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Resource Sharing for Book-Ahead
and Instantaneous-Request Calls

Albert G. Greenberg,Member, IEEE, R. Srikant,Member, IEEE, and Ward Whitt,Associate Member, IEEE

Abstract—In order to provide an adequate quality of service
to large-bandwidth calls, such as video conference calls, service
providers of integrated services networks may want to allow
some customers to book their calls ahead, i.e., make advance
reservations. We propose a scheme for sharing resources among
book-ahead (BA) calls (that announce their call holding times
as well as their call initiation times upon arrival) and non-BA
calls (that do not announce their holding times). It is possible
to share resources without allowing any calls in progress to
be interrupted, but in order to achieve a more efficient use of
resources, we think that it may be desirable to occasionally allow
a call in progress to be interrupted. (In practice, it may be
possible to substitute service degradation, such as bit dropping
or coarser encoding of video, for interruption.) Thus, we propose
an admission control algorithm in which a call is admitted if an
approximate interrupt probability (computed in real time) is be-
low a threshold. Simulation experiments show that the proposed
admission control algorithm can be better (i.e., yield higher total
utilization or higher revenue) than alternative schemes that do
not allow interruption, such as a strict partitioning of resources.

Index Terms—Advance reservation, book-ahead calls, inte-
grated services networks, link partitioning, loss networks, quality
of service, video teleconferencing.

I. INTRODUCTION

I N INTEGRATED services networks, it is difficult to pro-
vide an adequate quality of service to large bandwidth calls,

such as video conference calls, without adversely affecting the
network utilization. One way to alleviate this problem is to
allow some customers of the network to book their calls ahead
of the actual call initiation time, much like calling ahead to
make a reservation at a restaurant. We refer to such calls as
book-ahead (BA) calls.

It seems reasonable to require BA calls to announce their
intended holding times as well as their call initiation times,
and that is what we require. However, there may also be
calls that do not book ahead, referred to as instantaneous-
request (IR) calls, which do not announce their holding times.
A natural way to allow for both BA calls (which announce
their holding times) and IR calls (which do not) is to partition

Manuscript received March 7, 1997; revised September 23, 1998; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor J. N. Daigle. This
paper was presented in part at the 15th International Teletraffic Congress,
Washington, DC, June 1997.

A. G. Greenberg is with AT&T Laboratories, Shannon Laboratory, Florham
Park, NJ 07932-0971 USA (e-mail: albert@research.att.com).

R. Srikant is with the Coordinated Science Laboratory and the Department
of General Engineering, University of Illinois, Urbana, IL 61801 USA (e-mail:
rsrikant@uiuc.edu).

W. Whitt is with AT&T Labs, Shannon Laboratory, Florham Park, NJ
07932-0971 USA (e-mail: wow@research.att.com).

Publisher Item Identifier S 1063-6692(99)02197-4.

the resources into two disjoint subsets dedicated to each class.
Without strict partitioning, the resource could also be shared
without allowing any calls in progress to be interrupted, e.g.,
by having a moving boundary between the classes. However,
we contend that it is also desirable to consider resource
sharing, in which some calls in progress can be interrupted. In
many applications, it will not actually be necessary to interrupt
calls. Instead, the bandwidth or the quality of service will be
reduced, e.g., by bit dropping or coarser encoding in video.
While we only speak of interruptions, our admission control
algorithm can be used with other forms of service degradation.

The resource sharing with the possibility of interruption
that we consider is similar to admission control algorithms in
wireless networks, in which small handoff dropping rates are
allowed to increase the overall network utilization [13]. The
possible advantage of allowing occasional call interruption or
service degradation with BA calls is also similar in spirit to
proposed call admission algorithms in asynchronous transfer
mode (ATM) networks; instead of reserving resources to
accommodate traffic at its peak rate, small cell loss proba-
bilities are allowed in order to increase the number of sources
that can be admitted [10]. It should be noted, though, that
call interruption is usually more serious than cell dropping.
However, as noted above, in practice it may be possible to
substitute temporary service degradation for call interruption.

In our discussion, we act as if each call requires capacity
from a single resource (link), but our admission control
algorithm applies directly to networks. With a specified routing
rule, such as shortest-path routing, we admit each call if the
criteria are met at each required resource (e.g., link). There
is also the possibility of exploiting the BA feature in order
to improve the routing decisions, but we do not discuss the
possible interplay between routing and BA here.

In our discussion, we also act as if each call requires a
fixed amount of bandwidth throughout the duration of the call.
(However, the fixed bandwidth requirements of BA calls can
differ from the fixed bandwidth requirements of IR calls and
other BA calls.) Our algorithm may also apply to calls that
require variable bandwidth, if we can act as if they require a
fixed bandwidth, by the use of effective bandwidths; e.g., see
Kelly [12] and references therein.

A major motivation for us is the existence of a commercial
BA service, AT&T’s ACCUNET Bandwidth Manager.1 How-
ever, it currently requiresall calls to specify their holding times
in advance. Recently, others have begun studying BA service,

1[Online]. Available WWW: http://www.att.com/data/data_net/abm.html.
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under the name “advance reservation” [6], [9], [23]. (We
prefer the phrase “book-ahead” to “advance reservation” in
order to avoid possible confusion with trunk reservation [18].)
Ferrari, Gupta, and Ventre [9] consider the implementation
issues in providing a BA service where the BA calls request
multiparty connections. They present a way to implement a BA
service using existing protocols, primarily in the framework
of Tenet protocols. They do allow limited resource sharing
between BA and IR calls, but they do not use interrupt
probabilities. (Their scheme evidently is the special case of
our algorithm CHTA in Section V-D with .) Wolf,
Delgrossi, Steinmetz, Schaller, and Wittig [23] discuss issues
associated with providing a BA service. While both [9] and
[23] allow resource sharing, they do not indicate how to treat
IR calls that do not announce their holding times. Degermark,
Kohler, Pink, and Schelen [6] do not allow resource sharing,
but they consider how to predict the amount of resources
needed using past measurements.

Here is a quick summary of our proposed admission control
policy. We admit an IR call if the probability of it being
interrupted is below a specified threshold. (If a call must
be interrupted, we assume that the most recent IR arrival is
interrupted, but other interrupt policies could be used.) We
assume that BA calls book far ahead, relative to IR holding
times, and enforce that assumption if necessary by having a
minimum BA time. When deciding whether or not to admit
a BA call, we ignore IR calls in progress. To give IR calls
protection, we impose an upper limit on the number of BA
calls in the system.

In this paper, in Section II we begin by discussing the
formulation of the admission control problem when there are
both BA and IR calls. In Section III, we specify the traffic
model and service objectives. In Section IV, we develop an
efficient algorithm to describe the performance in the special
case of widely separated time scales, in which IR calls arrive
and depart much more quickly than BA calls. We use that
algorithm to show, analytically, that resource sharing can
significantly outperform strict link partitioning.

In Section V, we develop our admission control algorithm
based on approximate interrupt–probability calculations under
the assumption of an exponential IR holding-time distribution.
In Section VI, we investigate the performance of this al-
gorithm with alternative interrupt–probability approximations
using simulation experiments. In Section VII, we extend the
algorithm to cover the case of nonexponential holding-time
distributions. We primarily consider the case in which BA
calls book far ahead compared to IR holding times. However,
in Section VIII, we consider the case in which BA calls
do not book far ahead. Finally, in Section IX, we state our
conclusions.

II. THE ADMISSION CONTROL PROBLEM

In this section, we carefully formulate the admission control
problem when there are both BA and IR calls. We assume
that IR calls enter service immediately upon arrival if they are
admitted, without announcing their holding times. In contrast,
BA calls announce a proposed BA time and a proposed call

holding time. If a BA call is admitted, it enters service at
the original call arrival time plus the BA time, then spends
the call holding time in service and then departs. (If ,
and are the request arrival time, BA time, and holding
time for a BA call, then it would be in service in the interval

if it is admitted.)
The announced BA holding time may of course be an

estimate or a safe upper bound. The capacity used by this
BA call will be made available to other calls when the
BA customer departs or the holding time expires, whichever
happens first. A BA call might also be allowed to extend its
holding time. A simple way to do this is to treat such a request
as a new BA call. For this new request, the BA time would
be the interval between the request epoch and the epoch the
BA call was previously scheduled to depart. The holding time
of the new request would be the incremental holding time. (In
the setting above with times , and , if the BA call made
a request at time to depart at time , where

, then the second request would have
BA time and holding time .)

We are primarily interested in the case in which BA calls
book far ahead compared to IR holding times. For example,
in a standard telecommunications network, ordinary IR voice
calls have a mean holding time of a few minutes, while
teleconference calls may be booked ahead hours or even days
in advance. Hence, here we assume that BA calls do book
far ahead, except in Section VIII. If necessary, this condition
can be enforced by having a minimum BA time. Under this
condition, when considering whether or not to admit a BA
call, the IR calls in progress need not be considered. A BA
call is admitted (scheduled in the future) if there is room for
it considering only previously booked BA calls.

In this setting, the main problem is to determine an ad-
mission control policy for IR calls. We propose an admission
control policy for IR calls based on an interrupt–probability
computation for each arriving call. Our policy lets an IR call
be admitted if a computed interrupt probability is less than a
certain threshold; otherwise, the call is blocked.

It remains to be specified which call will be interrupted
when there is contention. We are thinking of interruptions
as rare events, so that the specific choice of which call to
interrupt should not affect the performance of the algorithm
much. Hence, it is natural to interrupt the least valuable call,
whatever that happens to be. If the value of a completed call
increases with its duration, then it is better to interrupt a call
that arrived more recently. With that case in mind, we assume
that the most recently admitted IR call is interrupted if an
interruption is necessary.

We should emphasize that the long-run proportion of calls
that are actually interrupted will usually be substantially lower
than the interrupt–probability threshold because the threshold
is only an upper bound on the calculated interrupt probability
for each call. Since BA calls book relatively far ahead and
the policy is to interrupt the most recent IR arrival, future
events will not alter the interrupt probabilities computed upon
IR call arrival. Hence, the threshold is an upper bound. We
use simulation to determine the long-run proportion of calls
that are actually interrupted with a given threshold.
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Since BA calls book relatively far ahead, the BA feature
gives BA calls priority over IR calls. Thus it may be desirable
to also provide some service guarantees to IR calls. For this
purpose, we propose using anupper limit on BA calls to
control the admission of BA calls. In this context, the upper
limit is equivalent to the populartrunk reservationcontrol,
i.e., a BA call will not be admitted if the spare capacity
(considering only BA calls) after admitting the call is less
than some trunk reservation parameterat all times in the
future. Since IR calls are not considered when applying trunk
reservation against BA calls, the control is equivalent to an
upper limit on the number of BA calls in the system.

In our simulations, we assume that arriving BA calls whose
initial requests cannot be met are blocked and lost. However,
in reality, the BA calls could modify their requests, i.e., accept
an alternative available time slot. It is significant that our
admission control policy for IR calls applies equally well with
such modifications. In our simulations we assume that, upon
the arrival of each call, the service provider knows the number
of IR calls in progress and the number of previously admitted
BA calls (in progress or scheduled) that will be present at all
times in the future, which we refer to as theBA call profile.
What is computed (approximately) is the probability of an
interruption at any time in the future, given the calls in service,
the previously scheduled BA calls, and the new arrival, but
ignoring all future arrivals.

To implement such an admission control policy, it is im-
portant to ensure that the interrupt–probability computation
is fast, so that the admission control decision can be made
in real time. Since the exact computation of the interrupt
probability can be computationally prohibitive, we propose
several approximate schemes for this computation. Through
simulation, we show that these approximation schemes are
effective from the perspective of both real-time computation
and expected revenue. In particular, we show that the proposed
admission control algorithm can yield more revenue than
alternative schemes that do not allow interruptions.

Since some IR customers may object strongly to inter-
ruptions, it may be desirable to have multiple classes of IR
calls, only some of which can experience interruptions. A
scheme for providing multiple grades of service for multiple
customer classes is described in Choudhury, Leung, and Whitt
[2]. That scheme provides resource sharing with protection
against overloads through the use of guaranteed minimum and
upper limit bounds. With multiple classes, it might be decided
to interrupt the most recent arrival from the lowest ranked
class present. Instead, a more complicated algorithm might be
considered, in which both class type and arrival time play a
role. In this paper, we only discuss a single IR customer class,
but our approach extends to multiple IR classes, provided that
the IR classes that may experience interruption have a common
holding time distribution.

In this paper, the BA calls can have very general (constant)
bandwidth requirements, BA times (time until starting service),
and holding times (service durations); there can even be mul-
tiple BA classes. However, throughout this paper we assume
that there is asingle classof IR calls with unit bandwidth
requirement, common holding-time distribution, and common

performance requirements. Since this paper was completed,
other admission control algorithms have been proposed by
Wischik and Greenberg [22], and Srikant and Whitt [20] that
allow multiple classes of IR calls. The algorithm in [22]
is based on effective bandwidths, exploiting large deviations
analysis, while the algorithm in [20] exploits the central limit
theorem. In addition to allowing multiple IR classes, the
scheme in [22] does not require that BA calls specify their
holding times. Preliminary investigations indicate that the ad-
mission control algorithms here and in [20] are more effective
for the narrower class of problems to which they apply.

III. T RAFFIC MODEL AND SERVICE OBJECTIVES

In this section we present our traffic model and service
objectives, which we use to evaluate the performance of our
proposed admission control algorithm. We assume that BA
and IR calls (service requests) arrive according to independent
stationary stochastic point processes with rates and .
We assume that the BA (IR) call holding times have a
common distribution with mean . We assume that
the successive BA BA times are i.i.d. random variables with
mean . We assume that the arrival processes, holding times,
and BA times are all mutually independent. We also assume
that IR calls request 1 unit of bandwidth, BA calls request
unit of bandwidth, and the total available bandwidth on the link
is . (Our approach extends to heterogeneous BA calls with
different bandwidth requirements, but it exploits the common
bandwidth requirement for IR calls, which need not be 1 unit.)
We assume that the most recent IR arrival is interrupted when
an interruption is necessary.

The performance of the proposed admission control policy
primarily depends only on the assumptions about the IR
holding times. In Sections V and VI, we assume that the IR
holding times are exponentially distributed. The admission
control algorithm based on exponential holding times with
mean also performs reasonably well if the mean is not

(but is not drastically different) or if the distribution is
not exponential, but performance can be improved by taking
into account the true distribution. For this purpose, we also
develop an algorithm for computing interrupt probabilities
with a general IR holding-time distribution in Section VII.
In this case, we make a further assumption that the IR calls
arrive according to a Poisson process. This nonexponential-
distribution algorithm has the same computational complexity
as in the exponential case. It would be natural to also use this
algorithm as an approximation for other non-Poisson arrival
processes. With or without a Poisson arrival process, the
elapsed holding times (ages) of the IR calls in progress have
an impact on the residual holding-time distribution when the
underlying holding-time distribution is not exponential, but our
algorithm in Section VII does not use the ages. (See [20] and
[22] for alternatives that do.)

To characterize the performance of the admission control,
we focus on the following.

: Blocking probability for IR calls, i.e., the long-run
fraction of IR calls that are rejected either by the
admission control algorithm or due to the link being
full.
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: Blocking probability of BA calls, i.e., the long-run
fraction of BA calls that are rejected, either due to
insufficient capacity for the entire duration of the
preannounced holding time or due to some admission
control such as an upper limit.

: The interrupt probability for IR calls, i.e., the long-run
fraction of admitted IR calls that are interrupted while
they are in progress due to the link being full.

As indicated above, we assume that BA calls are not inter-
rupted. When there is contention among calls in progress, we
assume that IR calls are interrupted, with the most recent IR
arrival being interrupted first.

In this context, performance as described by the three char-
acteristics , , and is determined by three controllable
factors: the overall capacity, the upper limit on BA calls, and
the interrupt-probability threshold. Since the BA calls book
relatively far ahead, the BA blocking probability depends
only upon the capacity and the BA upper limit, not upon the
IR interrupt-probability threshold, denoted by . Indeed, we
can determine by separately considering only the BA calls.

For given total capacity, BA upper limit, and traffic char-
acteristics, the IR-call performance characteristics and

depend on the IR interrupt-probability threshold. As this
threshold decreases, we will tend to take less of a chance on
admitting IR calls; i.e., will go down, while will go
up. For the IR calls, there is an important tradeoff between

and .
It is possible to formulate the admission control problem as

an optimization problem, so that the goal becomes maximizing
net revenue. Once costs and benefits are specified, we can
use simulation to help determine the three controls (total
capacity, upper limit for BA calls, and IR interrupt-probability
threshold) that yield maximum net revenue. More generally,
once the criterion has been specified, we could attempt to do
even better by considering other kinds of admission control
policies, but we do not.

To illustrate the optimization approach, suppose that there
are per-call revenues of and , per-time revenue rates
of and for IR and BA calls that complete service, and
a per-call cost of for interrupting an IR call. Then the
admission control scheme for admitting IR and BA calls can
be chosen to maximize the rate of revenue

(1)

where is the average holding time for IR calls that
are admitted andnot interrupted. It is important to note that

is not ; conditioning on not being interrupted affects
the holding-time distribution. Indeed, experience shows that
the average completed portion of interrupted calls tend to be
greater than , whereas the average length of uninterrupted
calls tends to be less than However, when the interrupt
probability is very small, as is usually desired, thentends
to be nearly the same as Hence, one might substitute
for in (1).

Alternatively, the admission control scheme for admitting
IR calls could be chosen to maximize the rate of revenue

(2)

subject to the constraint , where is an upper bound
on the long-run interrupt probability of IR calls. Alternatively,
the constraint could be expressed by the interrupt–probability
threshold for individual calls. In this paper, we use the
formulation (2), but our framework also allows the use of (1).
Indeed, our framework allows for many alternative revenue
functions. For any one, we can apply simulation to determine
desirable settings for the three controls.

In our examples, we make the parameter choice
and , which makes the revenue correspond

simply to utilization. While it is natural to focus on utilization,
it is also of interest to consider alternative pricing schemes.
Due to the impact of larger-bandwidth BA calls on IR calls,
it might be thought that we should have On the
other hand, volume discounts might dictate We do
not examine such alternatives here, but we provide a basis for
studying them.

IV. A N ALGORITHM FOR SEPARATED TIME SCALES

In this section, we show through a relatively simple example
that resource sharing can be superior to strict link partitioning.
The advantage of sharing is well known for loss models
without booking ahead. Indeed, link partitioning tends to be
effective only in special traffic regimes, such as heavy traffic
[2], [18, Ch. 4.2].

In order to obtain an analytically tractable regime, we
consider the situation of widely separated time scales, in which

and This is a regime commonly occurring
in multimedia networks, in which voice calls arrive and depart
more frequently than large-bandwidth calls such as video, e.g.,
see [7]. Let BA calls book far ahead and give them priority
over IR calls when there is resource contention.

The separation of time scales between the two classes allows
us to develop an efficient numerical algorithm to describe
the performance. First, assuming that the two arrival pro-
cesses are Poisson processes and that the holding times come
from independent sequences of independent and identically
exponentially distributed random variables, the system can be
described exactly by a two-dimensional (2–D) Markov chain,
indicating the number of BA and IR calls in the system,
where neither call class books ahead but with the BA calls
having preemptive priority. Second, because of the time scale
difference between the two call classes, this Markov chain is
nearly decomposable [3], [14]. In particular, we can ignore
the IR calls when considering the BA calls and, when we
consider the IR calls, we can act as if there is a fixed amount
of capacity used by BA calls. Thus, we can use the steady-
state distribution for the IR calls, ignoring fluctuations of the
BA calls. In other words, instead of analyzing a difficult 2–D
Markov chain, we can do several analyses of a simple one-
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TABLE I
REVENUE UNDER FULL SHARING

dimensional (1–D) Markov chain, which corresponds to the
classical Erlang loss model.

In summary, we can calculate an approximation for the
steady-state distribution of the two-dimensional Markov chain
as follows.

1) First, compute the steady-state occupation probabilities
of the slow time scale BA class using the well-known
results for systems [1], where ,
and is the trunk reservation parameter that limits
the maximum number of BA calls to . (For
simplicity, assume that and are multiples of .) Let

denote the steady-state probability that there are
BA calls in the system. The steady-state blocking

probability for BA calls is .
2) Next, compute the steady-state blocking probabilities

for the fast time scale IR calls conditional on each
level of BA calls. In other words, compute

, where denotes the Erlang-B for-
mula [1] for a system with capacity and offered traffic

.
3) Finally, compute the steady-state blocking probability

for IR calls by taking the average of the results in the
second step weighted by the probabilities in the first step,
i.e., by .

To consider a concrete example, let ,
, , , , and

. With these costs and rewards, total revenue corresponds
simply to utilization. In the blocking probability computation
for nearly decomposable systems above, the values of, ,

, and enter only through the ratios and .
The resulting blocking probabilities are and

. Since we assume that and ,
we can conclude that will be negligible. (Note that IR calls
can only be interrupted at times when the number of BA
calls in the system increases and BA arrivals are relatively
infrequent in the time scale of IR calls. We would use the
FTA algorithm in the next section to further reduce the IR
interruptions.) Table I presents the values of the revenueas
a function of . Here .

For the case of link partitioning, let us denote the capacity
allocated to BA calls by . The values of as a function
of is provided in Table II.

In this example, full sharing performs substantially better
than link partitioning. The advantage of full sharing over link
partitioning looks more dramatic if we consider lost revenue

. With full sharing, the lost revenue is 1.7; with link
partitioning, it is 5.6. Therefore, in general, it is worthwhile
to consider admission control mechanisms other than link
partitioning.

TABLE II
REVENUE UNDER LINK PARTITIONING

Example 4 in Section VI shows that the nearly decompos-
able Markov chain (ND-MC) analysis here is substantiated by
simulation for the specific case and . That
example shows that the ND-MC analysis can provide a useful
approximation even when the time scales are only moderately
separated.

V. ADMISSION CONTROL SCHEMES FORIR CALLS

As shown below, it is possible to give an expression for the
interrupt probability (considering only previously accepted BA
calls), but actually performing the calculation can be difficult.
Thus, we propose implementing our admission control strategy
by calculating anapproximationfor the interrupt probability.
We present several candidate approximation schemes below.
The most promising one seems to be theindependent peaks
approximation(IPA), developed in Section V-B below, which
provides high performance at manageably low computational
overhead. In this section, we assume that the IR holding-time
distribution is exponential; in Section VII we treat the case of
a general IR holding-time distribution.

A. Computing the Interrupt Probability

We now indicate how to compute the interrupt probability
for each arriving IR call using the number of IR calls present
at the arrival instant and the future profile of BA calls. The
decision depends on whether the interrupt probability is greater
than or less than a certain threshold. It will be apparent from
the expressions for the exact interrupt–probability computa-
tion that it is difficult to implement. This is overcome by
approximations presented in Section V-B.

Let denote the number of IR calls and the number
of BA calls in progress at time, respectively. Suppose that
a new IR call arrives at time and a decision has to be
made whether or not to admit this call. Then the first potential
interruption time for this IR arrival at time is

(3)

where is the total bandwidth (capacity). Then subsequent
potential interruption times for the IR arrival at time are
the times , such that and

An example of a BA call profile and
the potential interruption times is shown in Fig. 1.

Let denote the number of IR calls that have to
clear down (complete their service) by so that the new
call that arrived at is not interrupted. Clearly,

. The number of potential interrupt
times is less than or equal to . In practice, we can
restrict attention to only those that lie within a certain interval.
Suppose that we consider the firstpossible interrupt times,



GREENBERGet al.: RESOURCE SHARING FOR BA & IR CALLS 15

Fig. 1. Interrupt timesT1; T2; T3; andT4 for an IR call arriving atT0.

i.e., . Let denote the number of IR calls
(not including the new arrival at ) that are in the system at
time and complete their service by timefor Let

denote the holding time of the new IR arrival at time.
Then the probability that the arriving IR call at will be
interrupted at a later time, denoted by , is

(4)

Assuming that IR holding times are exponentially dis-
tributed, it is possible to compute (4); e.g., then

and has a binomial distribution with parameters
and . Even though we can give an explicit

expression for (4), the computation is challenging.

B. Approximation Computations

We now introduce three successively more complex approx-
imations for the interrupt probability in (4). Of course, no
computation is necessary if .

1) Fixed-Time Approximation (FTA):In FTA, the interrupt
probability is approximated by ; i.e., FTA
ignores all interrupt times other than and does not use the
information about the number of existing IR calls at time.

2) One-Peak Approximation (OPA):The OPA uses alower
bound for by using only the first term on the RHS of
(4). In other words, we act as if there is only one interrupt time

. Thus, the interrupt probability is approximated by

(5)

where

(6)

3) Independent-Peaks Approximation (IPA):The IPA as-
sumes that the probability of the arriving call at
being interrupted at each of the possible interrupt times

are independent of each other. Thus, the

interrupt probability is upper boundedby

(7)

for as in (6) with replaced by .
We propose IPA as our preferred approximation because

we have found it to be most accurate, and it is still a
very manageable computation. If we are concerned about
interruptions, then IPA is conservative, because it is an upper
bound. Since OPA is a lower bound, we can be sure both OPA
and IPA are accurate if they are close together. A better lower
bound is the maximum of the probabilities in (7), discussed
in [20].

C. Efficiently Processing Queries

In order to calculate interrupt probabilities, we need to
determine the height of the BA call profile over specified
intervals in the future. For moderate-sized models, this can
be done in a straightforward manner, but for larger models
it is desirable to have a more efficient algorithm. We outline
one such algorithm now. It turns out that the queries to the
call profile can be carried out in time, where
is the number of calls in the profile. The main insight is
to adapt known techniques for processing queries involving
overlapping intervals, developed by computational geometers
and used primarily for visibility computations [15], [16]. We
intend to present the details of the query processing elsewhere.
Briefly, the arrival and departure times for calls belonging to
the departure time are kept in the leaves of a balanced binary
search tree. Associated with each internal node of the tree is
the time interval spanned by the arrivals and departures in the
leaves of the subtree rooted at this node, as well as certain
other information that allows us to construct the maximum
height of the profile over this interval while walking the path
from the root to this node. Updates to the call profile, adding
newly accepted calls and dropping completed calls, trigger

time updates to this data structure.

D. Constant Holding-Time Approximation

We conclude this section by introducing an admission
control scheme that need not be regarded as an inter-
rupt–probability calculation. The CHTA admission control
scheme for IR calls acts as if each new IR call has constant
holding time . The call is admitted if there is sufficient
spare capacity in the link for time units. Otherwise, the
call is rejected. We keep track of scheduled completion times.
If the call departs before units of time, then this space is
made available to any other call that requests it. Otherwise,
whenever a new call arrives, we count all existing IR calls
that have lasted for more than time units as being there at
this instant, but leaving a short (infinitesimal) interval later.
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If we make very large, e.g., , then we essentially
rule out call interruptions. IR arrivals will not be admitted if
any contention is possible in the future. Similarly, new BA
requests will not be admitted if IR calls in progress could then
be interrupted. Evidently, Ferrariet al. [9] have considered
the CHTA scheme with .

Note that FTA isnot the same as CHTA with ,
because CHTA has scheduled completion times for calls in
progress. We later show through simulation examples that
CHTA performs poorly compared to the schemes that are based
on an interrupt–probability computation when the IR holding
times are not in fact constant. Moreover, for finite values of,
there is “bookkeeping” involved in updating the free capacity
in the system.

VI. SIMULATION RESULTS

In this section, we present simulation results illustrating
how the IR interrupt–probability approximations perform. For
these simulation experiments, we assume that IR and BA calls
arrive according to independent Poisson processes and that
all holding times are exponentially distributed. As indicated
earlier, here we assume that all the BA calls book far ahead
compared to IR holding times. For simplicity, we assume
that all BA calls book ahead by a constant amountwith

; in particular, we let . Given that
, booking ahead by a constant amount is without

much loss of generality because the BA service initiation times
form a Poisson process even with random BA times. (This is
equivalent to the departure process in an M/GI/queue being
a Poisson process [9].) The constant BA times ensure that the
BA calls all book far ahead. This could also be achieved with
a random BA time that is required to exceed some minimal
value.

Example 1: Let the available capacity (number of servers)
be , the bandwidth (the number of servers) requested
by each BA call be , the IR arrival rate be ,
and the BA arrival rate be . Let the average holding
times for both call classes be 1. Recall that the bandwidth of
the IR calls is assumed to be 1. Note that the offered load
is 20 60 80, so that we are in a
“normal loading” regime. Without the BA feature, the blocking
probabilities for the BA and IR calls are 0.151 and 0.0112,
respectively, as can be determined by the Kaufman–Roberts
[11], [17] recursion or numerical inversion [2]. Hence, we
might elect to allow booking ahead to reduce the high blocking
experienced by the BA calls. When we do allow booking
ahead, the BA blocking drops to the very low value 0.000 038.
If we allow no interruptions of IR calls, then the IR blocking
probability increases to . (To strike a better balance,
we are thus motivated to introduce the upper limit on BA calls
considered in Example 3, to follow.)

We conducted simulations to estimate the IR blocking
and interrupt probabilities as a function of the IR inter-
rupt–probability threshold . For this first example, we do
not impose an upper limit on BA calls, so that . Given
the input control , we obtain estimates of and from
each simulation run. We plot curves of versus based
on ten different values for . For each value of , the

Fig. 2. Plots of the interrupt probabilitypI versus blocking probabilityPI

in Example 1. The parameters ares = 100, b = 10, �I = 60, �B = 2,
�I = �b = 1.

simulation run length was 100 000 time units, after deleting 25
time units to get rid of transients. Thus, we simulate roughly 6
million IR arrivals and 2 million BA arrivals for each point in
the curve. This choice of simulation run length was based on
preliminary experiments, which revealed that the confidence
intervals are suitably small. (The steady-state simulation run
length of 100 000 was divided into 20 batches to compute
confidence intervals.) The statistical accuracy is confirmed in
the smoothness of the plotted curves. We also exploited our
previous experience studying required simulation run lengths
in loss models [19].

Plots of versus for the three approximation proce-
dures in Section V-B are shown in Fig. 2. The ten interrupt-
probability threshold values were chosen between 0.01 and
0.1. Notice that is very different from the realized inter-
rupt–probability . The reason for this is that admitted calls
may have an interrupt probability that is much smaller than

. Thus, on the average, the realized interrupt probability
tends to be much smaller than . Further, the same value
of yields different values for the pair for the
different admission control algorithms. For example, when
is 0.01, FTA results in (0.000 962, 0.071 852), IPA results
in (0.001 143, 0.064 753), and OPA results in (0.000 893,
0.072 155). However, for all algorithms, as increases,
increases and decreases.

The first conclusion to draw from Fig. 2 is that allowing
very small interrupt probabilities (e.g., of order 10) signif-
icantly reduces the IR blocking probability (e.g., from 0.264
to under 0.07). The second conclusion is that for each fixed

, IPA has significantly smaller than FTA or OPA. This
implies that IPA gives higher rate of revenue under both
criteria (1) and (2). The algorithm CHTA in Section V-D
performs significantly worse than the other three algorithms.
Its performance is so inferior that it is difficult to show it on the
same graph with the other three algorithms without obscuring
relevant details. Therefore, we present its performance in
Table III.

Example 2: We now consider a different scenario. We now
have more peaks in the BA call profile and higher IR blocking
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TABLE III
PERFORMANCE OF CHTA FOR s = 100,

b = 10, �I = 60, �B = 2, �I = �B = 1

Fig. 3. Plots of the interrupt probabilitypI versus blocking probabilityPI
in Example 2. The parameters ares = 40, b = 5, �I = 24, �I = 1,
�B = 16, �B = 4.

TABLE IV
PB AS A FUNCTION OF r WITH s = 100,

b = 10, �I = 60, �B = 2, �I = �B = 1

probabilities. In particular, the parameters are ,
, , , , and . Plots of versus
are shown in Fig. 3. Each curve is based on ten different

values of . Again, IPA has the best performance, but in this
case the FTA curve is quite close to the IPA curve.

Example 3: In this example, we show how the upper limit
of against BA calls can be effectively used to improve the
rate of revenue. Consider the same set of system parameters
as in Example 1, except for a new control variable. The
values of as a function of are shown in Table IV. Plots
of versus for various values of using the IPA policy
are shown in Fig. 4. As in Example 1, the curve is based on
ten different values for , and for each value of , the
simulation run length was 100 000 after deleting 25 time units
to get rid of transients.

As expected for larger values of the reservation parameter
, both the blocking and interrupt performance of IR calls are

Fig. 4. Plots of the interrupt probabilitypI versus blocking probabilityPI
for various values of the upper limit parameterr in Example 3. The parameters
ares = 100, b = 10, �I = 60, �B = 2, and�B = �I = 1.

better, at the expense of increased BA call blocking. We also
plot versus the average revenue in Fig. 5 for several
values of , assuming that we use (2.2) with
and . The best results, , are achieved
first by and then . In contrast, the best possible
revenue with is 76.0 and with link partitioning is 74.3
(with capacity 30 dedicated to BA). Since , the
revenue in this example corresponds to the carried load. Since
the offered load is 80, the lost revenue has been reduced from
5.7 with link partitioning to 3.7 with resource sharing using

, a decrease of 35%. However, the effect ofalone
on revenue is not great; the upper limitis most useful for
making desired tradeoffs between IR and BA performance.

We also point out that, from Fig. 4, the blocking probability
for IR calls is less than 0.065 when and the blocking
probability for BA calls is 0.037 when .

Comparing this to Table II, we see that our admission
control algorithm can achieve high link utilization while
keeping and reasonable whereas under link partitioning,
to achieve maximum revenue, becomes 0.211, which is
very high.

From a design point of view, one more relationship has
to be specified to run the network at a given operating
point on the versus curve. This is the relationship
between interrupt–probability threshold and the realized
interrupt–probability . For the optimal reservation parameter

, this relationship is shown in Fig. 6. In several
examples we have found the relation betweenand to be
very nearly linear. Moreover, tends to be about two orders
of magnitude smaller than (by a factor of about ).

Example 4: As mentioned in Section I, a natural appli-
cation for a BA service is one where most BA calls are
conference calls. Thus, it is natural to consider an example
where BA calls tend to have much longer holding times than
regular voice calls. Let us reconsider Example 3 with
and . We keep the traffic intensity the
same but have increased the holding times of BA calls ten
times. We have plotted the revenue as function of
for various values of the reservation parameterin Fig. 7.
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Fig. 5. Plots of interrupt–probabilitypI versus revenueR in Example 3. The parameters ares = 100, b = 10, �I = 60, �B = 2, �I = �B = 1,
and various values forr.

Fig. 6. PT versuspI for Example 3 withr = 50.

Comparing this to Fig. 5, we see that revenue increases when
BA calls have longer holding times. Thus, the potential gain
from the IPA algorithms as compared to strict partitioning will
be more when the BA holding times are longer. Further, since
BA arrivals and departures are less frequent when the arrival
and departure rates decrease simultaneously, we expect the
computational complexity of IPA to decrease due to the fact
that IR calls will “see” fewer peaks in the BA profile.

Since the average BA holding time is ten times the average
holding time for IR calls, it is reasonable to expect thenear
decomposabilityproperty explained in Section IV to hold. A
comparison of the revenue in Fig. 7 to the results in the
nearly decomposable case presented in Table I shows that the
simulation results are close to those predicted by the Markov
chain computations. As in Table I, the revenue is relatively

Fig. 7. Example 4:pI versusR for �I=�B = 10.

insensitive to since the traffic intensity of BA calls is small
relative to the capacity of the link.

In all our examples, the revenue computed assuming a
nearly decomposable structure was an upper bound on the
revenue achievable through any of our admission control
schemes for the actual model. We conjecture that this property
holds more generally, so that the analytic results in Section IV
should serve as a useful reference point.

VII. N ONEXPONENTIAL HOLDING-TIME DISTRIBUTIONS

On dropping the exponential holding-time assumption for IR
calls, we lose the memoryless property of the IR holding times.
This makes the computation of the interrupt–probability com-
plex. Given the holding-time cumulative distribution function
(cdf) and the elapsed holding timefor any call in progress,
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the remaining holding time of this call has complementary cdf

(8)

where . Hence, given the elapsed holding
times for calls in progress, the remaining
holding times are independent random variables with cdf’s

defined as in (8). Since these cdf’s are dif-
ferent, the exact computation of future events is a difficult
combinatorial problem.

Fortunately, the following simplification appears to be quite
effective. We ignore the elapsed holding times, which reduces
the amount of information that we need to store. Ignoring the
elapsed holding times, we assume a Poisson arrival process
and make an infinite-server approximation. Then, conditioned
on there being calls in progress at some time in equilibrium,
the remaining holding times of these calls are distributed
as independent random variables with cdf, the stationary-
excess cdf associated with, given by

This property holds because the arrival-time and holding-time
pairs are distributed according to a Poisson random measure on
the plane [4]. This result appears on [21, p. 161]. An alternative
proof can be found in [5].

The infinite-server approximation ignoring elapsed holding
times makes it possible to directly extend the FTA, OPA, and
IPA admission control algorithms to nonexponential holding-
time distributions, without increasing the computational com-
plexity. For example, instead of (7), the interrupt probability
for IPA becomes

(9)

where

(10)

for

and (11)

i.e., the old calls have cdf , while the new call has cdf .
Expressions for the OPA and FTA algorithms can be obtained
in a similar fashion.

Example 5: To illustrate, we consider the parameters of
Example 3 with and let the holding-time distribution be
hyperexponential with balanced means, overall mean and
squared coefficient of variation . With the hyperexponential
distribution, when a call arrives, with probabilityit chooses a
holding time from an exponential distribution with mean
and, with probability , it chooses a holding time from
another exponential distribution with mean . This model
is natural to represent two subclasses of IR calls with different
exponential holding times. The balanced means assumption
specifies one parameter by requiring that .
Each simulation run was for 500 000 time units, after deleting
25 time units to get rid of transients. Each curve is plotted
based on ten simulation runs. The simulation runs are longer

Fig. 8. Example 5:pI versusR for ExpIPA and Hyperx.

than in Example 2 to get suitably small confidence intervals
and reasonably smooth curves. This is due to the increased
variability of the holding-time distributions [19].

We compared IPA based on the hyperexponential distribu-
tion (denoted by Hyperx) with IPA based on the exponential
distribution (denoted by ExpIPA); i.e., ExpIPA uses the IPA
algorithm in Section V-B assuming the exponential distribu-
tion when the actual holding times are hyperexponential. The
purpose of this comparison is to study the performance of
Hyperx as well as to check whether or not the ExpIPA is
sensitive to holding-time distributions. For , Hyperx
and ExpIPA are compared in Fig. 8. The performance of
Hyperx is clearly superior to that of ExpIPA. This example
shows that knowledge of the holding-time distribution of
IR calls can be exploited to improve the revenue without
sacrificing computational complexity.

Example 6: We now consider the case in which the holding
times of IR calls are deterministic. We consider this case
because we can compare the results to CHTA which is clearly
optimal for a fixed value of . Therefore, consider the same
parameters as in Example 5 with the only difference being
that the holding times of IR calls are deterministic. Note that
the for and is equal to 1 for .
Each simulation run was for 100 000 time units, after deleting
25 time units to get rid of transients. Each curve is plotted
based on ten simulation runs. DetIPA and CHTA are compared
in Fig. 9, where the CHTA curve is the constant, allowing
no interruptions. The gap between the CHTA and DetIPA is
what is lost by not keeping track of and exploiting the ages.
However, the curves in Fig. 9 indicate that this gap is small.
Thus, the infinite-server approximation is indeed good and is
nearly optimal in the only case for which we know the optimal
solution.

VIII. W HEN BA CALLS NEED NOT BOOK FAR AHEAD

So far, we have required BA calls to book far head relative
to IR holding times. That clearly is an important case, but it is
also of interest to consider what happens when that assumption
is relaxed, which we now do.
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Fig. 9. Example 6:pI versusR for CHTA and DetIPA.

First, when BA calls do not necessarily book far ahead, the
admission control policy needs to be revised. We now might
elect to interrupt BA calls. We might also elect to block BA
calls if they adversely affect IR calls. Hence, in this more
general situation, we propose using an interrupt–probability
calculation for BA calls, too.

A BA call is admitted (scheduled in the future) if:

1) there is room for it considering only previously booked
BA calls;

2) the interrupt probability will not exceed the inter-
rupt–probability threshold (possibly, but not necessarily,
the same threshold as applied to IR calls) after this call
is admitted.

It is now less clear which call should be interrupted when
there is contention. There are two natural policies. First, we can
interrupt the call that arrived most recently, whatever its type
(by the arrival time of a BA call, we mean the time it made its
request, not the time it starts service.) Second, we can interrupt
the IR call that arrived most recently, and thus never interrupt a
BA call. The second policy would be preferred when BA calls
are regarded as much more important or valuable. On the other
hand, it might be thought that admitted BA calls only ought to
be given priority if they book far ahead. Our algorithms can
be used with these interruption policies, as well as others.

As before, it may be desirable to provide additional service
guarantees, such as trunk reservation, but now these guarantees
could be applied to either class. As in [2], we could assign
upper limits to both classes. Alternatively, we could apply
trunk reservation to one of the classes. With trunk reservation,
we propose taking the reservation parameter into account in
the interrupt–probability computation. Specifically, if there is
a reservation against BA calls, and a BA call is under consid-
eration, then we compute the probability that the demand will
ever exceed , assuming that the BA call is admitted. If
this calculated probability exceeds a specified threshold, then
the BA call is blocked. Similarly, if there is a reservation
against IR calls and an IR call is under consideration, then
we consider the probability that the demand will ever exceed

, assuming that the IR call is admitted. If this calculated
probability exceeds the specified threshold, then the IR call is

Fig. 10. Example 7:pI versusR.

blocked. Of course, we apply trunk reservation against only
one of the two classes.

Example 7: To consider the case in which BA calls need
not book far ahead, we first consider an example in which the
BA time is random, allowing any value greater than zero. We
consider the same parameters as in Example 3, except that we
assume the BA time is hyperexponentially distributed with
mean 20 and squared coefficient of variation (SCV) 5. (The
squared coefficient of variation is the ratio of the variance to
the square of the mean.) The density of a hyperexponential
distribution is decreasing, so that shorter values are most
likely, but nevertheless the mean is quite large compared
to IR holding times, which we still assume have mean 1.
Assuming that hyperexponential distribution has balanced
means, this implies that the BA times are chosen from a
mixture of two exponential distributions with means 11.01
and 109.0 (see [19, p. 36] for the necessary calculations.)
Fig. 10 plots the IR interrupt–probability versus revenue

for three different values of . Unlike in the previous
examples, since some BA calls do not book very far ahead,

may not be close to zero. However, for the value of
which gives the best revenue (see the curve in Fig. 10),
the BA interrupt probabilities were less than , which
is clearly very small. Thus, our admission control algorithm
still yields better revenue than strict link partitioning
when the average BA time is large but there is significant
variability in the BA time. However, as is to be expected,
the performance deteriorates when the BA time is highly
variable (compare Fig. 10 with the results for Example 3).

For the case , the range of IR interrupt prob-
abilities shown in Fig. 10 was obtained by choosing the
interrupt–probability threshold in the interval [0.003, 0.03].
For this range of , the IR blocking probability was nearly
constant around 0.059 and the BA blocking probability varied
from 0.03 to 0.045. This shows that, if the average BA time is
large, even when there is high variability in the BA times we
can get more revenue with our admission control compared to
strict link partitioning and also keep the blocking probabilities
of the two call types reasonably small.

Example 8: We conclude this section with an example
which illustrates when strict link partitioning may be prefer-
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Fig. 11. Example 8:pI versusR.

able to our admission control. Consider the parameters of
Example 7, except that the BA time is now assumed to be
exponentially distributed with mean 1. Thus, the average BA
time is the same as the average holding time of IR calls.
In general, if the BA calls are typically conference calls, we
expect the BA times to be much larger. But for the sake of
completeness, we consider this scenario.

Fig. 11 plots the IR interrupt–probability versus revenue
for two different values of . In both cases, was always

less than 10 . From Fig. 11 for the case , the revenue
using the IPA algorithm is superior to link partitioning (see
Table II). The range of IR interrupt probabilities shown in
this figure were obtained by choosing the interrupt–probability
threshold in the interval [0.03, 0.3]. For this range of,
the IR blocking probability was nearly constant at 0.03
and the BA interrupt–probability varied from 0.10 to 0.12.
Hence, is much larger than in this case. Thus, if the
goal is not just maximum revenue but also to lower the high
blocking probability of large-bandwidth calls through BA, it
is natural to reserve some space for BA calls. We do this by
choosing , and choosing the same set of values for
(recall that a negative value ofindicates that the reservation
is against IR calls.) For , varied from 0.094 to
0.098 and from 0.066 to 0.082. Now is less and
is more compared with . However, , , and are
all roughly equal to the corresponding values with strict link
partitioning and in Table II. This shows that, when
BA times are short, strict partitioning might perform just as
well as an admission control algorithm based on calculating
interrupt probabilities.

IX. CONCLUSION

In this paper, we have proposed an admission control
algorithm to use when there are both BA calls (with specified
BA and holding times) and IR calls (with unspecified holding
times). We have considered the case of a single link, but the
analysis extends directly to networks, assuming fixed routing.
To be admitted, a call must satisfy the specified conditions
on all required resources. We assume the IR call holding
times all have a known common distribution, which may be

exponential (Sections V and VI) or arbitrary (Section VII).
Our main idea is to allow occasional service interruption or
service degradation. Our admission control policy is based on
determining, under the assumption that the new call is admit-
ted, whether or not the probability that a call in progress will
eventually need to be interrupted (or have service degraded)
exceeds a specified threshold. The new arrival is admitted if
the interruption probability is below the threshold; otherwise
the call is blocked.

Effective real-time control is achieved by efficiently cal-
culating an approximate value for the interrupt probability.
Several approximation schemes were proposed. Simulation
experiments showed that the IPA yielded better performance
than the other approximations and, at the same time, produces
a feasible computation for real-time control.

Overall, from extensive simulation experiments we draw
the following conclusions.

1) Allowing occasional service interruptions or degradation
of service can yield greater revenue than admission
control schemes which do not allow them.

2) The IPA scheme can significantly outperform the other
candidate approximation schemes for calculating the
interrupt probability.

3) The addition of an upper limit or trunk reservation
control on BA calls provides more flexibility to achieve
a desired balance between BA and IR performance, and
can yield additional net revenue.

4) The general holding-time distribution algorithm in
Section VII can outperform the exponential holding-
time distribution algorithm in Section V if the holding-
time distribution is not nearly exponential (Section VII).

5) The nearly decomposable Markov chain (ND-MC) al-
gorithm in Section IV provides a useful approximation
when BA calls book far ahead and have relatively long
holding times.

6) More generally, revenue tends to increase when the
BA time scale (mean holding and interarrival times)
increases, so that the limiting case described by the
ND-MC algorithm tends to provide an upper bound on
achievable revenue, and so is a useful theoretical frame
of reference, along with well known algorithms for the
case in which no calls book ahead.

7) Performance can degrade if BA calls do not book
relatively far ahead (Section VIII).
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