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ABSTRACT

This note describes a simulation experiment involving nine exponential queues in series with

a non-Poisson arrival process, which demonstrates that the heavy-traffic bottleneck phenomenon

can occur in practice (at reasonable traffic intensities) as well as in theory (in the limit). The

results reveal limitations in customary two-moment approximations for open queueing networks.
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1. Introduction

The purpose of this note is to describe a simulation experiment that provides insight into the

steady-state performance of non-product-form open queueing networks. In particular, we show

that the heavy-traffic bottleneck phenomenon in an open queueing network can occur

approximately at reasonable traffic intensities.

By the heavy-traffic bottleneck phenomenon, we mean the state-space collapse that occurs if

the traffic intensity of one queue approaches 1, while the traffic intensities at all other queues

remain below 1 − ε for some ε > 0. Heavy-traffic limit theorems by Iglehart and Whitt [5],

Reiman [7, 8] and Chen and Mandelbaum [4] indicate that if the traffic intensity at one queue is

sufficiently high, while the traffic intensities of all the other queues are substantially lower, then

the standard steady-state random variables such as the waiting time at each queue and the number

of customers in the network are distributed nearly the same (relatively to the level of congestion

at the bottleneck queue) as if all the service times in the non-bottleneck queues were set equal to

0.

Since the number of customers in the bottleneck queue should go to infinity as its traffic

intensity approaches 1, while the number of customers at other queues should stay finite, it is

intuitively obvious that the proportion of customers in the network that are at the bottleneck

queue should approach 1 in this limit. However, it is less obvious that the normalized steady-

state waiting time at the bottleneck queue should be nearly the same as if the service times at all

the other queues were set equal to 0, i.e., as if the other queues acted as instantaneous switches.

This is the feature that we wish to identify in typical networks.

To exhibit the heavy-traffic bottleneck phenomenon in this form, we choose a relatively

simple network. (It will be evident that the phenomenon will hold more generally.) In particular,

we consider several single-server queue in series. Customers arrive at the first queue according to
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a renewal process with interarrival times having a general distribution with mean 1 and squared

coefficient of variation (variance divided by the square of the mean) ca1
2 . Each queue has

unlimited waiting space, the first-in first-out discipline, and IID (independent and identically

distributed) service times that are independent of the arrival process and the other service times.

The service-time distribution at queue i has a general distribution with mean ρ i , where ρ i < 1,

and squared coefficient of variation csi
2 . In this context, the heavy-traffic bottleneck phenomenon

occurs if the traffic intensity of one queue is allowed to approach 1; then, by [5], the waiting-time

distribution at this bottleneck queue is asymptotically the same as if the immediate arrival process

(i.e., the departure process from the previous queue) were replaced by the external arrival process

to the first queue with squared coefficient of variation ca1
2 . Our purpose is to show that this can

be approximately true at reasonable traffic intensities.

Unfortunately, due to the non-exponential distributions, this model is very difficult to analyze

exactly. A useful practical approach to this model and more general open queueing networks is

the parametric-decomposition approximation method, as in Whitt [14], Segal and Whitt [10],

Bitran and Tirupati [3] and references cited there. For our model of queues in series, the standard

implementation of this approach is to approximate the arrival process to queue i by a renewal

process with arrival rate 1 and squared coefficient of variation cai
2 , where cai

2 is defined recursively

by

ca,i + 1
2 = ρi

2 csi
2 + ( 1 − ρi

2 ) cai
2 , i ≥ 1 , (1)

see (38) of [14] and (23) of [15]. We then can approximate the mean steady-state waiting time

(before beginning service) at queue i by

E[W i ] ∼∼
2 ( 1 − ρ i )

ρi
2 (cai

2 + csi
2 )_ __________ (2)

or some refinement such as provided by Kraemer and Langenbach-Belz [6]; see (2) and (44) of
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[14].

As indicated in [15], approximation (1) can be viewed as the result of the pure stationary-

interval method, i.e., an attempt to match cai
2 for i > 1 to the actual squared coefficient of

variation of a stationary interval in the i th arrival process (but ignoring the dependence among

successive interarrival times). It is significant that (2) does not reflect the heavy-traffic

phenomenon, because the approximating arrival variability parameter cai
2 at queue i is totally

independent of ρ i .

It may seem appropriate that cai
2 not depend on ρ i , because the arrival process to queue i is

exogenous to queue i. However, experience has shown that it may be desirable to let cai
2 depend

on ρ i , because the way the variability in the arrival process affects the queue depends on the

traffic intensity in the queue.

An alternate approach described in [13, 15] is the asymptotic method, which attempts to

choose a variability parameter cai
2 to match the central limit theorem behavior of the i th arrival

process. For queues in series, this leads to the approximation

cai
2 = ca1

2 for all i ≥ 1 . (3)

Intuitively, (3) may not look too promising, but it is just what is predicted by the heavy-traffic

theory when ρ i → 1. (This was the original motivation for the asymptotic method.) We thus

regard actual system performance consistent with (3) and (2), instead of (1) and (2), when ρ i is

relatively high as strong evidence of the heavy-traffic bottleneck phenomenon.

Based on success approximating queues with superposition arrival processes in Albin [1] and

Whitt [13, 14], Whitt [15] sought a hybrid approximation for the arrival variability parameters for

queues in series, which appropriately combines the stationary-interval method and the asymptotic

method. However, in the simulations considered in [15], (3) did not help. Until the present

experiment, we have had no clear evidence indicating that (3) is relevant at typical traffic
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intensities. However, benefits from modifying (1) in open queueing networks were noted by

Albin and Kai [2]. Moreover, a modification of (1) that reflects (3) for two queues in series is

presented in Suresh and Whitt [11]. However, the modification in [11] does not help significantly

with the examples here.

In Section 2 we describe a specific experiment showing that (3) can be relevant at a bottleneck

queue at typical traffic intensities. In Section 3 we consider a modification of that experiment to

see the effect of inserting a low-variability (high-variability) queue in front of the first queue

when the external arrival process has high (low) variability. Finally, we make a few concluding

remarks in Section 4.

2. Nine Exponential Queues in Series

We now specify the model to demonstrate the relevance of (3). The traffic intensities were

chosen to reflect the heavy-traffic bottleneck phenomenon, but not to be too extreme. For this

purpose, the network was given 9 queues with ρ 9 = 0. 9 and ρ i = 0. 6 for 1 ≤ i ≤ 8. Similarly, the

service-time and external interarrival-time distributions were chosen to be relatively standard. In

particular, all the service-time distributions are exponential (so that csi
2 = 1 for all i). Two cases

were considered for the interarrival times: high variability and low variability. (Nothing would be

learned from a Poisson arrival process, for which the exact solution is known and consistent with

both (1) and (3).) The distribution for high variability is the hyperexponential (H 2 ) distribution

with balanced means, as in (3.7) of [13], with ca1
2 = 8. The distribution for low variability is

deterministic (D) with ca1
2 = 0.

The simulation estimates of the expected waiting times at each queue were obtained from ten

replications of 30,000 arrivals, discarding the first 2,000 in each case to allow the system to

approach steady state. These run lengths are not long enough to obtain high accuracy at the

bottleneck queue (see [18]), but they are adequate to clearly demonstrate the heavy-traffic
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bottleneck phenomenon. (Other experiments have subsequently been conducted with millions of

arrivals that also support the results here.) The estimated mean steady-state waiting times at the

last two queues in both cases are displayed in Table 1, together with estimates of 90% confidence

intervals, which are based on the t-statistic applied to the ten independent replications. (As usual,

since the estimates are not actually normally distributed, the t-statistic is an approximation.) Also

shown in Table 1 are the values of three approximations.

The idea behind this experiment is that, if we did not have the heavy-traffic phenomenon, we

would expect that the arrival process to each successive queue would become more like a Poisson

process, so that the last queues would behave like M/M/1 queues. (See Remark 4.2 for further

discussion.) Consistent with (1), we might expect that the non-Poisson variability in the external

arrival process has been dissipated by the time we reach queue 9. However, from Table 1 it is

clear that the observed mean waiting time at the bottleneck queue (queue 9) is much higher

(lower) than in the M/M/1 model with the same traffic intensity when ca1
2 = 8. 0 (ca1

2 = 0. 0 ). The

standard approximation (1) yields ca9
2 = 1. 20 and 0.97 in these cases, so that from (1) and (2) we

would expect the mean waiting time to be about 10% higher and 2% lower than for the M/M/1

models in these two cases. In fact, the actual estimates are 272% higher and 38% lower,

respectively.

In contrast, the pure asymptotic-method approximation combining (2) and (3) is much better

at the bottleneck queue, providing very strong evidence of the heavy-traffic bottleneck

phenomenon. However, ρ 9 could be even higher, so that we should not expect to see the full

heavy-traffic effect. Indeed, the approximation combining (2) and (3) does not perform

exceptionally well, yielding about a 20% error in each case.

As should be expected, the asymptotic method performs very poorly at the preceding non-

bottleneck queue. Note that queue 8 would have the highest traffic intensity among the first 8
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queues, and thus be the bottleneck queue in some sense, if we just increased its traffic intensity by

a very small amount, say by 0.01. However, for practical purposes, for a queue to be a

bottleneck, it is not enough for it to have the highest traffic intensity; its traffic intensity should be

substantially greater than the traffic intensities at the other queues.

These examples show limitations in the parametric-decomposition approximations as

currently developed. We still believe that improved parametric-decomposition approximations

can be developed to cover these examples. These results suggest that, just as in [1, 13, 14], it

should be appropriate to consider hybrid approximations of the stationary-interval and asymptotic

methods. In general, it appears that an appropriate approximating arrival process variability

parameter at queue i, say cai
2 , should be a function of ca1

2 , cs1
2 , ... , cs,i − 1

2 and ρ 1 , ... , ρ i . We are

fairly confident that cai
2 should satisfy the requirement that

min { ca1
2 , cs1

2 , ... , cs,i − 1
2 } ≤ cai

2 ≤ max { ca1
2 , cs1

2 , ... , cs,i − 1
2 } , (4)

but we have just shown that neither (1) nor (3) is always good. However, we expect (1) to work

reasonably well when the bounds in (4) are not too far apart.

Reiman [9] recently has proposed two parametric-decomposition approximations for open

queueing networks that are strongly based on the heavy-traffic bottleneck phenomenon. The

object is to determine cai
2 to use with (2). The first method is the individual bottleneck

decomposition (IBD), which treats each queue as if it were the unique bottleneck queue. It is not

difficult to see that IBD in fact coincides with the asymptotic method in [13, 15]: this is justified

by the heavy-traffic limit theorems in [4, 5, 7, 8]. Reiman’s second method, which seems more

promising, is the sequential bottleneck decomposition (SBD), which starts by identifying the

queue, say queue i, with the highest traffic intensity (assuming no ties) and applying the

bottleneck approximation to it to determine cai
2 . In a series network this amounts to using (3) at

the queue with highest traffic intensity. The procedure continues by removing the bottleneck
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queue from the network and replacing it by an external source (with consistent routing) having its

service times as interarrival times. Then the procedure is repeated by identifying the queue with

the next highest traffic intensity, and so forth. For a series network, this means that the original

procedure is repeated for the queues before the first bottleneck queue, and separately for the

queues after the first bottleneck queue, with the bottleneck queue being replaced by an external

source with arrival variability parameter csi
2 . For the example in Section 2, this means using (3)

and (2) at queue 9, i.e., ca9
2 = 8. 0 for the case in which ca1

2 = 8. 0. At queue 8 it also means using

(3) and (2) i.e., ca8
2 = 8. 0, if ρ 8 is raised to 0.601. However, it means using ca8

2 = 1 if instead ρ 7

is raised to 0.601. This example shows that SBD could benefit from refinement, but Reiman

shows that it performs quite well in some cases. We regard SBD as another basic method along

with the stationary-interval and asymptotic methods that can serve as a basis for refined hybrid

methods.

While we do not intend to investigate specific new approximations for cai
2 here, we suggest

some properties that we think cai
2 should satisfy. First, cai

2 could reasonably be a convex

combination of ca1
2 , cs1

2 , ... , cs,i − 1
2 with weights that are continuous functions of (ρ 1 , ... , ρ i ).

Moreover, the weight on cs j
2 should be increasing in ρ j and decreasing in ρ k for k ≠ j. Similarly,

the weight on ca1
2 should be increasing in ρ i but decreasing in ρ j for j ≠ i. Moreover, any

approximation should be consistent with SBD for a single bottleneck queue, i.e., queue j as

ρ j → 1. As ρ j → 1, the approximation of ca j
2 should approach the asymptotic method value and

the approximation of cak
2 for k ≠ j should be consistent with replacing queue j by an external

arrival process with arrival variability parameter cs j
2 . It is not obvious what should happen when

two traffic intensities get large; then we would want consistency with the more complicated two-

dimensional diffusion limit resulting from [4, 7].
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3. Filtering Through a Queue

If there is high variability in an external arrival process, as in the first case above with

ca1
2 = 8. 0, then we might consider controlling the variability by filtering the arrival process

through a low-variability queue, i.e., we could insert a low variability queue in front of the other

queues in series to absorb some of the fluctuations. Hence, in this section we consider a

modification of the experiment above in which an extra queue with deterministic service times is

inserted before the same nine exponential queues.

Before discussing our experiment in more detail, we note that a fairly obvious result holds,

namely, that adding a queue can only increase the number of customers in the entire system at

each time t and the time each customer spends in the system.

Proposition. If a new queue is added to a series of queues, then the number of customers in the

system at each time and the time each customer spends in the system are greater than or equal to

what they were before.

Proof. Note that the performance measures of interest are the same as if the inserted queue were

always there but with zero service times. Then observe that the departure times from the inserted

queue and all subsequent queues are nondecreasing in the service times; see Theorem 12 of [12].

Of course, the external arrival times are unchanged as are the arrival times at the queue where the

service times are being changed. Finally, note that the time in system is the departure time minus

the exogenous arrival time and the number in system at time t is the number of arrivals by t minus

the number of departures by t.

Of course, this comparison result does not imply that it is never desirable to insert an

additional queue, because we might prefer to have customers waiting at the inserted queue than at

later queues. (In manufacturing, it is often desirable to delay starts to avoid having excessive

partially completed work in process.)
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Our new experiment consists of a new first queue with cs1
2 = 0. The remaining 9 queues do

not change; they get relabeled, so that now ρ 10 = 0. 9 and ρ i = 0. 6 for 2 ≤ i ≤ 9. As before, csi
2 = 1

for 2 ≤ i ≤ 10. We consider three different traffic intensities for the first queue ρ 1 = 0. 4, 0.6 and

0.9.

The simulation experiment was conducted in the same way as the previous one. The results

are given in Table 2, along with the case ρ 1 = 0. 0, which reduces to the previous case. The

estimated halfwidth of the 90% confidence interval is given below each simulation estimate. The

four cases based on the four values of ρ 1 were generated from the same random variables, so that

comparisons between the cases are relatively reliable (but not independent).

From Table 2, we see that the smoothing effect increases as we increase ρ 1 . However, for

ρ 1 = 0. 6 = ρ i , 2 ≤ i ≤ 9, the smoothing effect helps very little beyond the very next queue. In

contrast, the smoothing effect for ρ 1 = 0. 9 is great, but at the expense of substantial delay at the

filter queue. Also given in Table 2 are the approximations using (1) and (2). Again, the

approximations do not perform very well, especially in predicting the large delay at queue 10

when ρ 1 ≤ 0. 6. Even with ρ 1 = 0. 9, there remains a long-range variability effect on the final

bottleneck queue not anticipated from (1); i.e., the estimated mean steady-state waiting time is

14.0, whereas the approximation based on (1) and (2) is nearly the same as the M/M/1 value of

8.1.

From Table 2, we see that the approximation does not perform well at queue 1 when ρ 1 = 0. 4

and 0.6 and at queue 2 when ρ 1 = 0. In part, this is because ca1
2 = 8. 0 is relatively high variability,

for which good approximations are hard to achieve. However, these cases are also ones for which

the Kraemer and Langenbach-Belz refinements help significantly. Since these refinements always

decrease the approximate value, they do not move the values at queue 10 in the correct direction.

In Table 3 we also report results for the dual example in which the external arrival process is
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deterministic (cs1
2 = 0 ) and the first queue has H 2 service times with cs1

2 = 8. 0. From Table 3 we

see that the approximations based on (1) and (2) perform significantly better in this case. From

the case ρ 1 = 0. 9, we see that high variability in the service times can also cause a much greater

waiting time in a subsequent bottleneck queue.

4. Concluding Remarks

4.1 Long-Range Variability Effects

The examples here illustrate how high or low variability in an external arrival process or the

service times (the case ρ 1 = 0. 9 in Table 3) can have only limited impact on immediately

following queues, and yet have a dramatic effect on a later queue with a much higher traffic

intensity. This phenomenon would have been more apparent if we considered deterministic

service times at all queues (the pipelining effect in [16]), but perhaps less convincing. A different

long-range variability effect for multi-class queueing networks is described in [17]. Upon

reflection, it appears that the two phenomena actually are rather similar. Due to the relevant time

scales, it is possible for an arrival process to pass through a subnetwork where it has little effect

and reappear later largely unchanged. Here the low variability queues before the bottleneck queue

do not significantly reduce the high variability in the larger time scale relevant for the bottleneck

queue.

4.2 The Reiman-Simon Conjecture

In a certain sense, these examples also test a long-standing conjecture, communicated by M. I.

Reiman and B. Simon among others, that the stationary departure process from n IID exponential

single-server queues in series fed by an independent stationary arrival process converges to a

Poisson process as n → ∞. Of course, we only test the quality of the approximation of the

alleged limit for finite n. Assuming that the conjecture is true (which we strongly believe), we

might expect that the arrival process to the last queue in our example would be sufficiently close
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to a Poisson process so that the mean steady-state waiting time is close to what it would be in an

M/M/1 queue with ρ = 0. 9. However, we have seen that this is not the case. Evidently n has to

be much larger for the departure process to be close to the Poisson process, at least from the

perspective of a following bottleneck queue. Evidently the required n for the mean steady-state

queue length at a subsequent bottleneck queue with traffic intensity ρ n to behave as if the arrival

process were Poisson (after passing through n − 1 queues with ρ i = 0. 6) goes to infinity as

ρ n → 1. However, this does not contradict the conjecture, if the conjecture is understood to

mean convergence of the finite-dimensional distributions, because as ρ n increases the relevant

time scale for the n th arrival process increases with regard to its impact on the steady-state

behavior of queue n. In other words, the conjectured convergence as n → ∞ is evidently not

uniform in the length of the time intervals considered.

4.3 Simulation Technique for Many Queues in Series

An effective way to simulate many queues in series if the joint distribution of characteristics

at several queues is not required is to simulate the individual queues separately and recursively

(the opposite of parallel processing). For any queue, given a sequence of arrival times { T n } and a

sequence of service times { S n }, we generate sequences of departure times { D n } and waiting

times { W n } by

D n = max { T n , D n − 1 } + S n (5)

and

W n = max { T n , D n − 1 } − T n (6)

for n ≥ 1. Of course, the departure times serve as the arrival times at the next queues.

If we want to reduce memory, we can work with a file containing only the arrival sequence

{ T n }. We generate S n as needed by a random number generator and collect cumulative statistics

on D n and W n as we go along. To eliminate extra storage, we can replace T n by D n after we
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have calculated D n and W n , so that { T n } becomes the arrival process to the next queue when we

are finished applying (5) and (6) to the given sequence. In fact, we have used this approach to

study variations of the model in Section 2 with up to 100 queues in series. (The heavy-traffic

bottleneck phenomenon is still present.)

4.4 Improving System Performance

The heavy-traffic bottleneck phenomenon has important implications for improving

performance of queues in series (and more general open queueing networks). If there is a

bottleneck queue, then obviously we should try to reduce its traffic intensity. Next we should try

to reduce the variability of the bottleneck service times and the external arrival process.
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_ ___________________________
high low

variability variability
ca1

2 = 8. 0 ca1
2 = 0. 0_ ____________________________________________________

simulation
estimate

30. 1 ± 5. 1 5. 03 ± 0. 22
_ __________________________________________

approximation
(1) and (2)

8.9 8.0

queue 9 _ __________________________________________

M/M/1
ρ 9 = 0. 9 approximation

8.1 8.1
_ __________________________________________

approximation
(3) and (2)

36.5 4.05
_ ____________________________________________________

simulation
estimate

1. 41 ± 0. 07 0. 775 ± 0. 013
_ __________________________________________

approximation
(1) and (2)

1.04 0.88

queue 8 _ __________________________________________

M/M/1
ρ 8 = 0. 6 approximation

0.90 0.90
_ __________________________________________

approximation
(3) and (2)

4.05 0.45
_ ____________________________________________________ 













































































































































Table 1. Simulation estimates of the mean steady-state waiting times at queues 9 and 8 in the
network of nine queues in series in Section 2, plus associated approximations.


