ η ) − 1

+


 ν

2εx_ ___ + 1




exp (εx( 1 + ε)/ν) + ( 1 − √ η ) − 1} .

Hence, using condition (1.6),

x→ ∞
lim
_ __

x − 1 logP(T(x) < ∞) ≤ − θ∗ + ε( 1 + ε)/ν .

Since ε was arbitrary,

x→ ∞
lim
_ __

x − 1 logP(T(x) < ∞) ≤ − θ∗ . (2.14)

We now establish the lower bound. For this purpose, let m(ε) = x( 1 + ε)/ν . Then
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P(T(x) < ∞) ≥ P(S m(ε) > x)

≥ Em(ε)
∗ [ exp ( − θ∗ S m(ε) + ψ m(ε) (θ∗ ) ; S m(ε) > x]

≥ Em(ε)
∗ 



exp ( − θ∗ S m(ε) + ψ m(ε) (θ∗ ) ; S m(ε) >

1 + ε
m(ε) ν_ ______





≥ Em(ε)
∗ 



exp ( − θ∗ S m(ε) + ψ m(ε) (θ∗ ) ; m(ε) − 1S m(ε) − ν <

1 + ε
ε ν_ ____





≥ Em(ε)
∗ 



exp ( − θ∗ ν

1 + ε
( 1 + 2ε)_ _______ m(ε) ) + ψ m(ε) (θ∗ ) ; m(ε) − 1 S m(ε) − ν <

1 + ε
ε ν_ ____





≥ exp



− θ∗ ν

1 + ε
( 1 + 2ε)_ _______ m(ε) + ψ m(ε) (θ∗ )





Pm(ε)
∗ 



m(ε) − 1 S m(ε) − ν <

1 + ε
ε ν_ ____





.

Since

Pm(ε)
∗ 



m(ε) − 1 S m(ε) − ν <

1 + ε
ε ν_ ____





→ 1 as x → ∞

by Theorem 5,

x→ ∞
lim_ __ x − 1 logP(T(x) < ∞) ≥

x→ ∞
lim_ __




− θ∗ ν

1 + ε
( 1 + 2ε)_ _______

x
m(ε)_ ____ −

x
εm(ε)_ _____





≥ − θ∗ ( 1 + 2ε) − ε( 1 + ε)/ν .

Since ε was arbitrary, we conclude that

x→ ∞
lim_ __ x − 1 logP(T(x) < ∞) ≥ − θ∗ . (2.15)

Combining (2.14) and (2.15) completes the proof.

3. Proof of Theorem 7

As before, let ψ n (θ) = log Ee θS n and recall that n − 1 ψ n (θ) → ψ(θ) as n → ∞ for

θ − θ∗ < ε∗ where θ∗ and ε∗ are as assumed. We start with the case k = 0. Then, for each θ,

0 < θ < ε∗ ,
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Pn
∗ (n − 1 S n > ν + ε) ≤ exp ( − θn(ν + ε) ) En

∗ exp (θS n ) ,

where

exp ( − θn(ν + ε) ) En
∗ exp (θS n ) = exp ( − θn(ν + ε) )∫ exp (θx) exp (θ∗ x − ψ n (θ∗ ) ) P(S n ∈dx)

= exp ( − θn(ν + ε) ) exp (ψ n (θ + θ∗ ) − ψ n (θ∗ ) ) .

We choose n 0 in Theorem 7 suitably large so that ψ n (θ + θ∗ ) < ∞, which is possible by (1.4)

and (1.5). We use the fact that Ee θ 1 Z < ∞ when Ee θ 2 Z < ∞ and 0 < θ 1 < θ 2 , hence

n→ ∞
lim
_ __

n − 1 logPn
∗ (n − 1 S n > ν + ε) ≤ ψ(θ∗ + θ) − ψ(θ∗ ) − θ(ν + ε) . (3.1)

However, by Taylor’s theorem,

ψ(θ + θ∗ ) − ψ(θ∗ ) − θ(ν + ε) = ψ′ (θ∗ ) θ + o(θ) − θ(ν + ε) as θ → 0

= − θ ε + o(θ) as θ →0 .

Hence, we can choose θ 1 with 0 < θ 1 < ε∗ so that

ψ(θ∗ + θ 1 ) − ψ(θ∗ ) − θ 1 (ν + ε) < − θ 1 ε/2

and

n→ ∞
lim
_ __

n − 1 logPn
∗ (n − 1 S n > ν + ε) ≤ − θ 1 ε/2 ,

which establishes one half of (2.2).

On the other hand, for 0 < θ < ε∗ ,

Pn
∗ (n − 1 S n < ν − ε) = Pn

∗ ( − θS n > − θn(ν − ε) )

≤ exp (θn(ν − ε) ) En
∗ exp ( − θS n ) ,

where

exp (θn(ν − ε) ) En
∗ exp ( − θS n ) = exp (θn(ν − ε) )∫ exp ( − θx) Pn

∗ (S n ∈dx)

= exp (θn(ν − ε) ) exp (ψ n (θ∗ − θ) − ψ n (θ∗ ) ) .
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Hence,

n→ ∞
lim
_ __

Pn
∗ (n − 1 S n < ν − ε) ≤ θ(ν − ε) + ψ(θ∗ − θ) − ψ(θ∗ ) . (3.2)

Then, as before,

ψ(θ∗ − θ) − ψ(θ∗ ) − θ(ν − ε) = − θ ε + o(θ) as θ → 0

so that we can choose θ 2 with 0 < θ 2 < ε∗ so that

ψ(θ∗ − θ 2 ) − ψ(θ∗ ) + θ 2 (ν − ε) ≤ − θ 2 ε/2

and

n→ ∞
lim
_ __

n − 1 logPn
∗ (n − 1 S n < ν − ε) ≤ − θ 2 ε/2 ,

which completes the proof for k = 0.

For k ≥ 1, we first note that E exp (θ(S n − S n − k ) ) < ∞ for all θ < δ for some δ > 0 if

condition (1.8) holds. To see this, apply the Cauchy-Schwarz inequality k times to obtain

E exp (θ(S n − S n − k ) ) ≤ (E exp (θX n )2 )1/2 E( exp (θ(S n − 1 − S n − k )2 )1/2

≤ (E exp ( 2θX n ) )1/2 E( exp ( 2θ(S n − 1 − S n − k ) )1/2

≤ (E exp ( 2θX n ) )1/2 (E exp ( 4θX n − 1 ) )1/4 . . .(Eexp ( 2k + 1 θX n − k + 1 ) )2− (k + 1 )

.

We choose n 0 suitably large so that, for some finite M,

(Ee 2θX n )1/2 E(e 4θX n − 1 )1/4 . . . Ee 2k + 1 θX n − k + 1 )2− (k + 1 )

< M

for all n ≥ n 0 , which is possible by assumption (1.8).

For k ≥ 1, we then have
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Pn
∗ (n − 1 S n − k > ν + ε) ≤ exp ( − θn(ν + ε) ) En

∗ exp (θS n − k )

≤ exp ( − θn(ν + ε) )∫ exp (θ
i = 1
Σ

n − k
x i ) exp (θ∗

i = 1
Σ
n

x i − ψ n (θ∗ ) ) P(X 1 ∈dx 1 , . . . , X n ∈dx n )

≤ exp ( − θn(ν + ε) ) E[ exp ( (θ + θ∗ ) S n − θ(S n − S n − k ) − ψ n (θ∗ ) ) ]

≤ exp ( − θn(ν + ε) (E exp (p(θ + θ∗ ) S n ) )1/ p (E exp ( − qθ(S n − S n − k ) ) )1/ q exp ( − ψ n (θ∗ ) )

for positive p and q with p − 1 + q − 1 = 1 by Ho
..

lder’s inequality. We choose p sufficiently close

to 1 and θ sufficiently small so that p(θ + θ∗ ) is within the required neighborhood of θ∗ and

qθ < δ, so that E exp ( − qθ(S n − S n − k ) )1/ q is bounded for n ≥ n 0 . Hence,

n→ ∞
lim
_ __

n − 1 logPn
∗ (n − 1 S n − k > ν + ε) ≤ − θ(ν + ε) + ψ(p(θ + θ∗ ) )1/ p − ψ(θ∗ ) . (3.3)

Since p was arbitrary, we can let p → 1 in (3.3) to obtain the analog of (3.1) with S n − k instead of

S n .

Similarly,

Pn
∗ (n − 1 S n − k < ν − ε) ≤ exp (θn(ν − ε) ) En

∗ exp ( − θS n − k )

≤ exp (θn(ν − ε)∫ exp ( − θ
i = 1
Σ

n − k
x i ) exp (θ∗

i = 1
Σ
n

x i − ψ n (θ∗ ) ) P(X 1 ∈dx 1 , . . . , X n ∈dx n )

≤ exp (θn(ν − ε) ) E[ exp (θ∗ − θ) S n + θ(S n − S n − k ) − ψ n (θ∗ ) ]

≤ exp (θn(ν − ε) ) (Eexp (p(θ∗ − θ) S n ) )1/ p (Eexp (qθ(S n − S n − k ) ) )1/ q exp ( − ψ n (θ∗ ) )

for positive p and q with p − 1 + q − 1 = 1 by Ho
..

lder’s inequality. Reasoning as in (3.3), we obtain

n→ ∞
lim
_ __

n − 1 logPn
∗ (n − 1 S n − k < ν − ε) ≤ θ(ν − ε) + ψ(p(θ∗ − θ) )1/ p − ψ(θ∗ ) . (3.4)

Letting p→1 in (3.4) we obtain the analog of (3.2) with S n − k instead of S n . The rest of the proof

is the same as for k = 0.
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4. Proof of Theorem 4

We construct discrete-time processes satisfying the conditions of Theorem 1 that suitably

approximate the continuous-time processes. In particular, for any δ > 0, we construct a

discrete-time waiting-time process {Wn
δ } by defining service times Vn

δ and interarrival times Un
δ

via

Vn
δ = I( (n + 1 ) δ) − I(nδ) and Un

δ = δ , n ≥ 1 . (4.1)

Since EY(t) = ρt for ρ < 1, EVn
δ < EUn

δ . We initialize by setting W0
δ = L( 0 ). Then, by

induction, we have

Wn
δ ≤ L(nδ) ≤ Wn

δ + δ , n ≥ 0 . (4.2)

Since Y(t) has stationary increments, L(t) is distributed the same as sup {Y(s) : 0 ≤ s ≤ t}.

Since this supremum is nondecreasing, L(t) = = > L as t → ∞. Since Wn
δ = = > W δ and

L(nδ) = = > L as n → ∞, we have

Ee θWδ
≤ Ee θL ≤ e θ δ Ee θWδ

. (4.3)

From (4.3), we see that Ee θL < ∞ if and only if Ee θWδ
< ∞.

Hence, it suffices to show that sup {θ : Ee θWδ
< ∞} = θ∗ . For this purpose, let

Sn
δ = V0

δ + . . . + Vn − 1
δ − nδ. Then

Ee
θ(St /δ

δ − δ)
= Ee

θ(Y(δ t /δ) − δ) ≤ Ee θY(t)

≤ Ee
θ(Y(δ t /δ + δ) ≤ Ee

θ(St /δ
δ + δ)

. (4.4)

Therefore,

t→ ∞
lim
_ __

t − 1 log Ee
θSt /δ

δ

≤
t→ ∞
lim t − 1 log Ee θY(t) ≤

t→ ∞
lim_ __ t − 1 log Ee

θSt /δ
δ

. (4.5)

Hence,
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n→ ∞
lim n − 1 log Ee θSn

δ

= δ − 1 ψ(θ) . (4.6)

Since δ − 1 ψ(θ) = 0 if and only if ψ(θ) = 0, the proof is complete.

5. Proof of Theorem 5

By Theorem 3,

n − 1 logEe − θSn
u∗

→ ψu
∗ ( − θ) = − ψA

− 1 (θ) as n → ∞

for each θ > 0. Now we consider the waiting time and workload in the G/D/1 queue with the

given point process as the arrival process. We let the deterministic service times have mean 1 and

the arrival processes have rate ρ where 0 < ρ < 1. This requires that we scale the original

process.

By Theorem 1, in the customer-stationary case (1.1) holds for each ρ, 0 < ρ < 1, where

θW
∗ (ρ) satisfies equation (1.30), i.e.,

ψ u ( − θW
∗ (ρ)/ρ) = − θW

∗ (ρ) , 0 < ρ < 1 . (5.1)

On the other hand, by Theorem 4 and Proposition 7, in the time-stationary case (1.36) holds for

each ρ, 0 < ρ < 1, where the decay rate θL
∗ (ρ) satisfies

ρ ψ A (ψ v (θL
∗ (ρ) ) ) − θL

∗ (ρ) = ρ ψ A (θL
∗ (ρ) ) − θL

∗ (ρ) = 0 , (5.2)

because the decay rate function of A(ρ t) is ρ ψ A . However, by (1.29), (5.2) is equivalent to

− ψu
∗ ( − θL

∗ (ρ)/ρ) = ψA
− 1 (θL

∗ (ρ)/ρ) = θL
∗ (ρ) , 0 < ρ < 1 . (5.3)

By Proposition 8, θW
∗ (ρ) = θL

∗ (ρ) for 0 < ρ < 1. Hence, (5.3) becomes

ψu
∗ ( − θW

∗ (ρ)/ρ) = − θW
∗ (ρ) , 0 < ρ < 1 . (5.4)

Finally, by Proposition 5, (5.1) and (5.4) imply that ψ u = ψu
∗ .
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6. Proof of Theorem 6

By Theorem 5, ψ u ( − θ) = − ψA
− 1 (θ). Paralleling the proof of Theorem 5, we have

ψ u ( − θW
∗ (ρ)/ρ) = − ψ v (θW

∗ (ρ) ) , 0 < ρ < 1 , (6.1)

instead of (5.1) and

ρ ψ A (ψ v (θL
∗ (ρ) ) − θL

∗ (ρ) = 0 , 0 < ρ < 1 , (6.2)

instead of (5.2). However, (6.2) is equivalent to

ψA
− 1 (θL

∗ (ρ)/ρ) = ψ v (θL
∗ (ρ) ) , 0 < ρ < 1 . (6.3)

Since ψA
− 1 (θ) = − ψ u ( − θ), (6.3) coincides with (6.1), so that we must have θL

∗ (ρ) = θW
∗ (ρ),

0 < ρ < 1.

7. Proof of Proposition 7

Note that, for any ε > 0, there is an n 0 such that

Ee θ̂I(t) =
n = 0
Σ
∞

Ee
θ̂

i = 1
Σ

n

V i

P(A(t) = n)

≤
n = 0
Σ
∞

e n(ψ v (θ̂) + ε) P(A(t) = n) + Ee
θ̂

i = 0
Σ
n 0

V i

≤ Ee (ψ v (θ̂) + ε) A(t) + Ee
θ̂

i = 0
Σ
n 0

V i

≤ e tψA (ψ v (θ̂) + ε) + ε + Ee
θ̂

i = 0
Σ
n 0

V i

for t suitably large. Hence,

t → ∞
lim
_ __

t − 1 logEe θ̂I(t) ≤ ψ A (ψ V (θ̂) + ε) + ε .

Since ε was arbitrary and ψ A is continuous at ψ v (θ̂),
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t→ ∞
lim
_ __

t − 1 log Ee θ̂I(t) ≤ ψ A (ψ V (θ̂) ) .

The reasoning for the other direction is essentially the same.

8. Proof of Proposition 9

We shall work with characterization (ii) in Proposition 1. Note that

W =
i = 1
Σ

(Q a − 1 )+

V i + Ve
a ≥

i = 1
Σ

(Q a − 1 )+

V i (8.1)

and

L =
i = 1
Σ

(Q − 1 )+

+ V e ≥
i = 1
Σ

(Q − 1 )+

V i , (8.2)

where Ve
a and V e are the equilibrium residual service times of the customer in service (which in

general depend upon Q a and Q). Since the argument is essentially the same for W and L, we

henceforth consider only W. To have a useful inequality in the opposite direction, we truncate the

service times by setting Vn
c = min {V n , c}, n ≥ 1. Then

W c ≤ Σ
Q ac

Vi
c + c . (8.3)

From (8.1), we obtain

Ee θW ≥ E(Ee θV 1 ) Q a − 1 ,

so that θQ a
∗ ≥ log Ee θW

∗ V 1 . (As in Proposition 8, we use the fact that θW
∗ < θV 1

∗ .) From (8.3), we

obtain

Ee θW c

≤ e θcE(Ee θV1
c

) Q ac

,

so that

log Ee θW c
∗ V1

c

≥ θQ ac
∗ .
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Then note that V1
c , W c , Q ac , Q c and L c increase stochastically to their limits V 1 , W, Q a , Q and L

as c → ∞, see Theorems 4, 5 and 8 plus the remark on p. 216 of Whitt (1981). Hence

θQ a
∗ ≤

c→ ∞
lim infθQ ac

∗ ≤
c→ ∞
lim log Ee θW c

∗ V1
c

= log Ee θW
∗ V 1 < ∞ .

9. An Example

In this section we give an example.

Example 1. To see that the conditions in Theorem 1 are not necessary for (1.1) or (1.2), consider

the G/G/1 model with

P(U 2n + 1 = 1 , U 2n + 2 = 1 + Y n , V 2n + 1 = 1 + Y n , V 2n + 2 = 0 for all n) = 1/2

and

P(U 2n + 1 = 1 + Y n , U 2n + 2 = 1 , V 2n + 1 = 0 , V 2n + 2 = 1 + Y n + 1 for all n) = 1/2 ,

where {Y n } is an i.i.d. sequence of exponential random variables with mean 1. Then {U n ,V n }

is stationary with EV n = 1 < EU n = 3/2, so that ρ = 2/3. Moreover, it is easy to see that, for

n ≥ 1,

P(W n > x) = P(W > x) = ( 1/2 ) e − x , x > 0 ,

but

P(S 2n + 1 = Y n , S 2n + 2 = − n for all n)

= P(S 1 = − (n + Y 1 ) , S 2n + 2 = Y n + 1 − (n + Y 1 ) for all n) = 1/2 ,

so that

Ee θS 2n + 1 =
2
1_ _ Ee θY 1 +

2
1_ _ Ee − θ(n + Y 1 ) ,

Ee θS 2n + 2 =
2
1_ _ e − θn +

2
1_ _ Ee θ(Y n + 1 − n − Y 1 ) ,

and
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n − 1 log Ee θS n → ψ(θ) = − θ/2 as n → ∞ .

Hence, (1.1) and (1.2) hold, but ψ(θ∗ ) = 0 for θ∗ = 0.
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