
Queueing Systems 0 (2000) ?–? 1

Periodic Load Balancing
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Multiprocessor load balancing aims to improve performance by moving jobs from
highly loaded processors to more lightly loaded processors. Some schemes allow
only migration of new jobs upon arrival, while other schemes allow migration of
jobs in progress. A difficulty with all these schemes, however, is that they require
continuously maintaining detailed state information. In this paper we consider the
alternative of periodic load balancing, in which the loads are balanced only at each T
time units for some appropriate T . With periodic load balancing, state information
is only needed at the balancing times. Moreover, it is often possible to use slightly
stale information collected during the interval between balancing times.
In this paper we study the performance of periodic load balancing. We consider

multiple queues in parallel with unlimited waiting space to which jobs come either
in separate independent streams or by assignment (either random or cyclic) from a
single stream. Resource sharing is achieved by periodically redistributing the jobs
or the work in the system among the queues. The performance of these systems of
queues coupled by periodic load balancing depends on the transient behavior of a
single queue. We focus on useful approximations obtained by considering a large
number of homogeneous queues and a heavy load. When the number of queues is
sufficiently large, the number of jobs or quantity of work at each queue immediately
after redistribution tends to evolve deterministically, by the law of large numbers.
The steady-state (limiting) value of this deterministic sequence is obtained as the
solution of a fixed point equation, where the initial value is equal to the expected
transient value over the interval between successive redistributions conditional on the
initial value. A refined approximation based on the central limit theorem is a normal
distribution, where the mean and variance are obtained by solving a pair of fixed-
point equations. With higher loads, which is natural to consider when load balancing
is performed, a heavy-traffic limit theorem shows that one-dimensional reflected
Brownian motion can be used to approximately describe system performance, even
with general arrival and service processes. With these approximations, we show
how performance depends on the assumed arrival pattern of jobs and the model
parameters. We do numerical calculations and conduct simulation experiments to
show the accuracy of the approximations.

Keywords: load balancing, resource sharing, periodic load balancing, heavy traffic
diffusion approximations, reflected Brownian motion, transient behavior
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1. Introduction

There is now a substantial literature on dynamic multiprocessor load bal-
ancing; e.g., see Eager, Lazowska and Zahorjan [14], Hajek [20], Harchol-Balter
and Downey [21], Leland and Ott [28], Willebeck-LeMair and Reeves [49], Zhou
[53] and references therein. The basic scheme is to move jobs from a highly
loaded originating processor to another more lightly loaded processor. There can
be significant overhead associated with this load balancing, but it is nevertheless
often worthwhile. There is a tradition in multiprocessor load balancing of only
moving entire jobs at the time they originate, but migration of jobs in process is
now beginning to be used as well, e.g., see Barak, Shai and Wheeler [8]. There
is typically substantially more overhead with migration of jobs in process, but it
has been shown to yield significant performance improvement by Harchol-Balter
and Downey [21].

A difficulty with any form of dynamic load balancing, however, is that it
involves real-time control, requiring continuous maintenance of state information.
It is thus natural to consider whether it is possible to achieve much of the load
balancing benefit with less work. Hence, in this paper we study the alternative
of periodic load balancing. With periodic load balancing, no elaborate control is
done for each arriving job or at each time. Instead, the loads are balanced only
periodically, at each T units of time for some appropriate T .

Another motivation for the present paper is to lend support for a notion of
lightweight call setup, supporting connection and connectionless services in com-
munication networks; see Hj́almtýsson [22] and Hj́almtýsson and Ramakrishnan
[23]. The main idea is to quickly provide service to new connections at a low
or moderate quality and, over time, gradually meet higher quality-of-service re-
quirements as requested. In that context, the periodic load balancing considered
here is an abstraction of slower-time-scale reconfiguring that might be done in
the network instead of quality-of-service routing immediately upon arrival.

In this paper we study the performance of periodic load balancing. Specif-
ically, we consider m queues in parallel with unlimited waiting space. Every T
time units, we redistribute the jobs or the remaining work in the system among
the queues to balance the loads. Like other forms of load balancing, periodic
load balancing corrects for systematic differences in the loads; e.g., when the
arrival rates or service requirements at some queues are greater than at other
queues. Load balancing also can significantly improve performance in a system
with homogeneous queues. Then the load balancing compensates for stochastic
fluctuations which make the loads at some queues temporarily greater than the
loads at other queues. Here we primarily consider the benefits of periodic load
balancing with homogeneous queues, but we also consider the case in which a
proportion of the queues are temporarily down (arrivals come but no service is
provided); see Section 10. Consistent with intuition, we show that load balancing
is even more important in unbalanced scenarios.
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We consider two different redistribution schemes. In the first scheme, every
T time units the jobs in the system are redistributed among the queues, so that
after each redistribution the numbers of jobs in any two queues differ by at most
one. We do not focus on alternative ways to assign the jobs to the queues. In
our simulations we assign jobs to the queues in a round robin fashion in order
of arrival times, with the older job getting assigned first. When we redistribute
jobs, we assume that the service discipline for each separate queue is first-come
first-served (FCFS), but our results for the FCFS discipline may also serve as
useful approximations for other disciplines such as round robin (RR) or processor
sharing (PS).

In the second redistribution scheme, every T time units we redistribute the
remaining work (in service time) evenly among the queues. When we redistribute
the work, we assume that we know the remaining service requirements of all jobs
in the system and that the remaining work of each job can be divided up and
assigned to different queues. When we redistribute work, we assume that there
is a general work-conserving discipline. (There is never an idle server at a queue
when there is work to be done there.) There are many work-conserving disciplines;
examples are FCFS, RR and PS.

Dividing jobs into pieces is currently not possible in a non-parallel environ-
ment, but may become so. As is, our analysis of redistribution of work describes
a lower bound which available alternatives can try to achieve. We believe that
alternative policies can be developed without job splitting and without knowledge
of remaining service requirements that nearly achieve this lower bound. The main
idea is to focus on work, since the work associated with different jobs may be
very different. The alternative policies can be based on estimates of the remain-
ing service requirements given available information, including elapsed service
times. (We intend to discuss such alternative periodic load balancing schemes in
a subsequent paper.)

Our main contributions are analytical models and formulas describing the
performance of periodic load balancing. Our goal is to describe the distribution
of the workload at each queue as a function of time, especially just before and
just after each reconfiguration (balancing). During the interval between reconfig-
urations, the degree of inbalance and the likelihood of a larger workload at any
one queue tends to increase with time. The workloads after reconfiguring equal,
at least approximately, the average of the workloads before reconfiguring. From
the workload distributions just before and after balancing, we can determine the
distribution of the number of jobs and the amount of work that must be moved
and, thus, the overhead associated with periodic load balancing.

We also describe how the performance of periodic load balancing depends
upon the balancing interval T , the number of queues m and the other model
parameters. We show how the performance depends on the arrival pattern. We
consider three possible arrival patterns: Each queue may have its own arrival
process or all arrivals may come in a single arrival process, after which they are
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assigned to the queues either at random or deterministically (in a cyclic or round
robin order).

We obtain relatively tractable explicit formulas by considering the limiting
case in which the number of queues, m, and the traffic intensity (or server uti-
lization), ρ, are both large, i.e., as m → ∞ and ρ → 1, where ρ = 1 is the
critical value for stability. The case of large m is currently of great interest, e.g.,
for understanding large computers constructed from many smaller computers.
Moreover, the limit as m → ∞ may serve as a useful approximation when m
is not too large, e.g., when m = 10. When there are many servers, higher uti-
lizations tend to be more feasible. We consider the limit as ρ → 1 to generate
approximations for typical (not small) utilizations.

In addition to the literature on dynamic multiprocessor load balancing, our
work is also related to the literature on resource sharing within general queueing
theory. In many situations multiple jobs must be processed on multiple resources.
It is known that greater efficiency usually (but not always) can be achieved if the
resources can be shared or pooled; e.g., see Smith and Whitt [36], Rothkopf and
Rech [33], Laws [27], Whitt [47] and Mandelbaum and Reiman [29]. For example,
consider two separate finite-server queues with infinite-waiting room, the FCFS
discipline, all service times i.i.d. and general stationary arrival processes that are
independent of the service times. Then the number of customers in the system at
any time is stochastically smaller if the two systems are combined into one, having
the aggregate superposition arrival process, the combined number of servers and
the FCFS discipline; see Theorem 6 of Smith and Whitt [36], which draws on
Wolff [51]. (As noted in [36], this result depends critically on the service-time
distributions being identical, or at least not too different.)

Quantitatively, the (great) advantage of multi-server systems over a collec-
tion of separate single-server systems with common total load is well described by
approximation formulas for basic performance measures. For example, the sim-
ple heavy-traffic approximation (limit after normalization) for the steady-state
distribution of the waiting time before beginning service in a GI/GI/s queue (in
which interarrival times and service times each come from i.i.d. sequences) is an
exponential distribution with mean

EW ≈ ρ

s(1− ρ)
(c21 + c

2
s)

2
, (1.1)

where the mean service time is taken to be 1, the traffic intensity (utilization of
each server) is ρ and the squared coefficient of variations (SCV, variance divided
by the square of the mean) of the interarrival and service times are c2a and c

2
s,

respectively; e.g., see (2.13) of Whitt [48]. (For supporting theory, see Iglehart
and Whitt [24] and Köllerström [26].) Formula (1.1) shows that the mean EW
is inversely proportional to s for fixed ρ.
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A more refined approximation for the mean characterized by the parameter
quadruple (s, ρ, c2a, c

2
s) is

EW (s, ρ, c2a, c
2
s) =

(c2a + c
2
s)

2
EW (M/M/s) (1.2)

where EW (M/M/s) is the mean in the associated M/M/s model (exponential
interarrival and service times with the same means), which can easily be cal-
culated numerically, and can be further approximated by the Sakasegawa [34]
approximation

EW (M/M/s) =
ρ(
√
2(s+1)−1)

s(1− ρ) ; (1.3)

see (2.12) and (2.14) of [48]. From (1.2) and (1.3), we see that the heavy-traffic
formula (1.1) actually underestimates the advantage of sharing. Numerical ex-
amples in [48] show that these formulas accurately describe the way the mean
waiting time depends on s and the other parameters.

The expected number of jobs in the system, say EN , is the expected number
of jobs in service, sρ, plus the expected number of jobs in queue, λEW = sρEW
(both by Little’s law), so that the expected number of jobs in the system per
server is ρ(1 + EW ). The EW component exhibits the strong dependence on s
shown above.

The advantage of multi-server systems over separate single-server systems
is also seen in other performance measures. For example, the probability of
experiencing delay before beginning service remains approximately constant as
the number of servers increases if the traffic intensity increases as well with (1−
ρ)
√
s held fixed; see Whitt [47]. In other words, the utilization as a function of s

is approximately

ρ ≈ 1− γ/
√
s (1.4)

for some constant γ, if we also hold the probability of delay fixed. Formula
(1.4) illustrates that the greater efficiency with multiple servers can be realized
by higher utilization for a given level of congestion instead of less congestion.
Alternatively, resource sharing can yield a combination of higher utilization and
reduced delays.

Unfortunately, however, it is not always possible to fully share resources.
In this paper we consider partial-sharing schemes that yield performance in be-
tween the single-server and multi-server cases in formulas (1.1)–(1.4). One way
to partially share resources when the queues are separate is to assign new jobs
upon arrival to the more lightly loaded queues. When the service-time distri-
bution is exponential or has increasing failure rate, if jobs must be assigned to
queues upon arrival without further intervention, then it is optimal to assign the
job to the shortest queue; see Winston [50] and Weber [41]. However, somewhat
surprisingly, for other service-time distributions, the shortest queue (SQ) rule
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need not be optimal; see Whitt [45]. More generally, it is natural to assign each
job to the queue that will minimize its expected delay, although this rule is not
always optimal either [45]. The advantage of the SQ rule is illustrated by the
heavy-traffic limit, which shows that SQ behaves as well as the combined system
as ρ → 1; see Foschini and Salz [19], Reiman [32] and Zhang, Hsu and Wang
[52].

Instead of assigning jobs upon arrival, here we consider the alternative of pe-
riodically redistributing the jobs to balance the queue lengths (number in system);
i.e., so that they differ by at most 1 after redistribution. Periodic redistribution
has two potential advantages over dynamic assignment of arrivals. First, the pe-
riodic redistribution gives an alternative way to balance the loads, which may be
more robust. Even with the SQ rule, after a rare period of high congestion (with
very large queue lengths), a few queues may remain very long after most queues
have emptied (because of especially long service times, e.g., when the servers
at one queue are temporarily unavailable). Then load balancing only through
routing of new arrivals may be less effective than periodically redistributing jobs.
Second, with periodic redistribution, we need not perform any control upon ar-
rival. Dynamic assignment of arrivals may be very costly, because we need to
constantly maintain system state. In contrast, with periodic load balancing, sys-
tem state information is only needed at redistribution times. Moreover, the most
current state is often not actually needed. Under relatively heavy loads, it is
possible to determine the appropriate redistribution during a short interval be-
fore the actual redistribution time. Under heavy loads, when processing system
state becomes difficult, the queue lengths tend to change relatively slowly (the
snapshot principle; see Reiman [32]), so that little is lost if the system state is
somewhat stale. As shown by Foschini [18], even under heavy loads, the system
state can be communicated without significantly further increasing the loads.

Even less state information is required if redistribution is done with a large
number of queues. Then the required number at each queue can be closely es-
timated without actually looking at the queue lengths, provided one knows the
queueing model reasonably accurately. Even if the queueing model is not known,
the average number after the last redistribution usually will be a good estimate for
the number that should be present after the next redistribution, because these
averages tend to evolve deterministically when there are many queues. Given
that the target level is known in advance, local adjustments can be made among
the queues in a distributed manner.

Here is how the rest of this paper is organized. In Section 2 we define the
basic stochastic processes and characterize the steady-state number of jobs after
redistributing jobs when each queue is an M/M/s queue (has s servers, Poisson
arrivals and exponential service times). We also make stochastic comparisons
showing that the performance with periodic load balancing falls in between the
single s-server queue and the combined ms-server queue (showing that formulas
(1.1)–(1.4) provide upper and lower bounds).
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In Section 3 we consider the limiting behavior as m → ∞ in the M/M/s
setting, and show that, asymptotically, the total number of jobs evolves deter-
ministically, having a limit characterized by a fixed-point equation. We also show
that the fixed-point equation has a unique solution for each redistribution inter-
val, and that the fixed-point level is a continuous strictly increasing function of
the interval length. We show how to calculate the fixed-point level and the queue
performance between redistributions by exploiting previous transient results for
M/M/s and M/M/1 queues. We also show that for suitably large m the number
of jobs per queue immediately after load balancing tends to be normally dis-
tributed. The approximate steady-state normal distribution can be obtained by
solving a pair of equations for the mean and variance.

In Section 4 we establish a heavy-traffic diffusion approximation for the case
of general arrival and service processes (satisfying central limit theorems, e.g.,
i.i.d. sequences with finite second moments), which yields reflected Brownian
motion (RBM) as the model for the single-queue evolution between redistribu-
tions. The heavy-traffic limit shows how the interval between redistributions and
the level after redistributions should scale with increasing load. Indeed by ap-
propriate scaling, all cases are reduced to the single case of canonical RBM (with
drift −1 and diffusion coefficient 1). (See Abate and Whitt [1] and Whitt [46] for
further discussion.) We also show how approximate system performance can be
described explicitly. Heavy-traffic limits seem very appropriate in this setting,
because when we couple m s-server queues, they can usually operate at a higher
server utilization; e.g., recall formula (1.4).

In Section 5 we apply the new asymptotic results and previous ones to
compare the performance of load balancing to the performance of the two basic
alternatives: (1) m separate single-server queues and (2) one combined m-server
queue. In Section 6 we make comparisons between the RBM approximation and
simulations of M/G/1 queues coupled by periodic load balancing. We consider
exponential and Pareto service-time distributions (with finite variance).

In Section 7 we consider the redistribution of remaining work in single-
server queues using a work-conserving discipline. The resulting RBM heavy-
traffic approximation is the same as in Section 4. In Section 8 we show that the
periodic load balancing significantly reduces the likelihood of severe congestion
by showing that the tail probabilities with periodic load balancing decay much
more rapidly than they do without load balancing.

In Section 9 we discuss the case of long-tail service-time distributions, which
Leland and Ott [28] and Harchol and Downey [21] have shown to be present
in computer systems. We show that a heavy-traffic limit involving an extra
jump process can be used to approximate system behavior when the service-
time distributions fail to have finite second moments or even first moments. We
provide both transient and steady-state descriptions. With such high variability,
transient descriptions tend to be more useful.

In Section 10 we consider the situation in which a proportion of the queues
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are down, so that at these queues in the interval between redistributions jobs
arrive but no service is performed. The primary purpose of this section is to
show how periodic load balancing performs in unbalanced scenarios. It should
be clear that load balancing is even more important when the queues are not
homogeneous. In an unbalanced environment, queues will often be unstable,
i.e., the processes will grow without bound, when no form of load balancing is
performed. The analysis in Section 10 can also be used to describe the effect of
long-tail service-time distributions. The down times can represent exceptionally
long service times. When we focus on the jobs in each queue, the few jobs
with exceptionally long service time are themselves asymptotically negligible as
ρ → 1, but their impact on the processing of other jobs can be great.

2. Redistributing Jobs in the Markov Case

We start by considering the Markov special case, in which the service times
are exponential and the arrival processes to the queues are i.i.d. Poisson processes.
Let the mean service time be 1 and let the arrival rate at each queue be λ. We
consider s-server queues, but we are primarily interested in the case of relatively
small s, e.g., s = 1. With m s-server queues, the overall traffic intensity (or server
utilization) is

ρ =
λm

sm
=
λ

s
. (2.1)

In this context we redistribute the jobs in the system every T time units, so
that the numbers of jobs at any two queues differ by at most 1 after each redistri-
bution. In between redistributions, the queues evolve independently (conditional
on the initial values after the last redistribution). Let Nin be the number of jobs
at the ith queue (waiting and in service) after the nth redistribution at time nT .
Let Nn be the total number of jobs at all m queues after the n

th redistribution.
Without loss of generality, let the elements of the vector (Nin, 1 ≤ i ≤ m) be
ordered so that they are nondecreasing in i. Let φm be the function that maps
Nn into (N1n, . . . , Nmn) with this ordering; e.g., φ5(7) = (1, 1, 1, 2, 2). With the
ordering imposed upon the vectors (N1n, . . . , Nmn), there is a one-to-one corre-
spondence between the processes {Nn : n ≥ 1} and {(N1n, . . . , Nmn) : n ≥ 1};
i.e.,

Nn = N1n + . . .+Nmn (2.2)

and

(N1n, . . . , Nmn) = φm(Nn) . (2.3)

We now characterize the stochastic process {Nn : n ≥ 1}. Let d= denote
equality in distribution. Recall that a Markov chain is stochastically monotone if
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the conditional distribution of Nn+1 given Nn = i is stochastically increasing as
i increases, i.e., if

E[g(Nn+1)|Nn = i] ≤ E[g(Nn+1)|Nn = j] whenever i ≤ j (2.4)

for all nondecreasing real-valued functions g for which the expectations are well
defined; e.g., see Stoyan [37] or Baccelli and Brémaud [7].

Theorem 1. For the Markov special case, the stochastic process {Nn : n ≥ 1}
is a stochastically monotone, irreducible, aperiodic Markov chain with transition
probability

Pjk ≡P (Nn+1 = k|Nn = j)

=P (
m
∑

i=1

Qi(T ) = k|Q1(0) = `1, . . . , Qm(0) = `m) (2.5)

where (`1, . . . , `m) = φm(j) and {(Qi(t)|Qi(0) = `i) : t ≥ 0}, 1 ≤ i ≤ m,
are independent M/M/s queue-length (number in system) stochastic processes.
If ρ < 1, then this Markov chain is positive recurrent with stationary random
element N∞ characterized by the equation

(N1∞, . . . , Nm∞)
d
= φm

(

m
∑

i=1

(Qi(T )|Qi(0) = Ni∞)
)

, (2.6)

where (N1∞, . . . , Nm∞) = φm(N∞) and {(Q1(t), . . . , Qm(t)) : t > 0} is indepen-
dent of (Q1(0), . . ., Qm(0) = (N1∞, . . . , Nm∞) on the right in (2.6).

Proof. The Markov property for {Nn : n ≥ 1} follows immediately from the
lack of memory property associated with the exponential interarrival and service
times. Since it is possible to go from 0 to 0 in one step, the chain is aperiodic.
Since it is possible to get from any state to any other, the chain is irreducible. The
stochastic monotonicity follows from comparison results for the M/M/s queue;
e.g., see Whitt [44] or Baccelli and Bremaud [7]. IfQi(0) increases, then the distri-
bution of Qi(T ) (and the entire sample path Qi(t), t ≥ 0) increases stochastically.
The positive recurrence follows from the mean drift criterion: As x increases,

E[Nn+1 −Nn|Nn = x] → smT (ρ− 1) < 0 (2.7)

while

E[Nn+1 −Nn|Nn = x] ≤ λmT for all x ; (2.8)

see p. 262 of Meyn and Tweedie [31]. Finally, the steady-state equation (2.6)
corresponds to the usual steady-state equation π = πP .

�
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The overhead associated with the load balancing can also be described. The
number of jobs that must be moved from the ith queue in steady state, say Ji∞,
is

Ji∞ =



(Qi(T )|Qi(0) = Ni∞)−
1

m

m
∑

j=1

(Qj(T )|Qj(0) = Nj∞)




+

, (2.9)

where [x]+ = max{x10}. The number of jobs moved in is described similarly.
The limiting case as m→∞ considered in the next section provides a convenient
simple approximation.

Because of the stochastic monotonicity property, we can deduce that the
random sequence {Nn : n ≥ 1} increases stochastically as n increases when
N0 = 0. Recall that one random variable X1 is stochastically less than or equal
to another X2, denoted by X1 ≤st X2, if Eg(X1) ≤ Eg(X2) for all nondecreasing
real-valued functions g for which the expectations are well defined.

Corollary 2. If N0 = 0 in the setting of Theorem 1, then for all n ≥ 0
Nn ≤st Nn+1 ≤st N∞ .

It is intuitively clear that periodic load balancing helps, i.e., that the steady-
state distribution is in some sense smaller with load balancing than for separate
M/M/s queues without load balancing. On the other hand, periodic load bal-
ancing should not be as good as one combined queue with sm servers. We now
establish supporting stochastic comparisons. Let N(t) be the number of jobs at
all queues in the m-queue load balancing model at time t.

Theorem 3. With m M/M/s queues,

(N(t)|N(0) = n) ≥st (Q(t)|Q(0) = n) for all t , (2.10)

where {Q(t) : t ≥ 0} is the queue length process in a single combined M/M/ms
system with arrival rate λm.

Proof. As in Whitt [44], we can artificially construct the two processes on the
same probability space so that the sample paths are ordered with probability 1.
Let the two processes have the same arrival process. Since N(0) = Q(0), the
departure rate in Q is initially no smaller. At each transition, we maintain
N(t) ≥ Q(t) by having departures in Q whenever N(t) = Q(t) and there is a
departure in N . Whenever N(t) = Q(t), the departure rates are ordered. There
may be strict inequality because some servers are idle with N but not Q. This
special construction implies stochastic order as expressed in (2.10).

�

The stochastic process {N(t) : t ≥ 0} has a periodic structure. The variables
N(kT + t) for 0 ≤ t < T converge in distribution as k → ∞ to limits Nt(∞) by
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virtue of Theorem 1. We can apply Theorem 3 to obtain a stochastic comparison
for these periodic steady-state limits.

Corollary 4. In the M/M/s setting, the periodic steady-state variables are or-
dered by

Nt(∞) ≥st Q(∞) , 0 ≤ t < T ,

where Q(∞) has the steady-state distribution of the combined M/M/sm system
with arrival rate λm.

Since the infinite-server M/M/∞ system is a lower bound to the M/M/s
system, we can obtain a further lower bound, which should be more useful when
s and λ are large.

Corollary 5. In the M/M/s setting,

P (Nt(∞) ≥ k) ≥
∞
∑

j=k

e−λm(λm)j

j!
, k ≥ 1 , (2.11)

so that

ENt(∞) ≥ λm . (2.12)

Proof. Recall that the steady-state distribution of Q(t) in the M/M/∞ model
is Poisson with mean equal to the offered load, which here is λm.

�

We now show that load balancing helps by making stochastic comparisons
with m separate queues. In this case we establish results only for the case s =
1. Recall that one random variable X1 is less than or equal to another X2 in
the (increasing) convex stochastic order, denoted by X1 ≤c X2 (X1 ≤ic X2), if
Eg(X1) ≤ Eg(X2) for all (increasing) convex real-valued functions g for which
the expectations are well defined; e.g., see Stoyan [37] and Baccelli and Bremaud
[7].

We use the following result for the transient M/M/1 queue, which is analo-
gous to part of Theorem 5.2.1 of Stoyan [37].

Theorem 6. Consider two M/M/1 queue length processes {Qi(t) : t ≥ 0} dif-
fering only in their initial values. If Q1(0) ≤ic Q2(0), then Q1(t) ≤ic Q2(t) for all
t ≥ 0.

Proof. Note that

Q(t) = max{Q(0) +X(t) , X(t)− inf
0≤s≤t

X(s)} ,
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where X(t) = A(t) − S(t), t ≥ 0, with {A(t) : t ≥ 0} and {S(t) : t ≥ 0} being
independent Poisson processes, so that Q(t) is an increasing convex function of
Q(0). Hence f(Q(t)) is an increasing convex function of Q(0) for each increasing
convex f .

�

Theorem 7. Let N(t) be the total number of jobs at time t in the m M/M/1
queues coupled by periodic load balancing. Then

(N(t)|N(0) =
n
∑

i=1

ki) ≤ic
m
∑

i=1

(Qi(t)|Qi(0) = ki) for all t

and initial vectors (k1, . . . , km), where {(Qi(t)|Qi(0) = ki) : t ≥ 0}, 1 ≤ i ≤ m,
are independent M/M/1 queue length processes.

Proof. Each load balancing makes the vector of m queue lengths, after permut-
ing the queues randomly, smaller (no larger) in the convex stochastic order (≤c).
This initial convex order implies that increasing stochastic order (≤ic) is main-
tained throughout the interval between redistributions by Theorem 6. Thus the
result follows by induction on the redistribution times.

�

Corollary 8. Let Nt(∞) have the periodic steady-state distribution of N(t) in
the setting of Theorem 7. Then

Nt(∞) ≤ic
m
∑

i=1

Qi(∞) ,

where Qi(∞), 1 ≤ i ≤ m, are i.i.d. with P (Qi(∞) = k) = (1− ρ)ρk, k ≥ 0.

Proof. Increasing convex order is inherited by the limits with convergence in
distribution.

�

We close this section by pointing out that an interesting open problem is
to describe customer waiting times. Within one cycle, the waiting time of a new
arrival is just the random sum of exponential service times, where the random
number is the number of customers in the queue. Thus the waiting-time distri-
bution will depend on the arrival time within a cycle. When we consider times
extending beyond one cycle, we must properly take account of the way jobs are
assigned to queues at redistribution points, which introduces considerable po-
tential complexity. In the heavy-traffic limit in Seciton 5, we will observe that
jobs tend to get served in the same cycle in which they arrive, so that this extra
complexity does not arise.
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3. Many Queues and Exponential Service Times

The system behavior simplifies when there are many queues. First, suppose
that there is random assignment to the queues from a single general stationary
arrival process, where by random assignment we mean that each queue is selected
with equal probability and that successive assignments are mutually independent
and independent of the service times. Then, as m → ∞, the arrival processes to
the queues approach independent Poisson processes; e.g., see Çinlar [12], Serfozo
[35] and references therein. Hence, we have additional justification for considering
independent Poisson arrival processes.

Second, with exponential service times, as the number m of queues gets
large, the redistribution tends to put the constant, expected value at each queue.
In the limit m → ∞, the only deviation from this expected value is due to the
requirement that the initial number of jobs at each queue must be an integer.
Hence, a proportion of the queues will have n jobs, while the remainder of the
queues will have n + 1 for some deterministic n. We now state this property as

a theorem. Let N
(m)
n denote the random total number of jobs just after the nth

redistribution in the model with m queues. For x ≥ 0, let bxc be the integer part
of x.

Theorem 9. Consider the m-queue model with periodic load balancing at times

nT for n ≥ 1. Let the queues be M/M/s queues. If N (m)0 /m → x0 w.p.1 as
m → ∞, then

N
(m)
n

m
→ xn w.p.1 as m → ∞ for each n ≥ 0 , (3.1)

where {xn : n ≥ 1} is a deterministic sequence evolving as

xn+1 = fT (xn) , n ≥ 0 , (3.2)

for a function fT independent of n with fT (xn) =M(T, xn) and

M(t, x) = (x− bxc)E[Q(t)|Q(0) = bxc+ 1]
+ (1− x+ bxc)E[Q(t)|Q(0) = bxc] , (3.3)

where {Q(t) : t ≥ 0} is an M/M/s queue-length process.

Proof. Note that

(m−1N
(m)
n+1|N (m)n = mj + k) →

pE[Q(T )|Q(0) = j + 1] + (1− p)E[Q(T )|Q(0) = j] w.p.1

as m → ∞ with k/m → p, by virtue of the strong law of larger numbers.
Apply mathematical induction on n.

�
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We propose the limiting case as m → ∞ as an approximation, i.e., the
deterministic sequence {xn : n ≥ 0} specified by (3.2). Clearly, for large finite
m, the state variable xn means that a proportion (xn − bxnc) of the m queues
will be assigned bxnc + 1 jobs, while the remainder of the queues are assigned
bxnc jobs. The central limit theorem can be used to describe deviations from the
limiting behavior for finite m. Let N(a, b) denote a normally distributed random
variable with mean a and variance b. Let ⇒ denote convergence in distribution;
e.g., see Billingsley [9].

Theorem 10. In the setting of Theorem 9,

(N
(m)
n+1 −mxn+1|N

(m)
n = mxn)√

m
⇒ N(0, vn+1) as m → ∞ , (3.4)

where vn+1 = V (T, xn) with

V (t, x) = (x− bxc)V ar[Q(t)|Q(0) = bxc+ 1]
+ (1− x+ bxc)V ar[Q(t)|Q(0) = bxc] . (3.5)

Proof. We can apply the central limit theorem after noting that the quantity on
the left in (3.4) is the sum ofm independent random variables, wherem(xn−bxnc)
have one distribution, while m(1 − xn + bxnc) have another distribution. The
second moments are finite, being bounded above by the second moments of a
constant (the initial value) plus the Poisson number of arrivals.

�

We now draw implications for the distribution at n steps. For this purpose,
we use the following elementary lemma.

Lemma 11. Suppose that X
d
= N(Y, σ21), where Y

d
= N(m,σ22). Then

X
d
= N(m,σ21 + σ

2
2) .

Proof. Note that

EeitX =E[EeitX |Y ] = E exp(itY + t2σ21/2)
= exp(itm+ t2(σ21 + σ

2
2)/2) .

�

We now apply Theorem 10 and Lemma 11 with mathematical induction to

obtain the asymptotic distribution of N
(m)
n .
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Corollary 12. In the setting of Theorem 9,

N
(m)
n −mxn√

m
⇒ N(0,

n
∑

k=1

vk) as m → ∞

for each n, where vk is defined in (3.5).

We remark that Theorem 10 and Corollary 12 imply that the standard
deviation of the number assigned to each queue after load balancing with m
queues is of order 1/

√
m. Since V ar[Q(t)|Q(0) = j] becomes small as t decreases,

the deterministic approximation tends to be more accurate when m is larger and
when T is smaller.

Intuitively, it is apparent that the limiting case as m → ∞ is optimistic
(serves a a lower bound). This can be made precise by a stochastic comparison.
The following is proved by a minor modification of the proof of Theorem 7.

Theorem 13. In the setting of Theorem 9, if s = 1 and N
(m)
0 = x0m, then

Eg(N (m)n /m) ≥ g(xn) for all n ≥ 1
and all nondecreasing convex real-valued functions g, where {xn} satisfies (3.2).

We now want to describe the evolution of the limiting deterministic sequence
{xn : n ≥ 0} defined by (3.2).

Theorem 14. The function fT in (3.2) characterizing the evolution of {xn} is
strictly increasing and continuous. If ρ < 1, then there is a unique fixed point
x∗(T ) of the equation fT (x) = x for each T and xn → x∗(T ) as n → ∞ for
each x0.

Proof. First fix T . From (3.2) it is immediate that xn+1 = f(xn) for a function
f ≡ fT independent of n. Continuity of f follows from the M/M/s model struc-
ture; i.e., changes in state in an interval of length h occur with probability of
order O(h) as h → 0; we omit the details. Monotonicity of f can be shown by
artificially constructing two M/M/s processes on the same sample space so that
the sample paths are ordered strictly until they couple, as in Theorem 3. This is
achieved by letting the two processes have the same arrival process. The higher
process has the same departures as the lower one plus possibly additional ones un-
til they couple (the sample paths coincide). This yields (Q(t)|Q(0) = n) stochas-
tically increasing in n for each t. Hence, E[Q(t)|Q(0) = n] is strictly increasing
in n for each t, so that f is strictly increasing. Since f(0) > 0, successive iterates
f (n)(x) ≡ f(f (n−1)(x)) increase as n → ∞ to a limit x∗ starting in 0. Since f is
continuous as well, f (n)(x∗) = f(f (n−1)(x∗)) → f(x∗) as n → ∞, so that x∗ is
a fixed point of f . For all x with 0 < x < x∗, f (n)(0) < f (n)(x) < f (n)(x∗) = x∗,
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so that f (n)(x) → x∗ as n → ∞ too. As x increases, f(x) − x approaches
(λ− s)T . Since ρ < 1, (λ− s)T < 0. Hence, for all sufficiently large x, f(x) < x.
Hence, for such x, f (n)(x) decreases to a limit x̂ as n → ∞. Since f is con-
tinuous, x̂ must also be a fixed point of f . Since coupling is always possible in
the special construction above, we must have f(x̂) − f(x∗) < x̂ − x∗ if x̂ > x∗.
Hence, we must have x̂ = x∗, so that there is a unique fixed point. Moreover,
f (n)(x) → x∗ as n → ∞ for all x. (Monotonicity can be used for x > x∗, just
as it was for x < x∗.)

�

As a consequence of Theorem 13, we can deduce that the fixed point x∗(T )

is a lower bound for the steady-state random variable N
(m)
0 /m in the increasing

convex stochastic order.

Corollary 15. In the setting of Theorem 13, N
(m)
∞ ≥ic mx∗(T ) for each m.

We now describe how the fixed point x∗(T ) depends on upon T .

Theorem 16. The fixed point x∗(T ) of the equation x = fT (x) for fT in The-
orem 9 is a strictly increasing continuous function of T with x∗(T ) → xU as
T → ∞ and x∗(T ) → xL as T → 0, where

EQ(∞) ≤ xU ≤ bEQ(∞)c + 1 , (3.6)

while

bxZc ≤ xL ≤ xZ (3.7)

where xZ is the unique value of x such that M
′(0, x) = 0 for M(t, x) in (3.3).

Proof. Note that

M ′(0, x) = (x− bxc)(λ− bxc+ 1) + (1− x+ bxc)(λ − bxc) .
Hence M ′(0, x) so can be 0 only if bxc < λ < bxc + 1. Suppose that is the case.
SinceM ′(0, bxc) > 0 andM ′(0, bxc+1) < 0 and since M ′(0, x) is continuous and
monotone, there is one and only one x for whichM ′(0, x) = 0; let it be denoted by
xZ . For each x satisfying xZ < x < EQ(∞), M(t, x) initially decreases and then
eventually converge to EQ(∞). Since x < EQ(∞) and M(t, x) is continuous in
t, there must be an intermediate T yielding a fixed point. Thus, each of these
x is a fixed point for some T , denoted by x∗(T ). By the coupling construction
used in Theorems 3 and 14 if x1 < x2, then M(t, x2)−M(t, x1) must be strictly
decreasing in t. Thus, if x < x∗(T ), then

M(T, x∗(T ))−M(T, x) < x∗(T )− x
or, sinceM(T, x∗(T )) = x∗(T ),M(T, x) > x, which implies that the time yielding
the fixed point for x, denoted by T ∗x , must be less than T . Hence, the fixed point
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times Tx must be strictly increasing in x. (The strict order is also implied by
Theorem 13.) By continuity of M(t, x) in x, T ∗x must be continuous in x as well,
which implies that the inverse of T ∗x , x

∗(T ), is continuous and strictly increasing
as well. Let xU and xL be the limiting fixed points, which must be defined, since
a fixed point x∗(T ) exists for all positive T . We have noted that xL ≤ xZ and
xU ≥ EQ(∞). We now show that xL ≥ bxZc and xU ≤ bEQ(∞)c + 1, as in
(3.6) and (3.7). For this step, we exploit known properties of the mean function
M(t, n) ≡ E[Q(t)|Q(0) = n] in M/M/s queues, as given in Lemma 9.4.1 (ii) and
Theorem 9.4.3 (ii) of van Doorn [40]: First if M ′(t, n) ≥ 0, then M ′(t+ u, n) ≥ 0
for all u > 0. Second if M ′(t, n) ≤ 0, then also M ′′(t, n) ≥ 0. By the first
property, no integer n can be a fixed point if n ≥ EQ(∞), because M(t, n)
must first decrease and then eventually increase to EQ(∞). It cannot go above
EQ(∞), because it must converge to EQ(∞) and remain nondecreasing after it
first becomes nondecreasing. Similarly, no integer n ≤ xZ can be a fixed point,
because M(t, n) is always increasing, again by the first property.

�

Remark. We conjecture that the limiting fixed points in Theorem 16 are xU =
EQ(∞) and xL = xZ , but that remains to be proven. The difficulty is in treating
non-integer x. It is not clear whether the properties of the mean function in van
Doorn [40] used in the proof extend to convex combinations pM(t, n+ 1) + (1−
p)M(t, n). However, we can cover a subset of cases: Let n = bEQ(∞)c and let
Tn be the fixed point time. If M

′(Tn, n + 1) > 0, then xU = EQ(∞). This is
so, because if M ′(Tn, n + 1) > 0, then M(t, n + 1) must go below EQ(∞) and
increase to it. Hence M(t, x) < EQ(∞) for all t > Tn, but we must have Tx > Tn
for x > n. Hence there can be no fixed point x for x ≥ EQ(∞).

Given a desired level after redistribution, x, or a desired redistribution in-
terval T , we can find the associated fixed point Tx = x∗(T ) by solving the fixed
point equation fT (x) = x for the free variable. Computation is aided by the
monotonicity of the function x∗(T ). To compute M(t, x) as a function of t, we
need to compute the transient mean E[Q(t)|Q(0) = n] in the M/M/s model. We
can do so numerically by imposing a suitably large finite waiting room and solv-
ing a finite system of ordinary differential equations, as in Taaffe and Ong [38].
A related alternative algorithm is given in Davis, Massey and Whitt [13]. It is
applied for the M/M/s delay model with time-dependent arrival rate in Massey
and Whitt [30].

For the special case of s = 1, it is especially convenient to use numerical
integration with integral representations, as indicated in Abate and Whitt [3].
For example, for s = 1, the mean function is given by

M(t, n) =
ρ

1− ρ −
2ρ−n/2

π

∫ π

0

e−γ(y)t sin y(sin(n+ 1)y − ρ−1/2 sin(ny))
γ(y)2

dy (3.8)
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where

γ(y) = 1 + ρ− 2√ρ cos y ; (3.9)

see p. 27 of Takács [39]. (Formula (3.8) is expressed slightly differently in [39].)
Alternatively, for s = 1, the mean can be calculated by numerical transform

inversion. For the M/M/1 model, the Laplace transform of the conditional mean
E[Q(t)|Q(0) = n] with respect to time t is given explicitly on p. 162 of Abate and
Whitt [2] (see also pp. 148 and 157 there). For example, the Fourier-series method
for numerically inverting Laplace transforms can be applied; see Abate and Whitt
[4], [5]. In [2] time is scaled, so that the normalized mean M(t, n)/M(∞) con-
verges to a nondegenerate limit as ρ → 1. This nondegenerate limit is the RBM
limit discussed in the next section. For further discussion about the connection
between M/M/1 and RBM characteristics, see Section 10 of [2]. As indicated
after Theorem 1 on p. 148 of [2], the transform of the second moment function
can be obtained in the same way.

By Corollary 15, the normalized fixed point mx∗(T ) is a lower bound in the

increasing convex stochastic order for the steady-state quantity N
(m)
∞ for finite m.

The quantity mx∗(T ) also serves as a first order approximation to N
(m)
∞ for finite

m. As in Theorem 10, we can invoke the central limit theorem to generate a re-
finement, in particular, the normal distribution. Assuming that the steady-state
number of jobs in the system at redistribution times is approximately normally
distributed, we can solve a pair of equations to calculate the mean and variance.
(Recall that a normal distribution is fully characterized by its mean and vari-
ance.) Let µ and σ2 denote the approximating steady-state mean and variance of
the number of jobs in each queue after balancing. Let φ(x|µ, σ2) and Φ(x|µ, σ2)
denote the probability density function (pdf) and cumulative distribution func-
tions (cdf) of a N(µ, σ2) random variable, i.e., normally distributed with mean µ
and variance σ2. Then, for any balancing interval T and any number of queuesm,
the parameter µ and σ2 can be obtained as the solution to the pair of equations

µ = Φ(0|µ, σ2)M(T, 0) +
∫ ∞

0
φ(x|µ, σ2)M(T, x)dx (3.10)

and

σ2 = m−1
[

Φ(0|µ, σ2)M2(T, 0) +
∫ ∞

0
φ(x|µ, σ2)M2(T, x)dx− µ2

]

, (3.11)

where M2(T, x) is the second moment, i.e.,

M2(T, x) = V (T, x) +M(T, x)
2 (3.12)

for M(T, x) and V (T, x) in (3.3) and (3.5). The approximate distributions just
before and after load balancing are thus N(µ,mσ2) and N(µ, σ2), respectively.

In words, we calculate the mean and second moment as normal mixtures
over the initial state x of the means M(T, x) and second moments M2(T, x).
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The first terms on the right in (3.10) and (3.11) account for the possibility that
the normal approximation can have positive mass at negative values. The factor
m−1 in (3.11) is present because the variance of an average of m i.i.d. terms
is 1/m times the variance of one term. (We act as if the terms are identically
distributed even though they are not quite because of the integrality condition.)
The equations (3.10) and (3.11) can be solved iteratively for the desired pair
(µ, σ2). We apply this approximation scheme with the RBM approximation in
the next section.

The deterministic fixed point x∗(T ) serves as a convenient approximation
for the mean µ in the normal iteration above. When m is large, the variance σ2

should be reasonably well approximated by the variance in one interval starting
from x∗(T ) divided by m; i.e., we can use the simple approximation

N(µ, σ2) ≈ N(x∗(T ), V (T, x∗(T ))/m) . (3.13)

for V (t, x) in (3.5).

The performance is only partly determined by the random quantity N
(m)
∞ .

Thus, even in the limit as m → ∞, the performance is only partly determined
by the fixed point function x∗(T ). The queues evolve randomly in each redis-
tribution interval. Thus, to describe the performance, we also want to calculate
the probability distribution of the queue length in between redistribution points
and appropriate summary statistics. We can calculate the transition probability
function by similar methods. For the M/M/1 case, we can use either integral
representations or numerical transform inversion. The time-dependent cumu-
lative distribution function is readily calculated by two-dimensional numerical
inversion, as in Choudhury, Lucantoni and Whitt [11]. For the M/M/1 case, the
busy-period transform is available explicitly, so it is not necessary to obtain it by
iterating the Kendall functional equation for the busy period as in [11].

The random number of jobs that must be moved from one queue becomes
more elementary as m→∞. Considering the worst case in which we start with
bx∗(T )c+ 1 and end with bx∗(T )c, this random number is

Ji∞ = [(Q(T )|Q(0) = bx∗(T )c+ 1)− bx∗(T )c]+ . (3.14)

We can calculate the distribution of Ji∞ by first solving for the deterministic
fixed point x∗(T ) and then calculating the cdf of (Q(T )|Q(0) = bx∗(T )c+ 1), as
indicated above.

4. A Heavy-Traffic Diffusion Approximation

We now see how the balancing interval T and the fixed-point function x∗(T )
developed in Section 3 should scale with the traffic intensity ρ. We also develop
more tractable approximations for both the M/M/s case considered before and
the G/GI/s case with more general arrival and service processes. A major sim-
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plification resulting from the scaling as ρ ↑ 1 is the elimination of the integrality
constraint; i.e., the queue lengths no longer need be integers. Thus formulas such
as (3.3) and (3.5) simplify.

For each ρ with 0 < ρ < 1, let a queueing model with traffic intensity ρ be
defined by scaling a rate-1 arrival process {A(t) : t ≥ 0} by Aρ(t) = A(ρt), t ≥ 0.
Let {A(t) : t ≥ 0} denote an arrival process to any one queue. Assume that the
arrival processes to different queues are mutually independent. Assume that each
arrival process satisfies a functional central limit theorem (FCLT), i.e.,

A(nt)− λnt
√

nλc2a
⇒ B(t) in D as n → ∞ , (4.1)

where {B(t) : t ≥ 0} is standard (drift 0, diffusion coefficient 1) Brownian mo-
tion (BM) and ⇒ denotes weak convergence (convergence in distribution) in the
function space D ≡ D[0,∞); see Billingsley [9], Ethier and Kurtz [15] and Whitt
[43]. If {A(t) : t ≥ 0} is a renewal process, then to satisfy (4.1) it is necessary and
sufficient for the time between renewals to have a finite second moment. Then
its SCV is c2a in (4.1). The form of (4.1) allows dependence among successive
arrivals. We assume that the service times are independent of the arrival process,
coming from an i.i.d. sequence with a general distribution having mean 1 and
finite second moment. Let c2s denote the SCV of a service time. The indepen-
dence assumed for the service times is not strictly needed. It would suffice for
the partial sums of the service times at each queue to satisfy a FCLT; see Igle-
hart and Whitt [24]. then c2s should be determined by the normalization in the
FCLT as in (4.1). It is important is recognize that dependence can influence the
parameters c2a and c

2
s. In general there could even be a term c2as reflecting the

dependence between arrival times and service times, see Fendick, Saksena and
Whitt [17], but we assume that c2as = 0.

In this setting, the normalized queue length process in the standard G/GI/s
model converges to RBM as ρ → 1 by Iglehart and Whitt [24]. In particular,
as reviewed in Whitt [46], if Qρ(t) denotes the queue length (number in system)
at time t in a standard G/GI/s system indexed by ρ, then

(1− ρ)
ρ(c2a + c

2
s)
Qρ(t(c

2
a + c

2
s)/s(1− ρ)2)⇒ R(t) in D as ρ → 1 , (4.2)

where {R(t) : t ≥ 0} is canonical (drift -1 and diffusion coefficient 1) RBM. We
insert the extra ρ in the denominator of the initial multiplicative factor in (4.2)
as a heuristic refinement to make the formula exact for the M/M/1 steady-state
mean ρ/(1 − ρ). (The steady-state RBM variable R(∞) is exponentially dis-
tributed with mean 1/2.) Of course, the ρ is asymptotically negligible as ρ → 1.
As a consequence of the limit in (4.2), we have the associated approximation

Qρ(t) ≈
ρ(c21 + c

2
s)

1− ρ R(s(1− ρ)2t/(c2a + c2s)) . (4.3)
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We now state the analog for periodic load balancing. We will only sketch
the proof since the heavy-traffic limit follows by essentially the same argument

as in Iglehart and Whitt [24] and Kella and Whitt [25]. Let N
(m)
iρ (t) denote the

queue length in the ith queue at time t with m queues and traffic intensity ρ. Let
Φ be the cdf of the standard (mean 0 and variance 1) normal distribution and
let φ be its density. Let Φc be the complementary cdf, i.e., let Φc(x) = 1−Φ(x).

Theorem 17. Considerm G/GI/s queues controlled by periodic load balancing.
Make the assumptions above on the arrival and service processes. If ρ → 1 with
the redistribution intervals ρ satisfying

s(1− ρ)2Tρ
(c2a + c

2
s)

→ T (4.4)

and the initial queue lengths x0ρ satisfying

(1− ρ)
ρ(c2a + c

2
s)
x0ρ → x0 , (4.5)

then the queue-length processes converge to load-balanced RBM, i.e.,

(1− ρ)
ρ(c2a + c

2
s)
(N
(m)
iρ (t(c

2
a + c

2
s)/s(1− ρ)2) : 1 ≤ i ≤ m))⇒

(Xi(t) : 1 ≤ i ≤ m) in Dm, (4.6)

where {Xi(t) : t ≥ 0} are conditionally i.i.d. processes given
{(X1(nT ), . . . , Xm(nT )) : n ≥ 0}, Yn ≡ X1(nT ) + . . . + Xm(nT ), n ≥ 0, is a
stochastically monotone, irreducible, aperiodic Markov process on

�
with tran-

sition probabilities

P (Yn+1 ≤ y|Yn = x) = P (
m
∑

i=1

Ri(T ) ≤ y|Ri(0) = x/m , 1 ≤ i ≤ m) (4.7)

and conditional Laplace transform

E(e−sYn+1 |Yn = x) = (E(e−(s/m)R(T ) |R(0) = x/m))m , (4.8)

and {Ri(t) : t ≥ 0} are m i.i.d. canonical RBMs, with

P (R(t) > y|R(0) = x) = Φ
(−y + x− t√

t

)

+ e−2yΦ

(−y − x+ t√
t

)

, (4.9)

and

Xi(nT + t)
d
= (R(t)|R(0) = Yn/m) , 0 ≤ t < T . (4.10)

Proof. Proceed by induction over successive redistribution intervals. At each
redistribution point the residual interarrival times and service times are asymp-
totically negligible. For the arrival times this follows from the FCLT (4.1). That
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FCLT implies a corresponding FCLT for the inverse partial sum process and the
normalized maximum jump in it over any interval is 0. The remaining argument
follows Iglehart and Whitt [24]. The result is a Markov process as in Theorem 1
with the individual queues evolving as canonical RBM instead of the M/M/s
queue length process. The conditional complementary cdf in (4.9) is standard;
see (1.1) of [1].

�

The evolution of the limiting stochastic process {(X1(t), . . . , Xm(t) : t ≥
0} in Theorem 17 can be described by first calculating the distribution of the
variables Yn and then applying (4.10). The Markov chain kernel (transition
probability density function) giving the conditional density of Yn+1 given Yn
can be found by numerically inverting the transform in (4.8), exploiting the two-
dimensional Laplace transform

ψ̂(s, σ|x) ≡
∫ ∞

0
e−stE(e−σR(t) |R(0) = x)dt , (4.11)

which is given explicitly in (9.3) of [1]. The numerical transform inversion al-
gorithm in Choudhury, Lucantoni and Whitt [11] can be used to calculate the
transition kernel. The steady-state distribution of the Markov chain {Yn} can be
calculated by making a finite-state approximation. However, we will use other
approximations below.

A more elementary approximation can be obtained by considering the double
limit as ρ → 1 and then m → ∞. An attractive feature of the following RBM
limit is the explicit form for the mean function in (4.13) below.

Theorem 18. In the setting of Theorem 17, ifm → ∞ after ρ → 1, then (4.6)
holds, xn ≡ X1(nT ) evolves deterministically as

xn+1 = fT (xn) (4.12)

where

fT (x)≡M(t, x) ≡ E[R(t)|R(0) = x]

=
1

2
+
√
tφ

(

t− x√
t

)

− (t− x+ 1
2
)Φc

(

t− x√
t

)

− 1
2
e2xΦc

(

t+ x√
t

)

, (4.13)

{R(t) : t ≥ 0} is canonical RBM, and

Xi(nT + t)
d
= (R(t)|R(0) = xn), 0 ≤ t < T, i ≥ 1 . (4.14)

Proof. The additional limiting argument for m → ∞ is as in Theorem 9. The
mean function in (4.13) comes from Theorem 1.1 of [1].

�

The approximation based on Theorem 17 is load-balanced canonical RBM
using an redistribution interval T . By (4.4) and (4.6), the associated approxi-



G. Hjálmtýsson, W. Whitt / Periodic Load Balancing 23

mate redistribution interval Tρ and levels xρn in the queueing system with traffic
intensity ρ are

Tρ ≈
(c2a + c

2
s)T

s(1− ρ)2 (4.15)

and

xρn ≈
ρ(c2a + c

2
s)xn

1− ρ . (4.16)

Theorem 18 implies that we can study periodic load balancing for canonical RBM
and apply the results to generate approximations for the general G/GI/s queueing
model, provided that ρ and m are suitably large. The limit (4.6) generates the
approximation

N1ρ(t) ≈
(

ρ(c2a + c
2
s)

1− ρ

)

X1(s(1− ρ)2t/(c2a + c2s)) , (4.17)

where (X1(t), . . . , Xm(t)) is controlled canonical RBM, as indicated in Theo-
rem 17. Thus, invoking Theorem 18 as well, the queue length just before and
after the nth redistribution has the approximate form

N1ρ(nTρ−) ≈
ρ(c2a + c

2
s)

1− ρ X1(nT−) d=
ρ(c2a + c

2
s)

1− ρ (R(T )|R(0) = xn−1) (4.18)

and

N1ρ(nTρ) ≈
ρ(c2a + c

2
s)

1− ρ X1(nT ) =
ρ(c2a + c

2
s)

1− ρ xn (4.19)

for {xn} in (4.12). For ease of application, it is significant that the conditional
mean function for RBM, M(t, x) in (4.13), and the conditional complementary
cdf, P (R(t) > y|R(0) = x) in (4.9), are available explicitly. Unlike with Section 3
and Theorem 17, no numerical integration or numerical transform inversion is
needed. The standard normal cdf Φ is usually available on computers often via
the error function. It can be computed directly using rational approximations for
the error function; see p. 299 of Abramowitz and Stegun [6].

Remark. Theorem 17 and approximations (4.15)–(4.19) also have important im-
plications for customer waiting times. Since the cycle lengths are of order (1−ρ)−2
while the queue lengths and waiting times are of order (1−ρ)−1 as ρ→ 1, we see
that arrivals will tend to be served in the same cycle they arrive in. The waiting
time can thus be approximated by a random sum of i.i.d. service times, where
the random numer at time t is N1ρ(t) in (4.17). The expected waiting time is
thus just EN1ρ(t).

By Theorem 18, the transient behavior of the approximate system at (just
after) balancing points for any balancing interval T is described by the conditional
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RBMmeanM(T, x) in (4.13). We display the mean functionM(t, x) as a function
of t for several x in Figure 1. We can see thatM(t, x) approaches the steady-state
mean ER(∞) = 1/2 as t → ∞. We also see that M ′(0, x) = −1 for all x > 0,
because canonical RBM behaves initially like canonical BM with drift −1, since
it starts at the point x away from the reflecting barrier at 0.

Theorems 17 and 18 allow us to describe the impact of the arrival pattern.
If each queue has its own arrival process initially, then the parameter c2a in (4.1)
is just the one associated with the arrival process. On the other hand, suppose
that there is a single arrival process to the system (with stationary increments),
with jobs assigned to the queues upon arrival. As noted before, if the assignment
is random, then c2a = 1, because the split processes to individual queues become
independent Poisson processes as m → ∞. On the other hand, if the assign-
ment is round robin, then c2a = 0, because the split processes to individual queues
become deterministic as m → ∞. For finite m, we would let c2a(m) ≈ c2a/m, be-
cause that is what happens with a renewal arrival process. (The new interarrival
time is the sum of m i.i.d. original interarrival times.) Hence, the three possible
arrival patterns are reflected by the single parameter c2a. Since the total impact
of the variability of the arrival and service processes is reflected by the term
(c2a+ c

2
s), the arrival pattern makes a bigger (relative) difference when c

2
s is small.

When c2a = c
2
s = 0, the normalized queue lengths are asymptotically negligible in

the limit. (It is an open problem to determine if there is a nondegenerate limit
with a different normalization.)

The limit (4.4) in Theorem 17 and the approximate formula (4.15) show
how the redistribution interval Tρ should grow with ρ in order to obtain a nonde-
generate RBM limit. If Tρ grows more slowly, then the normalized queue lengths
are asymptotically negligible. Similarly, if Tρ grows more quickly, then the queue
reaches steady state before the redistribution. We formalize this behavior below.

Corollary 19. Consider the setting of Theorem 18. If, instead of (4.4), (1 −
ρ)2Tρ ⇒ 0 as ρ → 1, then

(1− ρ)N (m)1ρ (t)⇒ 0 as ρ → 1 for each t . (4.20)

On the other hand, if (1− ρ)2Tρ ⇒∞ as ρ → 1, then

(1− ρ)
ρ(c2a + c

2
s)
N
(m)
1ρ (kTρ−)⇒ R(∞) as ρ → 1 and then m→∞ for each k,

(4.21)
where

P (R(∞) > y) = e−2y , y ≥ 0 . (4.22)

We now state an analog of Corollary 12, providing a normal distribution
refinement to the deterministic sequence {xn}.
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Theorem 20. In the setting of Theorem 17,

√
m(η(ρ)N

(m)
1ρ (nTρ)− xn)→ N(0,

n
∑

k=1

vk) (4.23)

as ρ → 1 and then m → ∞ for each n, where η(ρ) = (1 − ρ)/ρ(c2a + c2s), xn
satisfies (4.12),

vk ≡ V (T, xk−1) ≡ V ar(R(t)|R(0) = xk−1) , k ≥ 1 . (4.24)

V (t, x) =M2(t, x)−M(t, x)2, M(t, x) as in (4.13) and

M2(t, x) =
1

2
+ ((x− 1)

√
t− t3/2)φ

(

t− x√
t

)

+((t− x)2 + t− 1
2
)Φc

(

t− x√
t

)

+ e2x(t+ x− 1
2
)Φc

(

t+ x√
t

)

. (4.25)

Proof. The argument is essentially the same as for Theorem 10 and Corollary 12.
Indeed, with the scaling in (4.6) RBM is contained as a special case of M/M/1
with ρ = 1; see Abate and Whitt [1], [2] for further discussion. The conditional
second moment function in (4.25) comes from Theorem 1.1 of Abate and Whitt
[1].

�

To show the form of the conditional RBM variance V (t, x), we display it as
a function of t for several values of x in Figure 2. To show different regions, we
display it in two scales, over the intervals [0, 5] and [0, 0.25]. Note that V (t, x)→
V ar R(∞) = 1/4 as t→∞. Note that V (t, x) ≈ t, for suitably small t, which is
the variance of ordinary BM, B(t). A crude upper bound is V (t, x) ≤ min{t, 1/4}.

Paralleling Theorem 14, there is a unique fixed point for the RBM function
fT in (4.12). Indeed, results for RBM can be obtained directly from previous
M/M/1 results by regarding RBM as the limit (after scaling) as ρ→ 1. Here are
properties of the RBM fixed point function x∗(T ).

Theorem 21. The function fT in (4.12) is strictly increasing and continuous.
There is a unique fixed point x∗(T ) of the equation x = fT (x) for each T and
xn → x∗(T ) as n → ∞. The fixed point x∗(T ) is a strictly increasing contin-
uous function of T with x∗(T ) → 1/2 as T → ∞ and x∗(T ) → 0 as T → 0.

Proof. The proof is essentially the same as for Theorems 14 and 16. By-taking
the heavy traffic limit after scaling in Theorem 16, we obtain xU = ER(∞) =
1/2 and xL = 0. The shape of the RBM first moment function was previously
established in Section 8 of Abate and Whitt [1].

�

From Figure 1, we can see that for each x with 0 < x < 1/2 = ER(∞),
there is a unique T such that x is a fixed point, i.e., x = M(T, x), and we can
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see how this fixed point x∗(T ) depends upon x or T . We display the RBM fixed
point x∗(T ) as a function of T and x in Figure 3. Parts (a) and (b) of Figure 3
give separate displays over the intervals [0, 4] and [0, 0.5]. The longer interval
shows that the fixed point x∗(T ) gets quite close to the limit 1/2 occurring as
T →∞ for 1 ≤ T ≤ 4. The shorter interval [0, 0.5] shows that the region where
x∗(T ) ranges from 20% to 80% of the limit 1/2 is about 0.01 ≤ T ≤ 0.5. The
cases of T = 1.0 and 0.1 are highlighted because we use them in our simulation
experiments in Section 6.

We can also combine Theorems 18 and 21 to describe the asymptotic be-
havior of the fixed point equation. We need to have the means converge to the
mean of the limit in (4.6). This holds under an additional uniform integrability
assumption; see p. 32 of Billingsley [9]. (We regard this as a minor technical
regularity condition.)

Theorem 22. If, in addition to the conditions of Theorem 17, the normal-

ized queue-length variables N
(m)
1ρ (t) are uniformly integrable, then the associated

fixed-point levels satisfy

(1− ρ)x∗ρ(Tρ)
ρ(c2a + c

2
s)

→ x∗(T ) as ρ → 1 .

Proof. By (4.6) in Theorem 17 the transient mean functions converge, implying
that the normalized fixed points converge as well.

�

The first order approximation for the level in one queue after balancing
in the RBM model is x∗(T ) computed from the fixed point equation associ-
ated with fT in (4.12) and (4.13). Just as in equations (3.10)–(3.12), a re-
fined approximation is a normal distribution, where the mean and variance σ2

are the solutions of a pair of equations. With RBM, the equations are still
(3.10)–(3.12) but with RBM the mean and second-moment functions M(T, x)
and M2(T, x) are greatly simplified, being as in (4.13) and (4.25). Just as in
(3.13), an approximation for this stochastic normal fixed point is the normal dis-
tribution N(x∗(T ), V (T, x∗(T ))/m), which is the normal distribution we obtain
after balancing at the end of a single interval of length T , starting at x∗(T ).
The simple normal approximation N(x∗(T ), V (T, x∗(T ))/m) motivates display-
ing V (T, x∗(T )), the variance function starting at the fixed point x∗(T ). We do
so in Figure 4.

We compare these approximation schemes in Tables 1 and 2. In Table 1 we
compare the deterministic fixed point x∗(T ) to the mean µ ≡ µ(T ) in the pair
(µ, σ2) obtained from the normal iteration in (3.10)–(3.12) for RBM for six values
of T (T = 0.01, 0.05, 0.10, 0.50, 1.00, 5.00) and four values of m (m = 2, 4, 16, 64).
The equations (3.10) and (3.11) were solved iteratively using numerical inte-
gration with (4.13) and (4.25) to calculate the integrals. The iteration tended
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to converge relatively quickly (3–20 iterations), starting from an initial pair
(µ, σ2) = (0, ε) for a small positive ε.

As illustrated by the cases with m = 64 in Table 1, µ ≈ x∗(T ) when m
is suitably large. The agreement in these cases also confirms that both calcu-
lations can be performed with sufficient accuracy. When m is not large, x∗(T )
underestimates µ.

In Table 2 we compare the corresponding approximations for the standard
deviation of the steady-state queue content just before load balancing with m
independent RBM processes. In particular, we compare

√
mσ from the normal

iteration to
√

V (T, x∗(T )). As with the mean, when m is suitably large, e.g.,
when m = 64,

√
mσ ≈

√

V (T, x∗(T )), but the more elementary approximation
√

V (T, x∗(T ) underestimates
√
m σ when m is small.

Table 1
A comparison between µ, the approximation for the steady-state mean content of each queue
just before (and after) load balancing with m independent RBM processes, using the normal

iteration, and the deterministic fixed point x∗(T ).

µ from normal iteration
T m = 2 m = 4 m = 16 m = 64 x∗(T )

0.01 0.1756 0.1526 0.1358 0.1347 0.1336

0.05 0.2850 0.2504 0.2314 0.2274 0.2260

0.10 0.3321 0.2999 0.2812 0.2771 0.2758

0.50 0.4159 0.4139 0.4035 0.4009 0.4000

1.00 0.4638 0.4547 0.4484 0.4469 0.4464

5.00 0.4985 0.4982 0.4979 0.4979 0.4979

∞ 0.5000 0.5000 0.5000 0.5000 0.5000

From our numerical experience, we conclude that for large m (e.g., m ≥ 64),
it suffices to use the simple normal approximation based on x∗(T ) in (3.13); for
moderate m it is preferable to use the normal fixed point pair (µ, σ2) based on
(3.10)–(3.12); and for very small m (e.g., for m ≤ 4), it may be better not to use
the normal approximation. We can interpolate from Tables 1 and 2 to obtain
good estimates of the pair (µ,

√
mσ) for any m and T .

Given the explicit RBM cdf formula in (4.9), it is also possible to approxi-
mately describe the distribution of the number of jobs that must be moved away
from any one queue, say J1ρ, when ρ and m are suitably large:

P

(

J1ρ ≥
ρ(c2a + c

2
s)x

1− ρ

)

≈ P (R(T ) > x∗(T ) + x|R(0) = x∗(T )) , (4.26)
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Table 2
A comparison between

√
mσ, the approximate standard deviation of the steady-state content

of each queue just before load balancing with m independent RBM processes, using the normal
iteration, and the approximation

√

V (T, x∗(T )).

√
mσ from normal iteration

T m = 2 m = 4 m = 16 m = 64
√

V (T, x∗(T ))

0.01 0.1105 0.0964 0.0881 0.0864 0.0858

0.05 0.2076 0.1842 0.1713 0.1686 0.1677

0.10 0.2597 0.2354 0.2213 0.2182 0.2172

0.50 0.3810 0.3719 0.3608 0.3581 0.3572

1.00 0.4383 0.4271 0.4194 0.4176 0.4170

5.00 0.4967 0.4962 0.4957 0.4956 0.4956

∞ 0.5000 0.5000 0.5000 0.5000 0.5000

with the right side being computed by (4.9) after obtaining the fixed point x∗(T ).
We now show that the second moment grows during the interval between

balancing.

Theorem 23. For periodic load balancing of RBM with m → ∞, in steady
state (starting from a fixed point x∗(T ), the second moment M2(t, x

∗(T )) is
increasing in t in the interval (0, T ). The derivative of the variance as a function
of time is

V ′(t, x) = 1−M(t, x)g(0; t, x) , (4.27)

where g(0; t, x) is the density of the cdf in (4.9) evaluated at 0, i.e.,

g(0; t, x) =
1√
t
φ

(

x− t√
t

)

+ 2e−2yΦ

(−x+ t√
t

)

+
e−2y√
t
φ

(−x+ t√
t

)

. (4.28)

Proof. By Theorem 8.3 of [1], M2(t, x
∗(T )) is strictly increasing in the interval

(0, T ) because x(T ) < 1/2. Combining Theorems 8.1 and 8.3 of [1], we obtain

V ′(t, x) =M ′
2(t, x)− 2M(t, x)M ′(t, x)

= 1− 2M(t, x)(1 +M ′(t, x))

= 1−M(t, x)g(0; t, x) .
�

We now give the asymptotic form for the RBM fixed-point x∗(T ) as
T → ∞. We write f(x) ∼ g(x) as x → ∞ if f(x)/g(x) → 1 as x → ∞.
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Theorem 24. For periodic load balancing with canonical RBM,

1

2
− x∗(T ) ∼ e(1−T )/2√

2πT 3
as T → ∞ . (4.29)

Proof. This follows directly from the asymptotic form of the mean given in
Corollary 1.1.2(a) in Abate and Whitt [1], in particular,

1

2
−M(t, x) ∼ 2(1 − x)√

2πt3
ex−t/2 as t → ∞ , (4.30)

noting that x∗(T )→ 1/2 as T →∞. �

5. Performance Comparisons

In this section we apply the diffusion approximation in Section 4 to make
comparisons between load balancing and two natural alternatives: m separate
s-server queues and 1 combined ms-server. For simplicity, we now focus on
the case of M/M/1 queues, so that s = 1. (The advantage of resource sharing
is larger when the systems being combined have fewer servers.) We develop
approximations for the distribution of the steady-state number of jobs in the
system per server with each scheme. We display our conclusions in Table 3. As
indicated in Section 1, the differences can be great.

Table 3
Approximations for the distribution of the steady-state number of jobs in the system per server

just after load balancing. (The parameters γ1 and γ2 are constants less than 1.)

standard
scheme distribution mean deviation

m separate
M/M/1 queues exponential ρ

1−ρ
ρ

1−ρ

a single
M/M/m queue normal ρ ρ

√
m

m M/M/1 queues

with load balancing normal γ1
(

ρ

1−ρ

)

γ2√
m

(

ρ

1−ρ

)

Intuitively, it is evident that load balancing can achieve both alternatives
as well as a range of performance behavior in between. Clearly, if the balancing
interval Tρ is very short, then load balancing is the same as the combined M/M/m
system. Indeed, for sufficiently small Tρ, periodic load balancing outperforms
joining the shortest queue. On the other hand, if the balancing interval Tρ is
very large, then except after the infrequent balancing times, the queues behave
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like separate M/M/1 queues. We focus on the intermediate case, which can be
characterized by the scaling in (4.4) as ρ→ 1.

Using heavy-traffic diffusion approximations, as described at the beginning
of Section 4, we conclude that the steady-state number of jobs in a single M/M/1
queue for suitably high traffic intensity ρ has approximately an exponential dis-
tribution with mean (and thus also standard deviation) ρ/(1 − ρ).

For any fixed ρ, when m is suitably large, a single M/M/m queue behaves
like an infinite-server queue. Thus the steady-state number of jobs in an M/M/m
queue with traffic intensity ρ and suitably large m has approximately a Poisson
distribution with mean (and thus variance) mρ. (More elaborate approximations
were described in Section 1.) The Poisson distribution in turn can be approxi-
mated by a normal distribution. The steady-state number of jobs per server in
an M/M/m queue is the steady-state number in the system divided by m. Thus,
the steady-state number of jobs per server in an M/M/m system is approximately
normally distributed with mean ρ and standard deviation ρ/

√
m.

From the above analysis, we see that under heavy loads the multi-server
system has a much smaller mean per server than the simple-server queue because
of the factor 1− ρ in the denominator (ρ versus ρ/(1− ρ)). The chance of large
values above the mean is also much smaller in the multi-server queue. First, the
tail of a normal distribution decays more rapidly than the tail of an exponential
distribution. Second, the standard deviation in the multi-server queue has the
extra factor

√
m > 1 in the denominator, while the standard deviation in the

single-server queue has the extra factor (1− ρ) < 1 in the denominator.
Now we consider the case of load balancing, where the balancing inter-

vals Tρ in the queues are chosen consistently with the scaling in (4.4) for some
reasonable T , e.g., with .02 < T < 2. Our analysis in Section 4 leads us to
conclude that the steady-state number of jobs in one queue after load balancing
has approximately a normal distribution with mean γ1ρ/(1 − ρ) and standard
deviation γ2ρ/(1 − ρ)

√
m for some constants γ1 and γ2. We draw this conclu-

sion because the scaling in the heavy-traffic limit theorem in (4.6) is the same
as in the heavy-traffic limit theorem for a single M/M/1 queue. For a single
M/M/1 queue, the steady-state number after normalization is approximated by
the exponentially-distributed random variable R(∞). Thus the constant γ1 is the
ratio of the realized mean, approximately x∗(T ), to the mean ER(∞) = 1/2; i.e.,
γ1 = 2x

∗(T ) < 1. Similarly, the variance after normalization is approximately
V (T, x∗(T ))/m instead of V (∞, x) = 1/4, so that γ2 = 2

√

V (T, x∗(T )) < 1 (see
Figure 4).

More formally, we can conclude that the ratio of the two steady-state means
in the load-balancing case to the separate-single-server case converges to 2x∗(T )
as ρ→ 1, when the balancing intervals Tρ grow as in (4.4). In contrast, if the load
balancing intervals Tρ where fixed independent of ρ, then the ratio would converge
to 0, as noted in (4.20). Indeed if T is suitably small, then the constants γ1 and
γ2 can be 1−ρ, so that load balancing can perform just as well as the multi-server
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queue. On the other hand, if T is large, then there remains a benefit for load
balancing in the standard deviation. However, the distribution just before load
balancing is then approximately the same as in a single-server queue.

In summary, in what we regard as the typical case (consistent with the
scaling in (4.4) with high ρ and large m), load balancing provides a modest gain
over separate M/M/1 queues in the mean by a factor 2x∗(T ) and a substantial
gain in the standard deviation by a factor of 2

√

V (T, x∗(T ))/
√
m ≈ 1/√m and

in the distribution — going from exponential to normal. Thus, we conclude that
load balancing should be very effective for reducing the likelihood of large queue
lengths. This conclusion will be substantiated by the simulation results in the
next section.

6. Comparisons with Simulations

In this section we compare the RBM approximations developed in Section 4
to simulations. We first simulated m M/M/1 queues coupled by periodic load
balancing for a range of values of m and ρ. To dramatically show the advantage
of the heavy-traffic limit and associated scaling in Section 4, we scale so that each
is to be approximated by canonical RBM (drift −1, diffusion coefficient 1).

For the results we will display, we start by picking a single time point for
canonical RBM, T = 1.0. We then choose balancing times Tρ as a function of ρ
to satisfy (4.15). Since we are considering M/M/1 queues, s = c2a = c

2
s = 1 and

Tρ =
2T

(1− ρ)2 =
2

(1− ρ)2 . (6.1)

We first consider the case m = 64 for three values of ρ : ρ = 0.8, 0.9 and 0.95.
For ρ = 0.8, 0.9 and 0.95, Tρ = 50, 200 and 800, respectively. For each value of
ρ, the simulation was based on three independent replications of 64×106 arrivals
(106 arrivals per queue). The histograms of the normalized queue lengths just

after redistribution, (1− ρ)N (m)iρ (nTρ)/2ρ, are displayed for ρ = 0.8, 0.9 and 0.95
in Figure 5. (When plotted, the histograms for the three replications were barely
distinguishable, demonstrating that the run length was more than adequate to
achieve high statistical precision.) Since the scaling was applied, the RBM fixed
point x∗(1) = 0.446 becomes the initial approximation to the normalized number
at each queue after balancing. A second refined approximation is the normal
approximation

(1− ρ)
2ρ

N
(m)
iρ (nTρ) ≈ N(x∗(T ), V (T, x∗(T ))/m) . (6.2)

These two approximations are also shown in Figure 5. From Figure 5, we see that
the two RBM approximations perform quite well, with both slightly overestimat-
ing the true distributions. Convergence toward the approximations as ρ → 1 is
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also evident. For smaller values of ρ, the queue lengths tend to be very small,
and the heavy-traffic approximation is not very accurate.

A third approximation is the normal approximation N(µ, σ2), where the
pair (µ, σ2) are obtained by iteratively solving the equations (3.10)–(3.11) using
the RBM conditional mean and variance functions M(t, x) and V (t, x) in (4.13),
(3.12) and (4.25). However, as shown in Tables 1 and 2, the fixed point (µ, σ2) of
the normal iteration agrees closely with the pair (x∗(T ), V (T, x∗(T ))/m) in this
case. The differences present in Figure 5 thus seem to primarily represent the
error in the heavy-traffic approximation.

Next, to describe the dependence upon m, we consider the cases of m = 4,
16 and 64 with ρ = 0.95 for the same case T = 1.0. The deterministic fixed
point x∗(T ) is again 0.446. The sample means of the normalized queue lengths
after load balancing when m = 4, 16 and 64 were 0.4274, 0.4210 and 0.4209,
respectively.

To describe the rest of the distribution beyond the mean, we display
in Figure 6 histograms of the normalized and centered variables,

√
m[(1 −

ρ)N
(m)
iρ (nTρ)/2ρ− n̄

(m)
iρ ], where n̄

(m)
iρ is the sample mean of (1− ρ)N

(m)
iρ (nTρ)/2ρ

given above. We add the factor
√
m so that three cases should have approxi-

mately the same variance V (T, x∗(T )) using the normal approximation in (6.2).
The estimated sample standard deviations for m = 4, 16 and 64 were 0.4440,
0.4279 and 0.4434, respectively, while

√

V (1, x∗(1)) = 0.4170.
Finally to consider non-Markovian queues, we consider M/G/1 queues with

a Pareto service-time distribution. We let the service-time complementary cdf
have the specific form

Gc(t) = (1 + bt)−α, t ≥ 0 , (6.3)

where b = 1/(α − 1) to give the distribution mean 1. The associated SCV is

c2s = 1 + 2

(

(α− 1)2
α− 2 − α

)

. (6.4)

To keep within the heavy-traffic limit framework in Section 4, we need α > 2, so
that c2s <∞. In particular, we choose α = 3, which makes c2s = 3. We then scale
as in (4.15), so that

Tρ =
(c2a + c

2
s)T

(1− ρ)2 =
4

(1− ρ)2 . (6.5)

When we balance, we do not move the customers in service, so that all cus-
tomers have their original service times. We then consider the normalized queue

lengths just before redistribution, (1 − ρ)N (m)iρ (nTρ−)/4ρ, as in (4.6). We com-
pare the M/G/1 Pareto and exponential service-time-distribution cases with
ρ = 0.95, T = 1.0, and m = 64 and 4 in Figures 7 and 8. The Pareto and
exponential cases were scaled differently, so that the approximation for both in-
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volves canonical RBM. In Figures 7 and 8 we include the normal approximation
N(µ,mσ2) ≈ N(x∗(1), V (1, x∗(1))). As should be expected, the normal approx-
imation is more accurate for m = 64 than for m = 4. The close agreement
between the exponential and Pareto simulation results in both cases shows the
remarkable power of the heavy-traffic scaling.

7. Redistributing Work with a Work-Conserving Discipline

In Sections 2–4 we assumed that each queue has s-servers and uses the FCFS
service discipline. However, for computer system applications it is usually more
appropriate to assume a single server with the round robin (RR) or processor-
sharing (PS) discipline. Indeed, these disciplines are traditionally used in the
dynamic load balancing literature, e.g., see Harchol-Balter and Downey [21] and
references cited there. In this section we discuss periodic load balancing with
such alternative service disciplines.

First, one might use the results in Sections 2–4 as approximations for these
other service disciplines. This can be motivated by the fact that the PS dis-
cipline has the insensitivity property. In particular, in the M/G/1 (PS) model
the steady-state queue length distribution has the same geometric distribution as
in the M/M/1 (FCFS) model (with the same interarrival time and service time
means). However, with periodic load balancing, we apply the transient distribu-
tion over intervals of length T , not the steady-state distribution. Unfortunately,
the transient distributions do not have this insensitivity property. Nevertheless,
as a rough approximation, it should be reasonable to use the M/M/1 (FIFO)
model as an approximation for periodic load balancing with M/G/1 (PS) queues.
For the RBM approximation in Section 4, the resulting variability parameters
are c2a = c2s = 1. Using the insensitivity logic, we would apply the M/M/1 FIFO
results to any service-time distribution having a finite mean.

It is also of interest to consider redistribution of remaining work (in required
service time) instead of jobs. Work redistribution is directly applicable in systems
where the full service requirements are known in advance, and jobs can be split
up with pieces sent to different queues. More generally, a work redistribution
model is interesting as a lower bound on what can be achieved by other periodic
load balancing algorithms.

If we focus on periodic redistributions of work in single-server queues, then
the behavior is the same for any work-conserving discipline. In particular, then
the behavior is the same for RR, PS and FCFS. Moreover, it is known that the
heavy-traffic limit for the workload process in a G/GI/s queue coincides with the
heavy-traffic limit for the queue-length process, providing that the mean service
time is 1. By similar reasoning, the same limit involving RBM with periodic load
balancing holds for the workload process. Hence, the approximation in Section 4
applies directly to the workload process with periodic load balancing of remaining
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work in G/GI/1 queues with a work-conserving service discipline. Direct heavy-
traffic limits for the workload process in a single-server queue are contained in
Whitt [42]. We state a workload limit theorem in Section 9 that also covers
additional extra long service times.

8. Reducing the Likelihood of Severe Congestion

One of the main goals of load balancing is to reduce the likelihood of
large queue lengths or large workloads. To show that periodic load balanc-
ing achieves this goal, we show that the tail probabilities of conditional RBM
P (R(t) > y|R(0) = x) decay more rapidly than the exponential steady-state.
(Recall that P (R(∞) > y) = e−2y.) In fact, we show that the RBM conditional

tail probability is of order e−y
2/2t as y → ∞.

Theorem 25. The RBM conditional tail probability satisfies

P (R(t) > y|R(0) = x) ∼ α(y, x, t)e−
(

y2

2t
+y(1−xt )

)

as y → ∞ , (8.1)

where

α(y, x, t) =
1√
2π
e−(x−t)

2/2t

( √
t

y − x+ t + e
−2yx/t

( √
t

y + x− t

))

∼ 1
y

√

t

2π
e−(x−t)

2/2t for x > 0 , (8.2)

so that
(

logP (R(t) > y|R(0) = x)− y2

2t

)

∼ y
(

1− x

t

)

as y → ∞ . (8.3)

Proof. Use (4.9) with the asymptotic relation Φ(−y) ∼ y−1φ(y) as y → ∞;
see p. 175 of Feller [16].

�

Formulas (8.1)–(8.3) show that the RBM conditional tail probability decays

rapidly (of order e−y
2/2t) if x and t are not large. We have seen that the fixed

points must satisfy x∗(T ) < ER(∞) = 1/2, so that x∗(T ) will not be large.
However, T ∗x increases as x → 1/2, so that T ∗x can be large. If we keep x

∗(T )
well below 1/2, then we will not encounter large values of t, and the system
behavior should be well described by Theorem 25.

However, if T is allowed to grow, then the control of large queue lengths and
workloads weakens. To describe the behavior for larger t, we consider the limit
as y → ∞ and t → ∞ with y = ct or (y− t)/

√
t → c. The following theorem

shows that conditional tail probabilities decay more slowly in this regime (but
still more rapidly than the steady-state tail probabilities).
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Theorem 26. (a) If t → ∞ with y = ct for c > 1, then

P (R(t) > y|R(0) = x) ∼ α(x, t)e−
(c+1)2

2
t , (8.4)

where

α(x, t) =
1√
2π
e−(

x2

2t
−(c+1)x)

( √
t

(c+ 1)t− x + e
−2cx

√
t

(c− 1)t+ x

)

∼ 1√
2πt

(

e(c+1)x

c+ 1
+
e(1−c)x

c− 1

)

. (8.5)

(b) If t → ∞ with y = ct for c < 1, then
P (R(t) > y|R(0) = x) ∼ e−2y . (8.6)

(c) If t → ∞ with (y − t)/
√
t → c, then

P (R(t) > y|R(0) = x) ∼ e−2yΦ(−c) . (8.7)

Proof. As in Theorem 25, we apply the asymptotic relation Φ(−y) ∼ y−1φ(y)
as y → ∞. To have Φ(−y) with y → ∞ in both terms of (4.9), we need y = ct
with c > 1. Cases (b) and (c) of Theorem 26 follow directly from (4.9).

�

In this section we have considered the limits ρ → 1 and y → ∞ in that
order. If instead we fixed ρ < 1 and let y → ∞, then the asymptotic behavior
depends on more of the fine structure of the queueing system. The transient work-
load will have a tail decaying no more rapidly than the service-time distribution.
(Consider the case of a single arrival in the interval (0, t).)

9. Exceptionally Long Service Times

In addition to requiring heavy loads, the RBM approximation requires that
the job arrival and service processes be not too bursty. The RBM approximation
depends critically on the sums of the interarrival times and service times con-
verging to standard normal distribution after the usual

√
n normalization, e.g.,

as in (4.1). For i.i.d. service times, this means that the service-time distribution
must have a finite second moment.

However, measurements of computer systems by Leland and Ott [28] and
Harchol-Balter and Downey [21] indicate that service requirements may often
come from long-tail distributions, without a finite second moment. Indeed,
Harchol-Balter and Downey found that the cdf 1 − c/t is often appropriate. As
they indicate, this distribution has no mean. We first point out that such a dis-
tribution rules out conventional steady-state queueing analysis, with or without
load balancing. With the standard models having unlimited waiting room, a
service time with an infinite mean implies that the queue length and workload
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processes will diverge to +∞ with probability one as time evolves, e.g., see Theo-
rem 8 on p. 18 of Borovkov [10]. Hence, in that context it makes no sense to talk
about long-run average performance. Thus, there can be no counterpart to the
fixed-point equations in Sections 3 and 4. However, it is of course possible to use
transient analysis, but then some care should be given to formulating realistic
initial conditions.

In this section we briefly indicate some possible approaches to represent un-
usually long service times. First, a similar heavy-traffic limit theorem can be
obtained when the arrival and service processes are bursty. Then these processes
may converge to other processes, such as stable processes, with a different nor-
malization. For example, instead of (4.1) we might have

A(nt)− λnt
n1/α

⇒ Sα(t) as n → ∞

where 0 < α < 2 and {S(t) : t ≥ 0} is a stable process with index α. As indicated
in Whitt [43] the heavy-traffic limit theorems easily extend to these different
normalizations. The difficulty for our application to periodic load balancing is
obtaining useful descriptions of the transient behavior of these alternative limit
processes, i.e., analogs of (4.9) and (4.13) here.

A promising alternative approach to rare exceptionally long service times is
to apply the reasoning used to establish the heavy-traffic limit for queues with
rare long server vacations in Kella and Whitt [25]. The limit here as ρ → 1 also
applies with such additional long service times. Instead of the limit process in
Section 4, we obtain a limit process that is a reflection of Brownian motion plus
an extra jump process.

We now present the framework for this alternative limit theorem. We do so
for the workload in the setting of Section 7. After the theorem, we indicate how
it can be applied to generate alternative approximations, which do not require
that the service times have finite second moments.

We modify the setting of Section 4 to allow for additional rare long service
times. Consider a single queue. Let the arrival time of the nth special service
time in the system with traffic intensity ρ occur at time Uρn, where

(1− ρ)2(Uρ1, . . . , Uρn)⇒ (U1, . . . , Un) in
� n as ρ → 1 for each n . (9.1)

Let {Cρ(t) : t ≥ 0} and {C(t) : t ≥ 0} be the counting processes associated with
{Uρn} and {Un}, e.g.,

Cρ(t) = max{n : Uρn ≤ t} , t ≥ 0 , (9.2)

where Uρ0 = 0. Let the n
th special service time in system ρ be Vρn, where

(1− ρ)(Vρ1, . . . , Vρn)⇒ (V1, . . . , Vn) in
� n as ρ → 1 for each n . (9.3)
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The scaling in (9.1) and (9.2) is explained by the fact that time is scaled by
(1− ρ)2 while space is scaled by (1− ρ) in the usual heavy-traffic limit theorem,
i.e., as in (4.2). The associated total input process of special work in system ρ is

Iρ(t) =

Cρ(t)
∑

i=1

Vρi , t ≥ 0 . (9.4)

We are now ready to state a limit theorem.

Theorem 27. Consider m G/GI/1 queues with work-conserving service disci-
plines, controlled by periodic redistribution of remaining work, as in Section 7.
Let the basic arrival and service processes satisfy the assumptions of Theorem 4.1.
Assume that the redistribution intervals satisfy (4.4). Assume that the initial
workloads satisfy (4.5). Assume that extra long service times arrive indepen-
dently according to the input process Iρ(t) in (9.4), satisfying (9.1)–(9.3). Then
the individual workload processes satisfy

(1− ρ)
(c2a + c

2
s)
W
(m)
1ρ (t(c

2
a + c

2
s)/(1 − ρ)2)⇒ X(t) in D (9.5)

as first ρ → 1 and then m → ∞, where xn ≡ X(nT ) evolves deterministically
as

xn+1 = fT (xn) (9.6)

with fT (x) =M(T, x), where

M(t, x) = E[Y (t)|Y (0) = x] (9.7)

Y (t) = Rx(Z)(t) (9.8)

Z(t) = B(t)− t+
C(t(c2a+c

2
s))

∑

i=1

Vi/(c
2
a + c

2
s) , (9.9)

{B(t) : t ≥ 0} is standard (drift 0, diffusion coefficient 1) Brownian motion and
Rx is the reflection map, defined by

Rx(z)(t) = max{x+ z(t) , z(t)− inf
0≤s≤t

z(s)} . (9.10)

If in addition Vn, n ≥ 1, are i.i.d. and {C(t) : t ≥ 0} is a Poisson process, then

X(nT + t)
d
= (Y (t)|Y (0) = xn) , 0 ≤ t ≤ T . (9.11)
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Proof. First, it is elementary (using basic properties of the function space D [9],
[43]) that

(1− ρ)
c2a + c

2
s

Iρ(t(c
2
a + c

2
s)/(1 − ρ)2)⇒

C(t(c2a+c
2
s))

∑

i=1

Vi/(c
2
a + c

2
s) in D as ρ → 1 ,

because the limit process has finitely many jumps in a bounded interval and,
by (9.1) and (9.3), the normalized times and sizes of the jumps converge. The
rest of the proof is a workload analog of that in Theorem 18, closely paralleling
Theorem 3.1 of Kella and Whitt [25]. (The result here is actually somewhat more
elementary. Since there is a single jump at each discontinuity point, it is not
necessary to use the M1 topology here.) The limiting net input process between
redistributions in (9.9) is Brownian motion minus t plus the jump process, just as
in (3.3) of Kella and Whitt [25]. Finally, (9.11) holds under the extra conditions,
because then the net input process {Z(t) : t ≥ 0} has stationary independent
increments.

�

We now indicate how we can apply Theorem 27 to generate approximations
for long-tail service-time distributions. If the service times are i.i.d. with c.d.f
G, then we can truncate the distribution at some large value z. We then let
a new basic service-time distribution have cdf H(x) = G(x)/G(z), 0 ≤ x ≤ z.
Then with probability Gc(z) each arrival has a special service time with cdf
F (x) = G(x)/Gc(z), x > z and F (z) = 0, and with probability G(z) there is
no extra service time. The extra arrival process of additional service times is a
thinned version of the original arrival process. As the truncation point z increases,
the selection probability Gc(z) decreases and the thinned process approaches a
Poisson process independent of the original arrival process, e.g., see Çinlar [12]
or Serfozo [35]. Even if the original service time cdf G had no finite moments,
the truncated cdf H has all moments finite.

Based on (9.5), we can use the approximation

W
(m)
1ρ (t) ≈

(c2a + c
2
s)

1− ρ X(1 − ρ)2t/(c2a + c2s)) , (9.12)

for X characterized in (9.6)–(9.11), where ρ and c2s are the traffic intensity and
service-time SCV based on the truncated cdf H.

It remains to specify the jump process. At traffic intensity ρ, each interar-
rival time has mean 1/ρ. The number of arrivals between each special arrival is
geometrically distributed with mean 1/Gc(z). Hence, EUρ1 = 1/ρG

c(z), so that
with (9.1) we let

EU1 =
(1− ρ)2
ρGc(z)

. (9.13)
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The rate of the Poisson process {C(t) : t ≥ 0} is 1/EU . Thus, the rate of the
Poisson process {C(t(c2a + c2s)) : t ≥ 0} is ρ(c2a + c2s)Gc(z)/(1− ρ)2. Similarly, the
limiting special service time can be obtained from the cdf F , making appropriate
adjustments for the scaling in (9.2). By (9.2), we let P (V ≤ x) = P (Vρ ≤
x/(1 − ρ)). Hence

P

(

V

c2a + c
2
s

≤ x
)

= F ((c2a + c
2
s)x/(1 − ρ)) . (9.14)

As a consequence of (9.13) and (9.14), the limiting jump process

C(t(c2a+c
2
s))

∑

i=1

Vi
(c2a + c

2
s)

has drift ρGc(z)m(F )/(1−ρ), where m(F ) is the mean of the cdf F . (We require
that m(F ) <∞ to have finite drift.) Thus, the net input process {Z(t) : t ≥ 0}
in (9.9) has drift

EZ(1) =
ρGc(z)m(F )

1− ρ − 1 . (9.15)

It is elementary to show that a proper steady state exists for the approximating
process {X(t) : t ≥ 0} if and only if EZ(1) < 0.

The remaining problem for applications is to compute the mean function
M(t, x) in (9.7). We suggest an approximation based on choosing the Poisson
rate to be small compared with the redistribution interval length T . (This is
achieved in the approximation following Theorem 27 by making the truncation
point z sufficiently high.) As an approximation, we can then assume that there
is at most one special service time in each redistribution interval. To be more
specific, let γ be the rate of the Poisson process, which is ρ(c2a+c

2
s)G

c(z)/(1−ρ)2
with the truncation at z. Let V̂ be distributed as V/(c2a + c

2
s), which has the cdf

F ((c2a + c
2
s)x/(1 − ρ)) as in (9.14) with the truncation at z. Then

M(T, x) = e−γT M̃(T, x)

+
(1− e−γT )

T

∫ T

0

∫ ∞

0

∫ ∞

0
M̃(T − y, z + v)dP (V̂ ≤ v)

×P (R(y) = dz|R(0) = x)dy , (9.16)

where M̃(t, x) is the RBM mean function in (4.13). The first term in (9.16)
corresponds to no special arrival, while the second term corresponds to at least
one special arrival, which we treat as exact one. Conditional on one Poisson
arrival, it is uniformly distributed over [0, T ]. Note that, by (4.13) and (4.9), the
integrand in the second term of (9.16) can be expressed in closed form. Hence,
the calculation in (9.16) can be performed. We suggest applying (9.16) to analyze
the behavior with long-tail service-time distributions. Recall that the drift EZ(1)
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in (9.15) must be negative in order for a proper steady state to exist (and the
fixed point equation x = fT (x) to have a solution).

If V̂ is large compared to T , we might use the alternate approximate

M(T, x) ≈ e−γT M̃(T, x) + (γT )EV . (9.17)

for

γ =
ρGc(z)(c2a + c

2
s)

(1− ρ)2 and EV̂ =
(1− ρ)
c2a + c

2
s

m(F ) . (9.18)

Approximation (9.17) ignores the RBM component in the second term.

10. Periodic Load Balancing in Unbalanced Systems

In our analysis so far, we have assumed that the queues are homogeneous.
However, in practice, the arrival processes and service-time distributions may
be different at different queues. As an extreme case, service may be temporarily
unavailable at some queues, e.g., because of queue failure. Periodic load balancing
provides a way to address this problem without having to know which queues are
down.

In this section we consider periodic load balancing when a proportion p of
the queues are down during each redistribution interval. We assume that we do
not know which queues are down. We thus redistribute to all queues. Down
queues generate substantial congestion, because we assume that arrivals come
to all queues in i.i.d. arrival processes. Thus there are arrivals but no service
completions at down queues.

During the interval between redistributions, the number of jobs at a down
queue grows like the arrival process there. Given that the arrival process satisfies
a FCLT as in (4.1), that FCLT describes the growth of the queue length process
as the length of the redistribution interval grows. If we consider a sequence of
models in which the redistribution intervals grow, then the FCLT for the arrival
process describes the behavior at the down queue.

It is significant that the presence of down queues alters the form of the
heavy-traffic limit theorems in Section 4. Even as ρ → 1 in the up queues, the
growth of jobs or work within each redistribution interval tends to be dominated
by the queues that are down. A limit holds with the law-of-large-numbers scaling
instead of the central-limit-theorem scaling.

Theorem 28. Consider the setting of Theorem 17 modified by having a propor-
tion p of the queues down (for all time). Let 1 index an up queue and 2 index a
down queue. If ρ → 1 and m → ∞ with (4.4) and (4.5) holding, then

(1− ρ)2
c2a + c

2
s

N
(m)
iρ (t(c

2
a + c

2
s)/s(1 − ρ)2)⇒ Xi(t) in D for i = 1, 2 (10.1)
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where xn ≡ X1(nT ) = X2(nT ) evolves deterministically as xn+1 = fT (xn) with
fT (x) = p(x+ T ) , (10.2)

while

X1(kT + t) = 0 , 0 < t < T , (10.3)

and

X2(kT + t) = xk + t , 0 < t < T . (10.4)

Proof. Given (4.1) and (4.4), it follows that

(1− ρ)2
(c2a + c

2
s)
Aρ(Tρ−)⇒ T as ρ → 1 . (10.5)

Given the space normalization by (1− ρ)2 in (10.1) instead of by (1− ρ) in (4.5),
the queue lengths in the up queues are asymptotically negligible.

�

The behavior of the function fT in (10.2) is elementary.

Theorem 29. The function fT in (10.2) has a unique fixed point x
∗(T ) =

pT/(1 − p) and f (n)T (x0) → x∗(T ) as n → ∞ for each x0.

In this unbalanced scenario the approximation is quite simple; we would
approximate the normalized queue length after balancing, (1−ρ)2N(kTρ)/(c2a+c2s)
by the fixed point pT/(1 − p). Note that a large proportion of the jobs must be
moved in each balancing though.

More interesting limiting behavior occurs if we assume that the proportion
of down queues decreases with ρ, in particular, if pρ = (1 − ρ)α. Then both the
up and down queues contribute to the limit behavior as ρ → 1.

Theorem 30. In the setting of Theorem 28, if the proportion p of down queues
is a function of ρ satisfying pρ = (1− ρ)α, then

(1− ρ)
c2a + c

2
s

N
(m)
1ρ (t(c

2
a + c

2
s)/s(1− ρ)2)⇒ X1(t) in D for i = 1, 2 , (10.6)

where xn ≡ X1(nT ) evolves deterministically as xn+1 = fT (xn) with
fT (x) =M(T, x) + αT (10.7)

for M(t, x) in (4.13) and

X1(nT + t)
d
= (R(t)|R(0) = xn) (10.8)

as in (4.14).
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Remark. In the scaling of (10.6), the content of the individual down queues ex-
plodes in the limit. The nondegenerate limit in (10.6) is obtained because the
proportion of down queues is asymptotically negligible.

Proof. Given that pρ = (1− ρ)α,
pρ(1− ρ)
(c2a + c

2
s)
Aρ(Tρ)⇒ αT as ρ → 1

by (10.5). (However, as noted in the Remark above, the left side diverges for
individual down queues.) Given that the initial level satisfies (4.5), after normal-
ization, the totality of down queues maps x0 into αT at time T . The up queues
behave just as in Theorem 4.1. Given that pρ = (1 − ρ)α, the proportion of up
queues approaches 1.

�

We now characterize when the function (10.7) has a fixed point.

Theorem 31. The function fT in (10.7) has a proper fixed point x
∗(T ) if and

only if α < 1. If α ≥ 1, then f (n)T (x0) → ∞ for all x0. If α < 1, then equation
x = fT (x) has a unique solution x

∗(T ) and f
(n)
T (x0) → x∗(T ) as n → ∞ for

all x0.

Proof. If α ≥ 1, then fT (x) > x for all x, so that there can be no fixed point. To
see this, note that M(T, x) > x− T . Hence fT (x) > x− (1− α)T . Now suppose
that α < 1. For any ε with 0 < ε < (1− α)T , there is an x sufficiently large that
M(T, x) < x− T + ε, so that

fT (x) < x− (1− α)T + ε < x . (10.9)

Moreover, the inequality holds for all higher x. Since fT is continuous with
fT (0) > 0, there necessarily is a fixed point. The argument of Theorem 14 can
be applied to derive the remaining properties.

�
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Figure 1. The conditional mean of RBM, M(t, x) ≡ E[R(t)|R(0) = x], as a function of t for
several values of x ≡M(0, x).

Figure 2. The conditional RBM variance, V (t, x) ≡ V ar(R(t)|R(0) = x), as a function of t for
several values of x (in two scales).

Figure 3. The RBM fixed point x∗(T ) as a function of T (in two scales).

Figure 4. The approximate variance for RBM with load balancing, V (T, x∗(T )) ≡
V ar(R(T )|R(0) = x∗(T )), as a function of T .

Figure 5. A comparison between the RBM approximations and histograms of the normalized
queue lengths after load balancing, (1 − ρ)N (m)iρ (nTρ)/2ρ, in 64 M/M/1 queues for ρ = 0.80,

0.90 and 0.95 and Tρ scaled from T = 1.0.

Figure 6. A comparison between the RBM approximations and histograms of the centered and
normalized queue lengths after load balancing,

√
m[(1− ρ)N (m)iρ (nTρ)/2ρ− n̄

(m)
iρ ], in m M/M/1

queues with ρ = 0.95 for m = 4, 16 and 64 and Tρ scaled from T = 1.0. The approximating
normal density, for the RBM approximation is N(0, V (1.0, x∗(1.0))).

Figure 7. A comparison between the RBM approximation and histograms of the normalized
queue lengths after load balancing, (1 − ρ)N (m)iρ (nTρ)/(1 + c

2
s)ρ, in 64 M/G/1 queues with

ρ = 0.95 and T = 1 for exponential (c2s = 1) and Pareto (α = c
2
s = 3) service-time distributions.

Figure 8. A comparison between the RBM approximation and histograms of the normalized
queue lengths after load balancing, (1−ρ)N (m)iρ (nTρ)/(1+c

2
s)ρ, in 4 M/G/1 queues with ρ = 0.95

and T = 1 for exponential (c2s = 1) and Pareto (α = c
2
s = 3) service-time distributions.


