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Abstract

In this paper we establish upper and lower bounds on the steady-state per-class workload

distributions in a single-server queue with multiple priority classes. Motivated by communication

network applications, the model has constant processing rate and general input processes with

stationary increments. The bounds involve corresponding quantities in related models with the first-

come first-served discipline. We apply the bounds to support a new notion of effective bandwidths

for multi-class systems with priorities. We also apply the lower bound to obtain sufficient conditions

for the workload distributions to have heavy tails.

Key words: priority queues, stochastic fluid models, bounds, admission control, effective band-

widths, large-buffer asymptotics, ATM, heavy-tailed distributions, long-tailed distributions



1. Introduction

Motivated by the desire to model asynchronous transfer mode (ATM) switches and internet

protocol (IP) routers supporting multiple priority classes, we consider a stochastic fluid queue

with unlimited buffer space, constant release rate and m priority classes. We allow the input for

each class to arrive in an arbitrary manner. Our main assumptions are that the m single-class

cumulative input processes are mutually independent and that each has stationary increments. We

want to allow general stationary input processes in order to be able to represent traffic complexity

as observed in many recent traffic measurements; e.g., see Cáceres, Danzig, Jamin and Mitzel [6],

Leland, Taqqu, Willinger and Wilson [17] and Feldmann, Gilbert, Willinger and Kurtz [12].

We assume that the priority service discipline is preemptive-resume, which in our fluid context

means that the constant output rate available at any instant is applied to the highest-priority work

waiting or arriving at that instant. Note that in the application to packet networks the transmission

of a packet is not pre-empted; however, the resulting inaccuracy of assuming pre-emptive resume is

well with the inaccuracy of the overall traffic model, particularly in the region of interest of many

packets in queue. Within each priority class, work is served in a first-come first-served (FCFS)

order. With this priority discipline, it actually suffices to consider only two priority classes. From

the perspective of any class, all lower-priority classes can be ignored, while all higher-priority classes

can be lumped together. Thus, without loss of generality, we consider only two priority classes,

with class 1 having priority over class 2. Since class 1 experiences a FCFS system, we are primarily

interested in the steady-state workload (buffer content) and waiting time for the low-priority class 2.

The waiting time is a virtual waiting time; in particular, the waiting time at time t is the time until

a potential additional infinitesimal particle of fluid arriving at time t would be served (processed).

The low-priority waiting-time at any instant is at least as large as the total workload at that instant

divided by the processing rate; it often is strictly larger because subsequent high-priority input has

priority over waiting low-priority work.

Our main results for the low-priority workload and waiting time are upper and lower bounds

in terms of associated stochastic fluid models with the FCFS service discipline. These bounds

allow us to apply results for FCFS systems to bound and approximate the low-priority steady-state

workload and waiting time.

Our bounds have many possible applications. We developed them in order to extend the con-

cept of effective bandwidths for admission control to settings with multiple priority classes. That
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application of the bounds is described in [2], so we will be brief here. The notion of effective band-

widths was originally developed for the FCFS discipline. The general idea is to assign an effective

bandwidth ei to each connection of type i. Then a vector (n1, . . . , nI), where ni is the number of

connections of type i, is deemed feasible for a system with capacity (i.e., available bandwidth or

constant processing rate) c if
∑

i∈I

niei ≤ c .

The associated admissible set with a single linear boundary greatly simplifies engineering; e.g.,

it makes it possible to apply stochastic-loss-network (generalized-Erlang) models, as in Ross [21],

for capacity planning. A theoretical basis for the notion of effective bandwidths and the linear-

admissible-set structure for the FCFS discipline has been provided by large-buffer asymptotics

(large deviations theory); e.g., see Chang and Thomas [7], de Veciana, Kesidis and Walrand [9],

Kelly [15] and Whitt [27] for reviews.

As discussed in [2], a corresponding large-buffer asymptotics can be developed for stochastic fluid

queues with priorities. The resulting admissible set has a constraint for each priority class. That

by itself presents no major problem, but unfortunately these constraints are in general nonlinear.

Losing the linearity causes the notion of effective bandwidths to lose much of its appeal. Fortunately,

the FCFS bounds introduced here can help. The FCFS bounds produce approximating admissible

sets that do have linear boundaries. In particular, the admissible set associated with the upper

(lower) bound has linear boundaries and is contained in (contains) the exact admissible set with

nonlinear boundaries; i.e., the upper bound on the workload tail probabilities is conservative, leading

to a smaller admissible set. In [2] we suggest the conservative upper bound for the steady-state

workload and the associated smaller admissible set as the preferred approximation.

Even more important than the candidate approximations for effective bandwidths, we believe,

is the proposed structure for the admissible set with multiple priority classes. Regardless of the

method used to define effective bandwidths, the analysis suggests that there should be a linear con-

straint associated with each priority class. This linear-admissible-set structure implies a new notion

of effective bandwidths, where a given connection is associated with multiple effective bandwidths:

one for the priority level of the given connection and one for each lower priority level. We have

made a case for this general admissible-set structure, without referring to large-buffer asymptotics

in [3]. This approximating admissible set was also suggested by Kulkarni and Gautam [16], but

they obtained it by examining the exact admissible set, rather than from general bounds on the

steady-state workloads.
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Here is how the rest of this paper is organized: In Section 2 we define the stochastic processes

of interest in the two-priority model. In Section 3 we show how to construct stationary versions of

the stochastic processes defined in Section 2. In Section 4 we apply the stationary versions together

with previous large-deviations results in [13], [27] to establish the exact large-buffer deviation result.

In Section 5 we establish an exact relation between the low-priority waiting time and the

total workload under the assumption that the high-priority input has stationary and independent

increments, which is applied in our bounds and is also directly useful. In Section 6 we establish

the lower bound on the low-priority steady-state workload, which we call the reduced-service-rate

bound. In Section 7 we combine this bound with another lower bound in [8] to obtain general

sufficient conditions for the low-priority workload to have a heavy-tailed distribution. In Section 8

we establish the upper bound on the steady-state workload, which we call the empty-buffer bound.

Finally, in Section 9 we consider an illustrative numerical example.

We close this introduction by mentioning other related work. Exact analyses of priority models

with extra Markovian assumptions have been done by Sugahara, Takine, Takahashi and Hasegawa

[23], Takine and Hasegawa [24] and Zhang [29]. Zhang [29] finds an exact solution for a Markov

modulated fluid model with priorities, and Elwalid and Mitra [11] develop an approximation. With

admission control, these approaches offer the possibility of calculating the feasible set more accu-

rately, but at the expense of losing the more elementary effective bandwidth approach with linear

constraint boundaries.

2. The General Fluid Model with Priorities

In this section we define the basic stochastic processes in the general fluid model with priorities.

By “fluid model” we mean that work is processed continuously at a constant rate as if it were a

fluid. We let work arrive in an arbitrary manner; i.e., it could arrive continuously or in jumps.

There is a single server (or buffer) with unlimited waiting space. The specific priority discipline is

preemptive resume; i.e., higher priority work immediately preempts lower priority work, and lower

priority work resumes service where it stopped when it regains access to the server.

In general, there may be m priority classes, but it suffices to consider only two. Hence, let

there be two priority classes, with class 1 having preemptive priority over class 2. Let class i have

required work arrive according to the stochastic process {Ai(t) : t ≥ 0}; i.e., Ai(t) is the input for

class i over the interval [0, t]. (The process Ai(t) might be the superposition of arrival processes

from independent sources.) We assume that Ai(t) has nondecreasing sample paths. Let the work
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be processed continuously at rate c in order of the priority. Thus, assuming that the system starts

with initial workload Vi(0) for class i at time 0, the workload for class i at time t can be defined by

Vi(t) = Vi(0) +Xi(t)− inf
0≤s≤t

{min{0, Vi(0) +Xi(s)}} , t ≥ 0 , (2.1)

where

Xi(t) = Ai(t)− Si(t) , (2.2)

S1(t) = ct , (2.3)

S2(t) = ct−D1(t) , (2.4)

Di(t) = Ai(t) + Vi(0) − Vi(t) , (2.5)

with Ai(0) = 0 for all i. The processes {Si(t) : t ≥ 0} in (2.3) and (2.4) are the server-availability

processes; i.e., Si(t) is the total potential processing that can be done for class i in the interval

[0, t]. The maximum server processing rate is the capacity or available bandwidth c. Clearly, (2.3)

holds for the high priority class. The processes {Di(t) : t ≥ 0} are the departure (output) processes;

i.e., the output in completed work during the interval [0, t]. The output Di(t) is the input over

[0, t], plus the initial work, minus what is present at time t, as indicated in (2.5). For i = 2, the

server-availability process can be defined in terms of the departure process of the high priority class

by (2.4). Finally, the process {Xi(t) : t ≥ 0} in (2.2) is the (cumulative) net input process for class

i, in terms of which the workload process is defined by the usual one-dimensional reflection map in

(2.1).

It is important to distinguish between the workload process and the waiting-time process. The

workload Vi(t) is the class-i work in the system at time t (e.g., in units of bits), while the (virtual)

waiting time Wi(t) is the time required to clear the workload Vi(t) at time t (not counting any

class-i input after time t). However, the class-2 waiting time at time t depends on the class-1 input

after time t. We can define the class-i waiting time Wi(t) by

Wi(t) = inf{u : u ≥ 0 and Si(t+ u)− Si(t) ≥ Vi(t)} , t ≥ 0 . (2.6)

Combining (2.3) and (2.6), we see that W1(t) = V1(t)/c, as it should, but in general we only have

W2(t) ≥ V2(t)/c for all t . (2.7)

Indeed, the low-priority waiting time W2(t) can be much greater than the scaled low-priority work-

load V2(t)/c if the server is frequently occupied with high-priority work.
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If customers arrive at random times and bring service requirements, then the processes Ai are

pure jump processes, having jumps up equal to the service times and Wi(t) is the virtual waiting

time process (the time a potential arrival at time t would have to wait before beginning service). If

there are arrivals at time t, thenWi(t) is the time required for all these arrivals to complete service.

With Poisson arrivals, the steady-state virtual waiting time coincides with the steady-state actual

waiting time (before beginning service) seen by arrivals, by the Poisson Arrivals See Time Averages

(PASTA) property; see Wolff [28].

If work arrives continuously at a random rate, work can be processed without there being any

work in the buffer. This will occur whenever the buffer is empty and the input rate is positive but

less than the output rate c.

3. Constructing Stationary Versions

In Section 2 we indicated how to define the stochastic processes of interest, with general initial

conditions. Now we construct stationary verions of these processes, which describe the system in

equilibrium or steady state. For background, see Baccelli and Brémaud [1] and Borovkov [4].

Indeed, so far we have made no stochastic assumptions. Now we assume that the stochastic pro-

cesses Ai are mutually independent processes, each of which has stationary and ergodic increments

with

lim
t→∞

Ai(t)

t
= cρi w.p.1 for each i, (3.1)

where ρ ≡ ρ1 + ρ2 < 1. The stability condition ρ < 1 ensures that the average rate that work

enters is less than the processing rate c. This condition enables us to construct stationary versions

of all the processes, as we show below. To treat the high-priority workload, we can use standard

arguments as in Section 6 of Borovkov [4] and Chapter 2 of Baccelli and Brémaud [1]. However,

it is more complicated to obtain a stationary version of the low-priority workload, because the

low-priority workload depends on the high-priority departure process, as can be seen from (2.4).

Thus, we successively construct stationary versions of the stochastic processes V1, D1, V2, D2 and

W2. (Since W1(t) = V1(t)/c, nothing special need be done for W1.)

For this purpose, let ⇒ denote convergence in distribution. First, as is customary, we extend

the processes Ai to be over (−∞,∞) with stationary increments, but still keep the convention that

Ai(0) = 0 for i = 1, 2, which implies that Xi(0) = 0. Then the stationary increments condition on

5



A1 implies that

V̂1(t) ≡ sup
0≤s≤t

{X1(t)−X1(s)}
d
= sup
0≤s≤t

X1(−s) , t ≥ 0 ; (3.2)

i.e., the stationarity in X1 allows us to construct the steady-state workload as the simple maximum

of the reverse-time net input process, with initial workload 0. Since the final supremum in (3.2) is

nondecreasing in t, V1(t)⇒ V̂1 as t→∞. Condition (3.1) for i = 1, implies that X1(t)/t→ c(ρ1−1)

and X1(t)→ −∞ as t→∞ w.p.1. Hence, the steady-state high-priority workload is

V1
d
= sup
s≥0

X1(−s) <∞ w.p.1. (3.3)

More generally, there is a stationary version of the stochastic process {V1(t) : t ≥ 0}, denoted by

{V ∗1 (t) : t ≥ 0}, with

V ∗1 (t) = sup
s≤t
{X1(t)−X1(s)} , t ≥ 0 ; (3.4)

i.e., the random vector (V ∗1 (t1 + h), . . . , V
∗
1 (tk + h)) has a distribution independent of h for all k

and all k-tuples (t1, . . . , tk); see Chapter 1 of Borovkov [4].

Given the stationary process {V ∗1 (t) : t ≥ 0}, the associated stationary departure process

{D∗(t) : t ≥ 0} defined by (2.5) is

D∗1(t) = A1(t) + V
∗
1 (0)− V

∗
1 (t) ; (3.5)

i.e., it has stationary increments. (However, note that in general variables A1(t) and V
∗
1 (0) are not

independent.) This in turn makes the associated stochastic process S∗2(t) and X
∗
2 (t) have stationary

increments. Given that V ∗1 (t) has a proper distribution for each t, (3.1) implies that t
−1V ∗1 (t)→ 0

w.p.1 as t→∞. Since this is an important technical point, we state it as a proposition and prove

it.

Proposition 3.1. Under the assumptions above,

V ∗1 (t)

t
→ 0 w.p.1 as t→∞ .

Proof. The limit t−1X(t) → c(ρ1 − 1) as t → ∞ w.p.1 implies the stronger functional limit

n−1X(nt) → c(ρ1 − 1)t w.p.1 as n → ∞, with convergence being uniform in t over bounded

intervals; see Theorem 4 of Glynn and Whitt [13]. Then apply the continuous mapping theorem

with the reflection map and general initial condition V ∗1 (0) as in Theorem 6.4 (iii) of Whitt [26] to

get n−1V1(nt) → 0 w.p.1 as n →∞, again uniform in t over bounded intervals, which implies the

desired result.

6



Given Proposition 3.1, (3.1) and (3.5) imply that

D∗1(t)

t
→ cρ1 as t→∞ w.p.1 , (3.6)

so that
X∗2 (t)

t
→ c(ρ− 1) as t→∞ w.p.1 . (3.7)

Hence, we can repeat the construction above to construct a stationary version {V ∗2 (t) : t ≥ 0} of

the stochastic process {V2(t) : t ≥ 0} with V
∗
2 (t) <∞ w.p.1.

Given that V ∗2 (t) is proper, we can apply Proposition 3.1 again to deduce that t
−1V ∗2 (t) → 0

w.p.1 as t→∞. Then conditions (2.5) and (3.1) imply that

D∗2(t)

t
→ cρ2 as t→∞ w.p.1 . (3.8)

Finally, we obtain a stationary version W ∗
2 of W2(t) defined in terms of (S

∗
2 , V

∗
2 ) as in (2.6).

The supporting theorem is the continuous-time analog of Proposition 6.6 on p. 105 of Breiman [5].

Let Vi and Wi be random variables with the steady-state distributions of Vi(t) and Wi(t).

4. The Large Deviations Result

Suppose that we have criteria on the steady-state workload tail probabilities for each priority

class that we want satisfied, e.g.,

P (Vi > bi) ≤ pi for each priority class i . (4.1)

We think of this tail probability constraint as a surrogate for the constraint that the probability of

a buffer overflow from a buffer of size bi be less than pi for class i. It is natural to use the workload

in (4.1) instead of the waiting time or sojourn time if we are interested in the probabilities of buffer

overflows. Then the tail probability P (Vi > bi) is an approximation for the probability that class-i

work will overflow a buffer of size bi when there are separate buffers dedicated to each priority class.

With criteria such as (4.1), we can use the notion of effective bandwidths as in [27] to develop

an admission control procedure for sources of each priority class. However, with priorities, we must

proceed recursively over the priority classes. The possibilities for lower priorities depend on the

high-priority sources in service.

Let there be multiple sources of each of the two priority classes. Let the sources be indexed by

the pair (i, j), representing source type j of priority class i. Let Ji be the number of source types

for priority class i. Let Aij(t) be the arrival process of an (i, j) source. Let Aij(t) be a general
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input process with nondecreasing sample paths; e.g., Aij(t) represents the number of bits to arrive

at a network node from an (i, j) source during the interval [0, t]. Let

ψAij (θ) = limt→∞
t−1 logEeθAij(t) (4.2)

be the single-source arrival-process asymptotic-decay-rate functions (cumulant generating functions)

as in (1.10) of [27] (without assuming here that Aij has rate 1). We assume that these decay-rate

functions are well defined. Given mutually independent sources, with nij (i, j)-sources, we can form

associated aggregate asymptotic-decay-rate functions

ψAi(θ) =

Ji
∑

j=1

ψAij (θ)nij (4.3)

for priority class i. We give explicit formulas for asymptotic-decay-rate functions in [27] and Section

IV of [2].

Similarly, we can form the associated asymptotic-decay-rate functions for the server-availability

processes by letting

ψSi(θ) = limt→∞
t−1 logEeθSi(t) . (4.4)

For the high-priority class, S1(t) = ct, t ≥ 0, so that

ψS1(θ) = cθ . (4.5)

However, the low-priority service-availability process S2(t) is more complicated, but by (2.4) we

can express it in terms of ψD1(θ),

We now show how to use the asymptotic-decay-rate functions to define a notion of effective

bandwidths for (i, j) sources using criterion (4.1). The analysis of effective bandwidths here is

the natural extension of the effective bandwidths for the queue length process in [27], just as in

Section 5 of [27]. On p. 75 of [27], the processes, Ai(t) and Si(t) are counting processes, and the

key equations are (1.12) and (1.17). (In [27] and [14] three essentially equivalent processes were

studied for the standard queueing model: the queue length process, the workload process and the

discrete-time waiting-time sequence, with each process being essentially a reflection of a net input

process, and with each process having its own effective-bandwidth equation. Here, with the more

general processes Ai(t) and S2(t), we focus only on the generalization of the queue length process

with net input process Xi(t) = Ai(t)− Si(t), as in Section 5 of [27].)

The notion of effective bandwidths is based on an exponential approximation for the workload

tail probabilities,

P (Vi > bi) ≈ e
−ηibi , (4.6)
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assuming that bi is relatively large. Given (4.1) and (4.6), we want to choose ηi in (4.6) so that

ηi ≥ η
∗
i ≡
− log pi
bi

. (4.7)

The theoretical basis for the exponential approximation (4.6) is an asymptotic result for the work-

load tail probability P (Vi > t) as t → ∞, Theorem 10 of [27], which is a minor modification of

Theorem 4 of Glynn and Whitt [14]. We restate it here in the context of our priority model.

Theorem 4.1. Consider the general stationary two-priority queueing model in Section 3. If there

exits a function ψXi and positive constants θ
∗
i and ε such that

t−1 logEeθ[Ai(t)−Si(t)] → ψXi(θ) = ψAi(θ) + ψSi(−θ) as t→∞ for |θ − θ∗i | < ε (4.8)

with ψXi finite in a neighborhood of θ
∗
i and differentiable at θ

∗
i with

ψXi(θ
∗
i ) ≡ ψAi(θ

∗
i ) + ψSi(−θ

∗
i ) = 0 (4.9)

and ψ′Xi(θ
∗
i ) > 0, then

t−1 logP (Vi > t)→ −θ∗i as t→∞ . (4.10)

In Theorem 10 of [27] there is a condition that there exists a constant M such that Si(δ) ≤M

for all sufficiently small δ. That condition is satisfied here because Si(t) ≤ ct for the model in

Section 2. As shown in Duffield and O’Connell [10], the conditions can be weakened somewhat.

The differential of ψXi(θ) can be omitted and, instead of a root to (4.9), it suffices to have

θ∗i = sup{θ > 0 : ψXi(θ) ≤ 0} , (4.11)

but (4.9) is the usual case.

We now apply Theorem 4.1 to develop notions of effective bandwidths and effective capacities

for the two priority classes. Let the effective bandwidth of an (i, j) source be

eij =
ψAij (η

∗
i )

η∗i
. (4.12)

For class 1, this is the customary procedure. Note that eij depends only on the source-j input

process {Aij(t) : t ≥ 0} of priority i (not on Aik(t) for k 6= j).

Let the effective capacity available for class i be

Ci =
−ψSi(−η

∗
i )

η∗i
. (4.13)
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We then say that the collection of sources consisting of nij sources of type j, 1 ≤ j ≤ Ji, are

feasible, given the aggregate input process for higher priorities, if

Ji
∑

j=1

eijnij ≤ Ci . (4.14)

Note that the admissible set in (4.14) is linear for each i, but the low-priority (class-2) admissible

set depends upon the high-priority sources in service via the effective capacity C2.

The admissibility criterion (4.14) holds if and only if

Ji
∑

j=1

ψAij (η
∗
i )nij + ψSi(−η

∗
i ) ≤ 0 . (4.15)

This is what we want, because then the prevailing class-i decay rate θ∗i will then exceed η
∗
i defined

in (4.7) by virtue of Theorem 4.1. To see this, note that ψAi and ψSi are increasing and convex,

which implies that −ψSi(−θ) is increasing and concave, so that

ψAi(θ) ≤ −ψSi(−θ)

for 0 ≤ θ ≤ θ∗i and

ψAi(θ) ≥ −ψSi(−θ)

for θ ≥ θ∗i . Hence, θ
∗
i ≥ η

∗
i as claimed. (This makes pi ≈ e

−η∗
i
bi > e−θ

∗

i
bi .)

Note that the effective capacities for classes 1 and 2 simplify to nice, intuitive expressions. Since

ψSi(θ) = cθ and ψS2(θ) = cθ + ψD1(−θ) , (4.16)

C1 =
−ψS1(−η

∗
1)

η∗1
=
cη∗1
η∗1
= c (4.17)

and

C2 =
cη∗2 − ψD1(η

∗
2)

η∗2
= c−

ψD1(η
∗
2)

η∗2
, (4.18)

where ψD1(θ) is given below in (4.19). We call ψD1(η
∗
2)/η

∗
2 in (4.18) the effective capacity for class 2

used up by class 1.

To proceed further, from (4.18) we see that we need to determine the asymptotic-decay-rate

function ψD1(θ) for the high-priority departure process, but this is where the nonlinearity comes

in. Under regularity conditions, see [2], [19] and references cited there,

ψD1(θ) =

{

ψA1(θ) , θ < θ̂

ψA1(θ̂) + c(θ − θ̂) , θ > θ̂ ,
(4.19)
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with θ̂ determined by the equation

ψ′A1(θ̂) = c . (4.20)

Our two bounds will avoid the nonlinearity in (4.19). For further discussion, see [2].

5. An Exact Result for a Special Case

In this section, under an additional assumption, we obtain an exact relation between the low-

priority waiting time W2 and the total workload V . Since V is the same as for the FCFS discipline,

this establishes an important connection to FCFS models. This relation can provide the basis for

both exact results and approximations for W2. The extra assumption is that the class-1 input

process A1 has independent as well as stationary increments. Such an assumption might be ap-

propriate for an ATM switch if the high-priority class is predominantly constant-bit-rate (CBR)

traffic. Due to network jitter and lack of synchronization, it may be reasonable to model the CBR

input as a Poisson process.

We exploit the fact that W2 is the class-1 first passage time to 0 starting from the steady-state

workload of both classes. Let T
(1)
x0 denote the class-1 first passage time from x to 0. This first

passage time accounts for future random input and the constant output rate c. The independent-

increments property makes the future inputs, starting in V independent of V , which we understand

to hold when we write T
(1)
V 0 .

Since we already have assumed that A1 has stationary increments, the independent-increments

assumption makes A1 a subordinator or, equivalently, a Lévy process with nonnegative nondecreas-

ing sample paths, as on p. 69 of Prabhu [18]. A subordination is characterized by its characteristic

Laplace exponent φ(s), where

Ee−sA(t) = e−tφ(s), t > 0 . (5.1)

Theorem 5.1. With the general stationary model, if in addition the high-priority input process A1

has independent increments, then

W2
d
= T

(1)
V 0 , (5.2)

Ee−sW2 = Ee−η(s)V , (5.3)

where η(s) is the unique continuous solution to the equation

η(s/c) = s+ φ(η(s/c)) (5.4)
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and

EW2 =
EV

c(1− ρ1)
. (5.5)

Proof. As indicated above, W2 is the first passage time to 0 for class 1 starting with V . The

Laplace transform of this first passage time conditional on V is given on p. 79 of Prabhu [18], while

η is characterized on p. 74. The constant c in (5.4) occurs because the processing rate here is c

instead of 1. By changing the measuring units, we can regard the processing rate as 1:

EesA(t)/c = etφ̃(s)

and

Ee−sW2/c = e−η̃(s)V

where

η̃ = s+ φ̃(s) .

Since φ̃(s) = φ(s/c) and η̃(s) = η(s/c), we obtain (5.4). Finally, (5.5) holds because ET
(1)
x0 =

x/c(1 − ρ1) for each x; see [18].

6. The Reduced-Service-Rate Lower Bound

We now drop the extra assumption in Section 5 (unless specifically stated) and consider the

distributions of the low-priority steady-state workload V2 and waiting time W2. They are hard to

determine because the server-availability process S2 in (2.4) depends on the stochastic fluctuations

of the high-priority class. A convenient rough approximation is to assume that the server is contin-

uously available to the low-priority class at a reduced rate, with the reduction accounting for the

long-run average usage of the high-priority class. In particular, we call the approximation

S2(t) ≈ S
r
2(t) ≡ (1− ρ1)ct , t ≥ 0 , (6.1)

the reduced-service-rate (RSR) approximation. With the RSR approximation, we can analyze the

two priority classes separately, just as in a system without priorities. The RSR approximation de-

couples the system, making the low-priority class depend upon the high-priority class only through

the offered-load parameter ρ1.

By (2.6) and (6.1), the associated waiting-time and workload approximations are related by

W r
2 (t) =

V r2 (t)

c(1− ρ1)
, t ≥ 0 , (6.2)
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and

W r
2 =

V r2
c(1− ρ1)

, (6.3)

with the steady-state workload being

V r2 = sup
t≥0
{A2(−t) + (1− ρ1)ct}

= sup
t≥0
{A2(−t/(1− ρ1)) + ct} , (6.4)

which is the formula for V1 in (3.2) with {A1(t) : t ≥ 0} replaced by the scaled process {A2(t/(1−

ρ1)) : t ≥ 0}.

It is intuitively clear that the RSR approximation is typically optimistic, i.e., that we should

usually have V r2 and W
r
2 smaller than their counterparts V2 and W2. We now present some sup-

porting evidence using stochastic comparison concepts. We say that a random variable U1 is less

than or equal to another U2 in increasing convex order and write U1 ≤icx U2 if Ef(U1) ≤ Ef(U2);

for all nondecreasing convex real-valued functions f for which the expectations are well defined; see

Stoyan [22] or Chapter 4 of Baccelli and Brémaud [1]. The essential line of reasoning below goes

back to Rogozin [20].

Theorem 6.1. In the general stationary model, V r2 ≤icx V2.

Proof. We work with the stationary versions defined in Section 2. Then

ES∗2(t) = S
r
2(t) , t ≥ 0 ,

for all t, where Sr2(t) is defined in (6.1). Hence, the processes {S
∗
2(t) : t ≥ 0} and {S

r
2(t) : t ≥ 0}

are ordered by convex stochastic order; i.e., S∗2 ≥cx S
r
2 , by which we mean that

Ef({S∗i (t) : t ≥ 0}) ≥ Ef({S
r
i (t) : t ≥ 0}) (6.5)

for all real-valued convex functions f on the space of sample paths for which the expections are well

define; see Remark 2 on p. 81 of Stoyan [22] and pp. 198, 220 of Baccelli and Brémaud [1] for related

arguments. By (3.2), V2 and V
r
2 can be written as (nonincreasing) convex real-valued functions of

{S∗2(t) : t ≥ 0} and {S
r
2(t) : t ≥ 0}, respectively. Since nondecreasing convex real-valued functions

of arbitrary convex real-valued functions are convex, we have the stated conclusion; i.e.,

Eg(V r2 ) = E g ◦ f(Sr2) ≤ Eg ◦ f(S
∗
2) = Eg(V2)

for all nondecreasing convex g, where f here denotes the convex functions taking S r2 into V
r
2 and

S∗2 into V
∗
2 .

13



The ≤icx ordering in Theorem 6.1 implies that E(V
r
2 )
k ≤ E(V k2 ) for all k ≥ 1. However, the ≤icx

ordering is weaker than ordinary stochastic order V r2 ≤st V2 which would hold if Ef(V
r
2 ) ≤ Ef(V2)

for all nondecreasing real-valued functions f . We now show that the ordering in Theorem 6.1 cannot

be strengthened to stochastic order.

Example 6.1. To see that we need not have V r2 ≤st V2, we show that it is possible to have P (V
r
2 >

0) > P (V2 > 0). Our example also shows that it is possible to have P (W
r
2 > 0) > P (W2 > 0), so

that in general we do not have W r
2 ≤st W2 either. First, if A2(t) is a pure-jump process, then we

always have (by Little’s law applied to the server),

P (V r2 > 0) =
ρ2

(1− ρ1)c
. (6.6)

For our concrete example, let c = 1 and initially let A2(t) = ρ2t, t ≥ 0, corresponding to de-

terministic input. (We will later make A2(t) a pure jump process.) Let the high-priority input

occur in constant lumps of size ρ1 spaced apart according to i.i.d. random variables distributed as

ρ1/(1 + ρ2) +X, where X is exponentially distributed with mean 1− ρ1/(1− ρ2). Thus the mean

time between successive class-1 inputs of size ρ1 is 1. Following each type 1 input of size ρ1, there

is a period of length ρ1 during which the server works on this input. At the end of this period

there is ρ1ρ2 class-2 work. The server then takes ρ1ρ2/(1− ρ2) time to clear this class-2 work. The

remainder of the interval before the next class-1 input, of length X, the server is processing only

the class-2 input. Hence, for this model (using regenerative analysis),

P (V2 > 0) =
ρ1
1− ρ2

, (6.7)

so P (V r2 > 0) > P (V2 > 0) if and only if ρ2(1 − ρ2) > ρ1(1 − ρ1). Since we must have ρ1 + ρ2 < 1

for stability, this inequality holds whenever ρ1 < ρ2. For a somewhat extreme case, let ρ1 = 0.1

and ρ2 = 0.5. Then

P (V r2 > 0) =
5

9
>
1

5
= P (V2 > 0) . (6.8)

Now we have to make A2(t) a pure jump process behaving approximately like deterministic input.

For this purpose, let A
(ε)
2 denote the input process having jumps of size ερ2 spaced apart by i.i.d.

random variables distributed as ερ2 + εY , where Y is an exponential random variable with mean

1−ρ2. Let V
(ε)r denote the RSR approximation associated with A

(ε)
2 . As ε→ 0, A

(ε)
2 (t) approaches

deterministic input, so that P (V
(ε)r
2 > 0)→ P (V2 > 0) in (6.7), but (6.6) holds for all ε. Hence, the

counterexample in (6.8) holds for all sufficiently small ε. Finally, this example also serves for the
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steady-state (virtual) waiting times, because P (W r
2 > 0) = P (V

r
2 > 0) and P (W2 > 0) = P (V2 > 0)

here.

We have yet to establish a result corresponding to Theorem 6.1 for the waiting times. However,

we can establish an exact representation for W2 in terms of V when the high-priority class input

has independent increments, as assumed in Section 5. We now show that W r
2 is a lower bound for

W2 under this extra condition

Theorem 6.2. Under the conditions of Theorem 5.1,

W2 ≥cx
V

c(1− ρ1)
≥icx

V a2
c(1 − ρ1)

=W r
2

so that W2 ≥icx W
a
2 .

Proof. Since ET
(1)
x0 = x/c(1 − ρ1) for each x,

E(T
(1)
V 0 |V ) =

V

c(1− ρ1)
. (6.9)

Thus, for any convex g,

E[g(T
(1)
V 0 )|V ] ≥ g(V/c(1 − ρ1)) w.p.1

and

Eg(T
(1)
V 0 ) ≥ Eg(V/c(1 − ρ1)) ,

i.e., T
(1)
V 0 ≥cx V/c(1 − ρ1). Hence,

W2
d
= T

(1)
V 0 ≥cx

V

c(1 − ρ1)
>

V2
c(1− ρ1)

≥icx
V r2

c(1 − ρ1)
=W r

2 , (6.10)

where we have used Theorem 6.1 in the penultimate step.

The RSR approximation is not only a bound. It also arises as a special case in which class-1

input is a fluid or as a limit in which the class-1 input approaches a fluid input. This implies that

the bound is sharp, i.e., is attained in some cases.

We now show that the resulting effective bandwidth approximation is optimistic.

Theorem 6.3. In the general stationary model,

(1− ρ1)cθ = ψSr
2
(θ) ≤ ψS2(θ) for all θ , (6.11)

so that for the workload asymptotic decay rates in Theorem 3.1 are ordered by

θ∗r2 ≥ θ
∗
2 (6.12)
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and, for any η∗2 > 0, the effective capacities are ordered by

Cr2 ≡
−ψSr

2
(−η∗2)

η∗2
≥
−ψS2(−η

∗
2)

η∗2
≡ C2 . (6.13)

Proof. The convex order Sr2 ≤cx S2 used in the proof of Theorem 6.1 implies that Ee
θSr
2
(t) ≤

EeθS
∗

2
(t) for all θ and t from which (6.11) follows immediately. In turn (6.12) and 6.16) follow easily

from (6.11) and (4.13).

If we use the RSR approximation, then the admission criteria in (4.14) become

J1
∑

j=1

e1jnij =

J1
∑

j=1

ψA1j (η
∗
1)

η∗1
n1j ≤ c (6.14)

J2
∑

j=1

e2jn2j =

J2
∑

j=1

ψA2j (η
∗
2)

η∗2
n2j ≤ c(1− ρ1) , (6.15)

where ρ1 in (6.15) is the utilization of the J1 class-1 sources, and the target parameters η
∗
i are as

in (4.7) with the constraints in (4.1) to be met for large bi, i = 1, 2. Since ρ1 =
∑J1
j=1 ρ1jn1j, (6.15)

can be written as
J1
∑

j=1

cρ1jn1j +

J2
∑

j=1

e2jn2j ≤ c . (6.16)

The pair of constraints (6.14) and (6.16) form a linear feasible set.

7. A Further Lower Bound and Heavy Tails

In this section we apply [8] to obtain a stochastic lower bound for V r2 that enables us to obtain

a sufficient condition for V2 to have a heavy-tailed distribution. Following [8], let the low-priority

input process be a general stochastic fluid input process determined by a stationary environment

process {Z2(t) : t ≥ 0}. We assume that the environment process spends alternating positive times

X1, Y1, X2, Y2, . . . in states such that the input is above and below a high rate r2. We assume that

{(Xn, Yn)} is a stationary sequence with EXn <∞ and EYn <∞.

Let G be the cumulative distribution function (cdf) of a high-activity period Xn and let G
c(t) ≡

1 − G(t) be the associated complementary cdf (ccdf). Let Ge be the associated stationary-excess

cdf, defined by

Ge(t) =
1

EX1

∫ t

0
Gc(u)du, t ≥ 0 . (7.1)

Theorem 7.1. (from [8]) Under the assumptions above, if r2 > c(1− ρ1), then

P (V r2 > t) ≥ F c(t) ≡

(

EX1
EX1 +EY1

)

Gce(t/(r2 − c(1− ρ1))) , (7.2)
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so that

lim sup
t→∞

P (V2 > t)

Gce(t/(r2 − c(1− ρi)))
≥

EX1
EX1 +EY1

> 0 . (7.3)

Proof. Inequality (7.2) is Theorem 1 of [8]. Since V2 ≥icx V
r
2 , we have

∫ ∞

t
P (V2 > u)du ≥

∫ ∞

0
P (V r2 > u)du for all t ; (7.4)

see p. 8 of [22], which implies (7.3).

Property (7.3) can be interpreted as saying that the ccdf of V2 has a heavier tail than the ccdf

Gce. For example, if

lim
t→∞

tηGce(t) = α (7.5)

where η and α are positive constants, then Theorem 7.1 implies that

lim sup
t→∞

tηP (V2 > t) > 0 . (7.6)

8. The Empty-Buffer Upper Bound

The empty-buffer bound is based on considering what the class-2 departure process would be if

there were never any accumulation of class-1 workload, as would occur with continuous deterministic

input with ρ1 < 1. If class 1 never had workload, i.e., if V1(t) = 0 for all t, then we would have

D1(t) = A1(t) and S2(t) = ct−A1(t). Thus, we define the empty-buffer bound to be

S2(t) ≈ S
e
2(t) ≡ ct−A1(t) . (8.1)

Suppose that we now consider the departure process starting out empty. In that case D1(t) ≤

A1(t), t ≥ 0, so that

S2(t) ≥ S
e
2(t), t ≥ 0 . (8.2)

Indeed, by (2.2)–(2.4),

Xe2(t) = A1(t) +A2(t)− ct , t ≥ 0 , (8.3)

so that the empty-buffer bound is equivalent to approximating the class-2 workload process by the

aggregate workload, i.e.,

V e2 (t) = V (t) ≡ V1(t) + V2(t) , t ≥ 0 . (8.4)

Hence, we have the following elementary comparison result.

Theorem 8.1. In the general stationary model, V2 ≤st V
e
2 = V .
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Proof. Consider the system starting out empty. Clearly the sample paths are ordered: V2(t) ≤

V (t) = V e2 (t) for all t ≥ 0. Since stochastic order is preserved under convergence in distribution,

the conclusion follows.

The associated empty-buffer effective-bandwidth (EBEB) approximation is also conservative.

Paralleling Theorem 6.3, we have the following elementary result.

Theorem 8.2. In the general stationary model,

ψSe
2
(θ) ≥ ψS2(θ) for all θ < 0

so that the workload asymptotic decay rates in Theorem 3.1 are ordered by

θ∗e2 ≤ θ
∗
2

and, for all η∗2 > 0, the effective capacities are ordered by

Ce2 ≡
−ψSe

2
(−η∗2)

η∗2
= c−

ψA1(η
∗
2)

η∗2
≤ c−

ψD1(η
∗
2)

η∗2
= −

ψS2(−η
∗
2)

η∗2
≡ C2 . (8.5)

At first glance, the empty-buffer bound may seem very crude, but it can be surprisingly accurate.

It often happens that the bulk of the workload is low-priority work. Indeed, in support of the empty-

buffer approximation, we point out that it is asymptotically exact as ρ2 → 1 − ρ1 for any ρ1 (in

heavy traffic), see [25]. In that limit, the total workload is growing, being of order O(1/(1 − ρ)),

where ρ = ρ1 + ρ2 → 1, while the class-1 workload remains unchanged. Hence there definitely are

scenarios where the empty-buffer bound provides an excellent approximation.

Paralleling (6.14) and (6.15), the admission criteria with the empty buffer approximation are

(6.14) and
J2
∑

j=1

e2jn2j =

J2
∑

j=1

ψA2j (η
∗
2)

η∗2
n2j ≤ c−

ψA1(η
∗
2)

η∗2
= Ce2 . (8.6)

Since

ψA1(η
∗
2)

η∗2
=

k1
∑

j=1

ψA1j (η
∗
2)n1j

η∗2
, (8.7)

the two constraints (6.14) and (8.6) are fully linear. Note that ψA1j (η
∗
2)/η

∗
2 in (8.7) is similar to

the effective bandwidth of a class-1 source of type j, except η∗2 is present as opposed to η
∗
1 . We call

ψA1j (η
∗
2)/η

∗
2 the effective bandwidth of a (1, j) source as seen by class 2, and denote it e

2
1j . Thus

the admission criteria for the effective-bandwidth empty buffer approximation can be written as:

J1
∑

j=1

e1jn1j ≤ c (8.8)
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J1
∑

j=1

e21jn1j +

J2
∑

j=1

e2jn2j ≤ c . (8.9)

9. An Illustrative Example

The reduced service rate (RSR) and empty buffer (EB) approximations provide upper and lower

bounds respectively for the priority-2 effective capacity, C2, (4.13). In particular, from (6.11), (6.13),

and (8.5),

Cr2 = (1− ρ1)c ≥ C2 ≥ c−
ψA1(η

∗
2)

η∗2
= Ce2 . (9.1)

Thus, the difference Cr2 − Ce2 is an upper bound on the error if either C
r
2 or C

e
2 is used as an

approximation for C2. For a perspective on the size of this error, it is natural to normalize by the

aggregate capacity c, obtaining the normalized error bound, denoted

E ≡ (Cr2 − C
e
2)/c. (9.2)

From (9.1), E can be expressed as

E =
ψA1(η

∗
2)

cη∗2
− ρ1, (9.3)

or equivalently from (3.1)

E =
1

c

[

ψA1(η
∗
2)

η∗2
− lim
t→∞

A1(t)

t

]

. (9.4)

Note that the normalized error bound depends on the aggregate high-priority arrival process, A1(t),

and the low-prioirty performance parameters represented by η∗2 = − log(p2)/b2, (4.7). Also note

that in the boundary case where the priority-1 arrival process is a constant rate fluid, E equals

zero.

For the application to packet communication networks, one would like the normalized error

bound to be less than the noise in the traffic model, Ai(t). Often the traffic models deviate from

reality by more than 10%, particularly if a forecast is involved. Thus, if E is less than 10% then

the error from the RSR or EB approximations is within the noise of the model.

As a first example, consider the case of an ATM network where the high-priority class supports

constant-bit-rate (CBR) connections. As mentioned in Section 5, due to network jitter and the lack

of synchronization across the connections, the superposition of the jittered CBR streams can be

modelled, often conservatively, as a Poisson process. If A1(t) is a compound Poisson process with
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Poisson rate cρ1 and component unit-size jumps (where a jump represents the arrival of an ATM

cell, which has a constant size), then ψA1(θ) = cρ1(e
θ − 1) and

E = ρ1

[

eη
∗

2 − 1

η∗2
− 1

]

=
ρ1η

∗
2

2
+O
(

η∗2
2
)

. (9.5)

For a particular example, if the priority-2 buffer threshold, b2, is 500 and the probability that the

work in system exceeds b2 should be no more than p2 = 10
−3, then η∗2 is 0.0138. If ρ1 is 0.50, then

E is 0.003, which is well within the noise of the traffic models.

As a second example, suppose the aggregate prioirty-1 arrival process is a two-state Markov

modulated Poisson process (MMPP) where one state is on while the other is off, and hence the

process is also equivalent to an interrupted Poisson process. The MMPP has rate matrix

Λ =

(

λ1 0
0 0

)

and infinitesimal generator

M =

(

−r1 r1
r2 −r2

)

and where each arrival adds one unit of work. The asymptotic-decay-rate function can be expressed

in closed form:

ψA1(θ) =

(

−α+
√

α2 + 4λ1r2(eθ − 1)

)

/2, (9.6)

where α = r1 + r2 − λ1(e
θ − 1).

For a particular example, suppose that λ1, r1, and r2 are specified by the mean rate of A1(t),

λ1r2/(r1 + r2), equaling 0.01, and the fraction of time on, r2/(r1 + r2), equaling 0.1, 0.05, or 0.01,

and the mean number of arrivals during an on period (mean burst size), λ1/r1 equaling 10 or 100,

and the capacity c = 1. For this arrival process and for priority-2 performance parameters of p2

= 10−3 and b2 ∈ {100, 500, 1000}, Table 1 reports the resulting normalized error bound, E. The

parameter values were chosen to show where the RSR and EB approximations begin to perform

poortly. When the mean burst size is as big as the buffer threshold, as when they both are 100, E

is relatively large, particularly for the bursty case where the fraction of time on is only 1 percent.

However, for low priority traffic in packet networks, where significant queueing can be expected,

the buffer should be an order of magnitude bigger than the mean burst size. For these cases, the

normalized error bound is less than 10%, which is within the noise of typical traffic models.

The RSR and EB approximations for the effective capacity C2 can be used to approximate

the admissible sets for the number of priority-1 and priority-2 connections that can be admitted

while satisfying the performance parameters. We use the RSR and EB approximations derived
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Fraction Mean Buffer Normalized
of time burst threshold error
ON size b2 bound, E

.1 10 100 .011

.1 10 500 .0013

.1 10 1000 .00062

.1 100 100 .079

.1 100 500 .030

.1 100 1000 .010

.05 10 100 .016

.05 10 500 .0015

.05 10 1000 .00070

.05 100 100 .17

.05 100 1000 .014

.05 100 500 .061

.01 10 100 .023

.01 10 500 .0017

.01 10 1000 .00076

.01 100 100 .88

.01 100 500 .29

.01 100 1000 .020

Table 1: Normalized error bound E, given priority-1 arrival process is an on/off MMPP with mean
rate 0.01, and various fraction of ON times and mean burst sizes, and given priority-2 performance
parameters p2 = 10

−3 and various buffer thresholds b2.
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herein to examine these admissible sets in detail in [2]. As the RSR approximation gives an upper

bound on C2, it yields an optimistic approximation for the admissible set, and likewise since the

EB approximation gives a lower bound on C2, it yields a conservative approximation. When the

priority-2 performance parameters are significantly looser than those for priority 1 (η∗2 an order of

magnitude smaller than η∗1), then for a given number of priority-1 connections, the RSR and EB

estimates for the number of admissible priority-2 connections are often close - equaling the same

integer value, or differing by 1 or 2.
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