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We consider the classical M/G/1 queue with two priority classes and the nonpre-
emptive and preemptive-resume disciplines. We show that the low-priority steady-
state waiting-time can be expressed as a geometric random sum of i.i.d. random
variables, just like the M/G/1 FIFO waiting-time distribution. We exploit this
structures to determine the asymptotic behavior of the tail probabilities. Unlike
the FIFO case, there is routinely a region of the parameters such that the tail prob-
abilities have non-exponential asymptotics. This phenomenon even occurs when
both service-time distributions are exponential. When non-exponential asymp-
totics holds, the asymptotic form tends to be determined by the non-exponential
asymptotics for the high-priority busy-period distribution. We obtain asymptotic
expansions for the low-priority waiting-time distribution by obtaining an asymp-
totic expansion for the busy-period transform from Kendall’s functional equation.
We identify the boundary between the exponential and non-exponential asymp-
totic regions. For the special cases of an exponential high-priority service-time
distribution and of common general service-time distributions, we obtain con-
venient explicit forms for the low-priority waiting-time transform. We also es-
tablish asymptotic results for cases with long-tail service-time distributions. As
with FIFO, the exponential asymptotics tend to provide excellent approximations,
while the non-exponential asymptotics do not, but the asymptotic relations indi-
cate the general form. In all cases, exact results can be obtained by numerically
inverting the waiting-time transform.
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1 Introduction

In this paper we study the low-priority steady-state waiting-time distribution in the classi-
cal M/G/1 queue with two priority classes and the nonpreemptive and preemptive-resume
disciplines. The priority structure tends to make the low-priority waiting-time distribu-
tion have a relatively long tail. We quantify this effect.
The Laplace transform of the low-priority waiting-time distribution and the first few

moments are well known, e.g., see Section III.3.6 of Cohen [30], Section 11.5 of Heyman
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and Sobel [41] and Theorem 2.1 below, but the distribution itself is somewhat complicated,
depending on the busy-period distribution of the high-priority customers, which in turn
is characterized implicitly via the Kendall functional equation for its transform, (2.4)
below. In fact, the low-priority waiting-time distribution is easily computed numerically
by numerical transform inversion, e.g., by the Fourier-series method or the Laguerre series
method; see Abate and Whitt [4] and Abate, Choudhury and Whitt [15]. The required
high-priority busy-period transform values for complex arguments are easily obtained by
iterating the Kendall functional equation for the high-priority busy-period transform, as
shown in Abate and Whitt [5]. This iterative calculation of the busy-period transform
was also used to calculate transient performance measures in the M/G/1 queue with the
first-in first-out (FIFO) discipline in Choudhury, Lucantoni and Whitt [27].
Here we aim to obtain a better understanding of the low-priority waiting-time distri-

bution by doing asymptotic analysis to determine the limiting form as t→∞. As in the
FIFO case, there is often an exponential tail; i.e., if W2 is the steady-state low-priority
waiting-time cumulative distribution function, then we often have

1−W2(t) ∼ αe−ηt as t→∞ (1.1)

for positive constants α and η, where f(t) ∼ g(t) as t→∞ means that f(t)/g(t)→ 1 as
t → ∞; see Abate, Choudhury and Whitt [12], [14]. Moreover, as in the FIFO case, the
asymptote in (1.1) usually provides a good approximation for t not too small.
However, unlike the FIFO case, there also is routinely asymptotics of the form

1−W2(t) ∼ αt−3/2e−ηt as t→∞ (1.2)

for positive constants α and η (different from the parameters in (1.1)). This observation
evidently has not been made before in the literature except in a special case considered
by Washburn [52], which we discuss in Section 13.
With FIFO we can also have asymptotics of the general form (1.2), but only for

special service-time distributions, called class II in [11], for which the service-time Laplace
transform ĝ(s) has rightmost singularity −s∗ < 0 and ĝ(−s∗) <∞. (A Laplace transform
of a probability density is analytic in the right halfplane, so any singularity s must have
Re(s) ≤ 0. See Section 3 for a classification of probability distributions.) Unlike FIFO,
asymptotics of the form (1.2) occurs for the low-priority waiting-time distribution for
well-behaved service-time distributions, e.g., when both service-time distributions are
exponential. Indeed, for well behaved service-time distributions, we have exponential
asymptotics as in (1.1) when the low-priority arrival rate is above a critical threshold (with
the requirement that the model still be stable), and the non-exponential asymptotics in
(1.2) when the low-priority arrival rate is below this threshold. Moreover, when (1.2)
holds, the asymptotic decay rate η in (1.2) does not increase (corresponding to smaller
tail probabilities) when the low-priority arrival rate decreases.
Upon reflection, this can be understood by observing that the low-priority waiting

time should be dominated by the remaining high-priority busy period when the low-
priority arrival rate is sufficiently small. Thus, as the low-priority arrival rate approaches
0, the low-priority waiting-time distribution approaches a nondegenerate limit, which
corresponds to the high-priority equilibrium time to emptiness, which in turn is closely
related to the equilibrium excess of the busy-period distribution (see (2.13) below). Thus,
the asymptotic form (1.2) can be anticipated if one realizes that it is the asymptotic form
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of the M/G/1 busy-period distribution, first determined by Cox and Smith [31]; see
Theorems 7.1 and 8.1 below.
As in the FIFO case, it is also possible to have asymptotics different from (1.1)

and (1.2). However, such asymptotics can occur only with the class II and III service-
time distributions in [11]. (Class III distributions are long-tail service-time distributions,
having 0 as the rightmost singularity of their Laplace transforms; see Section 3 for more
discussion.) We obtain such asymptotic results here, although some of our procedures
remain to be fully justified. (We will point out the gaps.)
Our experience is that the non-exponential asymptotes, (1.2) and others, tend to be

not nearly as accurate approximations as the exponential asymptote in (1.1), so that in
applications it may be desirable to calculate exact values in those cases, but the asymp-
totes indicate the general tendency. We give numerical examples here, which support
previous examples [3], [8], [11], [12], [13], [14]. The reader could elect to go directly to
the examples in Section 14.
The quality of the different asymptotic approximations can be explained theoretically

by the very different rates of convergence that prevail. Usually the rate of convergence
is exponential in (1.1) and only linear in (1.2); i.e., the typical refinements of (1.1) and
(1.2) are, respectively,

1−W2(t) ∼ αe−ηt(1 + o(e−εt)) as t→∞ (1.3)

for ε > 0 and
1−W2(t) ∼ αt−3/2e−ηt(1 +O(1/t)) as t→∞ . (1.4)

(Recall that an asymptotic expansion

f(t) ∼
∞
∑

k=0

gk(t) as t→∞ (1.5)

means that

f(t)−
n
∑

k=0

gk(t) ∼ gn+1(t) as t→∞ , (1.6)

for all n ≥ 0; see Erdélyi [37] or Olver [46].
The exponential asymptotics with the exponential rate of convergence in (1.3) occurs

when the rightmost singularity of the low-priority waiting-time Laplace transform ŵ2(s)
is a simple pole at −η with Re(φ) < −(η + ε) for all other singularities φ. The non-
exponential asymptotics in (1.4) occurs when the rightmost singularity of ŵ2(s) is a
branch point singularity at −η, such that Heaviside’s asymptotic expansion applies in the
form

ŵ2(s) ≡
∫ ∞

0

e−stdW2(t) ∼
∞
∑

k=0

ak(s+ η)
k/2 as s→ −η ; (1.7)

see p. 254 of Doetsch [34] or p. 139 of Van der Pol and Bremmer [51]. The whole integer
powers in (1.7) correspond to analytic functions and thus have no influence upon the
asymptotics as t→∞ in the time domain. We establish results of the form (1.3) and (1.4)
in Sections 8 and 12 here. We provide a conceptually satisfying derivation by obtaining
a corresponding asymptotic expansion for the high-priority busy-period transform from
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Kendall’s functional equation. The asymptotic expansion (1.7) for the transform ŵ2(s)
follows quite directly from the asymptotic expansion for the busy-period transform by
exploiting simple relations among asymptotic expansions, as on p. 19 of Olver [46].
We also determine the different asymptotic behavior at the boundary between (1.1)

and (1.2). At this boundary point,

1−W2(t) ∼ αt−1/2e−ηt as t→∞ , (1.8)

where α and η are positive constants (different from those in (1.1) and (1.2)). The
boundary asymptote in (1.8) can provide a much better approximation than the other
two approximations in the neighborhood of the boundary. When (1.1) applies near the
boundary point, the asymptotic constant α in (1.1) becomes very small; when (1.2) applies
near the boundary point, the asymptotic constant α in (1.2) becomes very large. (See
Remark 7.4 and Theorem 7.5.)
The work here complements other recent work on asymptotics for waiting-time distri-

butions with non-FIFO disciplines. Related asymptotics for the LIFO discipline appears
in Abate, Choudhury and Whitt [12] and Abate and Whitt [1], for polling models in
Choudhury and Whitt [26] and Duffield [35], and for the random-order-of-service (ROS)
discipline in Flatto [39]. For the LIFO discipline, the asymptotic form is as in (1.2). For
polling models, the asymptotics is of the more general form W c(t) ∼ αt−βe−ηt as t→∞.
For ROS, even for the M/M/1 model, the asymptotics is not of this form; Flatto shows

for the M/M/1 model that W c(t) ∼ αt−5/6e−ηt−γt
1/3

as t → ∞ for positive constants
α, η and γ.
Here is how this paper is organized. In Section 2 we introduce our notation and

establish convenient representations for the low-priority waiting-time distribution. A
geometric random sum representation enables us to directly apply previous asymptotic
results. In Section 3 we discuss the three classes of distributions on the positive halfline
mentioned above and establish preliminary results. In Section 4 we show that the low-
priority waiting-time distribution has a long tail if and only if at least one of the two
service-time distributions has a long tail. In Section 5 we establish the main asymptotic
result for 1−W2(t). Throughout the paper we give arguments in both the time domain and
the transform domain. In Section 6 we establish heavy-traffic limits (as the low-priority
traffic intensity increases). We show that the two iterated limits agree.
A more detailed description of the asymptotics for 1−W2(t) depends on asymptotics

for the high-priority busy-period distribution. In Section 7 we review the asymptotics
for the busy-period distribution obtained by saddle point methods by Cox and Smith
[31] and apply the results to support (1.2). In Section 8 we develop the new asymptotic
expansion for the busy-period transform and apply it to support (1.3)–(1.8). In Section 9
we establish results for the long-tail case. We obtain the asymptotes in considerable
generality there, but several of the arguments remain to be made rigorous. In Section 10
we establish associated asymptotic results for the low-priority sojourn time, which is the
low-priority waiting time plus the low-priority service time (completion time) for the
nonpreemptive (preemptive-resume) discipline.
The next three sections consider special cases. In Section 11 we discuss the special

case in which the high-priority service-time distribution is exponential. We also discuss
the special case in which both service-time distributions are exponential. In Section 12
we discuss the special case in which the two service distributions coincide, but may be
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general. In Section 13 we discuss the special case, first considered by Washburn [52],
in which the low-priority arrival rate is high and service times are short, such that the
low-priority traffic intensity is nonnegligible, making the low priority class correspond to
fluid input. We also consider the case in which the high-priority input corresponds to a
fluid. In all these special cases we are able to find more explicit expressions.
In Section 14 we give numerical examples. The first two numerical examples are for

the case in which the two classes have a common exponential service-time distribution.
The first example focuses on the two cases in (1.1) and (1.2); the second example focuses
on the boundary case in (1.8). The third example is for the case in which the two classes
have a common long-tail service-time distribution.
We conclude this introduction by mentioning that results in this paper are applied

in Berger and Whitt [21] to investigate the concept of effective bandwidths for waiting
times in high-speed communication networks using priorities; see de Veciana, Kesidis and
Walrand [33] and Chang and Thomas [24] for overviews of previous work with the FIFO
discipline. The asymptotic results here imply that modifications in the concept of effective
bandwidths are needed when they are applied to waiting times with priorities.

2 The Geometric Random Sum Representation

In this section we express the classical results for the M/G/1 low-priority waiting-time
transform in a convenient form. We consider two priorities, with high priority indexed by
1 and low priority indexed by 2. We consider the waiting time before beginning service
in the non-preemptive case, which is the same as for preemptive resume; e.g., see (3.63)
on p. 450 and (3.76) on p. 455 of Cohen [30]. Results for the waiting time to complete
service – the overall sojourn time – will be obtained as a corollaries in Section 10, just as
was done for the FIFO discipline in [14].
For any cumulative distribution function (cdf) G(t) on the nonnegative real line, let

g(t) be its probability density function (pdf), Gc(t) = 1 − G(t) its complementary cdf
(ccdf), gk its k

th moment,

ĝ(s) =

∫ ∞

0

e−stdG(t) =

∫ ∞

0

e−stg(t)dt (2.1)

its Laplace-Stieltjes transform (the Laplace transform of g(t)) and

Ĝe(t) =
1

g1

∫ t

0

Gc(u)du (2.2)

its associated equilibrium excess cdf, which has Laplace-Stieltjes transform ĝe(s) = (1 −
ĝ(s))/sg1.
For class i (i = 1, 2), let the arrival rate be λi, the service-time cdf be Gi(t) and the

traffic intensity be ρi ≡ λigi1. To have proper steady-state distributions, we assume that

ρ ≡ ρ1 + ρ2 < 1 . (2.3)

Without loss of generality (by choosing units), let g11 = 1.
The distribution of the low-priority waiting time depends on the busy-period distribu-

tion of the high priority class and related quantities. Let B1(t) be the class-1 busy-period
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cdf, b1(t) its density and b̂1(s) the Laplace transform of b1(t), defined as in (2.1). The
busy-period transform is characterized as the solution to the Kendall functional equation

b̂1(s) = ĝ1(s+ ρ1 − ρ1b̂1(s)) . (2.4)

Let
H
(1)
0 (t) = (1− P

(1)
00 (t))/ρ (2.5)

be the high-priority server-occupancy cdf, where P
(1)
00 (t) is the high-priority emptiness

probability, i.e., the probability that the system has no class-1 customers at time t given

that it had none at time 0, which is known to be monotone, so that H
(1)
0 (t) in (2.5) is a

bonafide cdf; see Section 3 of [6]. Let ĥ
(1)
0 (s) be the Laplace-Stieltjes transform of H

(1)
0 (t),

again defined as in (2.1). From Theorem 4 of [6],

ĥ
(1)
0 (s) =

b̂1e(s)

1− ρ1 + ρ1b̂1e(s)
=

1− b̂1(s)
s+ ρ1 − ρ1b̂1(s)

. (2.6)

Let F
(1)
x0 (t) be the cdf of the first passage time to 0 for class 1 starting from an initial

level of class-1 work x. The Laplace transform of its density f
(1)
x0 (t) is

f̂
(1)
x0 (s) = e

−xz1(s) , (2.7)

where
z1(s) = s+ ρ1 − ρ1b̂1(s) ; (2.8)

see (33) of [6]. The first passage time starting from a random level with density g(t)
having Laplace transform ĝ(s) thus has Laplace transform ĝ(z1(s)). The busy-period

transform can thus be expressed as b̂1(s) = ĝ1(z1(s)) as in (2.4).
A convenient representation for the low-priority virtual waiting time until beginning

service, which holds in much more general models, is the class-1 first passage time to
0 initialized by the steady-state workload of both classes. (The class-i workload is the
remaining service time of all class-i customers in the system at an arbitrary time in steady
state or, by the Poisson Arrivals See Time Averages (PASTA) property, just before an
arrival; see Wolff [54].) If a low-priority customer were to arrive in steady state, he
finds the steady-state workload of both classes. He must then wait for this work and all
subsequent class-1 input to clear until he can begin service. By the PASTA property, the
actual waiting-time distribution coincides with the virtual waiting-time distribution with
Poisson arrivals.
Thus, let V be the steady-state workload cdf for both classes and let v̂(s) be its

Laplace-Stieltjes transform. We have just observed that

ŵ2(s) = v̂(z1(s)) . (2.9)

and

W2(t) =

∫ ∞

0

F
(1)
x0 (t)dV (x) (2.10)

A key concept in analyzing the M/G/1 priority queue introduced by Gaver [40], is
the completion time, which is the time from when one low-priority customer can begin
service until the next could begin if he were present. The completion time transform is

ĉ(s) = ĝ2(z1(s)) . (2.11)
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Let ŷ2(s) be the Pollaczek-Khintchine transform with the completion time as service time
and arrival rate ω/c1, i.e.,

ŷ2(s) =
1− ω

1− ωĉe(s)
. (2.12)

(Formula (2.12) is not the class-2 workload.)
Another useful quantity is the equilibrium time to emptiness for class-1, which has

transform
f̂
(1)
e0 (s) = v̂1(z1(s)) = 1− ρ1 + ρ1b̂1e(s) , (2.13)

where v̂1(s) = ŵ1(s) is the Laplace transform of the steady-state workload for class-1; see

Theorem 3 of [6]. In the introduction, we noted that f̂
(1)
e0 (s) is the light-traffic limit of

ŵ2(s), i.e., the limit as ρ2 → 0 with ρ1 fixed. (This result follows easily from the second
representation below.)
We now give three convenient expressions for the low-priority steady-state waiting-

time transform.
Theorem 2.1 The steady-state waiting time until beginning service for the low-priority
class has Laplace transform

ŵ2(s) ≡
∫ ∞

0

e−stdW2(t) = v̂(z1(s))

=
(1− ω)f̂ (1)e0 (s)
1− ωĉe(s)

= ŷ2(s)v̂1(z1(s))

=
1− ρ
1− ρf̂(s)

, (2.14)

where
f̂(s) =

ρ1
ρ1 + ρ2

ĥ
(1)
0 (s) +

ρ2
ρ1 + ρ2

ĝ2e(z1(s)) (2.15)

for ω = ρ2/(1− ρ1), ĥ(1)0 (s) in (2.6), z1(s) in (2.8), ĝ2e(s) = (1− ĝ2(s))/g21s, f̂
(1)
ε0 (s) in

(2.13), ĉe(s) = (1− ĉ(s))/c1 for ĉ(s) in (2.11) and c1 = g21/(1−ρ1), ŷ2(s) in (2.12), and
v̂(s) is the transform of the steady-state workload for both classes.
The first formula in Theorem 2.1 is given in (2.9) above. The second formula is

a variant of a familiar decomposition; see p. 441 of Heyman and Sobel [41]. It is also
elementary to show that the last formula is equivalent to the transform formula in Cohen
[30].
The final representation (2.14) is attractive because it is in the same form as the

Pollaczek-Khintchine transform for the FIFO waiting time with f̂(s) in (2.14) and (2.15)
substituted for the transform of the equilibrium excess of the service-time distribution.

The transform f̂(s) in (2.15), being a mixture of the two probability transforms ĥ
(1)
0 (s)

and ĝ2e(z1(s)), is itself a transform of a probability distribution. Let F (t) be the cdf

associated with f̂(s) in (2.15), i.e.,

F (t) =
ρ1

ρ1 + ρ2
H
(1)
0 (t) +

ρ2
ρ1 + ρ2

∫ ∞

0

F
(1)
x0 (t)dG2e(x) . (2.16)

Paralleling the classic Beneš formula for the M/G/1 FIFO waiting time, e.g., (4.82) on
p. 255 of [30], we obtain a time-domain formula directly from (2.14). It is a geometric
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mixture of convolutions of the cdf F in (2.16).
Corollary. The ccdf of the low-priority waiting time is

W c
2 (t) =

∞
∑

n=1

(1− ρ)ρnF cn(t) (2.17)

where F cn(t) is the ccdf of the n-fold convolution of F (t) in (2.16).
The geometric random sum representation in (2.14) and (2.17) also holds for the

GI/G/1 FIFO steady-state waiting-time, there achieved by the ladder variable represen-
tation; see Chapters VII and VIII of Asmussen [18] and (14) of [12].
The moments of the low-priority waiting time are easily computed from (2.14), (2.16)

and the moments of H
(1)
0 (t) and F

(1)
x0 (t), given in Theorems 6 and 7 of [11]. For example,

the well-known formula for the mean is

w21 =
ρ1(g12/g11) + ρ2(g22/g21)

2(1− ρ1)(1− ρ)
=

v1
1− ρ1

, (2.18)

where v1 is the mean steady-state workload for both classes, i.e.,

v1 =
ρg1(c

2
s + 1)

2(1− ρ) , (2.19)

with G being the mixture of the cdf’s G1 and G2, i.e.,

G(t) =
λ1G1(t)

λ1 + λ2
+
λ2G2(t)

λ1 + λ2
, (2.20)

gk is the k
th moment of G and c2s = (g2 − g21)/g21. To have (2.18) finite we require that

g12 < ∞ and g22 < ∞. It turns out that the mean in (2.18) describes the performance
remarkably well under heavy loads (when ρ is suitably large; see Section 6). When ρ is
large and ρ2 is small (so that ρ1 ≈ ρ), we see that w21 = O((1− ρ)−2).
Remark 2.1. The first formula in (2.14) suggests an approximation. We can approximate
the distribution of V by an exponential cdf with mean v1 = (1− ρ1)w21 (for motivation,
see Section 3, Theorem 4.1(a) and Remark 4.1) and we can approximate f

(1)
x0 (t) by an

inverse Gaussian distribution. Then we obtain an exponential mixture of inverse Gaussian
distributions (EMIG) as an approximation for the cdf W2(t). As a refinement, we can let
V have its known atom of 1−ρ at the origin and let (V |V > 0) be exponential with mean
v1/ρ. For related previous work, see [3], [8] and [9].

Unfortunately, the explicit formula for the ccdf W c
2 (t) in (2.17) is not so convenient

for calculation. However, it is straightforward to calculate the ccdf W c
2 (t) numerically by

inverting its transform

Ŵ c
2 (s) =

∫ ∞

0

e−stW c
2 (t)dt =

1− ŵ2(s)
s

(2.21)

for ŵ2(s) in (2.14). For example, we can apply the Fourier-series method in [4]. We can

obtain the required busy-period transform values b̂1(s) for complex s by iterating the
Kendall equation (2.4), as indicated in [5].
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We conclude this section by pointing out that the two-dimensional transform of
the joint steady-state distribution of the high-priority and low-priority workloads, say
v̂(s1, s2), is given in Kella [44]. It is thus also possible to calculate this joint distribution
by applying two-dimensional inversion algorithms, e.g., as in Choudhury, Lucantoni and
Whitt [27] or Abate, Choudhury and Whitt [16]. An algorithm to compute the joint
distribution of the queue lengths when both classes have exponential service times was
developed by Miller [45].

3 Three Classes of Distributions

As indicated in Section 5 of [11], it is useful to divide probability distributions on the
positive halfline into three classes according to the rightmost singularity of the Laplace
transform and the value of the Laplace transform at that singularity. When we classify
the service-time distributions in this way, we determine the relevant cases for waiting-time
asymptotics.
Let g(t) be a pdf with Laplace transform ĝ(s) (defined as in (2.1)). Let −s∗ be the

rightmost singularity of ĝ(s), with −s∗ = −∞ if ĝ(s) is analytic everywhere, as in the
case g(t) has bounded support. (Note that s∗ is the radius of convergence of the moment
generating function, which equals ĝ(−s) for real s with s < s∗. However, the Laplace
transform ĝ(s) might be defined for complex s with Re(s) < −s∗ even though the moment
generating function is infinite.) Since g(t) is a pdf, we always have s∗ ≥ 0. In this setting
the pdf g(t) and its transform ĝ(s) are classified as follows:

class I: s∗ > 0 and ĝ(−s∗) =∞ ,
class II: s∗ > 0 and 1 < g(−s∗) <∞ ;
class III: s∗ = 0 and ĝ(−s∗) = 1 .

(3.1)

Class-I distributions are the “well behaved” distributions. All pdf’s with rational
Laplace transforms are class I; e.g., this includes all phase-type distributions. Whenever
the rightmost singularity −s∗ of ĝ(s) is a pole (single or multiple), ĝ(−s∗) =∞. However,
even if −s∗ is a branch point singularity, we may have g∗(−s∗) =∞; e.g., this is the case
for the gamma (1/2) transform 1/

√
1 + 2s. The steady-state waiting time in an M/G/1

queue with a service-time distribution having mean 1 has an exponential tail for all arrival
rates ρ, 0 < ρ < 1, if and only if the service-time distribution is class I; e.g., see [12].
Class-III distributions are the long-tail distributions, which fail to have proper mo-

ment generating function. They are often called subexponential distributions because they
tend to decay more slowly than any exponential. Any pdf with only finitely many finite
moments is in Class III. A familiar example is the Pareto distribution. Another example
is the Pareto mixture of exponential (PME) distributions in [11]. There are also class-III
distributions with moments of all orders, such as the Weibull and log-normal distributions.
In particular, the Weibull ccdf Gc(t) = e−(at)

c

is class III when c < 1. The steady-state
waiting time in an M/G/1 queue with a service-time distribution having mean 1 has a
class III distribution for all arrival rates ρ, 0 < ρ < 1, if and only if the service-time
distribution is class III. (This is a consequence of Theorem 4.2 below; related results are
reviewed in [11].)
In [11] we called class-II distributions semi-exponential distributions, because they
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are dominated by an exponential, i.e.,

lim
t→∞

eγtGc(t) = 0 (3.2)

for all γ < s∗, but they do not have a pure exponential tail. Since ĝ(−s∗) < ∞, the
rightmost singularity −s∗ is necessarily a branch point singularity, not a pole.
Class-II distributions are less familiar, but they are important for us because the

M/G/1 busy-period distribution is usually class II. Indeed, the M/G/1 busy-period dis-
tribution is always class II when the service-time distribution is class I. We will elaborate
on this point in Sections 7 and 8.
Class-II distributions are intimately related to class-III distributions, because one can

be converted into the other by exponential damping. Given any class-III pdf g(t), and
any γ > 0, we can construct an associated class-II pdf

gγ(t) =
e−γtg(t)

ĝ(γ)
, t ≥ 0 . (3.3)

Similarly, given any class-II pdf gγ(t) with rightmost singularity at −γ (and ĝγ(−γ) <∞),
we can construct an associated class-III pdf

g(t) =
eγtgγ(t)

ĝγ(−γ)
, t ≥ 0 . (3.4)

Since the distributions are classified according to the rightmost singularities of the
Laplace transform, it is useful to be able to draw conclusions about these singularities.
For this purpose, we give an elementary comparison lemma which is based on ordinary
stochastic order; see Section 1.2 of Stoyan [49].
Lemma 3.1. If X1 and X2 are two random variables with P (X1 > t) ≤ P (X2 > t) for
all t, then EeγX1 ≤ EeγX2 for all positive real γ. Hence the rightmost singularities of the
Laplace transforms ĝi(s) = Ee

−sXi are ordered by −s∗1 ≤ −s∗2.
We now want to relate the rightmost singularity of ĝ(s) to the tail behavior of the

ccdf Gc(t).
Lemma 3.2. Let X be a random variable with ccdf Gc(t). Then for positive real γ,

EeγX ≡
∫ ∞

0

eγtdG(t) <∞ if and only if

∫ ∞

0

eγtGc(t)dt <∞ , (3.5)

in which case
lim
t→∞

eγtGc(t) = 0 . (3.6)

As a consequence, the rightmost singularities of ĝ(s) and Ĝc(s) coincide.
Proof. Apply integration by parts as on p. 150 of Feller [38], obtaining

∫ b

0

eγtdG(t) = 1− eγbGc(b) + γ
∫ b

0

eγtGc(t)dt . (3.7)

First suppose that the integral on the left in (3.7) converges as b → ∞. Since the
contribution over (b,∞) dominates eγbGc(b), we must have eγbGc(b) → 0 as b → ∞
and the integral on the right in (3.7) must converge. Next suppose that the integral on
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the right in (3.7) converges. Since one plus the integral on the right is greater than the
integral on the left, the integral on the left must converge.

Lemma 3.2 implies that if −s∗ is the rightmost singularity of ĝ(s), then s∗ is the supre-
mum of those γ for which eγtGc(t) is integrable. Moreover, if γ < s∗, then eγtGc(t) → 0
as t→∞. Under extra regularity conditions, we have eγtGc(t)→∞ for all γ > s∗.
Lemma 3.3. Assume that

eγtGc(t)→ C(γ) as t→∞ , (3.8)

where C(γ) is some constant with 0 ≤ C(γ) ≤ ∞, for all but at most one real γ. Then
we must have C(γ) = 0 for γ < s∗ and C(γ) =∞ for γ > s∗, where −s∗ is the rightmost
singularity of the Laplace-Stieltjes transform of G(t).
Proof. The result for γ < s∗ holds by (3.6) in Lemma 3.2 without condition (3.8).
Suppose that C(γ) < ∞ for some γ with γ > s∗. Then eηtGc(t) = O(e−(γ−η)t) as
t → ∞ for any η with γ > η > s∗. This implies that eηtGc(t) must be integrable, which
by Lemma 3.2, implies that s∗ ≥ η, which is a contradiction. Hence, we must have
C(γ) =∞ for all γ > s∗. The one value of γ for which (3.8) need not hold must be s∗.

Example 3.1. Lemma 3.2 implies that eγtGc(t) is not integrable if γ > s∗, but that does
not imply that eγtGc(t)→∞ as t→∞. To understand the need for regularity condition
(3.8), let

Gc(t) = e−s
∗2k , 2k−1 ≤ t < 2k ,

for k ≥ 1, with Gc(t) = 1 for t < 1. Then

lim sup
t→∞

es
∗tGc(t) = 1 ,

but
lim inf
t→∞

e2s
∗tGc(t) = 1 .

The three classes of distributions can also be identified by comparing the tail behavior
of the ccdf of the two-fold convolution with the tail behavior of the ccdf itself. For this
purpose, we assume the convolution asymptotic property

lim
t→∞

Gc2(t)/G
c(t) = γ (3.9)

for some constant γ, 0 ≤ γ ≤ ∞, where Gc2(t) is the ccdf of the two-fold convolution of G
with itself. From an applied point of view, condition (3.9) is a regularity condition that
we should be very willing to assume. The idea of characterizing the tail behavior of the
distribution G(t) via the convolution asymptotic property is due to Chistyakov [25] and
was further developed by Chover, Ney and Wainger [28], [29]. Further discussion appears
in Section IV.4 of Athreya and Ney [20] and Appendix 4 of Bingham, Goldie and Teugels
[22].
Assuming that the convolution asymptotic property (3.9) holds, the distributions can

be classified according to the constant γ appearing in (3.9). This is intimately related to
our previous classification in (3.1) because it can be shown that necessarily

γ = 2ĝ(−s∗) ; (3.10)
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see [20], [28], [29]. As a consequence, γ ≥ 2. Moreover, given (3.9), it can be shown that
the n-fold convolutions satisfy the related asymptotic relation

lim
t→∞

Gcn(t)/G
c(t) = nĝ(−s∗)n−1 . (3.11)

The convolution asymptotic property (3.9) has been established in many special cases,
but it remains somewhat elusive in general. We give some illustrative examples and
supporting results here.
We first give an example showing the need for the regularity condition (3.9).

Example 3.2. To see the need for condition (3.9), let {tk : k ≥ 1} be a sequence with
tk+1 > 2tk for all k. Let

Gc(t) = e−s
∗tk−1 for tk−1 ≤ t < tk

for k ≥ 1, with Gc(t) = 1 for t < t0 = 1. Then

Gc2(tk) = G
c(tk)(2−Gc(tk))

but, for any fixed m and all k suitably large,

Gc2(tk + tm) = 2G
c(tk)G

c(tm)−Gc(tk)2 = 2Gc(tk + tm)Gc(tm) − Gc(tk + tm)
2 ,

so that

lim sup
t→∞

Gc2(t)

Gc(t)
≥ 2

but

lim inf
t→∞

Gc2(t)

Gc(t)
≤ 2Gc(tm) < 2 .

We next give an example covering many class-I distributions. To relate the result
about pdf’s to ccdf’s, we use the following basic lemma; see p. 17 of Erdélyi [37].
Lemma 3.4. If f(t) ∼ g(t) as t→∞, then

∫∞
t
f(u)du ∼

∫∞
t
g(u)du as t→∞.

Example 3.3. Consider two pdf’s gi(t) for i = 1, 2, with Laplace transforms ĝi(s).
Suppose that the rightmost singularity of ĝi(s) is an isolated simple pole at −s∗ for each
i, so that

lim
s→0

sĝi(s− s∗) = αi (3.12)

and
lim
t→∞

es
∗tgi(t) = αi (3.13)

for 0 < αi <∞. Then the convolution pdf

(g1 ∗ g2)(t) =
∫ t

0

g1(t− y)g2(y)dy , t ≥ 0 , (3.14)

has Laplace transform ĝ1(s)ĝ2(s) whose rightmost singularity is an isolated multiple pole
at −s∗, so that

s2g1(s− s∗)g2(s− s∗)→ α1α2 as s→ 0 (3.15)
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and
lim
t→∞

es
∗tgi(t) =∞ . (3.16)

If the two pdf’s g1(t) and g2(t) coincide, then we obtain (3.9) with γ = 2ĝ(−s∗) =∞. By
induction on n, we also obtain (3.11) with g(−s∗) =∞.

We next establish (3.9) and (3.11) for the non-exponential asymptotics of primary
interest in the priority model. For this purpose, we apply the following lemma.
Lemma 3.5. If f(t) ∼ θ(t) ≡ αt−βe−ηt as t→∞, then

∫∞
t f(u)du ∼ θ(t)/η as t→∞.

Proof. Given Lemma 3.4 and the condition, it suffices to differentiate θ(t) and observe
that −θ′(t)η−1 ∼ θ(t) as t→∞.

Lemma 3.6. Let X1 and X2 be independent random variables with densities gi(t), i =
1, 2, such that

gi(t) ∼ Ait−βe−ηt as t→∞ (3.17)

for constants η > 0, β > 1 and Ai > 0. Then

P (X1 +X2 > t) ∼ (A1d2 +A2d1)
η

t−βe−ηt as t→∞ . (3.18)

where
di = Ee

ηXi = ĝi(−η) <∞ . (3.19)

Proof. The expression for convolution yields

tβeηtP (X1 +X2 > t) = tβeηtGc2(t) +

∫ t

0

tβeη(t−y)Gc1(t− y)eηyg2(y)dy . (3.20)

By the assumption and Lemma 3.2, the first term in (3.20) approaches A2/η, so we focus
on the second term of (3.20). We break up the integral in (3.20) into two pieces, above
and below (1− ε)t for small positive ε. First

∫ (1−ε)t

0

tβeη(t−y)Gc1(t− y)eηyg2(y)dy →
A1
η

∫ ∞

0

eηyg2(y)dy

by the dominated convergence theorem and Lemma 3.2, since (t/(t − y))β ≤ (1 − ε)−β
for all t and y ≤ (1− ε)t. Second, we do a change of variables in the second integral with
z = t− y, writing
∫ t

(1−ε)t
tβeη(t−y)Gc1(t−y)eηyg2(y)dy =

∫ εt

0

eηzGc1(z)

(

t

t− z

)β

(t− z)βeη(t−z)g2(t− z)dz .

We now let t→∞ and apply the dominated convergence theorem plus Lemma 3.2 again
to obtain the limit

A2

∫ ∞

0

eηyGc1(y)dy = A2

(

eηy

η
Gc1(y)|∞0 +

1

η

∫ ∞

0

eηydG1(y)

)

=
A2(d1 − 1)

η
,

with the last step following from integration by parts. Combining the pieces yields (3.18).
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An important subclass of class III is the set of the ccdf’s with regularly varying tails;
i.e., where

Gc(t) ∼ t−cL(t) as t→∞ ,

for c ≥ 1 and L(t) slowly varying; see p. 275 of Feller [38] and Bingham, Goldie and
Teugels [22]. (An important special case is when L(t) is a constant.) Feller establishes
the following result on p. 278 of [38], which implies (3.9) with γ = 1 and (3.11) with
g(−s∗) = 1.
Lemma 3.7. Let X1 and X2 be independent random variables with ccdf ’s G

c
i (t) for

i = 1, 2, having regularly varying tails, i.e.,

Gci (t) ∼ t−cLi(t) as t→∞

for c ≥ 1 and Li(t) slowly varying. Then

P (X1 +X2 > t) ∼ t−c(L1(t) + L2(t)) as t→∞ .

We now show how to establish the convolution asymptotic properties for class II and
III distributions using operational principles for Laplace transforms. These operational
principles can be rigorously justified in some cases, but remain to be in others; see p. 139
of Van Der Pol and Bremmer [51], p. 254 of Doetsch [34] and Sections 3 and 5 of [11] for
more discussion.
Heaviside Operational Principle. Suppose that a function g(t) has Laplace transform
ĝ(s) with rightmost singularity −s∗ and asymptotic expansion

ĝ(s) ∼
∞
∑

k=0

ak(s+ s
∗)k + θ̂(s) as s→ −s∗ , (3.21)

where θ̂(s) is the transform (possibly a pseudofunction, see p. 61 of Doetsch [34]) of a
function θ(t). Then g(t) ∼ θ(t) as t→∞.
The idea is that since the terms ak(s + s

∗)k are analytic functions, they should not
contribute to the asymptotics in the time domain. This operational principle is established
as Heaviside’s theorem in the case that

θ̂(s) ∼ A(s+ s∗)γ as s→ −s∗ (3.22)

and

θ(t) ∼ Ae−s
∗t

tγ+1Γ(−γ) as t→∞ , (3.23)

for some positive non-integer power γ, where Γ(x) is the gamma function, on p. 254 of
Doetsch [34]. Note that (s + s∗)γ is then not an analytic function. Then the series only
has positive coefficients ak for k < γ. Then a condition in the theorem is that ĝ(s)
have no other singularity besides −s∗ for Re(s) > −s∗ − ε for some ε > 0. Doetsch [34]
actually has a slightly stronger singularity condition; the form stated is in Sutton [50].
The application to Pareto mixture of exponential (PME) distributions in [11] illustrates

an application beyond Heaviside’s theorem with θ̂(s) in (3.22) in Doetsch [34] and Sutton
[50].
We can apply Heaviside’s operational principle to obtain a convolution operational

principle supporting (3.9) and (3.11).
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Convolution Operational Principle. For i = 1, 2, let gi(t) be a function with Laplace
transform ĝi(s) with rightmost singularity −s∗ (independent of i) and asymptotic expan-
sion

ĝi(s) ∼
∞
∑

k=0

aik(s+ s
∗)k + θ̂i(s) as s→ −s∗ , (3.24)

as in (3.21), where ai0 6= 0 for i = 1, 2. Let (g1 ∗ g2)(t) be the convolution of g1(t) and
g2(t). Then

(g1 ∗ g2)(t) ≡
∫ t

0

g1(t− y)g2(y)dy ∼ a10θ2(t) + a20θ1(t) as t→∞ . (3.25)

Supporting Argument. Note that the transform of (g1 ∗ g2)(t) is

ĝ1(s)ĝ2(s) ∼
∞
∑

k=0

bk(s+ s
∗)k + a10θ̂2(s) + o(θ̂1(s)) + a20θ1(s) + o(θ2(s)) as s→ −s∗

for suitable constants bk and apply the Heaviside operational principle.

Of course, if θ1(t) dominates θ2(t) or vice versa, then only one term appears in the
right of (3.25).
Example 3.4. To illustrate the Heaviside operational principle and the convolution
operational principle applied to establish the convolution asymptotic formulas (3.9) and
(3.11), consider the inverse Gaussian pdf

g(t) =

√

e

4πt3
exp

(

− t
4
− 1
4t

)

, t ≥ 0 , (3.26)

with Laplace transform
ĝ(s) =

√
e exp(−

√
1 + 4s/2) , (3.27)

which has rightmost singularity −s∗ = −1/4 and ĝ(−1/4) = √e. From (3.26), we directly
obtain the asymptotic relation

g(t) ∼ θ(t) ≡
√

e

4πt3
e−t/4 as t→∞ , (3.28)

so that in this case we can verify the results we get by operations on the transforms.
If we expand the exponential in (3.27) in a power series, then we obtain

ĝ(s) = d+ ψ̂(s) (3.29)

where d =
√
e, ψ̂(s) =

√
e
∑∞
n=1

θ̂(s)n

n! e
−n/2 and

θ̂(s) = −
√
e
√
1 + 4s/2 . (3.30)

The function θ̂(s) in (3.30) is the pseudofunction transform of θ(t) in (3.28) (see p. 61

of Doetsch [34]). (Note that ψ̂(s) → θ̂(s) as s → −s∗.) From Heaviside’s operational
principle, we deduce that g(t) ∼ θ(t) as t→∞. Moreover,

g(s)n = (d+ ψ̂(s))n ∼ dn + ndn−1ψ̂(s) as s→ −s∗ = −1/4 , (3.31)
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so that we should have
gn(t) ∼ ndn−1g(t) as t→∞ , (3.32)

where gn(t) is the n-fold convolution of g(t) with itself, just as in (5.13). In this case we
can also directly invert ĝ2(s) = g(s)

2 to obtain

g2(t) = 2
√
eθ(t)e−1/t , t ≥ 0 , (3.33)

which agrees with the asymptotic result (3.32). Indeed, in this case we can actually
apply Heaviside’s theorem as in Doetsch [34] to prove that, not only does g(t) have the
asymptotic form (3.28), but it also has an asymptotic expansion of the form

g(t) ∼ θ(t)(1 +
∞
∑

i=1

ait
−i) as t→∞ (3.34)

for constants ai.

4 Long Tail or Not

Focusing on the two service-time distributions in the priority model, we obtain nine
cases in which the service-time distributions each can be class I, II or III as described in
Section 3. In five of these cases, the low-priority waiting-time distribution is class III; in
the other four it is class I or class II. We will show that if either service-time distribution
is class III, then so is the low-priority waiting-time distribution. We will also show that
if both service-time distributions are class I or II, then so is the low-priority waiting-time
distribution.
We first determine when the high-priority busy-period distribution is class III.

Theorem 4.1. The high-priority busy-period transform b̂1(s) has 0 as its rightmost sin-
gularity if and only if the high-priority service-time transform ĝ1(s) has 0 as its rightmost
singularity.
Proof. First, since a busy period is at least as long as one service time, we have
Bc1(t) ≥ Gc1(t) for all t, so that we can apply Lemma 3.1 to deduce that the rightmost
singularities are ordered: If the rightmost singularity of ĝ1(s) is 0, then so is the rightmost

singularity of b̂1(s). On the other hand, if the rightmost singularity of ĝ1(s) is less than
0, then ĝ1(s) is analytic in a neighborhood of 0. If ĝ1(s) is analytic in a neighborhood of
0, then we can apply the implicit function theorem, e.g., p. 269 of Hille [43]. The Kendall
functional equation (2.4) is known to have a unique solution, e.g., see [5]. We can expand

ĝ(s) in a power series and obtain a power series for b̂1(s) from the Kendall functional
equation (2.4) by reversion of power series, as on p. 147 of Cox and Smith [31], which

implies that b̂1(s) is analytic in a neighborhood of 0 as well.

We now turn to the low priority waiting-time distribution.
Theorem 4.2. The low-priority waiting-time transform ŵ2(s) has 0 as its rightmost
singularity if and only if at least one of the service-time transforms ĝ1(s) and ĝ2(s) has 0
as its rightmost singularity.
Proof. First we bound W c

2 (t) below by

W c
2 (t) ≥ ρ1Gc13(t) + ρ2Gc2e(t) , t ≥ 0 , (4.1)
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so that we can apply Lemma 3.1 to conclude that the rightmost singularity of ŵ2(s) is
at least as large as the rightmost singularities of ĝ1e(s) and ĝ2e(s). By Lemma 3.2, the
rightmost singularities of ĝi(s) and ĝie(s) coincide for each i. Hence, if either ĝ1(s) or
ĝ2(s) has 0 as its rightmost singularity, then so does ŵ2(s).
We can write (4.1) because the steady-state low-priority waiting time exceeds the

steady-state workload of the two classes. The steady-state workload in turn exceeds the
remaining service time of the customer in service, if any. With probability 1−ρ the server
is idle, with probability ρi the server is serving a class-i customer. Conditional on serving
a class-i customer, the remaining service time is distributed as Gcie(t). Hence we have
(4.1) as claimed.

On the other hand, if ĝ1(s) is analytic in a neighborhood of 0, then so is b̂1(s) by

Theorem 4.1. Then also is ĥ
(1)
0 (s) and z1(s) by (2.6) and (2.8). For ĥ

(1)
0 (s), we can rewrite

(2.6) as

b̂1e(s) =
(1− ρ1)ĥ(1)0 (s)
1− ρ1ĥ(1)0 (s)

. (4.2)

Since the rightmost singularity of b̂1(s) is inherited by b̂1e(s), by Lemma 3.2, the rightmost

singularity of h
(1)
0 (s) must also be less than 0. (Note that the dominator in (4.2) can only

have a root for s < 0.) By (2.8),

z1(s) = s+ ρ1(1− b̂1(s))
= s+ ρ1(b11s+ o(s))

= s+
ρ1
1− ρ1

s+ o(s)

=
s

1− ρ1
+ o(s) as s→ 0 .

(4.3)

Hence, if ĝ2(s) is analytic in a neighborhood of 0, so is ĝ2e(s) by Lemma 3.2 and ĝ2e(z1(s)).

Consequently, if ĝ1(s) and ĝ2(s) are both analytic at s = 0, then so is f̂(s) in (2.15). Since

1− ρf̂(s) can only have a zero for s < 0, ŵ2(s) in (2.14) is analytic at s = 0 too.

5 The Main Theorem

We now establish asymptotics for the low-priority waiting-time ccdf W c
2 (t). Because of

Theorem 2.1, we can draw on previous theory in the time domain, just as Pakes [47]
did to treat non-exponential asymptotics for the GI/G/1 FIFO model; see Athreya and
Ney [20], Chover, Ney and Wainger [28], [29] and Abate et al. [11], [12]. We also give
alternative transform arguments, which are remarkably simple, but which either require
extra conditions or which remain to be fully justified.
As a technical regularity condition needed for treating the cases with non-exponential

tails, we will assume that the cdf F (t) in (2.16) has the convolution asymptotic property

F c2 (t)/F
c(t)→ γ as t→∞ (5.1)

for some constant γ, 2 ≤ γ ≤ ∞, where F c2 (t) is the ccdf of the two-fold convolution
of F (t) with itself, as in (3.9). Lemma 3.6 implies that (5.1) holds in the principal case
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of non-exponential asymptotics considered here leading to (1.2). Lemma 3.7 treats the
special case of a regularly varying tail, leading to (5.1) with γ = 2.
We will also assume that

F c(t− b)
F c(t)

→ ψ(b) as t→∞ (5.2)

for each real b. It follows that ψ(b) = es
∗b, where −s∗ is the rightmost singularity of the

Laplace transform f̂(s). When (5.1) holds with γ = 2, (5.2) also holds with ψ(b) = 1; see
Lemma 3 on p. 148 of Athreya and Ney [20].
It turns out the asymptotics is determined by the low-priority waiting-time root equa-

tion

f̂(s) =
1

ρ
; (5.3)

a root of (5.3) is a zero of the denominator of the low-priority waiting-time transform
ŵ2(s) in (2.14). Clearly, any root of equation (5.3) is a singularity of ŵ2(s). Moreover,

since f̂(s) is monotone in real s where it is analytic, equation (5.3) has at most one root

to the right of the rightmost singularity of f̂(s).

Theorem 5.1. Let −s∗ be the rightmost singularity of f̂(s) in (2.15).
(a) If equation (5.3) has a negative real root −η with η < s∗, then

W c
2 (t) ∼ αe−ηt as t→∞ , (5.4)

where

α =
1− ρ

−ρηf̂ ′(−η)
. (5.5)

(b). If (5.1) and (5.2) hold and f̂(−s∗) < ρ−1, so that (5.3) has no root in (−s∗,∞),
then

W c
2 (t) ∼

ρ(1− ρ)
(1− ρf̂(−s∗))2

F c(t) as t→∞ (5.6)

for F in (2.16).
Proof. (a) We give both a probabilistic proof and a transform proof of (5.4). The
transform proof requires an extra technical condition, but the proof is very simple. The
probabilistic proof is a renewal-theory argument, as on p. 411 of Feller [38], supplemented
by a derivation of direct Riemann integrability (a technical condition). In particular, by
(2.17),

W2(t) = 1− ρ+ ρ
∞
∑

n=1

(1− ρ)ρn−1
∫ t

0

Fn−1(t− y)dF (y)

= 1− ρ+ ρ
∫ t

0

W2(t− y)dF (y) ,

so that W c
2 (t) satisfies the defective renewal equation

W c
2 (t) = ρF

c(t) + ρ

∫ t

0

W c
2 (t− y)dF (y) . (5.7)
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Multiplying (5.7) through by eηt, we see that eηtW c
2 (t) satisfies the proper renewal equa-

tion

eηtW c
2 (t) = e

ηtρF c(t) + ρ

∫ t

0

eη(t−y)W c
2 (t− y)eηydF (y) , (5.8)

provided that eηyρdF (y) corresponds to a proper probability distribution, i.e., provided
that

1 =

∫ ∞

0

eηyρdF (y) = ρf̂(−η) , (5.9)

which is the stated condition. Assuming that eηxF c(x) is directly Riemann integrable
(dRi), which we verify below, we can apply the key renewal theorem (p. 363 of Feller [38]
or p. 118 of Asmussen [18]) to deduce that

lim
t→∞

eηtW c
2 (t) =

∫∞
0 eηyF c(y)dy
∫∞
0 yeηydF (y)

. (5.10)

Using integration by parts in the numerator and denominator of (5.10), we see that the

numerator is η−1(f̂(−η)−1) = (1−ρ)/ρη and the denominator is −f̂ ′(−η) = (−f̂ ′(−η)η−
(η/ρ))/η2, which implies (5.5).
Finally, we need to verify that eηtF c(t) is dRi for the application of the renewal

theorem. We can apply condition (iv) on p. 119 of Asmussen [18]. Since f̂(s) is analytic
for Re(s) > −s∗, Ee(η+ε)X < ∞ for X distributed as F and some ε > 0. Hence,
E[e(η+ε)X ; X > t] → 0 as t → ∞, but E[e(η+ε)X ;X > t] ≥ e(η+ε)tF c(t), which implies
that e(η+ε)tF c(t)→ 0 as t→∞. Hence, there is a constant C such that eηtF c(t) ≤ Ceεt
for all t ≥ 0. Since eηtF c(t) is also continuous and bounded, it is dRi by (iv) on p. 119 of
[18].
Now we give the transform proof of (5.4). For this, we need an extra technical

regularity condition, which seems no serious imposition for practical purposes. We assume
that

ectW c
2 (t)→ d(c) as t→∞ (5.11)

for all positive c, where d(c) is some constant depending on c with 0 ≤ d(c) ≤ ∞. (Clearly
for all but at most one choice of c we must have d(c) = 0 or∞.) Given that (5.11) holds,

sŴ c
2 (s− c)→ d(c) as s→ 0 (5.12)

for each positive c by the final value theorem for Laplace transforms. As a special case of
(5.12), we have

sW c
2 (s− η)→ α as s→ 0

for the η satisfying (5.9) and some α, 0 ≤ α ≤∞. However, by L’Hospital’s rule,

sŴ c
2 (s− η) = s

(1− ŵ2(s− η))
s− η =

sρ(1− f̂(s− η))
(s− η)(1− ρf̂(s− η))

→ α

for α in (5.5). Since η < s∗, f̂(s) is analytic at −η, so that the derivative f̂ ′(−η) is finite.
With transforms, in a specific application we could verify condition (5.11) by examining
the singularities of ŵ2(s) and showing that the rightmost singularity is an isolated pole.
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(b) Again we give both probabilistic and transform arguments. In both cases, the limit
(5.6) follows by a term-by-term limit in (2.17), with

F cn(t) ∼ nf̂(−s∗)n−1F c(t) as t→∞ (5.13)

by (5.1), just as in (3.11). The supporting technical details for the case s∗ = 0 are given

in Section IV.4 of Athreya and Ney [20]; then f̂(−s∗) = 1 in (5.6) and the constant
becomes ρ/(1 − ρ). The supporting technical details for the case −s∗ < 0 are given in
Chover, Ney and Wainger [28], [29]. Conditions (5.1) and (5.2) are assumptions there.
The term-by-term limit is justified in these sources.
We now turn to the transform proof of part (b). Since the root equation (5.3) has no

root to the right of −s∗, the rightmost singularity of ŵ2(s) is the rightmost singularity
of f̂(s), which is −s∗. Thus, the desired limiting behavior of both F c(t) and W c

2 (t) as

t → ∞ is determined by the limiting behavior of f̂(s) and ŵ2(s) as s ↓ −s∗. Moreover,
we must have f̂(−s∗) < ∞, so that −s∗ is a branch point singularity. Hence, we are
in the domain of Heaviside’s operational principle. Indeed, the convolution operational
principle in Section 3 implies (5.13) by induction on n. However, both the convolution
operational principle and the term-by-term limit in (2.17) remain to be justified with the
transform argument.
Remark 5.1. Note that the root equation (5.3) has a solution −η for all ρ if and only
if f̂(s) is class I, while it never has a solution if f̂(s) and ŵ(s) are class III. There are

two regions when f̂(s) is of class II. In Section 7 we will show that f̂(s) is typically of
class II.

6 The Heavy-Traffic Limit

We now discuss the heavy-traffic limit for the steady-state low-priority waiting-time dis-
tribution obtained by letting ρ → 1, which we do by letting ρ2 → 1 − ρ1 with ρ1 fixed.
It lends extra support to the exponential asymptotics in Theorem 5.1(a). We omit the
dependence on ρ2 in our notation. Our limit here complements previous heavy-traffic
limits for the stochastic processes in this model; see Harrison [42] and Whitt [53].
Theorem 6.1 Assume that g12 <∞ and g22 <∞. If ρ2 → 1− ρ1 then

W c
2 (t/w21)→ e−t, t ≥ 0 , (6.1)

for w21 in (2.18).
Proof. We use Laplace transforms, exploiting the continuity theorem; p. 431 of Feller
[38]. We show that ŵ2(s/w21)→ (1 + s)−1 as ρ→ 1. Rewrite the transform (2.14) as

ŵ2(s) =
1

1 +
ρ(1− f̂(s))
1− ρ

.

Then we show that

ρ

1− ρ (1− f̂((1− ρ)s)→ s

(

ρ1(g12/2g11)

1− ρ1
+ (g22/2g21)

)

.
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This follows from (2.6) and (2.8), since h
(1)
01 = g12/2(1 − ρ1) by Theorem 6(a) of [6],

b11 = 1/(1− ρ1),

ĥ
(1)
0 ((1− ρ)s) = 1− (1− ρ)sh

(1)
01 +O((1− ρ)2)

z((1− ρ)s) = (1 + ρ1b11)(1− ρ)s+O((1− ρ)2)

ĝ2e(z((1− ρ)s)) = 1− g2e1(1 + ρ1b11)(1− ρ)s+O((1− ρ)2)
as ρ2 → 1− ρ1.

The approximation suggested by Theorem 6.1 is

W c
2 (t) ≈ ρe−ρt/w21 , t > 0 , (6.2)

for w21 in (2.18). In (6.2) we have refined the heavy-traffic approximation obtained di-
rectly from (6.1) by accounting for the known probability of emptiness of 1−ρ. However,
unlike FIFO, the heavy-traffic approximation (6.2) is not exact for the usual exponential
special cases. (We will give exact results for exponential service times later.)
Remark 6.1. We note that the heavy-traffic approximation can be extended to very
general single-server queues with non-Poisson arrivals. The key observation is that the
low-priority steady-state virtual waiting time satisfies the first representation in Theo-
rem 2.1. In heavy traffic, the actual waiting time will be close to the virtual waiting
time. In heavy traffic, the total workload of both classes will tend to be large. When
the initial level of work, say x, is very large, then the high-priority first passage time to
0 is approximately x/(1 − ρ1) by the law of large numbers. (For the M/G/1 model this
is always the expected value; see Theorem 7 of [6].) Hence, in heavy traffic, we have the
approximation

W c
2 (x) ≈ V c((1− ρ1)x) (6.3)

where V is the steady-state workload cdf for both classes. Thus, standard heavy-traffic
approximations for V (ignoring the priority structure) translate into heavy-traffic approx-
imations for W2. Theorem 6.1 and approximation (6.2) can be regarded as special cases
of this argument.
Remark 6.2. By (6.2), ρ/w21 is a natural candidate to serve as an initial guess for the
asymptotic parameter η in the Newton-Raphson method for finding a root of the equation
1− ρf̂(s) = 0 in (5.3).
As in [7] and Section 3 of [12], we can develop a heavy-traffic expansion in powers of

1 − ρ for the asymptotic parameters η and α in the exponential asymptotics in (5.4) by
doing a Taylor series expansion of f̂(s). We thus obtain the following result by a minor
modification of the proof of Theorem 6.1.
Theorem 6.2. Assume that the condition of Theorem 5.1(a) holds. Then, as ρ2 → 1−ρ1,

η = w−121 +O((1− ρ)2) as ρ→ 1 (6.4)

for w21 in (2.18) and
α = 1 +O((1− ρ)) as ρ→ 1 . (6.5)

Theorems 6.1 and 6.2 imply that the two iterated limits involving ρ2 → 1 − ρ1 and
t→∞ agree.
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7 The Busy-Period Asymptotics Equation

Further detail about the asymptotics for W c
2 (t) in Theorem 5.1 primarily depends upon

asymptotics for the high-priority first-passage-time and busy-period distributions. We
draw upon asymptotic results established by saddle point methods by Cox and Smith
[31]. We restate their result in the form of an asymptotic expansion and give additional
details about the proof. (An asymptotic expansion is defined in (1.5) and (1.6).)
Note that the reciprocal of the asymptotic decay rate for the busy period is the

relaxation time for the total workload process; see III.7.3 of Cohen [30]. We let τ1 represent
this relaxation time.
Theorem 7.1. (Cox and Smith [31]) If there is a negative real root −ζ1 of the busy-period
asymptotics equation

−ĝ′1(s) =
1

ρ1
, (7.1)

where −ζ1 is to the right of all singularities of ĝ1(s), then f1x0(t) and b1(t) have asymptotic
expansions

f
(1)
x0 (t) ∼ xeζxρ1α1(πt3)−1/2e−t/τ1(1 +

∞
∑

i=1

βit
−i) as t→∞ (7.2)

for all x > 0 and

b1(t) ∼ α1(πt3)−1/2e−t/τ1(1 +
∞
∑

i=1

βit
−i) as t→∞ , (7.3)

where
τ−11 = ρ1 + ζ1 − ρ1ĝ1(−ζ1) , (7.4)

α1 = [2ρ
3
1ĝ
′′
1 (−ζ1)]−1/2 (7.5)

βi is a constant for each i with

β1 = −α41ρ51

[

5

3
α21ρ

3
1ĝ
(3)
1 (−ζ1)2 −

ĝ
(4)
1 (−ζ1)
2

]

. (7.6)

Proof. The asymptotic expansions (7.2) and (7.3) are obtained in the same way from
integral representations, so we only discuss (7.3). Note that 7.3 is obtained formally from
(7.2) by integrating with respect to G1, i.e.,

b1(t) =

∫ ∞

0

f
(1)
x0 (t)dG1(x) , (7.7)

using condition (7.1). Cox and Smith [31] established a contour integral representation
for b1(t), namely

b1(t) =
1

2πρ1ti

∫ a+i∞

a−i∞
etφ1(s)ds , (7.8)

where
φ1(s) = s− ρ1 + ρ1ĝ1(s) . (7.9)
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(We do not elaborate on the derivation of (7.8) because it is explained fully in [31] and
reviewed in [13].) The contour in (7.8) is a vertical line with Re(s) = a such that ĝ1(s) has
no singularities on or to the right of it. To establish (7.3), we apply Laplace’s method or
the saddle point method as on pages 80, 121–127 of Olver [46]. We elaborate on this point,
because it is not explained in [31]. Since the service-time transform ĝ1(s) is generic, it is
not possible to exploit specific structure beyond the fact that it is a probability transform,
defined as in (2.1). Assuming that (7.1) holds, we see that φ(−ζ) < 0, φ′(−ζ) = 0 and
φ′′1 (−ζ) > 0, so that for large t the integral in (7.8) is dominated by its behavior in the
neighborhood of −ζ. Since −ζ is to the right of all singularities of ĝ1(s) and thus of φ1(s),
we can change the contour without changing the value of the integral. It is convenient to
replace the contour by three pieces: two vertical lines −ζ − ε − ωi and −ζ + ε + ωi for
ω > 0 and the closed interval [−ζ − ε , − ζ + ε] for suitably small positive ε (proceeding
continuously starting from −ζ − ε − i∞). It turns out that we can neglect the integral
over the two vertical lines, because

|etφ1(s)| = etRe(φ1(s)) ≤ etφ1(Re(s)) , (7.10)

for φ1(s) in (7.9). To establish the inequality in (7.10), let s = σ + iω and note that

Re(φ1(s)) = σ − ρ+ ρ
∫ ∞

0

e−σx cos(ωx)dG1(x)

≤ σ − ρ+ ρ
∫ ∞

0

e−σxdG(x) = φ1(Re(s)) . (7.11)

Hence, for this problem, the saddle point problem in the complex plane reduces to
Laplace’s method on the real line, as discussed on pp. 80–86 of Olver [46]. Then (7.3) fol-

lows from taking a Taylor series expansion of φ1(s), i.e., φ1(s) ≈ φ1(−ζ) + φ′′1 (−ζ) (s+ζ)
2

2
for real s; see p. 80 of [18] for details. See pp. 86 and 127 of [46] for the asymptotic
expansion.

Corollary 7.1. Under the conditions of Theorem 7.1, the rightmost singularity of b̂1(s)
is −τ−11 and

b̂1(−τ−11 ) = 1 + ρ−11 (ζ1 − τ−11 ) = ĝ1(−ζ1) ,
so that b1(t) is a class II distribution.
Remark 7.1. Note that a root −ζ1 exists for the busy-period equation (7.1) whenever
the service-time cdf G1(t) is class I. When G1(t) class II, a root −ζ1 for (7.1) exists if and
only if −ĝ′1(−s∗1) > 1/ρ1, where ĝ′1(−s∗1) is the right derivative at the singularity −s∗1.
We combine Theorem 7.1 and Lemmas 3.4 and 3.5 to obtain the following corollary.

(This corollary is not stated correctly in [31]. Recall that we have assumed that g11 = 1.)
Corollary 7.2. Under the assumptions of Theorem 7.1,

Bc1(t) ∼ τ1b1(t) as t→∞ (7.12)

and
Bc1e(t) ∼ (1− ρ1)τ1Bc1(t) ∼ (1− ρ1)τ21 b1(t) as t→∞ . (7.13)

For the non-exponential asymptotics in (5.6), we need to determine the asymptotics
for the ccdf F c(t) in (2.16). However, we have already determined the asymptotics for the



Joseph Abate and Ward Whitt 24

component H
(1)c
0 (t) in our previous treatment of M/G/1 LIFO waiting times, assuming

that the busy-period root equation (7.1) has the zero, which is by essentially the same
argument as in Theorem 7.1. By (37) of [12] or by (2.7) and Theorem 3.1 of [10],

h
(1)
0 (t) ∼ (α1/τ1ζ21 )(πt3)−1/2e−t/τ1 as t→∞ (7.14)

and, by Lemma 3.5,

H
(1)c
0 (t) ∼ (α1/ζ21 )(πt3)−1/2e−t/τ1 as t→∞ . (7.15)

Since H
(1)c
0 (t) is related to the probability of emptiness by (2.5), (7.15) also follows from

asymptotic results for the probability of emptiness in the GI/G/1 queue on p. 609 of
Cohen [30].

More generally, we can relate the asymptotics of H
(1)c
0 (t) to the asymptotics of Bce(t),

by the same reasoning used in Theorem 5.1(b).

Theorem 7.2. Let −s∗ be the rightmost singularity of ĥ(1)0 (s). (a) If 1 − ρ1ĥ
(1)
0 (s) has

no real root in (−s∗, 0) and if H(1)c0 (t) satisfies (5.1) and (5.2), then

Bc1e(t) ∼
1− ρ1

(1− ρ1ĥ(1)0 (−s∗))2
H
(1)c
0 (t) as t→∞ . (7.16)

If in addition s∗ = 0, then

H
(1)c
0 (t) ∼ (1− ρ1)Bc1e(t) as t→∞ . (7.17)

Proof. Note that we can rewrite (2.6) as

b̂1e(s) =
(1− ρ1)ĥ(1)0 (s)
1− ρ1ĥ(1)0 (s)

= (1− ρ1)
∞
∑

n=0

ρn1h
(1)
0 (s)

n+1 , (7.18)

so that we have a minor modification of the geometric random sum representation and
we can apply the argument in Theorem 5.1(b).

We now characterize the rightmost singularity of ĥ
(1)
0 (s) and f̂(s) under the assump-

tion of Theorem 7.1 and determine when the exponential asymptotics holds. In our
statement we use the inverse function of z1(s) for negative real s, denoted by z

−1
1 (s),

which can be expressed as
z−11 (s) = s− ρ1 + ρ1ĝ1(s) . (7.19)

By (2.4), z−11 (z1(s)) = s for any complex s; see (29) and (30) of [6].
Theorem 7.3. Assume the condition of Theorem 7.1.

(a). Then −τ−11 is the rightmost singularity of ĥ
(1)
0 (s),

ĥ
(1)
0 (−τ−11 ) =

1

ρ1
(1− (ζ1τ1)−1) (7.20)

and 1− ρ1ĥ(1)0 (s) has no root in (−τ−11 , 0).
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(b). Let −s∗2 and −s∗ be the rightmost singularities of ĝ2(s) and f̂(s), respectively.
Then

s∗ =







τ−11 , ζ1 < s∗2
−z−11 (−s∗2) > 0 , ζ1 > s∗2 > 0
0, s∗2 = 0

(7.21)

(c) If in addition s∗2 > 0, then the root equation (5.3) has a negative real zero −η with
η < s∗, so that the exponential asymptotics in (5.4) holds for all ρ > ρ∗2, where

ρ∗2 =















g21τ
−1
1

ĝ2(−ζ1)−1
, s∗2 > ζ1

0 , s∗2 < ζ1 and ĝ2(−s∗2) =∞
1−ρ1ĥ

(1)
0 (z

−1
1 (−s

∗

2))

ĝ2e(−s∗2)
, s∗2 < ζ1 and ĝ2(−s∗2) <∞ .

(7.22)

Proof. (a) By (7.15), H
(1)c
0 (t) ∼ (1/τ1ζ21 )Bc1(t) as t→∞, so that −τ−11 is the rightmost

singularity of ĥ
(1)
0 (s), just like of b̂1(s). Moreover, 1 − ρ1ĥ0(s) must not have a zero in

the interval or else b̂1e(s) would have exponential asymptotics, by virtue of (7.18), using
the reasoning of Theorem 5.1. By (7.16),

1

τ1ζ21
= τ1(1− ρ1ĥ(1)0 (−τ−11 ))2 ,

which implies (7.20). By (7.20), ρ1ĥ
(1)
0 (−τ−1) < 1. Since ĥ

(1)
0 (s) is monotone, we have a

second direct derivation showing that ρ1ĥ
(1)
0 (s)− 1 has no root in the interval (−τ−11 , 0).

(b) By (2.4), (2.8) and (7.19),

b̂1(−τ−11 ) = 1 + ρ−11 (ζ1 − τ−11 ) (7.23)

and
z1(−τ−11 ) = −ζ1 , (7.24)

from which we obtain (7.21).

(c) First suppose that s∗2 > ζ1, so that the rightmost singularity of f̂(s) is −τ−11 . To
find the boundary point ρ∗2 in (7.22) we solve for ρ

∗
2 in the equation

1− ρ1ĥ(1)0 (−τ−11 )− ρ∗2ĝ2e(z1(−τ−11 )) = 0 . (7.25)

Combining (7.24), (7.25) and (7.25) yields the first case of (7.22).
Since ĝ2e(z1(−s)) is increasing in real s, if s∗2 < ζ1, then the rightmost singularity of

f̂(s) is z−11 (−s∗2). Then the equation 1− ρf̂(s) = 0 will have a root −η with η < τ−11 for
all ρ2 provided that ĝ2e(−s∗2) = ∞, which occurs if ĝ2(−s∗2) = ∞. If ĝ2(−s∗2) <∞, then
ĝ2e(−s∗) <∞ and the boundary for the existence of the root η is the equation

1− ρ1h(1)0 (z−11 (−s∗2))− ρ∗2ĝ2e(−s∗2) = 0 ,

which yields the third case of (7.22).

Remark 7.2. Note that exponential asymptotics holds for all ρ2 (i.e., ρ
∗
2 = 0) when

s∗2 < ζ1 and ĝ2(−s∗2) =∞. However, if ĝ2(s) has no singularities (as with a finite mixture
of atoms), then ρ∗2 is never 0.
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We now establish the non-exponential asymptotics in Theorem 6.1(b) in the main
case. The next three results are used in our proof of Theorem 7.4 below.
Lemma 7.1. Under the conditions of Theorem 7.1,

τ−11 < (1− ρ1)ζ1 .

Proof. Since ĝ1(−s) is strictly convex in s,

ĝ1(−ζ1)− ĝ(0)
ζ1

> −ĝ′1(0) = 1 .

Since ĝ(0) = 1, combining this with (7.4) completes the proof.

Our next lemma establishes a regularity property about F
(1)c
x0 (t) for large x. We can

apply the law of large numbers to show that the first passage time is likely to occur near
time x/(1−ρ1) for large x. We use a large deviations argument to establish an exponential
bound refinement.
Lemma 7.2. Under the conditions of Theorem 7.1, for all positive ε,

F
(1)c
(1−ρ1)(1−ε)t,0

(t) ≤ e−(1−ρ1)(1−ε)t`(ε) , t > 0 , (7.26)

and
F
(1)
(1−ρ1)(1+ε)t,0

(t) ≤ e−(1−ρ1)(1+ε)t`(ε) , t > 0 , (7.27)

where
`(ε) = sup

s
{sε− z1(s)} → ζ1 as ε ↓ 0 (7.28)

for z1(s) in (2.8), so that for all positive ε sufficiently small

F
(1)c
(1−ρ1)(1−ε)t,0

(t) = o(F
(1)c
x0 (t)) = o(e

−t/τ1) as t→∞ (7.29)

and
F
(1)
(1−ρ1)(1+ε)t,0

(t) = O(e−t/τ1)) as t→∞ . (7.30)

Proof. Recall that F
(1)
nx,0(t) is the n-fold convolution of F

(1)
x,0 (t) for all positive x and

positive integers n, that the mean of F
(1)
x0 (t) is x/(1−ρ1) (e.g., see Theorem 7 of [6]), and

that the Laplace transform of f
(1)
x0 (t) is given in (2.7). Hence, we can apply Chernoff’s

bound, e.g., (1.6a) on p. 14 of Shwartz and Weiss [48], to obtain (7.26) and (7.27). By
(29) and (30) of [6] and (7.23) and (7.24), we see that the root of z ′1(−s) = 0 is ζ1, which
implies that `(ε)→ ζ1 as ε ↓ 0. We apply Lemma 7.1 to obtain (7.29) and (7.30).

We now obtain control of the asymptotics of the second term of F c(t) in (2.16) under
regularity conditions.
Lemma 7.3. Under the conditions of Theorem 7.1, if G is any cdf on the nonnegative
real line such that

Gc(ct) = o(e−t/τ1) as t→∞ (7.31)
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for c < 1− ρ1, then
∫ ∞

0

F
(1)c
x0 (t)dG(x) ∼ −ĝ′(−ζ1)F c10(t)

∼ −ĝ′(−ζ1)ρ1τ1α1(πt3)−1/2e−t/τ1 as t→∞ . (7.32)

Proof. By Fatou’s lemma, (7.2) and Lemma 3.5,

lim inf
t→∞

F
(1)c
10 (t)

−1
∫ ∞

0

F
(1)c
x0 (t)dG(x) ≥

∫ ∞

0

xeζ1xdG(x) = −ĝ′(−ζ1) . (7.33)

Thus it suffices to establish an upper bound for the lim sup. For this purpose, we break
up the integral into three parts, as

∫ ∞

0

=

∫ N

0

+

∫ ∞

N∨ct
+

∫ N∨ct

N

(7.34)

letting c = (1 − ρ1)(1 − ε) for small positive ε. We bound F (1)cx0 (t) above by 1 in the
second integral in (7.34) and we apply Lemma 7.2 to show that the third integral in

(7.34) is negligible. In particular, for the third integral, F
(1)c
x0 (t) ≤ F

(1)c
ct,0 (t) for all x and

∫ N∨cd
N dG(x) ≤ 1. Thus,

lim sup
t→∞

F
(1)c
10 (t)

−1
∫ ∞

0

F
(1)c
x0 (t)dG(x) ≤

∫ N

0

xeζxdG(x) + lim sup
t→∞

{

Gc(ct)

F
(1)c
10 (t)

+
F
(1)c
ct,0 (t)

F
(1)c
10 (t)

}

≤
∫ ∞

0

xeζxdG(x) .

Theorem 7.4. If the conditions of Theorem 7.1 hold and if s∗2 > ζ1, where −s∗2 is the
rightmost singularity of the low-priority service-time transform ĝ2(s), then

F c(t) ∼
(

ρ1ζ
−2
1 − ρ2ρ1τ1ĝ′2e(−ζ1)

ρ1 + ρ2

)

α1(πt
3)−1/2e−t/τ1 as t→∞ (7.35)

and, if ρ2 < ρ∗2 for ρ
∗
2 = g21/τ1(ĝ2(−ζ1)− 1) as in (7.22), then

W c
2 (t) ∼

(1− ρ)ρ1τ21 [1− ρ2τ1ζ1ĝ′2(−ζ1)g−121 − (ρ2/ρ∗2)]
[1− (ρ2/ρ∗2)]2

α1e
−t/τ1
√
πt3

as t→∞ (7.36)

for ζ1 in (7.1), τ
−1
1 in (7.4) and α1 in (7.5).

Proof. By Theorem 7.3(b), the rightmost singularity of f̂(s) is −τ−11 . The asymptotics
for H

(1)c
0 (t) is given in (7.15). The asymptotics for the second term of F in (2.16) is given

by Lemma 7.3. Since s∗2 > ζ1, by assumption, and (1 − ρ1)ζ1 > τ−11 , by Lemma 7.1,
condition (7.31) holds for G = G2e. Since ĝ2e(s) = (1− ĝ2(s))/g21s,

−ĝ′2e(−ζ1) =
1− ĝ2(−ζ1)− ζ1ĝ′2(−ζ1)

g21ζ21
. (7.37)

Finally, we apply Theorem 5.1(b), (7.20) and (7.22) to obtain (7.36). In this case we can
directly verify conditions (5.1) and (5.2); condition (5.1) follows from Lemma 3.6.



Joseph Abate and Ward Whitt 28

Remark 7.3. Note that the asymptotic decay rate τ−11 in (7.36) does not depend on ρ2
provided that ρ2 < ρ∗2.
Remark 7.4. Note that the asymptotic constant in (7.36) explodes as ρ2 ↑ ρ∗2.
We have just noted that the non-exponential asymptote in (7.36) becomes useless

as ρ2 ↑ ρ∗2, because the asymptotic constant explodes. Our next result shows that the
exponential asymptote in (5.4) also becomes useless as ρ2 ↓ ρ∗2. We need the following
lemma in our proof of Theorem 7.5 below.
Lemma 7.4. If the conditions of Theorem 7.1 hold, then b̂′1(−τ−11 ) = −∞.
Proof. By Kendall’s equation (2.4),

b̂′1(s) = ĝ
′
1(z1(s))(1− ρ1b̂′1(s)) (7.38)

Since z(−τ−11 ) = −ζ1 and ĝ′1(−ζ1) = −ρ−11 , equation (7.38) approaches

−ρ1b̂′1(−τ−11 ) = 1− ρ1b̂′1(−τ−11 )

as s ↓ −τ−11 . However, x =∞ is the only solution to the equation x = x+ 1.

Theorem 7.5. Assume that the conditions of Theorem 7.1 hold with s∗2 > ζ1, so that

−τ−11 is the rightmost singularity of f̂(s) as in (7.21). If ρ2 ↓ ρ∗2, then α → 0 for α in
(5.5).

Proof. As ρ2 ↓ ρ∗2, η ↓ τ−11 . Hence, by (5.5), it suffices to show that f̂ ′(−τ−11 ) = −∞,
where all derivatives at −τ−11 are understood to be right derivatives. First, by Lemma 7.4,

b̂′1(−τ−11 ) = −∞. Then, since

ĥ
(1)
0 (s) =

1

ρ1
− s

ρ1z1(s)
,

we have
d

ds
ĥ
(1)
0 (s) = −

−1
ρ1z1(s)

+
s

ρ1z1(s)2
(1− ρ1b̂′1(s)) .

Since z1(−τ−11 ) = −ζ1 and b̂′1(−τ−11 ) = −∞, ĥ
(1)′

0 (−τ−11 ) = −∞, which implies that
f̂ ′(−τ−11 ) = −∞.

We conclude this section by treating the third case in Theorem 7.3 in which s∗2 < ζ1,
ĝ2(−s∗2) <∞ and ρ2 < ρ∗2.
Theorem 7.6. Assume that the condition of Theorem 7.1 holds, but that −ζ1 < −s∗2,
where −s∗2 is the rightmost singularity of ĝ2(s) and ĝ2e(−s∗2) <∞, so that

ĝ2e(s) ∼ ĝ2e(−s∗2) + θ̂2e(s) as s→ −s∗2 . (7.39)

then

ŵ2(s) ∼
1− ρ

A0 − ρ2θ̂(s)
∼ 1− ρ

A0
+
(1− ρ)ρ2θ̂(s)

A20
as s→ −s∗2 (7.40)

for

θ̂(s) = θ̂2e(z
′
1(z
−1
1 (−s∗2))) , (7.41)

A0 = 1− ρ1ĥ(1)0 (z
(−1)
1 (−s∗2))− ρ2ĝ2e(−s∗2) = ĝ2e(−s∗2)(ρ∗2 − ρ2) , (7.42)
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z−11 (s) in (7.19) and ρ
∗
2 in (7.22). If, in addition,

θ̂2e(s) ∼ A(s+ s∗2)γ as s→ −s∗2 (7.43)

for some positive non-integer γ and ĝ2e(s) has no singularities other than −s∗2 with
Re(s) > −s∗2 − ε for some ε > 0, then

W c
2 (t) ∼

(1− ρ)ρ2
A20

Gc2e

(

t

z′1(z
−1
1 (−s∗2))

)

as t→∞ . (7.44)

If, in addition −s∗2 = 0, then

W c
2 (t) ∼

ρ2
1− ρG

c
2e((1− ρ1)t) as t→∞ . (7.45)

Proof. Expand ĝ2e(z1(s)) around z
−1
1 (−s∗2). Then

ĝ2e(z1(s)) ∼ ĝ2e(−s∗2) + θ̂(s) as s→ −s∗2
and

1− ρf̂(s) ∼ A0 − ρ2θ̂(s) as s→ −s∗2
for θ̂(s) in (7.41) and A0 in (7.42), from which we obtain (7.40). Under the extra conditions

on θ̂2e(s) in (7.43) and on the singularities of ĝ2e(s), we can apply Heaviside’s theorem on
p. 254 of Doetsch [34] and Sutton [50] to obtain the asymptotic relation for the density
in the time domain, which implies (7.44) by Lemma 3.4. Finally, for (7.45), note that
z−11 (0) = 0 and

z′1(0) = 1− ρ1b′1(0) = 1− ρ1
( −1
1− ρ1

)

=
1

1− ρ1
.

Also note that A0 = 1− ρ for A0 in (7.42) when −s∗2 = 0.

Remark 7.5. By the Heaviside operational principle in Section 3, we conclude (7.44)
and (7.45) without imposing the condition (7.43), but this step remains to be justified.

8 Asymptotic Expansions from Kendall’s Functional Equation

In Theorem 7.1 we obtained an asymptotic expansion for the high-priority busy-period
pdf b1(t) by using saddle point methods with an integral representation. This enabled us
to obtain the asymptote for the low-priority waiting-time ccdf W c

2 (t), but this required
rather difficult arguments in the time domain, such as Lemma 7.2. In this section we show
that asymptotics for W c

2 (t) can be developed more easily starting from an asymptotic

expansion for the high-priority busy-period transform b̂1(s).

We obtain our asymptotic expansion for b̂1(s) from Kendall’s functional equation

(2.4). If we assume that the rightmost singularity of b̂1(s) is a branch point singularity
at s = −τ−11 and that b1(s) no other singularities for Re(s) ≥ −τ−11 − ε for some positive
ε, and if we also assume that b̂1(s) has an asymptotic expansion in powers of (s + τ

−1
1 ),

i.e.,

b̂1(s) ∼
∞
∑

k=0

ak(s+ τ
−1
1 )

γk as s→ −τ−11 , (8.1)
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where γk < γk+1 for all k, then we can apply Theorem 7.1 and Heaviside’s theorem on
p. 254 of Doetsch [34] and Sutton [50] to conclude that b̂1(s) must have an asymptotic
expansion in half powers, i.e.,

b̂1(s) ∼
∞
∑

k=0

ak(s+ τ
−1
1 )

k/2 as s→ −τ−11 , (8.2)

when the busy-period root equation (7.1) has a root to the right of all singularities to the
high-priority service-time transform ĝ1(s). The terms in (8.1) with non-integer powers
must have counterparts in the time-domain expansion in Theorem 7.1. As indicated in
Doetsch [34], the terms a2k(s + τ

−1
1 )

k in (8.1) and (8.2) with whole integer powers are
analytic functions and thus do not contribute to the asymptotic expansion in the time
domain. Since the terms with integer powers in (8.2) have no counterpart in the time
domain, evidently it is not possible to obtain the transform asymptotic expansion (8.2)
directly from the time-domain asymptotic expansion established in Theorem 7.1, but that
is an unresolved point.
We now directly establish the asymptotic expansion in half powers in (8.2). Thus, we

obtain an asymptotic expansion for b̂1(s) and an alternative proof of Theorem 7.1.
To carry out one step of the proof of Theorem 8.1 below and to understand how

Theorems 7.1 and 8.1 are related, we need to know how Heaviside’s theorem converts
asymptotics for transforms into asymptotics in the time domain. Let L−1(f̂(s)) denote
the inverse of the transform f̂(s). Then

L−1(
√

s+ τ−11 ) ∼
−e−t/τ1
2
√
πt3

as t→∞ (8.3)

and

L−1((s+ τ−11 )3/2) ∼
3

4

e−t/τ1√
πt5

as t→∞ ; (8.4)

see p. 254 of Doetsch [34]. In particular, note the sign change in (8.3).
Theorem 8.1. If the busy-period equation −ρ1ĝ′1(s) = 1 in (7.1) has a root −ζ1 with
−s∗1 < −ζ1, where −s∗1 is the rightmost singularity of ĝ1(s), then the half-power asymptotic
expansion (8.2) is valid and the first four coefficients in (8.2) are

a0 = ĝ1(−ζ1) , (8.5)

a1 =
−2

√

2ρ31ĝ
(2)
1 (−ζ1)

= −2α1 , (8.6)

a2 =
1

ρ1
+
(a1ρ1)

4

12
ĝ
(3)
1 (−ζ1) , (8.7)

and

a3 =
−(a1ρ1)5
48

[

ĝ
(4)
1 (−ζ1)−

5

6
a21ρ

3
1ĝ
(3)
1 (−ζ1)2

]

(8.8)

for α1 in (7.5).

Proof. Given Theorem 7.1, we anticipate that the transform b̂1(s) should have asymptotic
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expansion (8.2). To justify the asymptotic expansion, we expand the transforms in power
series in the region where they are analytic, and then let the expansion point approach the
singularity. For ε > 0, perform the change of variables s = −τ−11 + ε+ u2 for Re(u) > 0.
By (2.8) and (7.4), the Kendall functional equation (2.4) becomes

b̂1(−τ−11 + ε+ u2) = ĝ1(z1(−τ−11 + ε+ u2))

= ĝ1(−τ−11 + ε+ u2 + ρ1 − ρ1b̂1(−τ−11 + ε+ u2))

= ĝ1(ε+ u
2 − ρ1b̂1(−τ1 + ε+ u2) + ρ1b̂1(−τ−11 )− ζ1) .

(8.9)

Since b̂1(s) is analytic at −τ−11 + ε and ĝ1(s) is analytic at −ζ1, we can expand the
functions in power series about −τ−11 + ε and −ζ1, respectively, obtaining

b̂1(−τ−11 + ε+ u2) =
∑∞
k=0Bk(ε)u

k

=
∑∞
k=0

ĝ
(k)
1 (−ζ1)
k!

δ(ε, u)k ,

(8.10)

where

δ(ε, u) = B̃0(ε)− ρ1B1(ε)u+ (1− ρ1B2(ε))u2 −
∞
∑

j=3

ρ1Bj(ε)u
j , (8.11)

Bk(ε) are unknown coefficients depending upon ε and

B̃0(ε) = ε− ρ1B0(ε) + ρ1b̂1(−τ−11 ) . (8.12)

Since b̂1(s)→ b̂1(−τ−11 ) as s ↓ −τ−11 ,

B0(ε)→ b̂1(−τ−11 ) and B̃0(ε)→ 0 as ε→ 0 .

We now match coefficients of uk in (8.10) for each k successively starting with k = 0.
Considering u0, we first obtain

B0(ε) = ĝ1(−ζ1) +
∞
∑

k=1

ĝ
(k)
1 (−ζ1)
k!

B̃0(ε)
k = ĝ1(−ζ1 + B̃0(ε)) . (8.13)

Since ĝ1(s) is analytic at −ζ1, it is continuous. Since B̃0(ε) → 0 as ε → 0 we see that
B0(ε) → ĝ1(−ζ1) as ε → 0. This implies that b̂1(−τ−11 ) = ĝ1(−ζ1), which is consistent
with (7.4), (7.23) and (7.24).
Moreover, from (8.13), we see that B0(ε) is the solution to the equation

x = ĝ1(A− ρ1x) (8.14)

for A = −ζ1+ ε+ ρ1b1(−τ−11 ). Differentiating with respect to x in (8.14), we see that we
must have

1 + ρ1ĝ
(1)
1 (−ζ1 + B̃0(ε)) = 0 (8.15)

for all ε, consistent with the assumed equation (7.1), which is the case ε = 0.
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Next, considering the coefficients of u1 in (8.10), we obtain

B1(ε) = g
(1)
1 (−ζ1)(−ρ1B1(ε)) +

∞
∑

k=2

g
(k)
1 (−ζ1)
k!

(

k

1

)

B̃0(ε)
k−1(−ρ1B1(ε)) . (8.16)

By (8.15) for ε = 0, −ρ1ĝ(1)1 (−ζ1) = 1, so that (8.16) reduces to

0 =
∞
∑

k=2

ĝ
(k)
1

(−ζ1)
k!

kB̃0(ε)
k−1(−ρB1(ε))

= −ĝ(1)1 (−ζ1 + B̃0(ε))− ĝ
(1)
1 (−ζ1)](−ρB1(ε)) , (8.17)

By (8.15), using ε and 0,

g
(1)
1 (−ζ1 + B̃0(ε))− ĝ

(1)
1 (−ζ1) = 0 for all ε .

Hence equation (8.17) places no constraint upon B1(ε).
Next, considering the coefficients of u2 in (8.10), we obtain

B2(ε) = ĝ
(1)
1 (−ζ1)(1− ρ1B2(ε)) + ĝ

(2)
2 (−ζ1)

ρ21B1(ε)
2

2
+ B̃0(ε)ĝ

(2)
1 (−ζ1)(1− ρ1B2(ε))

+
∞
∑

k=3

g
(k)
1 (−ζ1)
k!

[(

k

1

)

B̃0(ε)
k−1(1− ρ1B2(ε)) +

(

k

2

)

B̃0(ε)
k−2(−ρ1B1(ε))2

]

. (8.18)

Applying (8.15) again, we see that (8.17) is equivalent to

0 = ĝ
(1)
1 (−ζ1) + ĝ

(2)
1 (−ζ1)

ρ21B1(ε)
2

2
+ [ĝ

(1)
1 (−ζ1 + B̃0(ε))− ĝ

(1)
1 (−ζ1)](1− ρ1B2(ε))

+ [ĝ
(2)
1 (−ζ1 + B̃0(ε))− ĝ

(2)
1 (−ζ1)](ρ21B1(ε)2)

= ĝ
(1)
1 (−ζ1) + ĝ

(2)
1 (−ζ1)

ρ21B1(ε)
2

2
+ [g

(2)
1 (−ζ1 + B̃0(ε))− ĝ

(2)
1 (−ζ1)]ρ21B1(ε)2 .(8.19)

Since ĝ
(2)
1 (−ζ1 + B̃0(ε))→ ĝ

(2)
1 (−ζ1) as ε→ 0, (8.19) implies that

B1(ε)
2 → B1(0)

2 = a21 =
−2ĝ(1)1 (−ζ1)
ĝ
(2)
1 (−ζ1)ρ21

=
2

ρ31ĝ
(2)
1 (−ζ1)

(8.20)

as ε→ 0.
Considering the coefficient of uk in (8.10), we see that two applications of (8.15)

eliminates the variable Bk(ε) and we can solve for Bk−1(ε) recursively. Given that
Bj(ε) → Bj(0) as ε → 0 for all j ≤ k − 2 and B̃0(ε) → 0, we obtain Bk−1(ε) → Bk−1(0)
by induction on k.

Remark 8.1. Using (8.3) and (8.4), we can see that the coefficients a1 and a3 in (8.5) and
(8.8) are consistent with the two calculated coefficients in Theorem 7.1. In Theorem 7.1
there is no counterpart of a2 in (8.7) though.
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We now can apply the asymptotic expansion for b̂1(s) in (8.2) to obtain asymptotic
expansions for the other quantities of interest by using elementary operations on asymp-

totic expansions; e.g., see p. 19 of Olver [46]. We now treat ĥ
(1)
0 (s), the Laplace-Stieltjes

transform of H
(1)
0 (t), which is related to the emptiness probability P

(1)
00 (t) via (2.5). The

corresponding asymptotic expansion for P
(1)
00 (t) extends the previous asymptotic result

(the first term) in III.7.3 of Cohen [30].
Theorem 8.2. Under the assumptions of Theorem 8.1,

ĥ
(1)
0 (s) ∼

∞
∑

k=0

ck(s+ τ
−1
1 )

k/2 as s→ −τ−11 , (8.21)

where

c0 =
1

ρ1

(

1− 1

ζ1τ1

)

, c1 =
a1
τ1ζ21

, (8.22)

c2 =
1

ρ1τ1ζ31
(τ1ζ

2
1 − a21ρ21 − ζ1(1− ρ1a2)) , (8.23)

and

c3 =
1

τ1ζ41

(

a31ρ
2
1 + 2a1ζ1(1− ρ1a2) + ζ21 (a3 + a1τ1)

)

. (8.24)

for a1, a2 and a3 in Theorem 8.1.
Proof. By (2.6), we can write

ĥ
(1)
0 (s) =

1− b̂1(s)
s+ ρ1 − ρ1b̂1(s)

=
1

ρ1
− s

ρ1z1(s)
=
1

ρ1
+
τ−11 − σ
ρ1z1(σ)

(8.25)

where σ = s+τ−11 and z1(σ) = −ζ1+δ(σ) for δ ≡ δ(0, σ) in (8.11). Hence, we can expand
and match coefficients of σk/2 as in Theorem 8.1.

Theorem 8.3. If, in addition to the assumptions of Theorem 8.1, −s∗2 < ζ1, where −s∗2
is the rightmost singularity of ĝ2(s), then

ĝ2e(z1(s)) ∼
∞
∑

k=0

ĝ
(k)
2e (−ζ1)δk

k!
∼
∞
∑

k=0

dk(s+ τ
−1
1 )

k/2 as s→ −τ−11 , (8.26)

where δ ≡ δ(0, σ) is given in (8.11), σ = s+ τ−11 and

d0 = ĝ2e(−ζ1) , d1 =
−2

√

2ρ31ĝ
(2)
2e (−ζ1)

, (8.27)

d2 =
1

ρ1
+
(d1ρ1)

4

12
ĝ
(3)
2e (−ζ1) (8.28)

and

d3 =
(d1ρ1)

5

48
[ĝ
(4)
1 (−ζ1)−

5

6
d21σ

3
1 ĝ
(3)
1 (−ζ1)2] . (8.29)
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Combining Theorems 8.2 and 8.3, we obtain an asymptotic expansion for 1− ρf(s),
the denominator of ŵ2(s) in (2.14).
Theorem 8.4. Under the conditions of Theorem 8.3,

1− ρf̂(s) = 1− ρ1ĥ(1)0 (s)− ρ2ĝ2e(z1(s)) ∼
∞
∑

k=0

ek(s+ τ
−1
1 )

k/2 as s→ −τ−11 , (8.30)

where the first two coefficients are

e0 =
1

ζ1τ1
[1− (ρ2/ρ∗2)] (8.31)

and

e1 =
2α1ρ1
τ1ζ21

(1− ρ2τ1ζ21 ĝ′2e(−ζ1)) (8.32)

for

ρ∗2 =
g21τ

−1
1

ĝ2(−ζ1)− 1
. (8.33)

Now we obtain asymptotic expansions for ŵ2(s) and corresponding asymptotic ex-
pansions for the pdf w2(t). There are three cases, depending on whether ρ2 is greater
than, equal to or less than ρ∗2 for ρ

∗
2 in (8.33).

Theorem 8.5 Assume that the busy-period equation (7.1) has a root −ζ1 with −s∗1 < −ζ1
and −s∗2 < −ζ1, where −s∗i is the rightmost singularity of ĝi(s). Assume that b̂1(s) has
no singularities besides −τ−11 with Re(s) > −τ−11 − ε. Let η, α, α1 = −a1/2, e0 and e1
be as in (5.3), (5.5), and (7.5), (8.31) and (8.32), respectively.
(a) If ρ2 > ρ∗2 for ρ

∗
2 in (8.33), then

ŵ2(s)−
αη

s+ η
∼
∞
∑

k=0

vk(s+ τ
−1
1 )

k/2 as s→ −τ−11 (8.34)

for constants vk and, in particular,

v0 =
1− ρ
e0

and v1 =
−(1− ρ)e1

e20
, (8.35)

so that

w2(t)− αηe−ηt ∼
A1α1e

−t/τ1
√
πt3

(1 +O(1/t)) as t→∞ (8.36)

and

W c
2 (t)− αe−ηt ∼

A1α1τ1e
−t/τ1

√
πt3

(1 +O(1/t)) as t→∞ , (8.37)

where

A1 =
(1− ρ)e1
2α1e20

=
(1− ρ)ρ1τ1(1− ρ2τ1ζ21 ĝ′2e(−ζ1))

[1− (ρ2/ρ∗2)]2
. (8.38)

(b) If ρ2 = ρ
∗
2, then e0 = 0 and

ŵ2(s) ∼
∞
∑

k=−1

vk(s+ τ
−1
1 )

k/2 as s→ −τ−11 (8.39)
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and, in particular,

ŵ2(s) ∼
1− ρ

e1

√

s+ τ−11

as s→ −τ−11 , (8.40)

so that

w2(t) ∼ A2
e−t/τ1√
πt
(1 +O(1/t)) as t→∞ (8.41)

and

W c
2 (t) ∼ A2τ1

e−t/τ1√
πt
(1 +O(1/t)) as t→∞ , (8.42)

where

A2 =
1− ρ
e1
=

(1− ρ)τ1ζ21
2α1ρ1(1− ρ∗2τ1ζ21 ĝ′2e(−ζ1))

. (8.43)

(c) If ρ2 < ρ∗2, then

ŵ2(s) ∼
∞
∑

k=0

vk(s+ τ
−1
1 )

k/2 as s→ −τ−11 , (8.44)

where v0 and v1 are given in (8.35), so that

w2(t) ∼
A1α1e

−t/τ1
√
πt3

(1 +O(1/t)) as t→∞ (8.45)

and

W c
2 (t) ∼ A1α1

τ1e
−t/τ1
√
πt3

(1 +O(1/t)) as t→∞ , (8.46)

where A1 is in (8.38).
Proof. The assumption on the singularities allows us to apply Heaviside’s theorem on
p. 254 of Doetsch [34] and Sutton [50] to obtain asymptotic expansions in the time domain
from the transform asymptotic expansions. We apply Theorem 8.4 to get an asymptotic
expansion for 1− ρf̂(s). For part (a), we write

ŵ2(s) =
1− ρ
1− ρf̂(s)

=
αη

η + s
+
(1− ρ)− ηαφ(s)
1− ρf̂(s)

(8.47)

where

φ(s) =
1− ρf̂(s)
s+ η

. (8.48)

After we subtract the pole at −η, the rightmost singularity is at −τ−11 . We can then
exploit the asymptotic expansion for 1− ρf̂(s) at s = −τ−11 . Using algebra, we see that
(8.47) implies (8.34), where v0 and v1 are given by (8.35). We use the fact that

φ(−τ−11 ) =
1− ρf̂(−τ−11 )

η − τ−11
=

e0

η − τ−11
. (8.49)

For (b), since e0 = 0, the first term in 1−ρf̂(s) is (s+τ−11 )1/2, which makes (s+τ−11 )−1/2
the first term in ŵ(s). By Lemma 3.5, we must multiply the asymptotic constant by τ1
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when going from the pdf w2(t) to the ccdf W
c
2 (t).

Remark 8.2. The constant A1 in (8.38) is consistent with the asymptotic constant for
the ccdf W c

2 (t) in (7.36).
Remark 8.3. By Theorem 7.5, α→ 0 as ρ2 ↓ ρ∗2 where α is the first asymptotic constant
in (8.36). On the other hand, by (8.38), e0 → 0 and A1 →∞ as ρ2 ↓ ρ∗2. hence, even the
two-term approximation based on (8.36) cannot be good when ρ2 is close to ρ

∗
2.

9 Long-Tail Distributions

In this section we obtain results for the case in which one of the service-time cdf’s G1(t)
or G2(t) has a long tail (class III). (Theorem 7.6 already includes a result for the case in
which G2(t) is class III, but G1(t) is not.)
We are able to combine Theorem 7.2 with a result by De Meyer and Teugels [32] to

obtain the asymptotics for H
(1)c
0 (t) when the service-time distribution has a long tail.

They treat the special case in which Gc1(t) has a regularly varying tail, i.e., when

Gc1(t) ∼ t−cL(t) as t→∞ , (9.1)

where c ≥ 1 and L(t) is a slowly varying function; see p. 275 of Feller [38] and Bingham,
Goldie and Teugels [22]. (An important special case is when L(t) is a constant.) We will
apply this result in Section 12 to determine the asymptotics for F c(t), and thus W c

2 (t),
when the two classes have a common long-tail service-time distribution.
Theorem 9.1. (De Meyer and Teugels [32]) If (9.1) holds, then

Bc1(t) ∼ (1− ρ1)−1Gc1((1− ρ1)t) ∼ (1− ρ1)−c−1t−cL(t) as t→∞ . (9.2)

De Meyer and Teugels only state the final simple asymptotic form in (9.2), but in some
cases the equivalent intermediate form can serve as a much better approximation. (The
advantage of a well chosen equivalent asymptotic form is illustrated by the asymptotic
normal approximation in Theorem 2 of [8].) We can combine Theorems 7.2(b) and 9.1
and Lemma 3.4 to obtain the following result. This result was also obtained in a different
way by Asmussen and Teugels [19]; see (39) of [8].
Theorem 9.2. If (9.1) holds for c > 1, then as t→∞

H
(1)c
0 (t) ∼ (1− ρ1)Bc1e(t) ∼ (1− ρ1)2

∫ ∞

t

Bc1(u)du

∼
∫ ∞

(1−ρ1)t
Gc1(u)du = G

c
1e((1− ρ1)t) (9.3)

∼ (1− ρ1)−(c−1)t−(c−1)L(t)
c− 1 as t→∞ . (9.4)

Proof. As indicated, we can combine Theorems 7.2(b) and 9.1 and Lemma 3.4 to obtain
the first two lines. To obtain the final relation, apply Theorem 1 on p. 281 and (8.6) on
p. 276 of Feller [38].

In fact, it appears that Theorems 9.1 and 9.2 can be extended to a much more general
class of long-tail distributions. We call the following result a conjecture because it relies
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on the Heaviside operational principle in Section 3, which remain to be fully justified.
Indeed, a variant of this reasoning is used by De Meyer and Teugels [32] to establish
Theorem 9.1.
Conjecture 9.1. Suppose that, the Laplace transform ĝ1(s) has 0 as its rightmost sin-
gularity and can be represented in the form (3.21). Then

b1(t) ∼ g1((1− ρ1)t) , (9.5)

Bc1(t) ∼ (1− ρ1)−1Gc1((1− ρ1)t) (9.6)

and
H
(1)c
0 (t) ∼ Gc1e((1− ρ1)t) as t→∞ . (9.7)

Supporting Argument. By the Heaviside’s operational principle, g1(t) ∼ θ(t) as t →
∞. By (4.3), z1(s) ∼ s/(1− ρ1) as s → 0. By Theorem 4.1, b̂1(s) has 0 as its rightmost
singularity. We assume that b̂1(s) can also be represented in the form (3.21). We now
apply the Kendall functional equation (2.4). Given

ĝ(z) ∼ 1− z +
∞
∑

i=2

aiz(s)
i + θ̂g(z) as z(s)→ 0 ,

we can write

b̂1(s) = ĝ(z1(s)) ∼ 1− (s+ ρ− ρb̂1(s)) +
∞
∑

i=2

aizi(s)
i + θ̂g(z(s)) as s→ 0 ,

so that

(1− ρ)b̂1(s) ∼ 1− ρ− s+
∞
∑

i=2

aizi(s)
i + θ̂g(z(s))

∼ 1− ρ− s+
∞
∑

i=2

aizi(s)
i + θ̂g(

s

1− ρ ) as s→ 0

and

b̂1(s) ∼ 1−
s

1− ρ +
1

1− ρ

∞
∑

i=2

aizi(s)
i +

1

1− ρ θ̂g(
s

1− ρ ) as s→ 0 .

Given that zi(s) ∼ s/(1− ρ1) as s→ 0,
∑∞
i=1 aizi(s)

i should be asymptotically negligible
as s→ 0. Hence, we should have

θ̂b(s) ∼
1

1− ρθ̂g(
s

1− ρ ) as s→ 0 . (9.8)

Hence, with (9.8), the Heaviside operational principle implies (9.5). Then (9.6) follow
from Lemma 3.4. Finally (9.7) follows from Lemma 3.4 and (7.17).

We are able to treat the case in which the low-priority service-time cdf G2(t) is long-
tail in the sense of (9.1). We make the assumption directly in terms of the associated
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equilibrium-excess ccdf Gc2e(t). The following complements (7.45) in Theorem 7.6.
Theorem 9.3. Suppose that the assumption of Theorem 7.1 holds and

Gc2e(t) ∼ t−cL(t) as t→∞ (9.9)

for c ≥ 1 and a slowly varying function L(t). Then

F c(t) ∼ ρ2
ρ
Gc2e((1− ρ1)t) ∼

ρ2L(t)

ρ(1− ρ1)ctc
as t→∞ (9.10)

and

W c
2 (t) ∼

ρ2
1− ρG

c
2e((1− ρ1)t) ∼

ρ2L(t)

ρ(1− ρ1)ctc
as t→∞ . (9.11)

Proof. By (2.16), it suffices to show that

∫ ∞

0

F
(1)c
x0 (t)dG2e(x)→ Gc2e((1− ρ1)t) as t→∞ , (9.12)

because the first term in F c(t) involving H
(1)c
0 (t) is clearly asymptotically negligible. The

proof is a modification of the proof of Lemma 7.3. We establish an upper bound for the
lim sup and a lower bound for the lim inf. For each, we divide the integral into three pieces
as in (7.34). We use the fact that L(ct)/L(t)→ 1 for any positive c for a slowly varying
function L(t). For the upper (lower) bound, we let c = (1− ρ)(1− ε) (c = (1− ρ)(1 + ε))
for small positive ε and apply (7.26) and (7.27). First, by Lemma 7.2,

lim sup
t→∞

Gc2e((1−ρ1)t)−1
∫ ∞

0

F
(1)c
x0 (t)dG2e(x) ≤ lim sup

t→∞

{

Gc2e((1− ρ1)(1− ε)t)
Gc2e((1− ρ1)t)

}

=
1

(1− ε)c .

Second, by Lemma 7.2 again,

lim inf
t→∞

Gc2e((1−ρ1)t)−1
∫ ∞

0

F
(1)c
x0 (t)dG2e(x) ≥ lim inft→∞

{

Gc2e((1− ρ1)(1 + ε)t)
Gc2e((1− ρ1)t)

}

=
1

(1 + ε)c
.

Since ε is arbitrary, we obtain (9.12). To obtain (9.11), we apply Theorem 5.1(b). Con-
dition (5.1) in this case implied by Lemma 3.7.

We now discuss the case in which the high-priority cdf G1(t) is long-tail. We already

have a result for H
(1)c
0 (t) for the special case of regularly varying Gc1(t), as in (9.1), in

Theorem 9.2 and the more general Conjecture 9.1. We now want to consider the second
term of F (t) and more general cdf’s G2. However, we do not yet have a proper proof for
the formulas below. This conjecture is consistent with established results in Section 12
for the case in which both classes have a common long-tail service-time distribution.

Conjecture 9.2 Assume that the rightmost singularity of ĝ1(s) is 0 and F
(1)c
x0 (t) satisfies

(5.1) and (5.2) for all x > 0 (with γ = 2, the long tail case). Then

F
(1)c
x0 (t) ∼

xρ1
1− ρ1

Gc1((1− ρ1)t) as t→∞ , (9.13)

for all positive x,

Bc1(t) ∼
1

1− ρ1
Gc1((1− ρ1)t) as t→∞ , (9.14)
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F c(t) ∼ ρ1
ρ1 + ρ2

Gc1e((1− ρ1)t) +
ρ2

(ρ1 + ρ2)

[

g22ρ1G
c
1((1− ρ1)t)

2g21(1− ρ1)
+Gc2e((1− ρ1)t)

]

(9.15)

∼ ρ

ρ1 + ρ2
Gc1e((1− ρ1)t) +

ρ2
ρ1 + ρ2

Gc2e((1− ρ1)t) as t→∞ (9.16)

and
W c
2 (t) ∼

ρ1
1− ρG

c
1e((1− ρ1)t) +

ρ2
1− ρG

c
2e((1− ρ1)t) as t→∞ . (9.17)

for F in (2.16).

Supporting Arguments. Since F
(1)
nx,0(t) is the n-fold convolution of F

(1)
x0 (t) for all

positive x and all positive integers n, and since (5.1) holds for F
(1)c
x0 (t) with γ = 2,

F
(1)c
x0 (t) ∼ xF

(1)c
10 (t) as t→∞ (9.18)

for all x; see (3.11). Next note that

F
(1)c
ε0 (t) = ρ1ε(

∫ ∞

0

F cx0(t)dG1(x)) +O(ε
2) as ε→ 0 , (9.19)

where
∫ ∞

0

F
(1)c
x0 (t)dG1(x) =

∫ N

0

F
(1)c
x0 (t)dG1(x) +

∫ ∞

N

F
(1)c
x0 (t)dG1(x) .

The argument of Theorems 7.4 and 16.1 suggest that
∫ ∞

N

F
(1)c
x0 (t)dG1(x) ≈ Gc1((1− ρ1)t)

for N suitably large. On the other hand,

∫ N

0

F
(1)c
x0 (t)dG1(x) ∼ g

(N)
11 F c10(t) as t→∞ ,

where g
(N)
11 → g11 = 1 as N → ∞. Now divide through (9.19) by ε and note that, by

(9.18),

ε−1F
(1)c
ε0 (t) ∼ F

(1)c
10 (t) as t→∞ for each ε > 0 ,

so that we should have

F
(1)c
10 (t) ∼ ρ1F

(1)c
10 (t) + ρ1G

c
1((1− ρ1)t) as t→∞

and, thus,

F
(1)c
10 (t) ∼

ρ1
1− ρ1

Gc1((1− ρ1)t) as t→∞ . (9.20)

Combining (9.18) and (9.20) yields (9.13). Turning to (9.14), recall that

Bc1(t) =

∫ ∞

0

F
(1)c
x0 (t)dG1(x) .

By the argument above,

Bc1(t) ∼ F
(1)c
10 (t) +G

c
1((1− ρ1)t) as t→∞ ,
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which gives (9.14). Finally, for (9.15), we treat the two pieces in (2.16). For H
(1)c
0 (t), we

apply Conjecture 9.1. For the second piece, we repeat the argument above, obtaining

∫ ∞

0

F
(1)c
x0 (t)dG2e(x) ∼ g2e1

ρ1
1− ρ1

Gc1((1− ρ1)t) +Gc2e((1− ρ1)t) as t→∞ .

It seems that in this long tail case we should have

Gc1(t) = o(G
c
1e(t)) as t→∞ ; (9.21)

e.g., this is clearly true under (9.1). That makes (9.15) asymptotically equivalent to
(9.16). Indeed, (9.21) is needed to make (9.18) consistent with the special case in which
both classes have the same long-tail service-time distribution in Section 13.
Remark 9.1. Of course one service-time ccdf may dominate the other in (9.16), in which
case only one of the two terms in (9.16) and (9.17) will appear.

10 Sojourn Times

With the nonpreemptive priority discipline, the low-priority sojourn time is the low-
priority waiting time plus the low-priority service time, which has transform ĝ2(s). With
the preemptive-resume discipline, the low-priority sojourn time is the low-priority waiting
time plus the low-priority completion time, which has transform ĉ(s) in (2.11). Thus, the
exponential asymptotic result for the low-priority waiting time in Section 5 extends quite
directly to the low-priority sojourn time, as indicated for the FIFO discipline in [14].
Let Sc2(t) be the low-priority sojourn-time ccdf.

Theorem 10.1. Assume that the condition of Theorem 7.1 holds and ρ2 > ρ∗2 for ρ
∗
2 in

(7.22), so that the exponential asymptotics in (5.4) holds for W c
2 (t).

(a) With the nonpreemptive discipline,

Sc2(t) ∼ ĝ2(−η)W c
2 (t) as t→∞ . (10.1)

(b) With the preemptive-resume discipline,

Sc2(t) ∼ ĉ(−η)W c
2 (t) as t→∞ , (10.2)

where
ĉ(−η) = ĝ2(−η − ζ1 + τ1) > ĝ2(−η) . (10.3)

Proof. We apply Theorem 1 of [14]. By Theorem 7.3 (b) and Lemma 15.1,

η < s∗ < τ−11 < ζ1 < s∗2 . (10.4)

For (a), we use η < s∗2; for (b) we use η < τ−11 , because τ
−1
1 is the rightmost singularity

of ĉ(s) in (2.11). By (7.23), we have (10.3).

We now consider the non-exponential asymptotics as in Theorem 7.5. For this pur-
pose, we apply Lemma 3.6. We use Lemma 3.6 in part (b) below because both the
waiting-time and the completion-time transforms have −τ−11 as their rightmost singular-
ities.
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Theorem 10.2. Suppose that the conditions of Theorem 7.5 hold with ρ2 < ρ∗2, so that
the non-exponential asymptotics for W c

2 (t) in (7.36) holds.
(a) With the nonpreemptive discipline,

Sc2(t) ∼ ĝ2(−τ−11 )W c
2 (t) as t→∞ . (10.5)

(b) With the preemptive-resume discipline,

Sc2(t) ∼ ĉ(−τ−11 )W c
2 (t) + ŵ2(−τ−11 )Cc(t) as t→∞ , (10.6)

where the completion-time ccdf satisfies

Cc(t) ∼ −ĝ′2(−ζ1)ρ1τ1b1(t) as t→∞ . (10.7)

Proof. Expressing Sc2(t) as a convolution, we have

t3/2eτ
−1
1 tSc2(t) =

∫ t

0

(t− y)3/2eτ−11 (t−y)W c
2 (t− y)

(

t

t− y

)3/2

eτ
−1
1 ydG2(y) . (10.8)

For each y,

(t− y)3/2eτ−11 (t−y)W c
2 (t− y)

(

t

t− y

)3/2

→ A ≡ lim
t→∞

t3/2eτ
−1
1 tW c

2 (t) .

Hence, for part (a) we can apply Fatou’s lemma to obtain

lim inf
t→∞

t3/2eτ
−1
1 tSc2(t) ≥

∫ ∞

0

A eτ
−1
1 ydG2(y) = Aĝ(−τ−11 ) .

We bound the lim sup above by dividing the integral in (10.8) in two parts, over the
intervals (0, (1− ε)t) and ((1− εt, t). We obtain

lim sup
t→∞

t3/2eτ
−1
1 tSc2(t) ≤

∫ (1−ε)t

0

+

∫ t

(1−ε)t

≤
∫ ∞

0

Aeτ
−1
1 ydG(y) +

∫ t

(1−ε)t
t3/2eτ

−1
1 tW c

2 (0)dG2(y)

≤ Aĝ(−τ−11 ) + lim sup
t→∞

t3/2eτ
−1
1 tGc2((1− ε)t) ≤ Aĝ(−τ−11 ) ,

because we can choose ε so that τ−11 < (1− ε)s∗2.
(b) For part (b) we apply Lemma 3.6. We apply Lemma 7.3 with (2.11) to obtain

(10.7).

We conclude this section by conjecturing the results when G1 is a long-tail cdf.
Conjecture 10.1. Suppose that the rightmost singularity of ĝ1(s) is 0.
(a) With the nonpreemptive discipline,

Sc2(t) ∼W c
2 (t) +G

c
2(t) as t→∞ (10.9)
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(b) With the preemptive-resume discipline,

Sc2(t) ∼W c
2 (t) + C

c(t) , (10.10)

where
C(t) ∼ g21ρ1

1− ρ1
Gc1((1− ρ1)t) +Gc2((1− ρ1)t as t→∞ . (10.11)

Supporting Argument. Apply the convolution operational principle in Section 3. The
case of regularly varying tails is covered by Lemma 3.7. Second, for (10.11), we apply
Conjectures 9.1 and 9.2.

11 Exponential High-Priority Service Times

In this section we begin considering special cases for the low-priority waiting-time distri-
bution. Here we consider the case in which the high-priority service-time distribution is
exponential, denoted by M/M,G/1. This case is easier to analyze, because the Kendall
functional equation for the busy-period transform (2.4) becomes a quadratic equation,
yielding the explicit solution

b̂1(s) =
1

2ρ1
(σ(s) −

√

σ(s)2 − 4ρ1) (11.1)

for
σ(s) = 1 + ρ1 + s (11.2)

Moreover, for the M/M/1 model, ĥ
(1)
0 (s) = b̂1(s); see Corollary 4.2.3 of [1].

Thus, in this case the transform f̂(s) in (2.15) becomes

f̂(s) =
ρ1

ρ1 + ρ2
b̂1(s) +

ρ2
ρ1 + ρ2

ĝ2e(z1(s)) . (11.3)

Hence, the transform ŵ2(s) in (2.20) becomes explicit, no longer involving the Kendall
functional equation.
When G1 is exponential,

τ−11 = (1−√ρ1)2 , (11.4)

b̂1(−τ−11 ) = 1/
√
ρ1 , (11.5)

and
−z1(−τ−11 ) = ζ1 = 1−

√
ρ1 , (11.6)

so that, when s∗2 > ζ1 = 1−
√
ρ1,

ρ∗2 =
1−√ρ1

ĝ2e(−1 +
√
ρ1)
=
(1−√ρ1)2g21

ĝ2(−1 +
√
ρ1)− 1

. (11.7)

For ρ2 < ρ∗2,
W c
2 (t) ∼ α′τ1b(t) as t→∞ (11.8)

where the asymptotics for b1(t) is given in (7.3) and

α′ =
ρ∗2(1− ρ)(ρ∗2ρ1 + ρ2(

√
ρ1 − ρ1))

(1−√ρ1)2(ρ∗2 − ρ2)2
. (11.9)
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Remark 11.1 Note that the asymptotics for W c
2 (t) when ρ2 < ρ∗2 depends strongly on

the high-priority busy-period pdf b1(t), but not at all upon the low-priority service-time
cdf G2. Note that the asymptotic constant α

′ in (11.9) depends upon G2 only through
ρ2 and ρ

∗
2.

Remark 11.2 Roughly speaking, for any G2, the exponential asymptotics takes over
when g21 > 2g11 and ρ2 > ρ1/2, which is the natural (good) operating regime for a
two-priority system. This observation is supported by the following example. Consider
three gamma distributions for G2: Γ(1/2), Γ(1) ≡M and Γ(∞) ≡ D. Table 11.1 displays
values of ρ∗2 as a function of the type of cdf G2 and its mean g21 in the case ρ1 = 4/9.

G2 g21 = 2 g21 = 0.2
Γ(1/2) 0 0.30
M 0.11 0.31
D 0.23 0.32

Table 11.1 Values of ρ∗2 as a function of the low-priority service-time cdf G2 and its mean
g21 for the case with ρ1 = 4/9.

We now consider the further special case in which the service-time distributions of
both classes are exponential, denoted by M/M1,M2/1. Let the means for classes 1 and 2
be 1 and q−1, respectively, with 0 < q <∞; i.e., the service-time Laplace transforms are

q̂1(s) =
1

1 + s
and q2(s) =

q

q + s
. (11.10)

Theorem 11.1 For the M/M1,M2/1 priority model, the Laplace transform of the low-
priority steady-state waiting time before beginning service is

ŵ2(s) =

(1− ρ1 − ρ2)
(

σ
2 +

√

(

σ
2

)2 − ρ1 + q − 1
)

q
2

√

σ2 − 4ρ1 + σ
(

1− q2
)

− r
(11.11)

where
r = ρ1 + ρ2 − (q − 1)(1− ρ2) (11.12)

and σ ≡ σ(s) is in (11.2).
Proof. For the M/M/1 model, ĥ

(1)
0 (s) = b̂1(s), so that formula (2.14) becomes

ŵ2(s) =
1− ρ1 − ρ2

1− ρ1b̂1(s)− ρ2q
q+z1(s)

. (11.13)

Since z1(s) = b̂1(s)
−1 − 1 for M/M/1 by (2.4), (11.13) is equivalent to

ŵ2(s) =
(1− ρ1 − ρ2)(b̂1(s)−1 + q − 1)
b̂1(s)−1 − r − (q − 1)ρ1b̂1(s))

. (11.14)
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for r in (11.12). Finally, (11.14) implies (11.11) because of (11.1) and

b̂1(s)
−1 =

1

2

(

σ +
√

σ2 − 4ρ1
)

(11.15)

for σ in (11.2).

Since the transform ŵ2(s) is available explicitly (in terms of σ in (11.2)), it can
be directly inverted. We now identify the parameters for the exponential asymptotics
explicitly.
Theorem 11.2 In the M/M1,M2/1 model, if ρ2 > ρ∗2, where

ρ∗2 =







(

1−√ρ1
q

)

(q − 1 +√ρ1) if q > 1−
√
ρ1

0 if q ≤ 1−√ρ1 ,

then the exponential asymptotics in (5.4) holds with

η = 1 + ρ1 −
r

q − 1
(q

2

(

1 + sgn(r)
√

1 + 4ρ1(q − 1)/r2
)

− 1
)

(11.16)

and

α =
(1− ρ1 − ρ2)

η

(

σ(−η1)2 − 4ρ1 + (σ(−η1) + 2(q − 1))
√

σ(−η1)2 − 4ρ1
qσ(−η1) + (2− q)

√

σ(−η1)2 − 4ρ1

)

(11.17)

for r in (11.12) and σ(s) in (11.2).
Proof. If ρ2 > ρ∗2, the denominator of (11.11) has s = −η in (11.16) as the rightmost
negative zero. Then L’Hospital’s rule yields

sŵ(s− η)→ A(−η)/B′(−η) (11.18)

where ŵ(s) = A(s)/B(s) for A and B in (11.11). From (11.11) and (11.18), we obtain
(11.17).

We conclude this section by considering some further special cases:

(a). If q → 0, then r → 1 + ρ1 and η ∼ q as q → 0. Recall that ρ∗2 = 0 for
q ≤ 1−√ρ1.
(b). If q = 1, then the two service-time distributions coincide, r = ρ1 + ρ2,
ρ∗2 =

√
ρ1 − ρ1 and η = [ρ2/(ρ1 + ρ2)]− ρ2, which agrees with the special case

considered in Section 13.

(c). If q = 2, then ρ∗2 = (1−ρ1)/2 and η = 1+ρ1−
√

(1 + ρ1)2 − 4ρ2(1− ρ1 − ρ2).
(d). If q → ∞, then r ∼ −q(1 − ρ2) as q → ∞, ρ∗2 → 1 −

√
ρ1 and η →

ρ2−ρ1ρ2/(1−ρ2), which agrees with the special case considered in Section 14.

12 One Common General Distribution

In this section we consider the special case in which G1 is the service-time cdf of both
classes, as occurs whenever the service-time distribution is not related to the priority
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structure. Let the common mean be g11 = 1. Then ρ1 and ρ2 represent the two arrival
rates. Note that the two arrival rates need not coincide, however, so that we can have
any values of ρ1 and ρ2, provided that ρ ≡ ρ1 + ρ2 < 1.
Theorem 12.1 In the M/G/1 priority model with common service-time distributions
having mean g11 = 1,

ŵ2(s) =
1− ρ

1− ρĥ(1)0 (s)
(12.1)

for ĥ
(1)
0 (s) in (2.6).

Proof. The general formula in (2.14) simplifies because

s+ ρ1 − z1(s) = ρ1ĝ1(z1(s)) = ρ1ĝ2(z1(s))

by (31) of [6].

Theorem 12.2. Assume that the condition of Theorem 7.1 holds for the common service-
time cdf G1 and let

ρ∗2 =
ρ1

ζ1τ1 − 1
. (12.2)

(a) If ρ2 > ρ∗2, then
W2(t) ∼ αe−ηt as t→∞ ,

where η is the minimum positive real root of the equation

ρĥ
(1)
0 (−s) = 1 (12.3)

and

α =
1− ρ

−ηρĥ(1)′0 (−η)
. (12.4)

(b) If ρ2 < ρ∗2, then

W c
2 (t) ∼

ρ(1− ρ)
(1− ρĥ(1)0 (−τ−11 ))2

H
(1)c
0 (t)

∼ ρ(1− ρ)[1 + (ρ1/ρ∗2)]2
[1− (ρ2/ρ∗2)]2

H
(1)c
0 (t)

∼ ρ(1− ρ)[1 + (ρ1/ρ∗2)]2
[1− (ρ2/ρ∗2)]2

α1e
−t/τ1

ζ21
√
πt3

as t→∞ (12.5)

for ρ∗2 in (12.2) and for τ1, α1 and ζ1 as in Theorem 7.1.

Proof. Because of the structure of (12.1), Theorem 5.1 can be applied, with ĥ
(1)
0 (s)

playing the role of the transform f̂(s). The asymptotic behavior of H
(1)c
0 (t) was given in

(7.15). The value of ĥ
(1)
0 (−τ−11 ) is given in (7.20), yielding 1− ρ1ĥ

(1)
0 (−τ−11 ) = (ζ1τ1)−1.

Remark 12.1. As noted in Section 2, the low-priority steady-state waiting time coincides
with the first passage time to 0 for the high priority alone (ignoring future low-priority
arrivals) starting from the steady-state workload for both classes. Thus, when the two
classes have the same service-time distribution, the low-priority steady-state waiting time
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is the same as the transient waiting time with the FIFO discipline when the arrival rate
is shifted to λ1 after the system has been in steady state with arrival rate λ1 + λ2.

We next discuss the M/M,M/1 special case in which both classes have a common

exponential distribution. In this case, ĥ
(1)
0 (s) = b̂1(s), so that

ŵ2(s) =
1− ρ

1− ρb̂1(s)
= 1− ρ+ ρ(1− ρ)b̂1(s)

1− ρb̂1(s)
, (12.6)

where b̂1(s) is given in (11.1) and can be reexpressed as

b̂1(s) =
1

2ρ1
(1 + ρ1 + s−

√

(τ−11 + s)(γ1 + s)) (12.7)

for
τ−11 = (1−√ρ1)2 and γ1 = (1 +

√
ρ1)
2 . (12.8)

In this case, equations (12.6) and (12.7) can be inverted analytically by using contour
integrals, as in Chapter 3 of Duffy [36], yielding

w2(t) =







(1− ρ)δ(t) + αηe−ηt + y(t) if ρ2 > ρ∗2 ≡
√
ρ1 − ρ1

(1− ρ)δ(t) + y(t) if ρ2 ≤ ρ∗2 ,
(12.9)

where

α =
ρ2 − ρ1
ρ2

=
(ρ2 − ρ∗2 +

√
ρ1)
2 − ρ1

ρ2
, (12.10)

δ(t) is the delta function corresponding to a unit point mass at the origin,

y(t) =
1− ρ
2π

∫ γ1

τ−11

e−xt

x− η

√

(x− τ−11 )(γ1 − x)dx , (12.11)

η = ρ2(1− ρ)/ρ , (12.12)

and

b1(t) =
1

2πρ1

∫ γ1

τ−11

e−xt
√

(x− τ−11 )(γ1 − x)dx

=
e−t/τ1

2πρ1

∫ 4
√
ρ1

0

e−µt
√

µ(4
√
ρ1 − µ)dµ . (12.13)

For (12.13), see Section 3 of [3].
The integrals in (12.11) and (12.13) have asymptotic expansions that can be deter-

mined by using Watson’s lemma, e.g., see p. 71 of Olver [46]. It follows from (12.11) and
(12.13) that

y(t) ∼ ρ1(1− ρ)b1(t)
(τ−11 − η)

as t→∞ (12.14)

and
ρ(τ−1 − η) = (ρ∗2 − ρ2)2
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provided that ρ2 6= ρ∗2 Watson’s lemma enables us to determine an asymptotic expansion
for the waiting-time pdf of the form

w2(t) ∼
ρ1ρ(1− ρ)
(ρ∗2 − ρ2)2

e−t/τ1

2ρ
3/4
1

√
πt3

(

1 +
a1
t
+
a2
t2
+ . . .

)

as t→∞ (12.15)

for ρ2 < ρ∗2 as indicated in (1.4). The first three terms for the busy period are given in
(4.1) of [2]. This time domain analysis supports Section 8.

Note that the root equation 1−ρb̂1(s) = 0 in the denominator of (12.6) has no root for
ρ2 < ρ∗2 =

√
ρ1−ρ1, but y(t) in (12.1) is valid for all ρ2. At ρ2 = ρ∗2, η = τ−11 = (1−√ρ1)2,

so that y(t) has a different structure, namely

y(t) =
1− ρ
2π

∫ γ1

τ−11

e−xt

√

γ1 − x
x− τ−11

dx (12.16)

and therefore a different asymptotic expansion, consistent with Theorem 8.5(b).
We conclude this section by stating a result for long-tail distributions.

Theorem 12.3. If the common service-time ccdf Gc1(t) has a regularly varying tail as in
(9.1), then

W c
2 (t) ∼

ρ

1− ρG
c
1e((1− ρ1)t) as t→∞ . (12.17)

Proof. Combine Theorems 5.1(b) and 9.2. Condition (5.1) holds by Lemma 3.7. Condi-
tion (5.2) follows easily too.

As in Conjectures 9.1 and 9.2, we conjecture that (12.17) holds for more general long-
tail distributions (when 0 is the rightmost singularity of ĝ1(s)).
Remark 12.2. It is instructive to compare (12.17) with the corresponding result for the
FIFO discipline, see [11] or Pakes [47], which is

W c
FIFO(t) ∼

ρ

1− ρGe(t) as t→∞ . (12.18)

If Gc(t) ∼ t−c, as t→∞, then (12.17) is equivalent to

W c
2 (t) ∼

ρ

(1− ρ)c−1(1− ρ1)c−1tc−1
as t→∞ , (12.19)

whereas (12.18) is equivalent to

W c
FIFO(t) ∼

ρ

(1− ρ)c−1tc−1 as t→∞ ; (12.20)

i.e.,

W c
2 (t) ∼

1

(1− ρ1)c−1
WFIFO(t) as t→∞ . (12.21)
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13 Fluid Inputs

Washburn [52] considered the interesting case in which the low-priority service times are
deterministic but very small. In particular, he considered the limiting case as g21 → 0
and λ2 →∞ with ρ2 = λ2g21 held fixed. Since ĝ2(s) ≈ 1− g21s+ o(g21) as g21 → 0,

λ2g2(z1(s)) − λ2 → −ρ2z1(s) as g21 → 0 (13.1)

and

ŵ2(s)→
1− γ

1− γĥ(1)0 (s)
as g21 → 0 (13.2)

for γ = ρ1/(1− ρ2), so that this case has the same general form as analyzed in Section 12
(with γ in (13.2) replacing ρ in (12.1)).
Now suppose instead that the high-priority service times are deterministic but very

small, i.e., suppose that g11 → 0 and λ1 →∞ where ρ1 = λ1g11 is held fixed. Then, from
(2.4), we see that

b̂1(s)→ 1 as g11 → 0 (13.3)

corresponding to B1(t) → 1 for all t > 0; i.e., the high-priority busy periods become
negligible.

In this situation ĥ
(1)
0 (s)→ 1 and ẑ1(s)→ s, so that (2.14) holds with

f̂(s) =
ρ1

ρ1 + ρ2
+

ρ2
ρ1 + ρ2

ĝ2e(s) , (13.4)

which in turn is equivalent to

ŵ2(s) =
1− ρ2/(1− ρ1)

1− (ρ2/(1− ρ1))ĝ2e(s)
. (13.5)

Formula (13.5) is the M/G/1 FIFO Pollaczek-Khintchine formula for the steady-state
workload when the traffic intensity is inflated by (1−ρ1)−1 to account for the unavailability
of the server.
Finally, if both classes had fluid inputs, there would be no steady-state workload.

14 Numerical Examples

In this section we consider three numerical examples. Our first numerical example has
two classes with a common exponential service-time distribution having mean 1. The
only parameters are the two arrival rates ρ1 and ρ2. This example is a special case of
both Sections 11 and 12, so all results there apply. In this example the boundary between
exponential and non-exponential asymptotics is ρ∗2 =

√
ρ1 − ρ1. We let ρ1 = 0.5 and

consider two cases: ρ2 = 0.3 and ρ2 = 0.1. In the first case ρ2 > ρ∗2 = 0.2071; in the
second case ρ2 < ρ∗2.
In the first case we have exponential asymptotics as in (1.1) and (5.4) with η =

(1− ρ)ρ2/ρ and α = (ρ2 − ρ1)/ρ2, so that η−1 = 13.33 and α = 0.4667. The exponential
asymptote is compared to exact values ofW c

2 (t) obtained by numerical transform inversion
in Table 14.1.
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The approximation is not as good as in the FIFO examples in [12], but it is quite
good, giving reasonable accuracy by the 90th percentile. We can understand why the
exponential asymptote is not as good an approximation as in most FIFO examples by
looking at the singularities of ŵ2(s). The rightmost singularity is of course η = 0.0750.

The next singularity of ŵ2(s) is the rightmost singularity of f̂(s), which is determined by
the busy-period distribution. It is τ−11 = (1−√ρ)2 = 0.0858. The fact that τ−11 is close
to η explains why the exponential approximation is not better; i.e.,

time W c
2 (t) αe−ηt

10−5 .8000 .47
1 .6780 .43
5 .4330 .32
10 .2742 .22
20 .1195 .104
40 .02492 .0232
80 .001187 .001157
120 .00005824 .00005759
160 .000002883 .000002867

Table 14.1. A comparison of the exponential asymptote in case 1 of the M/M,M/1 example
with ρ2 = 0.3 to exact values obtained by numerical transform inversion.

W c
2 (t) ∼ αe−ηt +

A1α1τ1e
−t/τ1

√
πt3

as t→∞ (14.1)

by (8.37).
In the second case we have the non-exponential asymptotics

W c
2 (t) ∼

A1α1τ1e
−t/τ1

√
πt3

as t→∞ , (14.2)

as in (1.2), (8.46) and (11.8) with τ1 = (1 −
√
ρ1)
−2 = 11.65685, τ1ζ

2
1 = 1, α

−1
1 =

2ρ
3/4
1 and A1 = ρ1ρ(1 − ρ)/(ρ∗2 − ρ2)2 = 10.460376, so that A1τ1α1 = 102.53477. (The

asymptotic constant in (14.2) is consistent with (7.36) and (12.5).) The non-exponential
asymptote in (14.2) is compared to exact values obtained by numerical transform inversion
in Table 14.2. As in previous FIFO examples, the non-exponential asymptote is a much
worse approximation. As explained previously, this is due to the slower rate of convergence
in (1.4). Even for every small tail probabilities, it might well be judged necessary to rely
on the numerical inversion in this case. Reasonable approximations forW c

2 (t) in the region
of primary interest can also be obtained by fitting a hyperexponential (H2, mixture of
two exponentials) by matching the first three moments, as was done for the M/M/1 busy
period in [3].
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time W c
2 (t) asymptote (14.2)

10−5 .6000
1 .4323
5 .1897
10 .08814 .78
20 .02415 .12
40 .002516 .0074
60 .0003119 .00072
80 .00004208 .000085
100 .00000598 .000011

Table 14.2. A comparison of the non-exponential asymptote in case 2 of the M/M , M /
1 example with ρ2 = 0.1 to exact values obtained by numerical transform inversion.

Our second example focuses on the boundary case in which ρ2 = ρ
∗
2. Again let both

service times be exponential with mean 1, but now let ρ1 = 4/9 and ρ2 = ρ
∗
2 =
√
ρ1−ρ1 =

2/9. In this case ρ = 2/3, τ1 = (1−
√
ρ1)
−2 = 9 and

ŵ2(s) ∼
1− ρ

2ρα1

√

s+ τ−11

as s→ −τ−11 , (14.3)

so that

W c
2 (t) ∼ ρ

3/4
1 (ρ

−1 − 1)τ1e
−t/τ1
√
πt

= (2.44949 . . .)
e−t/9√
πt

as t→∞ . (14.4)

We compare the boundary non-exponential asymptote in (14.4) to exact values obtained
by numerical transform inversion in Table 14.3. From Table 14.3, we see that the quality
of the approximation is much better than in Table 14.2.

time W c
2 (t) asymptote (14.4)

10−5 .6667
1 .5039
5 .2358 .35
10 .1104 .14
20 .02849 .033
30 .008000 .0090
40 .002338 .0027
50 .0006995 .00076
60 .0002126 .0002271
80 .00002025 .00002131
100 .000001981 .000002065

Table 14.3. A comparison of the non-exponential asymptote in the boundary case of the
second M/M, M/1 example having ρ1 = 4/9 and ρ2 = 2/9 to exact values obtained by
numerical transform inversion.
Our third example has two classes with a common long-tail distribution having

mean 1. For this example we use a Pareto mixture of exponentials (PME) distribution,
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as in [11], with density, ccdf and transform

g1(t) =
16

3t4

(

1−
(

1 +
3

2
+
9t2

8
+
9t3

16

)

e−3t/2
)

(14.5)

Gc1(t) =
16

9t3

(

1−
(

1 +
3t

2
+
9

8
t2
)

e−3t/2
)

, (14.6)

ĝ1(s) ≡
∫ ∞

0

e−stg(t)dt = 1− s+ 4s
2

3
− 8
9
s3 log(1 + 3/2s) . (14.7)

The moments of G1 are g11 = 1, g12 = 8/3 and g1n =∞ for n ≥ 3. Both classes have the
same service time cdf G1, but they can have different arrival rates.
The PME distribution has a regularly varying tail as in (9.1). Hence, we can apply

Theorem 12.3 to conclude that

W c
2 (t) ∼

ρ

1− ρ

∫ ∞

(1−ρ1)
Gc(u)du ∼

(

ρ

1− ρ

)

8

9((1− ρ1)t)2
as t→∞ . (14.8)

As t gets large, the exponential term e−3t/2 in (14.5) and (14.6) becomes negligible, so
nothing is lost here in replacing Gc(t) by its asymptote 16/9t3, which is what we have
done in (14.8).

time exact asymptote (14.8)
10−5 .6000
1 .4171
10 .04574 .016
20 .009022 .0041
40 .001473 .0010
60 .0005656 .00045
80 .0002988 .00026
100 .0001848 .00016
200 .00004342 .000041
400 .00001056 .0000103
800 .000002605 .00000257
1600 .0000006470 .000000643

Table 14.4. A comparison of the power-tail asymptote for W c
2 (t) in the long-tail example

to exact values obtained by numerical transform inversion.

As a specific example, we let the arrival rates be ρ1 = 0.5 and ρ2 = 0.1. In this
case the mean of the low-priority waiting time is w21 = 4. The asymptote in (14.8)
is compared with exact values obtained by numerically inverting the Laplace transform

Ŵ c
2 (s) = (1 − ŵ2(s))/s for ŵ2(s) in (12.1) and ĥ

(1)
0 (s) in (2.6) in Table 14.4. From

Table 14.4, we see that the asymptote is not very accurate by the 99th percentile (about
t = 20), but the asymptote does much better than in Table 14.2 further out in the
tail. Since the class III (long-tail) distributions do not have the exponential term, the
probabilities are non-negligible for larger values of t. Note that the largest values of t in
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Tables 14.2 and 14.4 are 100 and 1600, respectively. This phenomenon seems to make the
class III asymptotes more useful than the class II asymptotes.
Acknowledgment. We are grateful to John A. Morrison for help with the saddle point
proof of Theorem 7.1.
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