
1 AN INTRODUCTION TO

NUMERICAL TRANSFORM INVERSION

AND ITS APPLICATION TO

PROBABILITY MODELS
Joseph Abate1

Gagan L. Choudhury2

Ward Whitt3

1900 Hammond Road

Ridgewood, NJ 07450-2908

2AT&T Labs, Room 1L-238

Holmdel, NJ 07733-3030

gagan@buckaroo.att.com

3AT&T Labs, Room A117

180 Park Avenue

Florham Park, NJ 07932-0971

wow@research.att.com

(Chapter

in Computational Probability, W. Grassman (ed.), Kluwer, Boston, 1999, pp. 257–323)

1.1 INTRODUCTION

Numerical transform inversion has an odd place in computational probabil-
ity. Historically, transforms were exploited extensively for solving queueing and
related probability models, but only rarely was numerical inversion attempted.
The model descriptions were usually left in the form of transforms. Vivid ex-

1

2

amples are the queueing books by Takács [78] and Cohen [30]. When possible,
probability distributions were calculated analytically by inverting transforms,
e.g., by using tables of transform pairs. Also, moments of probability dis-
tributions were computed analytically by differentiating the transforms and,
occasionally, approximations were developed by applying asymptotic methods
to transforms, but only rarely did anyone try to compute probability distribu-
tions by numerically inverting the available transforms. However, there were
exceptions, such as the early paper by Gaver [42]. (For more on the history of
numerical transform inversion, see our earlier survey [7].) Hence, in the appli-
cation of probability models to engineering, transforms became regarded more
as mathematical toys than practical tools. Indeed, the conventional wisdom
was that numerical transform inversion was very difficult. Even numerical an-
alysts were often doubtful of the numerical stability of inversion algorithms. In
queueing, both theorists and practitioners lamented about the “Laplace cur-
tain” obscuring our understanding of system behavior.
Thus, the perceived difficulty of numerical transform inversion served as

a motivation for much progress in computational probability. Instead of di-
rectly trying to invert available transforms, researchers primarily responded
to this situation by developing new computational methods and new model-
ing approaches that avoided transforms. A good example is the collection of
matrix-geometric methods in Neuts [64]. In his preface, Neuts concludes that
“the oft-lamented Laplacian curtain, which covers the solution and hides the
structural properties of many interesting stochastic models, is now effectively
lifted.” Indeed, matrix-geometric methods and other alternative approaches
are remarkably effective, as can be seen from Chapter 5 in this book.
However, since then, it has been recognized that the concerns about numer-

ical transform inversion were misplaced. Contrary to previous impressions, it
is not difficult to numerically compute probabilities and other quantities of in-
terest in probability models by directly inverting the transforms. For example,
all the transforms in the queueing books by Takács [78] and Cohen [30] can be
numerically inverted. To a large extent, the numerical inversion can be done
by directly computing from the classical inversion formulas. However, there
are complications, so that some additional thought is beneficial. But thought
has been given, so that now there are a variety of effective inversion algorithms
based on the classical inversion formulas.
The purpose of this chapter is to provide an introduction to numerical trans-

form inversion and its application to compute probabilities in stochastic mod-
els. We focus on Laplace transforms and generating functions (z transforms),
but similar inversion methods apply to other transforms such as characteristic
functions (Fourier transforms). In Section 2 we present numerical inversion al-
gorithms and in Sections 3–5 we present applications to queueing models with
numerical examples. The queueing examples in Sections 3–5 include: comput-
ing transient characteristics in the M/M/c/0 Erlang loss model (Section 3),
computing the steady-state waiting-time distribution in the general GI/GI/1
queue (Section 4) and computing steady-state characteristics of product-form

TRANSFORM INVERSION 3

closed queueing networks (Section 5). These three models are arguably the
three most fundamental models in queueing theory. These three examples il-
lustrate the extra work that often must be done to treat more difficult problems
in which a simple closed-form transform is not available. Other examples can
be found in the references.
Now we illustrate how transforms and numerical inversion can help by con-

sidering two simple examples. For these examples, the probability analysis is
elementary or well known, but nevertheless calculation can be difficult without
numerical inversion. Calculating cumulative distribution functions for these
examples is rarely suggested in textbook discussions. On the other hand, cal-
culation is elementary with numerical transform inversion, because in these
examples a simple closed-form transform is readily available to be numerically
inverted. Indeed, the numerical inversion approach to these problems is suitable
for introductory textbooks. The introductory textbook on performance eval-
uation by Kobayashi [58] included a brief discussion of numerical transform
inversion (an early variant of the Fourier-series method for numerically invert-
ing Laplace transforms to be discussed in Section 2), but it did not strongly
influence practice. The recent introductory textbook on stochastic processes by
Kao [52] uses the inversion algorithms for Laplace transforms and generating
functions presented in Section 2 here.

Example 1.1.1 (Project Completion Time) Suppose that a project is com-
posed of n independent tasks, one performed after another. We want to know
the probability distribution of the time to complete the entire project when
there is uncertainty about the time to complete each task. Let the time to
complete task k be a random variable Xk with probability density function
fk (depending on k). Then the time to complete the project is the sum
Sn = X1 + . . . + Xn, which has a density gn that is the convolution of the
n densities f1, . . . , fn; i.e., gn can be defined recursively by the convolution
integral.

gn(t) =

∫ ∞

0

gn−1(t− x)fn(x)dx (1.1)

and its associated cumulative distribution function (cdf) is

Gn(t) =

∫ t

0

gn(x)dx . (1.2)

By the central limit theorem for independent non-identically distributed ran-
dom variables, e.g., p. 262 of Feller [41], the sum Sn is approximately normally
distributed with mean and variance equal to the sum of the component means
and variances, provided that n is not too small and that the individual task
times Xk have finite variances and are suitably small compared to the sum.
However, if one or two task times are much larger than the others, then the
normal approximation can be quite inaccurate. Then it may be much better
to compute the exact distribution.

4

Unfortunately, however, except for very small n, the desired cdf Gn(t) in
(1.2) is difficult to compute directly because it involves an (n− 1)-dimensional
integral. However, it is usually easy to compute by numerical transform inver-
sion provided that we know the Laplace transforms of the densities fk, i.e.,

f̂k(s) ≡
∫ ∞

0

e−stfk(t)dt . (1.3)

If we only know the means and variances of the task times, then we might
fit appropriate distributions, such as gamma distributions, to these moments,
and then compute the distribution of the project completion time. A gamma
density with shape parameter α and scale parameter λ has Laplace transform

f̂(s) =

(

λ

λ+ s

)α

. (1.4)

The associated mean and variance are α/λ and α/λ2. Hence, the parameters
α and λ can easily be chosen to match the mean and variance.
To obtain the Laplace transform of the density of the project completion

time, we use the basic transform law stating that the transform of a convolution
is the product of the transforms. Thus the Laplace transform of the density gn
is

ĝn(s) ≡
∫ ∞

0

e−stgn(t)dt =

n
∏

k=1

f̂k(s) , n ≥ 1 . (1.5)

Moreover, we use another basic transform law to get the Laplace transform of
the cdf Gn. Since Gn is the integral of gn,

Ĝn(s) ≡
∫ ∞

0

e−stGn(t)dt =
ĝn(s)

s
. (1.6)

Combining (1.5) and (1.6), we see that the Laplace transform Ĝn of the cdf

Gn is conveniently expressed in terms of the given transforms f̂1, . . . , f̂n. Thus
we can easily apply an inversion algorithm to calculate the cdf Gn(t) for any
desired t by numerically inverting the Laplace transform Ĝn.
In the next section we describe inversion algorithms that can be used to

calculate the cdf values Gn(t) for any t given the Laplace transform Ĝn. These
algorithms are intended for the case in which the function to be calculated, here
Gn, is relatively smooth. For example, there is no difficulty if each task time
density has a gamma distribution as in (1.4). The major source of numerical
difficulty in the inversion algorithm stems from discontinuities in the function
or its derivatives. However, discrete probability distributions can be calculated
easily by numerically inverting their generating functions.
In the numerical inversion of Laplace transforms, the required computation

turns out to be remarkably light: For each value of t, we typically need to
add about 50 transform terms and, by (1.5) and (1.6), we need to perform n
multiplications for each.

TRANSFORM INVERSION 5

Example 1.1.1 illustrated two basic laws for manipulating transforms. Un-
like numerical transform inversion, these basic transform laws are quite well
known, so we will not dwell upon them. Sources for additional background on
transforms are the appendices of Kleinrock [56], Giffin [44], Doetsch [35], [36],
Van Der Pol [67] and Poularikas [70].

Example 1.1.2 (The Renewal Function) Let M(t) be the renewal func-
tion, recording the expected number of renewals in the interval (0, t], associated
with a renewal process having an interrenewal-time cdf F with density f , i.e.,

M(t) =

∞
∑

n=1

Fn∗(t) , t ≥ 0 , (1.7)

where Fn∗ is the n-fold convolution of the cdf F with itself. The renewal
function is of considerable interest because it arises in many probability models,
but because of the convolution in (1.7) it is rather difficult to calculate directly.

However, it is elementary to compute using numerical inversion. Let f̂ be the
Laplace transform of f . Then the Laplace transform of M is

M̂(s) ≡
∫ ∞

0

e−stM(t)dt =

∞
∑

n=1

f̂(s)n

s
=

f̂(s)

s(1− f̂(s))
. (1.8)

Given the transform f̂ , numerical inversion algorithms apply to easily calculate
M(t) for any desired t by inverting the transform M̂ in (1.8).

Numerical inversion applies easily to the two examples given here, because
the transform is available in closed form. The challenge in more difficult ex-
amples is to compute the transform values, because transforms often are not
available in closed form. For example, for the busy-period distribution in the
M/G/1 queue, the transform is available implicitly via the Kendall functional
equation. In that case, the transform values can be readily calculated by iter-
ation; see Abate and Whitt [9]. The examples in Sections 3–5 illustrate how
transform values can be obtained for numerical inversion in other more com-
plicated queueing examples.

1.2 NUMERICAL INVERSION ALGORITHMS

In this section we present some numerical inversion algorithms. We primarily
aim to explain how the algorithms work. Of course, in order to apply the
inversion algorithms, it is not necessary to know how the algorithms work.
Using the algorithms, transform expressions as in Example 1.1.1 and 1.1.2
above can be immediately applied to calculate the desired quantities. However,
even if we only want to apply inversion algorithms, it is good to understand
how they work.
We begin in Section 1.2.1 by presenting classical inversion formulas for

Laplace transforms, which form the basis for the numerical inversion algo-
rithms. Next, in Section 1.2.2 we present a variant of the Fourier-series al-

6

gorithm for numerically inverting a Laplace transform. Afterwards, in Sec-
tion 1.2.3 we provide further discussion of Euler summation to help explain why
it is so effective in accelerating the convergence of the infinite series arising in
the Fourier-series method. Finally, in Section 1.2.4 we present the Fourier-series
algorithm for numerically inverting a generating function.
In this section we consider only one-dimensional transforms. For extensions

of the inversion algorithms to multi-dimensional transforms; see Choudhury,
Lucantoni and Whitt [24].

1.2.1 Inversion Formulas for Laplace Transforms

Given a real-valued function f on the nonnegative real line, its Laplace trans-
form (LT) is defined by

L(f)(s) ≡ f̂(s) ≡
∫ ∞

0

e−stf(t)dt, (2.9)

where s is a complex variable with Re(s) > 0. (Let Re(s) be the real part and
Im(s) the imaginary part of s.) Conditions ensuring that the integral in (2.9)
exists appear in the literature; e.g., Doetsch [36].
For probability applications, it is useful to consider Laplace-Stieltjes trans-

forms as well as ordinary Laplace transforms. Given a nonnegative random
variable X with cumulative distribution function (cdf) F , i.e., F (t) = P (X ≤
t), t ≥ 0, and probability density function (pdf) f when it exists, i.e., when
F (t) =

∫ t

0
f(u)du, t ≥ 0, we define its Laplace transform by

Ee−sX ≡ L(f)(s) ≡ f̂(s) ≡
∫ ∞

0

e−stdF (t) =

∫ ∞

0

e−stf(t)dt; (2.10)

i.e., f̂ is the Laplace transform of the pdf f as in (2.9), but f̂ is the Laplace-
Stieltjes transform (LST) of the cdf F . The associated LT of F is thus F̂ (s) =

f̂(s)/s. In probability applications, we are typically interested in the cdf, which
can be computed by numerically inverting the LT F̂ . We are also often in-
terested in the complementary cdf (ccdf) F c(t) ≡ 1 − F (t), which has LT
F̂ c(s) = (1− f̂(s))/s. For these probability transforms f̂ , F̂ and F̂ c, the inte-
grals always exist. We will always apply the inversion to LTs instead of LSTs.
We usually aim to calculate the ccdf F c by numerically inverting its transform
F̂ c.
In this section we present a way to numerically invert the LT f̂ in (2.9)

in order to calculate f(t) for any given t. We have assumed that f is real-
valued, as when f is a pdf, cdf or ccdf, but inversion also applies when f is
complex-valued. Indeed, if f(t) = f1(t) + if2(t), t ≥ 0, for i =

√
−1, then

f̂(s) = f̂1(s) + if̂2(s), so it is clear that inversion extends easily to complex-
valued functions. Complex-valued functions arise naturally in the iterated one-
dimensional inversion of multidimensional transforms, as we illustrate here in
Section 5. In that setting, the function to be calculated by the one-dimensional
inversion will be complex-valued in all steps except the last, e.g., see [24].

TRANSFORM INVERSION 7

A natural starting point for numerical inversion of Laplace transforms is the
Bromwich inversion integral; e.g., see Theorem 24.4 on p. 257 of Doetsch [36].

Theorem 1 (Bromwich inversion integral) Given the Laplace transform f̂ in
(2.1), the function value f(t) can be recovered from the contour integral

f(t) =
1

2πi

∫ b+i∞

b−i∞

estf̂(s)ds , t > 0 , (2.11)

where b is a real number to the right of all singularities of f̂ , and the contour
integral yields the value 0 for t < 0.

As usual with contour integrals, there is flexibility in choosing the contour
provided that it is to the right of all singularities of f̂ . However, there is no
need to be bothered by the complexities of complex variables. If we choose a
specific contour and perform a change of variables, then we obtain an integral
of a real-valued function of a real variable. First, by making the substitution
s = b+ iu in (2.11), we obtain

f(t) =
1

2π

∫ ∞

−∞

e(b+iu)tf̂(b+ iu)du . (2.12)

Then, since

e(b+iu)t = ebt(cosut+ i sinut) ,

sinut = − sin(−ut), cosut = cos(−ut), Im(f̂(b + iu)) = −Im(f̂(b − iu)) and
Re(f̂(b+ iu)) = Re(f̂(b− iu)), and from the fact that the integral in (2.11) is
0 for t < 0, we obtain

f(t) =
2ebt

π

∫ ∞

0

Re(f̂(b+ iu)) cos(ut)du (2.13)

and

f(t) =
−2ebt
π

∫ ∞

0

Im(f̂(b+ iu)) sin(ut)du . (2.14)

Theorem 1 implies that f(t) can be calculated from the transform f̂ by per-
forming a numerical integration (quadrature). Since there are many numerical
integration algorithms, e.g., see Davis and Rabinowitz [34], there are obviously
many possible approaches to numerical transform inversion via the Bromwich
inversion integral. In this context, the remaining goal is to exploit the special
structure of the integrand in (2.13) in order to calculate the integral accurately
and efficiently.
However, there also are quite different numerical inversion algorithms, be-

cause the Bromwich inversion integral is not the only inversion formula. To
illustrate, we mention a few others. First, there is the Post-Widder inversion
formula, which involves differentiation instead of integration. It is the basis

8

for the Jagerman-Stehfest procedure in Section 8 of Abate and Whitt [7]. (See
that source for further discussion.)

Theorem 2 (Post-Widder inversion formula) Under regularity conditions,

f(t) = lim
n→∞

(−1)n
n!

(

n+ 1

t

)n+1

f̂ (n)((n+ 1)/t) , (2.15)

where f̂ (n) is the nth derivative of f̂ .

For small n, the terms on the right in (2.15) can serve as useful rough
approximations, because they tend to inherit the structure of f ; see Jagerman
[49] and [50].
The next inversion formula is a discrete analog of the Post-Widder formula

involving finite differences. It is the basis for the Gaver-Stehfest procedure in
Section 8 of Abate and Whitt [7]. Let ∆ be the difference operator, defined by

∆f̂(nα) = f̂((n+ 1)α)− f̂(nα) and let ∆k = ∆(∆k−1).
Theorem 3 (discrete analog of Post-Widder formula) If f is a bounded real-
valued function that is continuous at t, then

f(t) = lim
n→∞

(−1)n ln 2
t

(2n)!

n!(n− 1)!∆
nf̂(n ln 2/t) .

Finally, we mention the Laguerre-series inversion formula, which is the basis
for the Laguerre-series or Weeks’ algorithm in Weeks [80] and Abate, Choud-
hury and Whitt [5] and [6].

Theorem 4 (Laguerre-series representation) Under regularity conditions,

f(t) =

∞
∑

n=0

qnln(t), t ≥ 0, (2.16)

where
ln(t) = e

−t/2Ln(t), t ≥ 0, (2.17)

Ln(t) =

n
∑

k=0

(

n

k

)

(−t)k
k!
, t ≥ 0, (2.18)

and

q̂(z) ≡
∞
∑

n=0

qnz
n = (1− z)−1f̂((1 + z)/2(1− z)) . (2.19)

The function Ln in (2.18) are the Laguerre polynomials, while ln in (2.17)
are the associated Laguerre functions. The scalars qn in (2.16) are the Laguerre
coefficients and q̂ in (2.19) is the Laguerre generating function (the generating
function of the Laguerre coefficients).
Now we consider a specific algorithm based on the Bromwich inversion inte-

gral.

TRANSFORM INVERSION 9

1.2.2 The Fourier-Series Method for Laplace Transforms

In this section we develop one variant of the Fourier-series method. The
specific algorithm is concisely summarized at the end of the section. Pointers
to the literature appear there as well.
There are two natural ways to develop the Fourier-series method. One way

starts with the Bromwich inversion integral. As indicated before, we can di-
rectly apply a standard numerical integration procedure to perform the in-
tegration in (2.13). Somewhat surprisingly, perhaps, one of the most naive
approaches – the trapezoidal rule – proves to be remarkably effective in this
context. If we use a step size h, then the trapezoidal rules gives

f(t) ≈ fh(t) ≡
hebt

π
Re(f̂(b)) +

2hebt

π

∞
∑

k=1

Re(f̂(b+ ikh)) cos(kht) , (2.20)

where Re(f̂(b)) = f̂(b) since b is real.
Formula (2.20) states that the desired function value f(t) is approximated by

the trigonometric series fh(t). The remaining problem is to control the errors
associated with calculating f(t) via this representation.
There are three sources of error associated with the trapezoidal rule: first,

the discretization error associated with approximating f(t) by fh(t) in (2.20);
second, the truncation error associated with approximately calculating the infi-
nite series in (2.20) (which might not be by simple truncation); and, third, the
roundoff error associated with addition and multiplication in calculating fh(t)
in (2.20). The remaining discussion is devoted to showing how to control these
three sources of error when we use the trapezoidal rule.

The Discretization Error

The standard theory of numerical integration, as on p. 32 of Davis and
Rabinowitz [34], shows that the discretization error for the trapezoidal rule is
bounded by a term of order O(h2), which is not so good. However, the special
trigonometric structure here tends to yield a much better approximation, of
order O(e−c/h) for some constant c. The better error bound follows from a
second way to develop the Fourier-series method, which does not rely on the
Bromwich contour integral. We can anticipate the second approach, though,
by looking at (2.20). From (2.20), we can recognize that fh is a trigonometric
series. We thus can ask if fh is a Fourier series of some, necessarily periodic,
function fp related to f (expressed in terms of f instead of its LT f̂). The
discretization error is then fh − f = fp − f .
The second approach starts, without considering the Bromwich inversion

integral, by directly constructing a periodic function fp approximating f and
then constructing the Fourier series of this periodic function. However, to
facilitate the procedure, we first damp f by letting g(t) = e−btf(t) and then
extend it over the entire real line by letting g(t) = 0 for t < 0. We then form a
periodic function approximating g by considering an infinite series of translates

10

of the original function, i.e., we let

gp(t) =

∞
∑

k=−∞

g

(

t+
2πk

h

)

. (2.21)

The damping ensures that the series in (2.21) converges, and tends to make the
terms in the tails relatively small. The construction in (2.21) is called aliasing.
We then work with g and gp, recovering f from f(t) = e

btg(t) at the end.
The idea now is to construct the Fourier series of the periodic function gp.

(We elaborate in the proof of Theorem 5 below.) The result is equivalent to
the Poisson summation formula. This procedure yields what we want because
the coefficients of the Fourier series can be expressed directly in terms of the
Laplace transform values. Indeed, the Fourier series of the periodic function
gp in (2.21) is a minor modification of the function fh in (2.20). This second
approach yielding the discretization error in the trapezoidal rule explains the
name Fourier-series method.
We summarize the main result in the following theorem.

Theorem 5 Under regularity conditions, the discretization error for the trape-
zoidal rule approximation in (2.20) is

eh(t) ≡ fh(t)− f(t) =
∞
∑

k=−∞
k 6=0

f

(

t+
2πk

h

)

e−2πkb/h . (2.22)

Proof. We start with the periodic function gp in (2.21) with period 2π/h,
which we assume is well defined. (It clearly is when |f(t)| ≤ C for all t.) The
term for k = 0 in the right side of (2.21) is clearly g(t). Thus the other terms
in the series make up the aliasing error for g.
We then represent the periodic function gp by its complex Fourier series

gp(t) =

∞
∑

k=−∞

cke
ikht, (2.23)

where ck is the kth Fourier coefficient of gp, i.e.,

ck =
h

2π

∫ π/h

−π/h

gp(t)e
−ikhtdt . (2.24)

We assume that the Fourier-series representation (2.23) is valid. The large lit-
erature on Fourier series provides conditions; e.g., [79]. For practical purposes,
it is important that t be a continuity point of the function f , and thus of g.
Now we substitute the series (2.21) for gp(t) into (2.24) to obtain

ck =
h

2π

∫ π/h

−π/h

∞
∑

k=−∞

g

(

t+
2kπ

h

)

e−ikhtdt =
h

2π

∫ ∞

−∞

g(t)e−ikhtdt

TRANSFORM INVERSION 11

=
h

2π

∫ ∞

0

e−btf(t)e−ikhtdt =
h

2π
f̂(b+ ikh) . (2.25)

Thus, we can write gp(t) in two different ways. First, from (2.21) and the
relation between g and f , we have

gp(t) =

∞
∑

k=−∞

g

(

t+
2πk

h

)

=

∞
∑

k=−∞

f

(

t+
2πk

h

)

e−b(t+2πk/h) . (2.26)

Second, from (2.23) and (2.24), we have

gp(t) =

∞
∑

k=−∞

cke
ikht =

h

2π

∞
∑

k=−∞

f̂(b+ ikh)eikht . (2.27)

Combining the terms in (2.26) and (2.27) involving f and f̂ , we obtain a version
of the Poisson summation formula

∞
∑

k=−∞

f

(

t+
2πk

h

)

e−b(t+2πk/h) =
h

2π

∞
∑

k=−∞

f̂(b+ ikh)eikht . (2.28)

We then obtain what we want by focusing on the single term for k = 0 on
the left in (2.28); i.e.,

e−btf(t) =
h

2π

∞
∑

k=−∞

f̂(b+ ikh)eikht−
∞
∑

k=−∞
k 6=0

f

(

t+
2πk

h

)

e−b(t+2πk/h) . (2.29)

Multiplying both sides of (2.29) by ebt yields

f(t) =
h

2π

∞
∑

k=−∞

f̂(b+ ikh)e(b+ikh)t −
∞
∑

k=−∞
k 6=0

f

(

t+
2πk

h

)

e−2πk/h . (2.30)

Now, reasoning just as did to go from (2.12) to (2.13), from (2.30) we obtain
f(t) = fh(t)− eh(t) for fh(t) in (2.20) and eh(t) in (2.22).
Because of the alternative route to approximation fh in (2.20) via aliasing,

the discretization error in (2.6) is also called the aliasing error. Having char-
acterized this error, we next want to choose the parameters b and h in order
to control it. Afterwards we will calculate the infinite series in (2.20). Since
f(t) = 0 for t < 0, we obtain from (2.22) for h < 2π/t that

eh(t) =

∞
∑

k=1

f(t+
2πk

h
)e−2πkb/h

and the aliasing error depends only on values f(x) for x > t+2π/h. We exploit
this property to make the aliasing error small. For example, if

|f(x)| ≤ C for all x > t+ 2π/h , (2.31)

12

then

|eh(t)| ≤
∞
∑

k=1

Ce−2πkb/h =
Ce−2πb/h

1− e−2πb/h , (2.32)

so that the aliasing error is easily controlled by making b/h suitably large.
Many unbounded functions can be treated by minor modifications of the

same argument. For example, if

|f(x)| ≤ C1 + C2x for x ≥ t+ 2π/h , (2.33)

then

|eh(t)| ≤
∞
∑

k=1

[

C1 + C2

(

t+
2πk

h

)]

e−2πkb/h

≤ C1e
−2πb/h

1− e−2πb/h + C2t
(

3e−2πk/h − e−4πk/h
)

(

1− e−2πkb/h
)2

≈ C1e
−2πb/h + 3C2te

−2πk/h . (2.34)

A concrete application of the linear form (2.33) and its associated alias-
ing error bound in (2.33) is to treat the renewal function in Example 1.1.2.
Asymptotic results for the renewal function imply that

M(t)−At→ B as t→∞

for known constants A and B. In the setting of Example 1.1.2, A = 1/m and
B = (σ2 + m2)/2m2, where m and σ2 are the mean and variance of F ; see
p. 366 of [41].

Summing the Infinite Series

The remaining task is to calculate fh(t) in (2.20). We will discuss measures
to control the truncation and roundoff errors and then summarize the algorithm
at the end of the section.
Summing the infinite series will clearly be an easy task (e.g., by simply

truncating) if the transform f̂(u + iv), for u and v real and positive, decays
rapidly as v → ∞. Generally speaking, we understand when this will occur,
because the tail behavior of the transform f̂ depends on the smoothness of
the function f . By the Riemann-Lebesgue lemma (e.g., pp. 513–514 of Feller

[41]), if f has n integrable derivatives, then f̂(u + iv) is o(v−n) as ν → ∞.
Thus the inversion will be easy if f is very smooth, but may be difficult if f
is not smooth. The ultimate lack of smoothness is a discontinuity at or near t,
which will invariably cause a problem; see Section 14 of Abate and Whitt [7].
When there is initially not enough smoothness, it is often possible to introduce
smoothness into the function before performing the inversion; see Section 6 of
Abate and Whitt [7].

TRANSFORM INVERSION 13

The infinite series in (2.20) can often be calculated by simply truncating,
but a more efficient algorithm can be obtained by applying a summation ac-
celeration method; e.g., see Wimp [82]. An acceleration technique is especially
important for coping with slowly decaying tails. As with numerical integration,
there are many alternatives. An acceleration technique that has proven to be
effective in our context is Euler summation, after transforming the infinite sum
into a nearly alternating series. (Euler summation is intended for alternating
series, in which successive summands alternate in sign.)
In order to be able to control the roundoff error (discussed below), we also

introduce a parameter `, which is a positive integer. The parameter ` often can
be given the default value ` = 1. We convert (2.20) into a nearly alternating
series by letting h = π/`t and b = A/2`t. At first we get

fh(t) ≡ fA,`(t) =
eA/2`t

`t
+
2eA/2`t

`t

∞
∑

k=1

f̂

(

A

2`t
+
ikπ

`t

)

eikπ/` . (2.35)

Next, by algebraic manipulation, we get

fA,`(t) =

∞
∑

k=0

(−1)kak(t), (2.36)

where

ak(t) =
eA/2`

2`t
bk(t), k ≥ 0, (2.37)

b0(t) = f̂

(

A

2`t

)

+ 2
∑̀

j=1

Re

[

f̂

(

A

2`t
+
ijπ

`t

)

eijπ/`
]

(2.38)

and

bk(t) = 2
∑̀

j=1

Re

[

f̂

(

A

2`t
+
ijπ

`t
+
ikπ

t

)

eijπ/`
]

, k ≥ 1 . (2.39)

Also the aliasing error in (2.22) becomes

eh(t) ≡ eA,`(t) =
∞
∑

j=1

e−Ajf ((1 + 2j`)t) . (2.40)

In (2.36)–(2.40) we have chosen the two parameters b and h to depend on
the new parameters A and ` and the function argument t. This choice makes
the period of the periodic function 2π/h = 2`t. This choice makes the series in

(2.36) correspond to an eventually alternating series if the real part of f̂(u+ iv)
are eventually of fixed sign as v gets large. This is what we mean by “nearly
alternating.”

14

If |f(x)| ≤ C for all x ≥ (1+2`)t, as in probability applications (e.g., C = 1
when f is a cdf or ccdf), then the aliasing error in (2.40) is bounded by

|eA,`(t)| ≤
Ce−A

1− e−A , (2.41)

which is approximately equal to Ce−A when e−A is small. Note that the aliasing
error bound is independent of the parameter `. Hence, to have at most 10−γ

aliasing error when C = 1, we let A = γ log 10. (With A = 18.4, the aliasing
error bound is 10−8; with A = 25.3, the aliasing error bound is 10−11.)

Remark 1.2.1 It should be evident that formula (2.37) presents problems as
t becomes very small, because the prefactor (eA/2`)/2`t approaches infinity as
t → 0. Thus the variant of the algorithm in (2.36) should not be used for
extremely small t, e.g., for t < 10−2. We can of course approximate f(t) by
f(0) for small t, and f(0) can be calculated by taking limits using the initial

value theorem, which states that if f(t) → f(0) as t → 0, then sf̂(s) → f(0)
as s→∞. The small t problem can also be solved “automatically” by scaling;
see Choudhury and Whitt [29].

Remark 1.2.2 The form of the aliasing error in (2.40) has important im-
plications for practical implementation. Note that the aliasing error is likely
to be smaller for large t if we invert the transform (1 − f̂(s))/s of the ccdf
F c(t) ≡ 1−F (t) than if we invert the transform f̂(s)/s of the cdf F (t). For the
ccdf, the aliasing error is about e−AF c((1+ 2`)t) when F c((k+1)t)� F c(kt).
Hence, for small ccdf values associated with large t, we can often achieve small
relative aliasing error from (2.40).

We now indicate how to apply Euler summation to approximate the infinite
series in (2.36). Euler summation can be very simply described as the weighted
average of the last m partial sums by a binomial probability distribution with
parameters m and p = 1/2. (It is not necessary to use p = 1/2, but it is
usually not worthwhile to search for a better p.) In particular, let sn be the
approximation fA,`(t) in (2.36) with the infinite series truncated to n terms,
i.e.,

sn =

n
∑

k=0

(−1)kak, (2.42)

where t is suppressed in the notation and ak ≡ ak(t) is given in (2.37)–(2.39).
We apply Euler summation to m terms after an initial n, so that the Euler sum
approximation to (2.36) is

E(m,n) ≡ E(m,n, t) ≡
m
∑

k=0

(

m

k

)

2−msn+k, (2.43)

for sn in (2.42). Hence, (2.43) is the binomial average of the terms
sn, sn+1, . . . , sn+m. We typically use m = 11 and n = 38, increasing n as

TRANSFORM INVERSION 15

necessary. The overall computation is specified by (2.37)–(2.39), (2.42) and
(2.43).
As in other contexts, the acceleration typically drastically reduces the re-

quired computation. The improvement in typical examples is very impressive;
it should be tried on simple examples. We present additional supporting theory
below. To quickly see how important this acceleration step is, note that the
error in simple truncation to sn can be estimated as the value of last term, an.
For example, if an = n

−2, then we would need about n = 104 terms to achieve
accuracy to 10−8, whereas with Euler summation it typically suffices to have
n = 50, as noted above.
In order to estimate the error associated with Euler summation, we suggest

using the difference of successive terms, i.e., E(m,n+1)−E(m,n). Unlike for
the aliasing error, however, we have no simple general bound on the summation
error associated with truncating the series at n+m terms and applying Euler
summation to average the last m terms. However, we discuss Euler summation
further below. Experience indicates that the error estimate E(m,n + 1) −
E(m,n) is usually accurate. Moreover, under regularity conditions, it is also
an upper bound. However, it can happen that the error estimate is optimistic,
as indicated in Section 11 of [7].
Practically, the accuracy can be verified by performing the same computa-

tion again with different parameters, e.g., changing, m,n, ` and A. Note that
changing ` or A produces a very different computation, so that we obtain an ac-
curacy check by doing the calculation for two different choices of the parameter
pair (`, A).

Roundoff Error

In the setting of (2.41), we can obviously make the aliasing error arbitrarily
small by choosing A sufficiently large. However, with limited precision (e.g.,
with double precision, usually 14–16 digits), we are constrained from choosing
A too large, because the prefactor (eA/2`)/2`t in (2.37) can then become very
large, causing roundoff error. Given that high precision is often readily avail-
able, roundoff error should not to be regarded as a serious problem. From that
perspective, our analysis below shows why higher precision may be needed. In
most probability applications, an aliasing error of 10−8 is more than adequate,
so that the required A does not produce too much roundoff error even with
double precision.
We now indicate how to control both the roundoff and aliasing errors. The

key to controlling the roundoff error is the fact that the aliasing error bound
in (2.41) depends on A but not on `. Suppose that we are able to compute
the bk(t) in (2.39) with an error of about 10

−m. (This quantity is typically
of the order of machine precision.) Then, after multiplying by the prefactor
(eA/2`)/2`t in (2.37), the final “roundoff” error in fA,`(t) from (2.36) will be
about 10−m(eA/2`)/2`t. Since the roundoff error estimate is increasing in A,
while the aliasing error estimate e−A in (2.41) (assuming that C = 1) is de-
creasing in A, the maximum of the two error estimates is minimized where

16

the two error estimates are equal. The estimated total error should thus be
approximately minimized at this point. Thus we find an appropriate value for
the parameter A by solving the equation

e−A = 10−m(eA/2`)/2`t, (2.44)

which yields

A =

(

2`

2`+ 1

)

(m log 10 + log 2`t) . (2.45)

Ignoring the final log 2`t term in (2.45), we see that (2.45) implies that the
final error estimate is

e−A ≈ 102`m/(2`+1), (2.46)

which means that we lose a proportion of 1/(2`+1) of ourm-digit precision due
to multiplying by the prefactor. We obtain higher precision by increasing `, but
at a computational expense, because the computational effort is proportional
to `; see (2.38) and (2.39).
With ` = 1, we lose about one third of the machine precision due to roundoff,

and with ` = 2, we lose about one fifth of the machine precision. If we take
the typical double-precision value of m = 14 and let t = 1 and ` = 1, then the
error estimate (2.46) becomes about 10−9.3 and with ` = 2 the error estimate
is about 10−11.2.
From this analysis, we see that it is difficult to compute quantities that are

smaller than or the same order as machine precision. This difficulty can be
addressed by scaling; see [29].
We now summarize the variant of the Fourier-series method described above.

Algorithm Summary

Based on the parameters A, `, m and n (e.g., A = 19, ` = 1, m = 11 and
n = 38) and the function argument t, approximately compute f(t) by (2.43),
(2.42) and (2.37)–(2.39). The aliasing error is given by (2.40). If |f(t)| ≤ C
for all t ≥ 0, then the aliasing error is bounded by (2.41) and is approximately
Ce−A. The overall error (including the Euler summation error) is estimated
by E(m,n + 1) − E(m,n) using (2.43). The overall error is also estimated
by performing the computation with two different parameter pairs (A, `), e.g.,
(18, 1) and (19, 1) or (18, 1) and (18, 2).

We reiterate that we give no a priori error bound for the entire algorithm,
primarily because we have no simple general bound on the error from Euler
summation. (Under additional assumptions, bounds are possible, though; see
below.) However, when the algorithm is applied, we invariably can see the
achieved accuracy by comparing the results of computations with different pa-
rameters. If the achieved accuracy is not sufficient, then we suggest: first,
increasing n; second, increasing the roundoff control parameter `; and third,
considering convolution smoothing, as described in Section 6 of [7].

TRANSFORM INVERSION 17

This section is based on Abate and Whitt [7, 10] and Choudhury, Lucantoni
and Whitt [24]. The Fourier-series method for numerically inverting Laplace
transforms was proposed by Dubner and Abate [37]. The use of the parameter
` for roundoff error control was proposed for the case l = 2 by Durbin [39]
and was also used more generally by Kwok and Barthez [59] and Choudhury,
Lucantoni and Whitt [24]. The use of Euler summation in this context was
proposed by Simon, Stroot and Weiss [75]. The Fourier-series method with
Euler summation was later developed independently in Japan by Hosono [45],
[46], [47].
There is an extensive body of related literature; for further discussion see

Abate and Whitt [7]. We have presented only one variant of the one method
for numerically inverting Laplace transforms. There are other variants of the
Fourier-series method and there are entirely different methods. The Jagerman-
Stehfest and Gaver-Stehfest procedures in Section 8 of Abate and Whitt [7]
are based on the Post-Widder formula and its discrete analog in Theorems 2
and 3. The Laguerre-series algorithm in Abate, Choudhury and Whitt [5] is
based on the Laguerre-series representation in Theorem 4. See these sources
for additional background. See Davies and Martin [33] for a (somewhat dated)
comparison of alternative methods. See Choudhury and Whitt [27] for a de-
scription of the Q2 performance analysis tool based on numerical transform
inversion.

1.2.3 More on Euler Summation

Since Euler summation proves to be so effective in accelerating convergence
in the Fourier-series algorithm, it is interesting to examine it in more detail.
This section is somewhat more technical than others, and so might be skipped.
This section draws upon Johnsonbaugh [51], Section 6 of [7] and O’Cinneide
[66]. For an advanced treatise on acceleration techniques, see Wimp [82].
A good way to understand how Euler summation performs is to try it (apply

(2.42) and (2.43)) with some simple examples, e.g., ak = k
−p for p > 0. Because

of the alternating series structure, with simple truncation the maximum of the
errors |sn−s∞| and |sn−1−s∞| must be at least an/2. On the other hand, the
averaging associated with Euler summation can lead to amazing improvement.
We now analyze the performance more carefully. First note that if an ≥

an+1 ≥ 0 for all n in (2.42), then
s2n+2 ≥ s2n ≥ s∞ ≥ s2n+1 ≥ s2n−1 (2.47)

and
|s∞ − sn| ≤ an (2.48)

for all n ≥ 1.
Next observe that we can write E(m,n) itself in the form of an alternating

series by changing the order of summation, i.e.,

E(m,n) =

m
∑

j=0

(

m

j

)

2−m
n
∑

k=0

(−1)k+jak+j =
n
∑

k=0

(−1)kbk, (2.49)

18

where

bk =

m
∑

j=0

(

m

j

)

2−m(−1)jak+j . (2.50)

Of course, in general bk in (2.50) need not be of constant sign. However, from
(2.48), we see that if bk ≥ bk+1 ≥ 0 for all k, then

|E(m,n)− s∞| ≤ bn = |E(m,n)−E(m,n− 1)| (2.51)

and our error estimate |E(m,n)−E(m,n− 1)| becomes a bound on the actual
error.
To see the quantitative benefits of Euler summation, it is useful to consider

(2.42) and (2.43) with an = (c+ n)
−k for some constant c and positive integer

k. (For any c, an is positive and decreasing for n > −c.) We can exploit the
identity

1

(c+ n)k
=

1

(k − 1)!

∫ ∞

0

e−(c+n)xxk−1dx, (2.52)

which follows from the form of the gamma distribution, to obtain the following
result. See O’Cinneide [66].

Theorem 6 If an = (c + n)
−k, then the summands bk in (2.50) indeed are

positive and decreasing when c + k > 0, so that the bound (2.51) holds for n
suitably large and

|E(m,n)−E(m,n− 1)| ≤ (m+ k − 1)!
2m(k − 1)!(c+ n)m+k . (2.53)

Hence, when an = (c+n)
−k, from (2.48) the error using sn in (2.42) (direct

truncation) is bounded by (c+ n)−k, whereas the error from Euler summation
is bounded above by C(c + n)−(m+k) from (2.51) and (2.53). Asymptotically,
as n→∞ for fixed m, the rate of convergence improves from n−k to n−(m+k)
when we use Euler summation.
We now show that in the inversion algorithm we actually have an asymp-

totically of the form C(c+n)−k for sufficiently large n, under mild smoothness
conditions, so that the analysis above is directly applicable to the inversion
problem. For this purpose, let

Re(f)(u+ iv) =

∫ ∞

0

e−ut cos vt f(t)dt =

∫ ∞

0

cos vt g(t)dt , (2.54)

where g is the damped function g(t) ≡ e−utf(t).
If f is twice continuously differentiable, then so is g. If g(∞) = g′(∞) = 0

(which is satisfied when f(∞) = f ′(∞) = 0), then we can apply integration by
parts in (2.54) to get

Re(f̂)(u+ iv) =
uf(0)− f ′(0)

v2
− 1
v2

∫ ∞

0

cos vt g′′(t)dt . (2.55)

TRANSFORM INVERSION 19

If in addition g′′ is integrable, then we can apply the Reimann-Lebesgue lemma
to deduce that

Re(f̂)(u+ iv) =
uf(0)− f ′(0)

v2
+ o

(

1

v2

)

as v →∞ . (2.56)

Similarly,

Im(f)(u+ iv) =

∫ ∞

0

sin vt g(t)dt

=
−f(0)
v
+
1

v

∫ ∞

0

cos vt g′(t)dt

=
−f(0)
v
+ o

(

1

v

)

as v →∞ (2.57)

provided that g′ is integrable.
From (2.56) and (2.56), we see that Re(f̂)(u + iv) and Im(f̂)(u + iv) will

indeed be eventually of constant sign as v increases (including the cases in which
u = f ′(0) and f(0) = 0, which require further analysis). From (2.39) we see that
the summands an in the infinite series to be computed are asymptotically of
the form C(c+n)k for k = 2 (real part) or k = 1 (imaginary part), where C and
c are known constants. Thus the analysis above shows that Euler summation
will be effective provided that the function f indeed has the smoothness and
integrability properties required for (2.56) and (2.56).
Furthermore, with extra smoothness, we can repeat the integration by parts

argument in (2.55) and obtain a more detailed analysis. Explicit error bounds
were first determined by O’Cinneide [66]. The analysis shows that

|E(2m,n)− s∞| ∼ Cn−(2m+2) as n→∞ (2.58)

if g has 2m+ 2 derivatives with g(k)(∞) = 0 for 0 ≤ k ≤ 2m+ 1 and g(2m+2)
is integrable.

Example 1.2.1 To see that the desired properties supporting Euler summa-
tion do not hold in general, consider the ccdf of a unit probability point mass
at x, with LT

F̂ c(s) =
1− e−sx
s

, (2.59)

The ccdf F c is constant except for the one jump at x. Note that

Re(F̂ c)(u+ iv) =
u(1− e−ux cos vx) + v sin vx

u2 + v2
(2.60)

From (2.60), we see that, for every u, there is no v0 such that Re(F̂
c)(u+ iv) is

of constant sign for v ≥ v0. Moreover, in this case Euler summation does not

20

provide improvement over simple truncation; see Table 5 of Abate and Whitt
[7].

Example 1.2.2 To see that Euler summation does not perform well on all
alternating series, consider the series

∞
∑

k=1

(−1)k(sin kx)2/k = log(1/ cosx)
2

for 0 < x < π/2 .

The performance of Euler summation degrades as x increases. For example,
the error in E(11, 30) is of order 10−9, 10−3 and 10−1 for x = 0.1, 1.0 and 1.5,
respectively. If x = 1.5, s41 had an error of order 10

−2, which is better.

1.2.4 Generating Functions

The Fourier-series method also applies to invert generating functions. Sup-
pose that {qk : k ≥ 0} is a sequence of complex numbers with generating
function

G(q) ≡ q̂(z) ≡
∞
∑

k=0

qkz
k, (2.61)

where z is a complex number, and we want to calculate qk.
At the outset, note that this problem should be regarded as easier than the

Laplace transform inversion, because the coefficients qk in (2.61) can be recov-
ered from the generating function q̂ by repeated differentiation and evaluation
at z = 0. This means that numerical differentiation techniques and symbolic
mathematical software are often readily applicable. However, it is often difficult
to achieve desired accuracy with numerical differentiation techniques, especially
for large n. It is also difficult to invoke symbolic mathematical software when
the generating function is only expressed implicitly. Fortunately, in this setting
numerical inversion is also a viable alternative. We will apply the numerical
inversion algorithm for generating functions of complex numbers in Section 5
to calculate normalization constants in product-form closed queueing networks.
In that context, it is important to allow qk to be complex numbers in order to
invert multidimensional transforms using iterative one-dimensional inversion.
Just as for Laplace transforms, numerical inversion of generating functions

can be based on an inversion integral. The Cauchy contour integral plays
the role for generating functions that the Bromwich contour integral plays for
Laplace transforms. The following parallels Theorem 1.

Theorem 7 Suppose that {qk : k ≥ 0} is a sequence of complex numbers with
|qk| ≤ Kbk for all k ≥ 1, where K and b are positive constants. Then

qk =
1

2πi

∫

Γ

q̂(z)

zn+1
dz, (2.62)

=
1

2πrk

∫ 2π

0

q̂(reiu)e−ikudu .

TRANSFORM INVERSION 21

where the contour Γ is a circle centered at the origin with radius r, where r is
less than the radius of convergence b−1.

Paralleling the inversion of Laplace transforms, a good way to proceed is to
apply the trapezoidal rule in the integral in (2.62). Just as in Section 1.2.1, we
can apply the Fourier series method to determine the discretization error asso-
ciated with the trapezoidal rule. The following result thus parallels Theorem
5. Note that q0 = q̂(0), so it suffices to produce an algorithm to calculate qk
for k ≥ 1.
Theorem 8 Under the assumptions of Theorem 7, for 0 < r < b−1 and k ≥ 1,

qk = q
a
k − ea, (2.63)

where the trapezoidal-rule approximation to (2.62) is

qak =
1

2k`rk

2k
∑

j=1

(−1)jaj (2.64)

with

aj ≡ aj(k, `, r) =
`−1
∑

j1=0

e−πij1/`q̂(reπi(j1+`j)/`k), 1 ≤ j ≤ 2k, (2.65)

and the associated discretization or aliasing error is

ea =
∞
∑

j=1

qk(1+2j`)r
2jk` . (2.66)

Proof. To establish (2.64) and (2.66), we form the damped sequence ak =
qkr

k for 0 < r < b−1 and let ak = 0 for k < 0. Then we apply the dis-
crete Fourier transform to (calculate the discrete Fourier series of) the aliased
sequence

apk =

∞
∑

j=−∞

ak+jm . (2.67)

Note that {apk} is a periodic sequence with period m. The assumptions imply
that

∑∞

k=−∞ |ak| <∞, so that the series in (2.67) converges.
In preparation for the next step, let the Fourier transform of the sequence

{ak} be

φ(u) =

∞
∑

k=−∞

ake
iku = q̂(reiu) , (2.68)

which has inverse

ak =
1

2π

∫ 2π

0

φ(u)e−ikudu . (2.69)

22

Now the discrete Fourier transform of the periodic sequence {apk} is

âpk =
1

m

m−1
∑

j=0

apj e
i2πkj/m

=
1

m

m−1
∑

j=0

∞
∑

`=−∞

aj+`me
i2πjk/m

=
1

m

∞
∑

j=−∞

aje
i2πjk/m =

1

m
φ(2πk/m), (2.70)

Now apply the inversion formula for discrete Fourier transforms to obtain

apk =

m−1
∑

j=0

âpje
−i2πjk/m =

1

m

m−1
∑

j=0

φ(2πj/m)e−i2πjk/m . (2.71)

The combination of (2.67) and (2.71) is the discrete Poisson summation
formula

∞
∑

j=−∞

ak+jm =
1

m

m−1
∑

j=0

φ(2πj/m)e−i2πjk/m . (2.72)

Putting the term for k = 0 on the left, we obtain for integers k and m > 0

ak =
1

m

m−1
∑

j−0

φ(2πj/m)e−i2πjk/m −
∞
∑

j=−∞
j 6=0

ak+jm . (2.73)

Finally, we obtain (2.64) and (2.66) by setting m = 2k` in (2.73). Note that
ak+jm = 0 for j < 0 with this choice. In particular,

qkr
k ≡ ak =

1

2k`

2k`−1
∑

j=0

φ(πj/k`)e−iπj/` −
∞
∑

j=1

qk(1+2j`)r
k+2jk` , (2.74)

so that

qk =
1

2k`rk

2k`−1
∑

j=0

q̂(reiπj/k`)e−iπj/` −
∞
∑

j=1

qk(1+2j`)r
2jk` (2.75)

which gives (2.63)–(2.66).
Note that if |qn| ≤ C for all n ≥ (1 + 2`)k, then

|ea| ≤
∞
∑

j=1

Cr2jk` ≤ Cr2k`

1− r2k` , (2.76)

TRANSFORM INVERSION 23

which is approximately Cr2k` when r2k` is suitably small. To make the aliasing
error about 10−η when C = 1, we let r = 10−η/2k`, where ` is chosen to control
the roundoff error (the default value being ` = 1). In typical applications we
may choose η = 8. However, in some applications there is no bound on |qk|.
We then may need to apply an additional scaling algorithm, as illustrated in
Section 1.5.
It is possible to reduce the computations by a factor of 2 if qk is real-valued

by using the fact that q̂(z) = q̂(z). Then (2.64) can be replaced by

qak =
1

2k`rk

2k
∑

j=1

(−1)jRe(aj) (2.77)

=
1

2k`rk



a0(k, `, r) + (−1)kak(k, `, r) + 2
k−1
∑

j=1

(−1)jRe (aj(k, `, r))





for aj ≡ aj(k, `, r) in (2.65).
Unlike for the Laplace transforms in Section 1.2.1, the series (2.64) is finite,

so that there is no need to approximate an infinite series. Hence there is no need
to apply Euler summation with generating functions. However, if the index k
is very large, then it may still be advantageous to apply Euler summation to
accelerate convergence of the finite sum (2.64), as we illustrate in the closed
queueing network example in Section 1.5.4. The representation (2.64) has been
chosen to be nearly an alternating series, so that it is directly in the form to
apply Euler summation, just as in (2.43).
The roundoff control procedure is essentially the same as for Laplace trans-

forms. If we can compute the sum in (2.64) without the prefactor (2k`rk)−1

with a precision (error estimate) of 10−m, then the roundoff error after multiply-
ing by the prefactor will be approximately (2k`rk)−110−m. Since the roundoff
error estimate is decreasing in r as r approaches 1 from below, while the aliasing
error estimate is increasing in r, the maximum of the two error estimates will
be minimized when the two estimates are equal. Thus the total error should
be approximately minimized at this point. This leads to the equation

r2k` = (2k`rk)−110−m, (2.78)

Assuming that we can ignore the term 2k` on the right in (2.78), we get
r(2`+1)k ≈ 10−m or

r ≈ 10−m/(2`+1)k and r2`k ≈ 10−2`m/(2`+1) . (2.79)

As in Section 1.2.1, this analysis shows that we approximately lose a proportion
1/(2` + 1) of our precision due to roundoff error. If m = 12, then we can
achieve an overall error estimate of about 10−8 by setting ` = 1 and r =
10−4/k. By increasing `, we can get close to 10−m but never below it. To
accurately calculate smaller numbers than 10−m we need to apply scaling; see
Section 1.5.3.
We now summarize the algorithm.

24

Generating Function Algorithm Summary.. Based on the desired se-
quence index k and the parameters ` and r (e.g., ` = 1 and r = 10−4/k cor-
responding to η = 8), approximately compute qk from its generating function
q̂ in (2.61) by (2.64). If qk is real-valued, then replace (2.64) by (2.77). The
aliasing error is (2.66). If |qk| ≤ C for all k, then the aliasing error is bounded
by (2.76) and approximated by Cr2k` (which is 10−8 when C = 1, ` = 1 and
r = 10−4/k). If the index k is large, it may be advantageous to apply Euler
summation using (2.43).

The algorithm in this section is based on Abate and Whitt [7, 8] and Choud-
hury, Lucantoni and Whitt [24], but as they indicate, there is a substantial
body of related literature. Nevertheless, surprisingly, this algorithm was not
well known.

1.3 TRANSIENT CHARACTERISTICS OF THE ERLANG LOSS

MODEL

This section contains our first nontrivial example illustrating how the numer-
ical inversion of Laplace transforms can be applied. We apply the Fourier-series
algorithm in Section 1.2.1, but we could also apply other algorithms, such as
the Laguerre-series algorithm based on Theorem 4.
Given that inversion algorithms are available, typically the major challenge

in applications is efficiently computing the required Laplace transform values.
Fortunately, much previous work in applied probability has been devoted to
deriving transforms of random quantities of interest. As indicated at the out-
set, excellent examples are the queueing books by Takács [78] and Cohen [30].
Nevertheless, computing transform values can be a challenge. Sometimes trans-
forms are only available as integrals, as in the Pollaczek contour integral ex-
pression for the GI/G/1 waiting time, to be discussed in Section 1.4. On other
occasions, transforms are only available implicitly, as in Kendall functional
equation for the M/G/1 busy period.
In this section we consider the classical Erlang loss model, i.e., the M/M/c/0

system with Poisson arrival process, exponential service times, c servers and
no extra waiting space, where blocked calls are lost. We let the individual
service rate be 1 and the arrival rate (which coincides with the offered load) be
a. The way to compute steady-state characteristics for this model is very well
known, but that is not the case for transient (time-dependent) characteristics.
Transience arises by considering arbitrary fixed initial states. We show how
to compute several transient characteristics by numerical transform inversion.
This section draws on Abate and Whitt [11].
Before starting, we mention other applications of numerical transform in-

version to calculate transient characteristics of queueing models. The M/G/1
busy period distribution is treated in Abate and Whitt [9]. The time-dependent
queue-length and workload processes in the M/G/1, BMAP/G/1 andMt/Gt/1
queues are treated in Choudhury, Lucantoni and Whitt [24], Lucantoni, Choud-
hury and Whitt [62], and Choudhury, Lucantoni and Whitt [26], respectively.

TRANSFORM INVERSION 25

Both steady-state and time-dependent distributions in polling models are cal-
culated in Choudhury and Whitt [28]. The time-dependent distributions of
semi-Markov processes are calculated in Duffield and Whitt [38].
Here we develop algorithms for computing four quantities in the M/M/c/0

model: the time-dependent blocking probability starting at an arbitrary initial
state i, i.e., the transition probability

Pic(t) ≡ P (N(t) = c|N(0) = i) , (3.80)

where N(t) is the number of busy servers at time t; the complementary cumu-
lative distribution function (ccdf) F cic(t) of the time Tic all servers first become
busy starting at an arbitrary initial state i; i.e., where

F cic(t) ≡ 1− Fic(t) ≡ P (Tic > t) , (3.81)

and
Tic ≡ inf{t ≥ 0 : N(t) = c|N(0) = i} ; (3.82)

the time-dependent mean

Mi(t) ≡ E(N(t)|N(0) = i) ; (3.83)

and the (stationary) covariance function

R(t) ≡ Cov(Ns(u), Ns(u+ t)) (3.84)

= E(Ns(u)Ns(u+ t))−ENs(u)ENs(u+ t) ,

where {Ns(t) : t ≥ 0} is a stationary version of {N(t) : t ≥ 0}, i.e., where Ns(u)
in (3.84) is distributed according to the steady-state distribution

πj ≡ P (Ns(u) = j) =
aj/j!

∑c
k=0 a

k/k!
. (3.85)

We also show how to compute these quantities for very large systems by
performing computations for moderately sized systems and using scaling based
on the established heavy-traffic limit in which (N (a)(t)−a)/√a converges to the
reflected Ornstein-Uhlenbeck (ROU) process as a → ∞ with i(a) − a ∼ γ1

√
a

and c(a)− a ∼ γ2
√
a, where f(a) ∼ g(a) means that f(a)/g(a)→ 1 as a→∞;

see p. 177 of Borovkov [17] and Srikant and Whitt [77]. The ROU process is
the ordinary OU process modified to have a reflecting upper barrier. The OU
process is a diffusion process with constant diffusion coefficient and proportional
state-dependent drift, i.e., with drift −δx in state x. However, we will not focus
on the ROU process; we will only use the scaling.
For example, suppose that we want to compute Pic(t) for some large a such

as a = 108, where c and i are allowed to depend on a via c(a) = ba+√ac and
i(a) = ba − 2√ac, with bxc being the greatest integer less than or equal to x.
We will write P

(a)
i(a)c(a) to indicate the dependence upon the offered load a. The

26

heavy-traffic limit implies that P
(a)
i(a)c(a)/B(c(a), a) should be approximately

independent of a, where B(c(a), a) ≡ P (a)i(a)c(a)(∞) ≡ π
(a)
c(a) is the steady-state

Erlang blocking probability, which is known to have the asymptotic relation

B(c(a), a) ∼ 1√
a

φ(γ)

Φ(−γ) as a→∞ , (3.86)

where φ is the density and Φ is the cdf of a standard (mean 0, variance 1)
normal distribution and γ is the limit of (a− c)/√a; see Jagerman [48], Whitt
[81], and (15) of Srikant and Whitt [77]. Hence, we can compute P

(108)
i(108)c(108)(t)

approximately using results for a = 400 as follows:

P
(108)
i(108)c(108)(t) ≈

B(108 + 104, 108)

B(400 + 20, 400)
P
(400)
i(400)c(400(t)

≈
(

20

104

)

P
(400)
i(400)c(400(t) , (3.87)

with i(a) = ba − 2√ac and c(a) = ba + √ac in each case; e.g., i(a) = 360 for
a = 400 and i(a) = 108 − 2(104) for a = 108. We will show the effectiveness of
the scaling in numerical examples.
The algorithms here are based on computing the Laplace transforms of these

quantities with respect to time and then applying the Fourier-series method.
For the most part, algorithms for computing the transforms are available in
the literature. In particular, an algorithm to calculate the Laplace transform
of Pij(t) is given on pp. 81–84 of Riordan [74], but it does not seem to be widely
known. Formulas for the Laplace transform of the mean and the covariance are
given in Beneš [14], [15] and Jagerman [49], but the formula for the covariance
transform in (15) on p. 209 of [15] and (15) on p. 136 of [14] has a sign error.
Abate and Whitt [11] derived a new formula for the covariance transform, given
below in Theorem 3.2.
The numerical inversion algorithm is an alternative to the spectral expan-

sion described in Beneš [14], [15] and Riordan [74]. The spectral expansion is
efficient for computing values at many time points, because the eigenvalues and
eigenvectors need only be computed once. However, the inversion algorithm is
also fast, and remarkably simple.
The numerical inversion algorithm is also an alternative to the numerical so-

lution of a system of ordinary differential equations (ODEs), which is discussed
here in Chapter 2. Numerical solution of ODEs has the advantage that it ap-
plies to time-dependent models as well as the transient behavior of stationary
models with nonstationary initial conditions. However, when the numerical in-
version algorithm applies, it has the advantage that it can produce calculations
at any desired t without having to compute the function over a large set of time
points in the interval [0, t].
Finally, asymptotic formulas can serve as alternatives to exact numerical

algorithms in the appropriate asymptotic regimes. Such asymptotic formulas

TRANSFORM INVERSION 27

are given in Mitra and Weiss [63] and Knessl [57]. These asymptotic formulas
are very attractive when they are both simple and sufficiently accurate, but
many of the asymptotic formulas are not simple. Then they properly should be
viewed as alternatives to numerical algorithms. It appears that the numerical
algorithm here is much more accurate than the asymptotic approximations.

1.3.1 Time-Dependent Blocking Probabilities

As shown on pp. 81–84 of Riordan [74], the Laplace transform

P̂ij(s) ≡
∫ ∞

0

e−stPij(t)dt (3.88)

is easily computed recursively, exploiting relations among the Poisson-Charlier
polynomials. Since Riordan was not developing a numerical inversion algo-
rithm, he was not interested in a numerical algorithm for computing the trans-
form, so it is not highlighted, but it is there. The key relation is (8) on p. 84 of
[74] using the recursions (3) and (4). The determinant |D| in (8) is evaluated
in (6).
We will focus on Pij(t) only for j = c, but the general case can be computed

as well. To express the result for Pic(t), let

dn ≡ dn(s, a) = (−1)nCn(−s, a) , (3.89)

where s is a complex variable and Cn(s, a) are the Poisson-Charlier polynomials;
i.e.,

dn =
1

an

n
∑

k=0

(

n

k

)

s(s+ 1) . . . (s+ k − 1)an−k ; (3.90)

e.g.,

d0 = 1 , d1 =
1

a
(a+ s) (3.91)

d2 =
1

a2
(a2 + (2a+ 1)s+ s2) . (3.92)

We now specify the algorithm for computing P̂ic(s) for any desired i, c and
complex s. We use the polynomials dn, but we do not compute them via (3.90);
instead we compute them recursively. Our algorithm follows from the recursive
relations in Riordan [74].

Theorem 9 The Laplace transform of the time-dependent blocking probability
is

P̂ic(s) = diP̂0c(s) , (3.93)

where

P̂0c(s) =
1

a(dc+1 − dc)
, (3.94)

28

d0 and d1 are given in (3.91) and

dn+1 = (1 +
n

a
+
s

a
)dn −

n

a
dn−1 , n ≥ 1 . (3.95)

Since {Ns(t) : t ≥ 0} is a stationary reversible process, e.g., see p. 26 of
Keilson [53], πiPic(t) = πcPci(t). Hence, we can also calculate Pci(t) directly
from Pic(t) by

Pci(t) = (πi/πc)Pic(t) =
aic!

aci!
Pic(t) . (3.96)

As indicated in the introduction, P
(a)
ic (t)/B(c, a) should be approximately

independent of a provided that i ≡ i(a) ≈ a+ γ1
√
a and c ≡ c(a) ≈ a+ γ2

√
a

for arbitrary constants γ1 and γ2 (which we think of as being in the interval
[−5, 5]). To calculate the Erlang blocking probability B(c, a), we use the well
known recurrence

B(c, a) =
1

1 + c
aB(c−1,a)

. (3.97)

The Erlang blocking probabilityB is related to the polynomial dn by dn(1, a) =
1/B(n, a). The recurrence relation (3.97) itself follows directly from another
recurrence relation for dn, namely,

dn(s, a) = dn(s+ 1, a)−
n

a
dn−1(s+ 1, a) ; (3.98)

see Corollary 3 on p. 549 of Jagerman [48]. The polynomials dn are related to
the sigma functions used in Beneš [15] and other early references by σs(n) =
andn(s, a)/n!
We now illustrate the algorithm with a numerical example. We will consider

five cases with five different values of a, ranging from a = 100 to a = 10, 000,
where γ1 = (i(a) − a)/

√
a = −3 and γ2 = (c(a) − a)/

√
a = 2. The five cases

with steady-state performance measures are displayed in Table 3.1. LetM and
V be the mean and variance of the steady-state number of busy servers, i.e.,
M = a(1−B) and

V =M − aB(c−M) =M − aB(c− a)− (aB)2 . (3.99)

The effectiveness of the scaling is shown in Table 3.1 through the values of
√
aB

and V/a, which are nearly independent of a.

Numerical values of P
(a)
i(a),c(a)(t)/B(c(a), a) for nine time points are displayed

in Table 3.2. The values of B are computed from (3.97), while the values of

P
(a)
i(a)c(a)(t) are computed by the Fourier-series method as in Section 1.2.1 after

computing the transform values by the algorithm in Theorem 9. The inversion
parameters were set so that the transform was computed at 40 values of complex
s in each case. For the largest case, a = 104, the computation took about two
minutes using UBASIC on a PC. (See [7] for more on UBASIC.) As in Table 3.1,
the effectiveness of the scaling in Table 3.2 is evident in the similarity of values
in each row.

TRANSFORM INVERSION 29

Table 3.1 The five cases (γ1 = −3 and γ2 = 2).

cases c a i B M V
√
aB V/a

I 120 100 70 .0056901 99.43 87.73 .056901 .877271
II 440 400 340 .0028060 398.88 352.72 .056120 .881806
III 960 900 810 .0018613 898.33 795.01 .055840 .883341
IV 2600 2500 2350 .0011122 2497.22 2211.45 .055608 .884579
V 10200 10000 9700 .0005543 9994.46 8855.13 .055430 .885513

Table 3.2 Values of P
(a)
i(a),c(a)(t)/B(c(a), a) in the five cases of Table 3.1.

time I(a = 100) II(a = 400) III(a = 900) IV (a = 2, 500) V (a = 10, 000)

1.0 .038920 .040993 .041755 .042435 .042836
1.5 .220241 .225617 .227479 .227581 .230147
2.0 .459358 .464459 .466181 .467744 .468612
2.5 .657298 .660662 .661786 .662651 .663363
3.0 .792636 .794518 .795143 .795656 .796044
4.0 .928489 .928951 .929102 .929222 .929311
5.0 .976022 .976108 .976135 .976156 .976171
7.0 .9973498 .9973442 .9973420 .9973401 .9973386
10.0 .99990311 .99990208 .99990172 .99990141 .99990118

1.3.2 Other Descriptive Characteristics

Let fij(t) be the probability density function (pdf) of the first passage time
Tij from state i to state j in the M/M/c/0 model. Clearly,

Pij(t) = fij(t) ∗ Pjj(t) (3.100)

for all i and j, where ∗ denotes convolution. Hence, if

f̂ij(s) ≡
∫ ∞

0

e−stfij(t)dt , (3.101)

then
f̂ij(s) = P̂ij(s)/P̂jj(s) . (3.102)

Since

F̂ cij(s) =
1− f̂ij(s)
s

(3.103)

30

where

F̂ cij(s) ≡
∫ ∞

0

e−stF cij(t)dt (3.104)

and F cij(t) is the ccdf of Tij , we can calculate F
c
ij(t) by numerical inversion too.

In particular, given the algorithm for calculating P̂ic(s) in Theorem 9, we can
calculate F̂ cic(s) and F

c
ic(t).

It is also possible to derive a recursion for the transform f̂i,i+1(s) directly.
Considering the possible times and locations of the first transition, we have
f̂01(s) = a/(a+ s) and

f̂i,i+1(s) =

(

a+ i

a+ i+ s

) (

a

a+ i
+

(

i

a+ i

)

f̂i−1,i(s)f̂i,i+1(s)

)

, i ≥ 1 ,
(3.105)

From (3.105), we obtain for i ≥ 1

f̂i,i+1(s) =
a

a+ i+ s− if̂i−1,i(s)
. (3.106)

On the other hand, we can derive (3.106) from (3.93) because

f̂i,i+1(s) =
f̂i,c(s)

f̂i+1,c(s)
=
P̂ic(s)

P̂i+1,c(s)
=
di(s, a)

di+1(s, a)
(3.107)

and

f̂0,i(s) = 1/di(s, a) . (3.108)

For example, the first relation in (3.107) holds because the first passage time
from i to c is necessarily the sum of the independent first passage times from i
to i+1 and from i+1 to c. The recursion (3.106) also follows from (3.95) and
(3.107).
By the scaling for large a, the distribution of Tic should be approximately

independent of a when c(a) = ba + γ1
√
ac and i(a) = ba + γ2

√
ac. Indeed,

as a → ∞ with c(a) − a ∼ γ1
√
a and i(a) − a ∼ γ2

√
a, T

(a)
i(a)c(a) converges in

distribution to the first passage time τγ2,γ1 of the Ornstein-Uhlenbeck (OU)
diffusion process from γ2 to γ1; see Darling and Siegert [32] and Keilson and
Ross [54].
We now give a numerical example. We compute the cdf Fac(t) for several

values of t in the five cases given in Table 3.1. We let the initial state here be a
instead of i; i.e., γ1 = 0 instead of γ1 = −3. The results are shown in Table 3.3.

We now turn to the time-dependent mean in (3.83). It has Laplace transform

M̂i(s) ≡
∫ ∞

0

e−stMi(t)dt =
i

1 + s
+
a

1 + s

(

1

s
− P̂ic(s)

)

; (3.109)

see p. 215 of Beneš [15]. Clearly M̂i(s) is easily computed once we have P̂ic(s).

TRANSFORM INVERSION 31

Table 3.3 Values of the first-passage-time cdf Fac(a)(t) in the five cases given in Table 3.1
with γ1 = 0 and γ2 = 2.

time I(a = 100) II(a = 400) III(a = 900) IV (a = 2, 500) V (a = 10, 000)

2 .1755 .1694 .1674 .1657 .1644
4 .3318 .3230 .3199 .3175 .3156
6 .4564 .4461 .4426 .4397 .4375
8 .5576 .5467 .5429 .5398 .5375
10 .6400 .6291 .6252 .6221 .6197
20 .8715 .8638 .8611 .8588 .8571
30 .9541 .9500 .9485 .9473 .9463
40 .9836 .9817 .9809 .9803 .9798
80 .9997 .9997 .9996 .9996 .9996

Since (N(t)−a)/√a converges to the ROU process as a→∞ with i(a)−a ∼
γ1
√
a and c(a)− a ∼ γ2

√
a, we should have

m
(a)
i(a)(t) ≡

M
(a)
i (t)− a√
a

→ mi(t) as a→∞ , (3.110)

where mi(t) is the corresponding ROU mean function, provided that i(a) and
c(a) are defined as above. We confirm the effectiveness of this scaling by com-

puting the scaled mean m
(a)
i(a)(t) in (3.110) for several different values of a. In

particular, values of −m(a)i(a)(t) are displayed in Table 3.4 for the same five cases
as in Tables 3.1 and 3.2. Now we let γ1 = −3 again, as in Tables 3.1 and 3.2.
We conclude this section by considering the covariance function in (3.84).

We give two expressions for its Laplace transform derived in [11].

Theorem 10 The covariance function R(t) has Laplace transform

R̂(s) ≡
∫ ∞

0

e−stR(t)dt

=
V

1 + s
− (M − V)
(1 + s)2

+
(aB)2

(1 + s)2

(

P̂cc(s)

B
− 1
s

)

(3.111)

=
V

1 + s
− (a−M)(M̂c(s)− (M/s))

1 + s
, (3.112)

where B ≡ B(c, a) ≡ πc in (3.85), M ≡ Mi(∞) = a(1 − B) and V ≡ R(0) is
given in (3.99).

We can apply (3.112) to obtain a useful direct expression for the covariance
function.

32

Table 3.4 Values of the normalized mean [a −M (a)i(a)(t)]/
√
a in the five cases given in

Table 3.1 with γ1 = −3.

time I(a = 100) II(a = 400) III(a = 900) IV (a = 2, 500) V (a = 10, 000)

0.1 2.714512 2.714512 2.714512 2.714512 2.714512
0.5 1.819592 1.819592 1.819592 1.819592 1.819592
1.0 1.103903 1.103920 1.103925 1.103930 1.103638
1.5 .672385 .672445 .672466 .672483 .669390
2.0 .415669 .415718 .415733 .415743 .415751
3.0 .177146 .176943 .176865 .176800 .176748
5.0 .070190 .069547 .069316 .069124 .068976
7.0 .058365 .057607 .057335 .057111 .056938
10.0 .056954 .056174 .055895 .055664 .055486

Corollary. The covariance can be expressed as

R(t) = V e−t − (a−M)
∫ t

0

e−(t−u)[Mc(u)−M)]du ≤ V e−t . (3.113)

The Corollary to Theorem 10 yields a bound which is approached as c→∞;
i.e., it is known that R(t) = V e−t in the M/M/∞ model. Beneš proposes a
simple approximation

R(t) ≈ V e−Mt/V , t ≥ 0 ,

which is easy to compute and reasonably accurate; see p. 188 of [15].
Since

Cov

(

Ns(u)− a√
a

,
Ns(u+ t)− a√

a

)

=
Cov(Ns(u), Ns(u+ t))

a

we conclude that C(a)(t)/a should be approximately independent of a provided
that c(a) = a+ γ

√
a. We confirm this scaling in our numerical example below.

In particular, values of the normalized covariance function R(t)/a are displayed
in Table 3.5. We use the same five cases (values of a) and same nine time points
as in Table 3.4. From the evident convergence, it is clear that the values can
be used to approximate the covariance function of the limiting ROU diffusion
process as well.

1.4 STEADY-STATE WAITING TIMES IN THE GI/G/1 QUEUE

This section contains a second nontrivial example illustrating how numerical
inversion of Laplace transforms can be applied. In this section we consider

TRANSFORM INVERSION 33

Table 3.5 Values of the normalized covariance function R(t)/a for the five cases in
Table 3.1.

time I(a = 100) II(a = 400) III(a = 900) IV (a = 2, 500) V (a = 10, 000)

0.1 .784019 .788345 .789814 .791000 .791895
0.5 .502346 .505750 .506913 .507853 .508564
1.0 .288786 .291173 .291990 .292652 .293153
1.5 .166203 .167816 .168370 .168819 .169159
2.0 .095700 .096765 .097132 .097429 .097655
3.0 .031748 .032192 .032345 .032469 .032564
5.0 .003496 .003219 .003589 .003608 .003623
7.0 .0003850 .0003948 .0003982 .0004010 .0004032
10.0 .00001407 .00001455 .00001472 .00001486 .00001496

the steady-state waiting-time distribution in the GI/G/1 queue, drawing upon
Abate, Choudhury and Whitt [2], [3], [4].
There is a single server with unlimited waiting space and the first-in first-out

service discipline. The interarrival times and service times come from indepen-
dent sequences of i.i.d. random variables. Let U and V be generic interarrival
and service times with cdf’s F and G, respectively. Let f̂ and ĝ be their Laplace
Stieltjes transforms, e.g.,

f̂(s) =

∫ ∞

0

e−stdF (t) . (4.114)

We assume that EV < EU <∞, so that the system is stable; i.e., the steady-
state waiting time, denoted byW , is well defined. (The steady-state limit exists
and is proper; see [12] for details.) Without loss of generality, we assume that
EV = 1 and EU = 1/ρ. Then ρ < 1 becomes the assumed stability condition.
We calculate the complementary cdf (ccdf) P (W > x) by numerically in-

verting its Laplace transform

Ŵ c(s) ≡
∫ ∞

0

e−stP (W > t)dt =
1− ŵ(s)
s

, (4.115)

where

ŵ(s) ≡ Ee−sW =
∫ ∞

0

e−stdP (W ≤ t) . (4.116)

As in Section 1.3, the main challenge is computing the Laplace transform
values ŵ(s) for appropriate complex numbers s. The easiest special case is
M/G/1 (when the interarrival time has an exponential distribution), in which
the waiting-time Laplace transform ŵ is available in closed form; see (4.117)

34

below. In Section 1.4.1 we discuss a slightly more difficult case, in which the
interarrival-time transform is rational. Then the waiting-time transform ŵ is
available once some roots of an equation have been found. Such roots can typi-
cally be found without difficulty; for further discussion see Chaudhry, Agarwal
and Templeton [18] and Chapter ?. The case in which the polynomial in the
denominator has degree 2 is especially convenient; we discuss that case in detail.
In Section 1.4.2 we consider the general case. We apply Pollaczek’s [68] con-

tour integral representation of the Laplace transform ŵ. In that case we must
perform a numerical integration in order to calculate the transform values. This
numerical integration approach applies directly when the service-time moment
generating function is finite in a neighborhood of the origin. We show how to
compute the required transform values more generally by this approach using
exponential damping in Section 4.4.
We give numerical examples in Sections 1.4.3 and 1.4.4. In Section 4.3 we

consider gamma distribution examples, i.e., Γα/Γβ/1 queues where Γα denotes
the gamma distribution with shape parameter α. To include a case that is
difficult for some algorithms (but not inversion), we consider the Ek/Ek/1
model (with Erlang distributions) with very high order k, namely, up to k =
104.
We conclude in Section 1.4.4 by considering long-tail service-time distribu-

tions. We show how exponential damping can be used together with numerical
integration to get the Laplace transform values ŵ(s) for general interarrival-
time and service-time distributions (provided that Laplace transforms of these
basic distributions are known). We also show that asymptotic results nicely
complement the inversion algorithm by providing accurate values at very large
arguments where the inversion gets difficult.
In this section we only consider single-server queues with renewal arrival

processes. An inversion algorithm for single-server queues with a non-renewal
arrival process (a batch Markovian arrival process) is described in Choudhury,
Lucantoni and Whitt [25].

1.4.1 Rational Interarrival-Time Transform

The GI/G/1 model simplifies when one of the transforms f̂ or ĝ is rational,

e.g., if f̂ = α̂/β̂ where α̂ and β̂ are polynomials. As shown by Smith [76], if the
service-time transform ĝ is rational, then the waiting-time transform ŵ(s) itself
is rational, and it is possible to obtain an explicit expression for the waiting-
time ccdf P (W > x); see p. 324 of Cohen [30]. Hence, numerical inversion is
especially attractive when the service-time transform is not rational, but it can
be used for all service-time distribution.
The most familiar special case is the M/G/1 model, i.e., when f̂(s) = ρ/(ρ+

s). Then the Laplace transform ŵ is given by the Pollaczek-Khintchine formula

ŵ(s) =
1− ρ

1− ρĝe(s)
, (4.117)

TRANSFORM INVERSION 35

where

ĝe(s) =

∫ ∞

0

e−stdGe(t) (4.118)

and Ge is the service-time stationary-excess cdf, defined by

Ge(t) =
1

EV

∫ t

0

Gc(u)du , t ≥ 0 . (4.119)

Since EV = 1,

ĝe(s) = (1− ĝ(s))/s . (4.120)

If we can compute the transform values ĝ(s), then the waiting-time ccdf P (W >
x) can be computed easily by inverting the transform (1−ŵ(s))/s for ŵ in 4.117
and ĝe in (4.120). Numerical examples are given in [7].
More generally, we can calculate the waiting-time ccdf P (W > x) whenever

the interarrival-time transform f̂ is rational. Henceforth in this subsection
we assume that f̂ = α̂/β̂, where β̂ is a polynomial of degree m and α̂ is a
polynomial of degree at most m− 1. The model is then denoted Km/G/1. In
order to compute the transform, we must solve for the zeros of the equation

f̂(s)ĝ(−s) = 1 . (4.121)

The following theorem comes from p. 329 of Cohen [30].

Theorem 11 Consider theKm/G/1 queue with ρ < 1 in which the interarrival-

time transform is rational, i.e., f̂(s) = α̂(s)/β̂(s), where β̂(s) has degree m and

α̂(s) has degree at most m − 1. Let the coefficient of sm in β̂(s) be 1. Then
equation (4.121) has m zeros with Re(s) ≤ 0, exactly one of which is 0. Let
−δi, 1 ≤ i ≤ m− 1, be the m − 1 zeros with Re(s) < 0. Then the steady-state
waiting time has Laplace transform.

ŵ(s) =
−β̂(0)cs(1− ρ)
β̂(−s)− ĝ(s)α̂(−s)

m−1
∏

i=1

δi − s
δi

, (4.122)

where

c =
β′(0)− α′(0)
β(0)

.

The mean waiting time and the probability of emptiness are

EW =
ρ

2(1− ρ)

{

EV 2 +EU2 + 2EV
α′(0)

α(0)
− 2EU β

′(0)

β(0)

}

+

m−1
∑

i=1

δ−1i

and

P (W = 0) = (1− ρ)E[U]β(0)
m−1
∏

i=1

δ−1i .

36

The idle time within a busy cycle has Laplace transform

î(s) = 1− s

β(s)

m−1
∏

i=1

(δi + s) .

When all the zeros with Re(s) < 0 of (4.121) can be found, which can
usually be done without difficulty numerically, and which is easy in the case of
m = 2, the waiting-time cdf can easily be calculated by numerically inverting
the transform (1− ŵ(s))/s for ŵ in (4.122).
We now give more explicit formulas for the case m = 2. In the case m = 2,

equation (4.121) has precisely three roots: η, 0 and −δ, where η > 0 and δ > 0.
Since the roots are all real, it is elementary to find them.
Let the interarrival time have transform

f̂(s) =
1 + (c1 + c2 − ρ−1)s
(1 + c1s)(1 + c2s)

(4.123)

for c1 and c2 real and positive with c1 ≤ c2, so that the mean and squared
coefficient of variation (SCV) are

f1 = ρ
−1 and c2a = 2(ρc1 + ρc2 − ρ2c1c2)− 1 . (4.124)

Expanding (4.123) into partial fractions yields for c1 6= c2:

f̂(s) =

(

c2 − ρ−1
c2 − c1

)

(1 + c1s)
−1 +

(

ρ−1 − c1
c2 − c1

)

(1 + c2s)
−1 . (4.125)

We see that the pdf is hyperexponential (H2) with c
2
a > 1 if c2 > ρ

−1 > c1; i.e.,

f(t) = pλ1e
−λ1t + (1− p)λ2e−λ2t , t ≥ 0 , (4.126)

for λi = 1/ci and p = (c2 − ρ−1)/(c2 − c1) with 0 < ρ < 1. On the other hand,
if ρ−1 > c2 > c1, then (4.126) still holds but with p < 0. Then the pdf f(t) in
(4.126) is a difference of two exponentials and is called hypoexponential. Then
the SCV satisfies 1/2 < c2a < 1.
For the special case of the hypoexponential with c1 + c2 − ρ−1 = 0, we can

express the transform f̂(s) in (4.123) as

f̂(s) = (1 + c1s)
−1(1 + c2s)

−1 , (4.127)

so that the pdf f(t) is the convolution of two exponential pdf’s with means c1
and c2, which we refer refer to as generalized Erlang of order 2 (GE2). When
c1 = c2, we must have c1 = c2 = 1/2ρ and the distribution becomes Erlang
(E2), i.e.,

f̂(s) = (1 + [s/2ρ])−2 . (4.128)

The degenerate exponential case is approached as c1 → 0 with c2 → ρ−1.
The following is a direct consequence of Theorem 11.

TRANSFORM INVERSION 37

Corollary. Consider the K2/G/1 queue having service-time transform ĝ(s)

with mean 1 and interarrival-time transform f̂(s) in (4.123) with mean ρ−1 for
0 < ρ < 1. Then the steady-state waiting time has Laplace transform

ŵ(s) =
(1− ρ)(1− (s/δ))

(1− ρĝe(s)) + (ρc1 + ρc2 − 1)(1− ĝ(s)) − ρc1c2s
. (4.129)

The mean waiting time and the emptiness probability are

EW =
ρ(ρ−2c2a + c

2
s)

2(1− ρ) +
1− ρ
2ρ
+
1

δ
− c1 − c2 (4.130)

and

P (W = 0) = lim
s→∞

ŵ(s) =
1− ρ
ρc1c2δ

. (4.131)

The idle time transform is

î(s) =
1 + (c1 + c2 − δc1c2)s
(1 + c1s)(1 + c2s)

. (4.132)

The first two idle-time moments are

i1 = δc1c2 (4.133)

and
i2
2i1
= c1 + c2 − δ−1 . (4.134)

Remark 1.4.1 It is of interest to compare the idle-time transform î(s) in

(4.132) to f̂e(s), the LST of the stationary-excess cdf Fe of the interarrival-
time cdf F , defined as in (4.119). From (4.125), we see that

f̂e(s) =
1 + ρc1c2s

(1 + c1s)(1 + c2s)
. (4.135)

For any cdf H , let hk be its k
th moment. Then the first moment of the cdf Fe

is

fe1 =
f2
2f1
=
c2a + 1

2ρ
= c1 + c2 − ρc1c2 (4.136)

If we approximate i1 by fe1, we obtain from (4.133) and (4.136) an approxima-
tion for the root δ, namely,

δ ≈ 1 + c
2
a

2ρc1c2
≈ c1 + c2 − ρc1c2

c1c2
, (4.137)

which can be used as an initial guess when applying the Newton-Raphson root
finding procedure. As indicated in [4], a good initial guess for η is EW/ρ.

38

Table 4.6 The root δ and other characteristics as functions of ρ in the K2/G/1 model
in Example 1.4.1.

ρ δ P (W = 0) EW
ρ(c2a+c

2
s)

2(1−ρ) i1 fe1

.1 .105 .857 .25 .22 10.50 15.00

.2 .220 .729 .55 .50 5.49 7.50

.4 .475 .506 1.44 1.33 2.97 3.75

.5 .613 .408 2.13 2.00 2.45 3.00

.6 .757 .317 3.16 3.00 2.10 2.60

.8 1.058 .151 8.20 8.00 1.65 1.88

.9 1.214 .074 18.21 18.00 1.50 1.67

.99 1.357 .007 198.23 198.00 1.38 1.52

Example 1.4.1 (An H2/G/1 Example) We conclude this subsection by giv-
ing a numerical example. Let the interarrival-time transform be as in (4.123)
with c1 = 1/2ρ and c2 = 2/ρ. Then the pdf is H2, in particular,

f(t) =
2

3c1
e−t/c1 +

1

3c2
e−t/c2 , t ≥ 0 , (4.138)

so that f1 = 1/ρ, f2 = 3/ρ
2 and f3 = 33/2ρ

3. Let the service-time pdf be
gamma with mean 1 and shape parameter 1/2 (Γ1/2), i.e.,

g(t) = (2πt)−1/2e−t/2 , t ≥ 0 , (4.139)

with ĝ(s) = (1 + 2s)−1/2.
In Table 4.1 we display the root δ as a function of ρ. We also display several

related quantities computable directly from δ, in particular, EW , P (W = 0)
and i1. We compare EW to the heavy-traffic approximation ρ(c

2
a+c

2
s)/2(1−ρ)

and we compare i1 to fe1. In this case the heavy-traffic approximation for the
mean EW is quite good for all ρ. The mean stationary excess of an interarrival
time fe1 consistently exceeds the idle-time mean i1.
To do further analysis, we consider the case ρ = 0.75. Then we find that

δ = 0.98115392 and P (W = 0) = 0.19110151. (The high precision in P (W = 0)
would rarely be needed. On the other hand, the high precision in δ may be
needed because it appears in the transform ŵ(s) in (4.129) that we intend to
invert. When the tail probability P (W > x) is very small, we need very small
absolute error to achieve reasonable relative error.) We compute the exact
values of the ccdf P (W > x) for several values of x in Table 4.2. We compare
it to the Cramer-Lundberg asymptotic approximation

P (W > x) ∼ αe−ηx as x→∞ , (4.140)

TRANSFORM INVERSION 39

Table 4.7 A comparison of the Cramér-Lundberg approximation with exact values ob-

tained by numerical inversion for the waiting-time ccdf P (W > x) for the queue
H2/Γ1/2/1 with traffic intensity ρ = 0.75 in Example 1.4.1.

numerical Cramér-Lundberg
x transform inversion approximation

10−8 0.808898 0.785
.5 0.747832 0.736
1.0 0.697692 0.691
2.0 0.611125 0.608
4.0 0.472237 0.4716
8.0 0.283501 0.28346
16.0 0.1023909 0.1023905
30.0 0.01723289 same
50.0 0.00135140 same
70.0 0.00010598 same
80.0 0.00002968 same

where η is the positive real root of (4.121) with minimum real part and f(x) ∼
g(x) as x → ∞ means that f(x)/g(x) → 1 as x → ∞; see p. 269 of Asmussen
[12] and Abate, Choudhury and Whitt [4].
For the Cramér-Lundberg approximation with ρ = 0.75, we obtain

η−1 = 7.85645477 and α = 0.78472698 .

In this example, EW = 6.185875, so that the two rough estimates of η−1 are
EW/ρ = 8.2478 and (c2a + c

2
s)/2(1− ρ) = 8.0. Both are reasonable approxima-

tions that work well as initial guesses in the Newton-Raphson procedure.
From Table 4.2 we see that the Cramér-Lundberg approximation is excellent,

even when x is not large. This numerical example illustrates a general phe-
nomenon: When the Cramér-Lundberg approximation applies, it often serves
as well as the exact values in applications. However, one should be careful about
generalizing; asymptotic approximations do not always perform this well; see
Section 1.4.4 below.
Finally, we remark that numerical inversion can also be used to calculate

asymptotic parameters such as α and η in (4.140); e.g., see [23] and [1].

1.4.2 The Pollaczek Contour Integral

Pollaczek [68] derived a contour-integral expression for the Laplace transform
of the steady-state waiting-time distribution in the general GI/G/1 queue. Let

40

H be the cumulative distribution (cdf) of V − U and let φ be its moment
generating function, defined by

φ(z) = Eez(V−U) ≡
∫ ∞

−∞

eztdH(t) = f̂(z)ĝ(−z) , (4.141)

which we assume is analytic for complex z in the strip |Re z| < δ for some
δ > 0. A natural sufficient condition for this analyticity condition is for the
service-time and interarrival-time distributions to have finite moment generat-
ing functions in a neighborhood of the origin, and thus moments of all orders,
but neither the transform of the interarrival-time distribution nor the transform
of the service-time distributions need be rational.
Moreover, as noted on p. 40 of Pollaczek [69] and in Section II.5.9 on p. 31

of Cohen [30], it is possible to treat the case of more general service-time dis-
tributions by considering limits of service-time distributions that satisfy this
analyticity condition. We discuss this extension here in Section 1.4.4. Now
we assume that φ(z) in (4.141) is indeed analytic for complex z in the strip
|Re z| < δ for some δ > 0.
Here is Pollaczek’s contour integral representation; see Chapter 5 of Cohen

[30].

Theorem 12 In the GI/GI/1 model, the waiting-time Laplace transform is

ŵ(s) ≡ Ee−sW = exp
{

− 1
2πi

∫

C

s

z(s− z) log[1− φ(−z)]dz
}

, (4.142)

where s is a complex number with Re(s) ≥ 0, C is a contour to the left of,
and parallel to, the imaginary axis, and to the right of any singularities of
log[1− φ(−z)] in the left half plane, for φ in (4.141).
We have described algorithms for computing tail probabilities P (W > x) by

numerically inverting the Laplace transform Ŵ c in (4.115). For example, the
algorithm in Section 1.2.2 reduces to a finite weighted sum of terms Re(Ŵ c(u+
kvi)) over integers k for appropriate real numbers u and v (the number of
different k might be as low as 30.) To apply this algorithm, it suffices to
compute Re Ŵ c(s) for s of the required form s = u+ kvi. For this purpose, it
suffices to compute ŵ(s) in (4.142) for s of this same form.
The standard expression for (4.142) has the contour just to the left of the

imaginary axis, but this poses numerical difficulties because of the singularity
in the first portion of the integrand, s/z(s − z), and in the second portion,
log[1−φ(−z)], at z = 0. However, this difficult is easily avoided by moving the
vertical contour of integration to the left, but still keeping it to the right of the
singularity of log[1 − φ(−z)] in the left halfplane closest to the origin, which
we denote by −η. It turns out that this critical singularity of log[1 − φ(−z)]
also corresponds to the singularity of Ee−sW in the left halfplane closest to the
origin; i.e., the dominant singularity of (4.121) or

η = sup{s > 0 : EesW <∞} . (4.143)

TRANSFORM INVERSION 41

Moreover, η is the asymptotic decay rate in the Cramér-Lundberg approxima-
tion in (4.140)
Given a reasonable estimate of η, we perform the integration (4.142) by

putting the contour at −η/2. On this contour, z = −η/2 + iy and y ranges
from −∞ to +∞. Equation (4.142) becomes Ee−sW = exp(−I), where

I =
1

2π

(∫ 0

−∞

s

z(s− z) log[1− φ(z)]dy
∫ ∞

0

s

z(s− z) log[1− φ(−z)]dy
)

=
1

2π

∫ ∞

0

(

s

z(s− z) log[1− φ(−z)]
s

z(s− z) log[1− φ(−z)]
)

dy (4.144)

with z = −η/2−iy. In general, I in (4.143) is complex; we compute its real and
imaginary parts by integrating the real and imaginary parts of the integrand,
respectively. However, if s is real, then so is I . In that case, the real parts
of the two components of the integrand are the same, thereby simplifying the
computation somewhat.
For the GI/G/1 queue, the desired parameter η in (4.143) can usually be

easily found (by search algorithm) by solving the transform equation (4.121)
for the positive real root with minimum real part. In order to find η, it suffices
to restrict attention to the interval (0, ηs), where

ηs = sup{s ≥ 0 : EesV <∞} (4.145)

with V being a service time. (Of course ηs can be infinite, but that presents
no major difficulty; in that case we start the search in the interval (0, 1). If the
interval does not contain a root of (4.121), then we geometrically increase the
upper limit until it contains the root.)
However, it can happen that transform equation (4.121) does not have a

root even though the transform φ in (4.141) satisfies the analyticity condition;
This means that η = ηs > 0 for η in (4.143) and ηs in (4.145), so that we can
still put the vertical contour at −η/2.
A specific numerical integration procedure that can be used is fifth-order

Romberg integration, as described in Section 4.3 of Press, Flannery, Teukolsky
and Vetterling [71]. First divide the integration interval (0,∞) in (4.143) into a
number of subintervals. If η is not too close to 0, then no special care is needed
and it suffices to use the two subintervals (0, 1), and (1,∞) and then transform
the infinite interval into (0, 1) using the transformation in (4.4.2) of [71].
However, more care is required for less well behaved distributions (e.g.,

highly variable, nearly deterministic, or when η is close to 0). Then we ex-
amine the integrand more carefully and choose subintervals so that the ratio
of the maximum to the minimum value within any subinterval is at most 10 or
100. This helps ensure that computational effort is expended where it is needed.
Indeed, a version of the algorithm was developed to do this automatically. In
this automatic procedure, the integration interval (0,∞) in (4.143) is divided
into m + 1 subintervals: (0, b1), (b1, b2), . . . , (bm−1, bm), (bm,∞). The last in-
finite subinterval (bm,∞) is transformed into the finite interval (0, b−1m) using

42

the transformation in (4.4.2) of [71]. Within each subinterval, a fifth-order
Romberg integration procedure is performed. An error tolerance of 10−12 is
specified and the program generates successive partitions (going from n to 2n
points) until the estimated improvement is no more than either the tolerance
value itself or the product of the tolerance and the accumulated value of the
integral so far (in the current subinterval as well as in earlier subintervals).
A specific procedure used for choosing the subintervals is as follows. If the

integrand doesn’t differ by more than a factor of 10 in the interval (0, 1) then b1
is chosen as 1. Otherwise, b1 is chosen such that the integrand roughly changes
by a factor of 10 in the interval (0, b1). The endpoint b1 is roughly determined
by evaluating the integrand at 0 and at the points 10−n with n = 10, 9, . . . , 0.
For 2 ≤ i ≤ m, the ratio bi/bi−1 is assumed to be a constant K, where K is an
input parameter. The number m is determined by looking at the ratio of the
contribution from the subinterval (bi−1, bi) to the total contribution so far. If
this ratio is less than a constant ε, where ε is a second input parameter, then
m is set to i, i.e., the next interval is made the last interval. A good choice
of K and ε depends on the service-time and interarrival-time distributions.
Typically less well behaved distributions require smaller K and/or ε. Our
numerical experience indicates that K = 3 and ε = 10−4 works pretty well for
most cases of interest.
The Laplace transform inversion algorithm also gives an estimate of the final

error. If it is close to or below the 10−8 precision specified, we can be fairly
confidence of a good computation.

1.4.3 Gamma Distribution Examples

In this subsection and the next we illustrate the numerical inversion algo-
rithms for the GI/G/1 queue. In this subsection we consider Γα/Γβ/1 queues,
where Γ denotes the gamma distribution, and α and β are the shape param-
eters of the interarrival-time and service-time distributions, respectively. The
gamma distribution with scale parameter λ and shape parameter α has density

f(x) =
1

Γ(α)
λαxα−1e−λx, x > 0 , (4.146)

mean α/λ, variance α/λ2 and Laplace transform

Ee−sV ≡
∫ ∞

0

e−sxf(x)dx =

(

λ

λ+ s

)α

. (4.147)

The transform in (4.147) is rational if, and only if, the shape parameter α is a
positive integer. When α = k for an integer k, the gamma distribution is also
called Erlang of order k (Ek). Since convolutions of exponential distributions
are smooth, we expect that this distribution will not be very difficult, at least
when α is not too small; see Section 12 of Abate and Whitt [7].
We stipulate that the mean service time is 1 and that the arrival rate is ρ.

The remaining two parameters α and β of the Γα/Γβ/1 queue are the shape

TRANSFORM INVERSION 43

parameters of the interarrival-time and service-time distribution. Since the
squared coefficient of variation (SCV) is the reciprocal of the shape parameter,
it suffices to specify the SCVs c2a and c

2
s of the interarrival-time and service-time

distributions.
The algorithm can be checked against known results by considering the

Ek/Γ/1 and Γ/Ek/1 special cases. These are special cases of the PH/G/1 and
GI/PH/1 queues, for which there are alternative algorithms exploiting results
for the M/G/1 and GI/M/1 paradigms in Neuts [64, 65]. Another alterna-
tive for comparison is the root finding algorithm as in Chaudhry, Agarwal and
Templeton [18]; e.g., we found good agreement with results for the E10/E100/1
queue in Table 10 on p. 141 of Chaudhry, Agarwal and Templeton [18].
Some other algorithms for Ek/Em/1 queues get more difficult as k and m

increase. Hence, we performed calculations for Ek/Ek/1 models with large k.
Other Γα/Γβ/1 examples are given in [2].

Example 1.4.2 (Ek/Ek/1 Queues) We did calculations for the Ek/Ek/1 queue
for k = 10, k = 100, k = 1000 and k = 10, 000. In this case the transform equa-
tion in (4.121) for the asymptotic decay rate η becomes

(

k

k − η

)k (
k

k + η/ρ

)k

= 1 , (4.148)

from which we easily obtain

η = k(1− ρ) . (4.149)

Since Ek is approaching a deterministic distribution as k increases, to avoid
having negligible probabilities we let ρ ≡ ρk increase with k. In particular, we
let ρk = 1− k−1. With this choice, η ≡ ηk = 1 for all k. Also Wk, the steady-
state waiting time in model k, converges to an exponential random variable
with mean 1 as k →∞, as can be seen by applying the heavy-traffic argument
of Kingman [55] using (4.142).
Numerical values of some tail probabilities and cumulants are given for

Ek/Ek/1 queues for these cases in Table 4.3. (The cumulants are calculated
by other Pollaczek contour integrals; see [2]. The exponential limit is displayed
as well under the heading k = ∞. None of these presented any numerical
difficulties.
Interestingly, from Table 4.3, we see that for these cases W is quite well

approximated by a mixture of an atom at 0 with probability 1/
√
k =

√
1− ρ

and an exponential with mean 1 with probability 1− 1/
√
k.

1.4.4 Long-Tail Service-Time Distributions

Pollaczek’s contour integral representation in (4.142) depends on an ana-
lyticity condition that is satisfied when the interarrival-time and service-time
distributions have finite moment generating functions in a neighborhood of the

44

Table 4.8 Tail probabilities and cumulants of the steady-state waiting time in the

Ek/Ek/1 model with traffic intensity ρ = 1− k−1, as a function of k. The case k =∞
is an exponential with mean 1.

Congestion k

Measure 10 100 1,000 10,000 ∞

P (W > 0) 0.7102575 0.9035808 0.9687712 0.9900406 1.0000000
P (W > 1) 0.2780070 0.3385844 0.3584117 0.3648607 0.3678794
P (W > 3) 0.0376169 0.0458224 0.0485057 0.0493785 0.0497871
P (W > 5) 0.0050909 0.0062014 0.0065645 0.0066825 0.0067379
P (W > 7) 0.0006890 0.0008393 0.0008884 0.0009044 0.0009119
c1(W) 0.7484185 0.9195281 0.9741762 0.9917852 0! = 1
c2(W) 0.9491038 0.9951389 0.9995064 0.9999502 1! = 1
c3(W) 1.982543 1.995377 1.9999854 1.9999996 2! = 2
c4(W) 5.992213 5.999948 5.999999 6.000000 3! = 6
c5(W) 23.995966 23.999995 24.000000 24.000000 4! = 24
c6(W) 119.997754 120.000000 120.000000 119.999993 5! = 120

origin; i.e., when EesU < ∞ and EesV < ∞ for some s > 0. However, it is
possible to treat the general case by representing a general distribution as a
limit of a sequence of distributions each of which satisfies this analyticity con-
dition. It is known that the associated sequence of steady-state waiting-time
distributions will converge to a proper limit provided that the distributions and
their means also converge to proper limits; see p. 194 of Asmussen [12]. (The
moment condition is actually on (V − U)+ = max{V − U, 0}.)
In fact, the long-tail interarrival-time distributions actually present no diffi-

culty. It suffices to have φ(z) in (4.141) analytic in the strip 0 < Re (z) < δ for
some δ > 0. However, the service-time distribution poses a real problem.
Hence, if Gc(x) is the given service-time ccdf with Laplace transform Ĝc(s)

and mean m = Ĝc(0), then it suffices to find an approximating sequence of
service-time complementary cdf’s {Gcn(x) : n ≥ 1} with associated Laplace
transforms {Ĝcn(s) : n ≥ 1} and means {mn = Ĝcn(0) : n ≥ 1} such that
Ĝcn(s) → Ĝc(s) as n → ∞ for all s. Then Gcn(x) → Gc(x) as n → ∞ for all x
that are continuity points of the limiting complementary cdf Gc and mn → m
as n→∞.
A natural way to obtain a sequence of approximating service-time distri-

butions with finite moment generating functions in some neighborhood of the
origin when this condition is not satisfied originally is to introduce exponential
damping in the Laplace-Stieltjes transform with respect to G. In particular,
for any α > 0 let the α-damped ccdf be

Gcα(x) =

∫ ∞

x

e−αtdG(t), x ≥ 0 . (4.150)

TRANSFORM INVERSION 45

Since we want a proper probability distribution, we put mass 1 − Gcα(0) at
0. If the original service-time distribution has mean 1 and we want the new
service-time distribution also to have mean 1, then we also divide the random
variable Vα with cdf Gα by the new mean mα, i.e., we let the complimentary
cdf be Gcα(mαx).
The direct approximation in (4.150) makes the service-time distribution

stochastically smaller than the original service-time distribution, which in turn
makes the new steady-state waiting-time distribution stochastically smaller
than the original one, which may be helpful for interpretation. However, keep-
ing the same mean seems to give substantially better numbers. Here we keep
the mean fixed at 1.
From (4.150), it is easy to see that, if ĝ is the original Laplace-Stieltjes

transform of G, then the Laplace-Stieltjes transform of Gα(mαx) with mean 1
is

ĝα(s) = ĝ(α+ (s/mα)) + 1− ĝ(α) , (4.151)

where
mα = −ĝ′α(0) = −ĝ′(α) . (4.152)

Thus, the Laplace transform Ĝcα of G
c
α(mαx) for G

c
α in (4.150) is

Ĝcα(s) =
1− ĝα(s)
s

(4.153)

for ĝα in (4.151). Hence, given ĝ, we can readily calculate values of Ĝ
c
α for any

α > 0.
However, this approach is not trivial to implement, because it often requires

a very small α before Gα(x) is a satisfactory approximation for G(x), and a
small α means a small η in (4.121). Indeed, 0 < η ≤ ηs = α. In turn, a small η
means a relatively difficult computation, because the contour at −η/2 is near
the singularity at 0. However, this can be handled by being careful with the
numerical integration. Indeed, the algorithm employing an adaptive choice of
integration subintervals was originally developed to handle this case.
Before considering an example illustrating exponential damping, we mention

that it is also possible to approximate in other ways; e.g., see Asmussen, Nerman
and Ollson [13], Feldmann and Whitt [40] and Gaver and Jacobs [43].

Example 1.4.3 (An M/G/1 Queue) To illustrate how the exponential damp-
ing approach works, we consider an M/G/1 queue with service-time density

g(x) = x−3(1− (1 + 2x+ 2x2)e−2x), x ≥ 0 . (4.154)

This distribution has first two moments m1 = 1 and m2 = ∞, so that there
is a proper steady-state waiting-time distribution which has infinite mean; see
pp. 181-184 of Asmussen [12]. It is easy to see that our service-time distribution
has complementary cdf

Gc(x) = (2x2)−1(1− (1 + 2x)e−2x), x ≥ 0, (4.155)

46

Table 4.9 A comparison of approximations for tail probabilities P (W > x) with exact
values in the M/G/1 model with ρ = 0.8 and the long-tail service-time distribution in
Example 4.3.

x

Cases 4 20 100 500 2500

α = 0
(exact) 0.4653 0.1558 0.02473 0.004221 0.000811

α = 10−2 0.4539 0.1175 0.0036 0.000002 0.000000

α = 10−3 0.4631 0.1474 0.0017 0.00096 0.000006

α = 10−4 0.4650 0.1544 0.02315 0.0032 0.00032

α = 10−6 0.4653 0.1557 0.02469 0.004193 0.000788

α = 10−8

(M/G/1) 0.4653 0.1558 0.02473 0.004221 0.000810

α = 10−8

(Pollaczek) 0.4653 0.1558 0.02473 0.004224 0.000815

asymptotics
1 term 0.50 0.10 0.020 0.0040 0.00080

2 terms 1.33 0.165 0.0239 0.00421 0.000810

and Laplace transform

ĝ(s) = 1− s+ s
2

2
ln(1 + (2/s)) . (4.156)

This service-time distribution is a Pareto mixture of exponentials (PME) dis-
tribution introduced in Abate, Choudhury and Whitt [3].
We use the M/G/1 queue to make it easier to compare our numerical results

with other known results. In particular, we can also apply inversion directly to
the Pollaczek-Khintchine (transform) formula (4.117). We also can compare the
inversion results to a two-term asymptotic expansion derived by J. W. Cohen
(personal communication). The two-term asymptotic expansion is

P (W > x) ∼ ρ

2(1− ρ)x

(

1 +
ρ

(1− ρ)x

)

as x→∞, (4.157)

where γ ≡ 0.5772 . . . is Euler’s constant. The first term is just P (W > x) ∼
ρ/(1 − ρ)x. The inclusion of Euler’s constant in equation (4.157) corrects an

TRANSFORM INVERSION 47

error in the second term of a conjecture on the bottom of p. 328 of [3]. The
reasoning on p. 329 of [3] can be used, but the asymptotics for one term needs
to be corrected. In particular, L−1(s log2 s) ∼ −2(γ − 1+ logx)/x2 as x→∞.
In Table 4.4 we display the tail probabilities P (W > x) for this M/G/1

example with ρ = 0.8 for five values of x: x = 4, x = 20, x = 100, x = 500 and
x = 2500. The table shows the exact results (no damping, α = 0) obtained
from the Pollaczek-Khintchine formula and asymptotic approximations based
on (4.157); as well as the approximations obtained from five values of the
damping parameter α: α = 10−2, α = 10−3, α = 10−4, α = 10−6 and α = 10−8.
The numerical results based on the algorithm here and the Pollaczek-Khintchine
algorithm agreed to the stated precision for all values of α except α = 10−8,
so only in the single case α = 10−8 are both numerical results given. Table 4.4
shows that the exact (α = 0) results and the two algorithms with α = 10−8

are all quite close, even for x = 2500. Table 4.4 shows that the damping
parameter α needs to be smaller and smaller as x increases in order for the
calculations based on the approximating cdf Gα to be accurate. However, the
calculation gets more difficult as x increases and α decreases. For the smaller
α values reported, it was important to carefully choose the subintervals for the
Romberg integration so that the integrand does not fluctuate too greatly within
the subinterval. This was done by the automatic procedure described earlier.
In this example we are able to obtain a good calculation for all x because the

asymptotics apply before the computation gets difficult. The relative percent
error for the one-term (two-term) approximations at x = 100, x = 500 and
x = 2, 500 are, respectively, 19%, 5.2% and 1.4% (3.2%, 0.2% and < 0.1%).
This example illustrates a general phenomenon: Numerical methods work well
together with asymptotics. One approach tends to work well when the other
breaks down. They also serve as checks on each other.

1.5 CLOSED QUEUEING NETWORKS

This final section contains an example illustrating how the numerical in-
version algorithm for generating functions of sequences of complex numbers
in Section 1.2.4 can be applied. In this section we consider the product-form
steady-state distribution of a closed (Markovian) queueing network (CQN),
drawing upon Choudhury, Leung and Whitt [20] and Choudhury and Whitt
[29]. This section also illustrates how inversion of multi-dimensional trans-
forms can be applied; see Choudhury, Lucantoni and Whitt [24] for more on
multi-dimensional inversion. Quantities of interest in stochastic loss networks
can be calculated in the same way; see Choudhury, Leung and Whitt [21], [22],
[19].
It is known that the steady-state distribution of a CQN can be expressed in

terms of a normalization constant. We show that steady-state characteristics
of interest can be calculated by numerically inverting the multidimensional
generating function of the normalization constant (regarded as a function of
chain populations).

48

In Section 1.5.1 we introduce the CQN model and display the generating
functions. In Section 1.5.2, we discuss the technique of dimension reduction for
reducing the effective dimension of the inversion, which is important since the
computational effort grows exponentially with the dimension. In Section 1.5.3
we discuss scaling to control the aliasing error, which is important since the
normalization constants are not bounded. Finally, in Section 1.5.4 we illustrate
by solving a challenging numerical example.

1.5.1 The Model and the Generating Functions

We start by describing the general class of probability distributions that we
consider. We start somewhat abstractly, but below we will consider a special
class of closed queueing networks. Let the state variable be a job vector n =
(n1, . . . , nL); nl is the number of jobs of type `; nl might be the number of
customers of a particular class at a particular queue. Let there be a specified
population vector K = (K1, . . . ,Kp); Kj is the population of chain j, a fixed
quantity specified as part of the model data. The state space is the set of
allowable job vectors, which depends on the population vectorK and is denoted
by S(K). In this setting, the probability distributions that we consider have
the form

p(n) = g(K)−1f(n), (5.158)

where

g(K) =
∑

n∈S(K)

f(n) (5.159)

and f is a (known) nonnegative real-valued function on the L-fold product of

the nonnegative integers. (For example, we might have f(n) =
∏L
`=1 fl(nl) with

fl(nl) = ρ
nl
l .) The term g(K) in (5.158) and (5.159) is called the normalization

constant or the partition function. For the closed queueing network models we
will consider (and many other models), the state space has the special form

S(K) =







n|nl ≥ 0,
∑

l∈Cj

nl = Kj , 1 ≤ j ≤ p







(5.160)

for special sets Cj , 1 ≤ j ≤ p.
Given a probability distribution as in (5.158), where the function f is rela-

tively tractable, the major complication is determining the normalization con-
stant g(K) for the relevant population vector K. In this setting, the convolu-
tion algorithm calculates g(K) by expressing it in terms of values g(K′) where
K′ < K (i.e., K ′l ≤ Kl for all ` and K ′l < Kl for at least one `, e.g., see
Conway and Georganas [31] or Lavenberg [61]. Other existing non-asymptotic
algorithms proceed in a similar recursive manner. See Conway and Georganas
[31] for a unified view.

TRANSFORM INVERSION 49

In contrast, we calculate g(K) ≡ g(K1, . . . ,Kp) by numerically inverting its
multi-dimensional generating function

ĝ(z) ≡
∞
∑

K1=0

· · ·
∞
∑

Kp=0

g(K)

p
∏

j=1

z
Kj
j (5.161)

where z ≡ (z1, . . . , zp) is a vector of complex variables. To quickly see the
potential advantage of this approach, note that we can calculate g(K) for one
vectorK without calculating g(K′) for all the

∏p
j=1Kj nonnegative vectorsK

′

less than or equal to K, as is done with the convolution algorithm.
There are two obvious requirements for carrying out this program. First,

we need to be able to compute the generating function values in (5.161) and,
second, we need to be able to perform the numerical inversion. The first require-
ment often turns out to be surprisingly easy, because the generating function
of a normalization constant often has a remarkably simple form. This has long
been known in statistical mechanics. In that context, the normalization con-
stant is usually referred to as the partition function and its generating function
is referred to as the grand partition function; e.g., see pp. 213 and 347 of Reif
[72]. Reiser and Kobayashi [73] used generating functions of normalization con-
stants to derive their convolution algorithm. For more on generating functions
of normalization constants in CQNs, see Bertozzi and McKenna [16].
We invert the p-dimensional generating function ĝ(z) in (5.161) by recur-

sively performing p one-dimensional inversions, using the algorithm in Sec-
tion 1.2.4. To represent the recursive inversion, we define partial generating
functions by

g(j)(zj ,Kj+1) =

∞
∑

K1=0

· · ·
∞
∑

Kj=0

g(K)

j
∏

i=1

zKii for 0 ≤ j ≤ p, (5.162)

where zj = (z1, z2, . . . , zj) and Kj = (Kj ,Kj+1, . . . ,Kp) for 1 ≤ j ≤ p. Let z0
and Kp+1 be null vectors. Clearly, K = K1, z = zp, g

(p)(zp,Kp+1) = ĝ(z) and
g(0)(z0,K1) = g(K).
Let Ij represent inversion with respect to zj . Then the step-by-step nested

inversion approach is

g(j−1)(zj−1,Kj) = Ij

[

g(j)(zj ,Kj+1)
]

, 1 ≤ j ≤ p, (5.163)

starting with j = p and decreasing j by 1 each step. In the actual program
implementation, we attempt the inversion shown in (5.163) for j = 1. In order
to compute the righthand side we need another inversion with j = 2. This
process goes on until at step p the function on the righthand side becomes
the p-dimensional generating function and is explicitly computable. By simply
relabeling the p transform variables, we see that the scheme above can be
applied to the p variables in any order. In all steps except the last we have a
sequence of complex numbers, as in Section 1.2.4. For further discussion of the
multi-dimensional inversion, see [24] and [20].

50

We now consider multi-chain closed queueing networks with only single-
server queues (service centers with load-independent service rates) and (op-
tionally) infinite-server queues. In this model all jobs are divided into classes.
The combination of a class r job at queue i, (r, i) is called a stage. Two classes
r and s communicate with each other if for some i and j, stage (s, j) can
be reached from stage (r, i) in a finite number of steps (transitions) and vice
versa. With respect to the relation of communication, all the classes can be
divided into mutually disjoint equivalence classes called (closed) chains (ergodic
sets in Markov chain theory). All classes within a chain communicate. No two
classes belonging to different chains communicate. Since we are considering the
steady-state distribution of a model with only closed chains, we do not need to
consider any transient stages, i.e., stages (r, i) that will not be reached infinitely
often. We now introduce further notation and give additional details about the
model. For additional background, see Conway and Georganas [31], Lavenberg
[61] or Chapter 12. We introduce the following features and notation:

p = number of closed chains

M = number of job classes (M ≥ p).

N = number of queues (service centers). Queues 1, . . . , q are assumed to
be of the single-server type and queues q + 1, . . . , N are assumed to be
of the infinite-sever (IS) type. As usual, for the single-server queues, the
service discipline may be first-come first-served (FCFS), last-come first-
served preemptive-resume (LCFSPR) or processor sharing (PS). In the
case of FCFS, the service times of all job classes at a queue are assumed
to be exponential with the same mean.

Rri,sj = routing matrix entry, probability that a class r job completing
service at queue i will next proceed to queue j as a class s job for 1 ≤
i, j ≤ N , 1 ≤ r, s ≤ M (i.e., class hopping is allowed). The pair (r, i) is
referred to as a stage in the network.

Kj = number of jobs in the j
th closed chain, 1 ≤ j ≤ p, which is fixed.

K = (K1, . . . ,Kp), the population vector, specified as part of the model
data.

nri = number of jobs of class r in queue i, 1 ≤ r ≤M , 1 ≤ i ≤ N .

ni = number of jobs in queue i, i.e., ni =
∑M
r=1 nri. 1 ≤ i ≤ N .

n = (nri), 1 ≤ r ≤M , 1 ≤ i ≤ N , the job vector, the queue lengths, the
state variable.

Cj = set of stages in the j
th closed chain. Clearly,

∑

(r,i)∈Cj
nri = Kj ,

1 ≤ j ≤ p.

qji =
∑

r:(r,i)∈Cj
nri, number of jobs from chain j at queue i.

TRANSFORM INVERSION 51

s(K) = state space of allowable job vectors or queue lengths (including
those in service), i.e.,

S(K) =







n : nri ∈ Z+ and
∑

(r,i)∈Cj

nri = Kj , 1 ≤ j ≤ p







,

(5.164)
where Z+ is the set of nonnegative integers.

eri = visit ratio, i.e., solution of the traffic rate equation

∑

(r,i)∈Ck

eriRri,sj = esj for all (s, j) ∈ Ck and 1 ≤ k ≤ p .

(5.165)
For each chain there is one degree of freedom in (5.165). Hence, for each
chain j, the visit ratios {eri : (r, i) ∈ Cj} are specified up to a constant
multiplier.

tri = the mean service time for class r at queue i.

ρ′ri = trieri, 1 ≤ r ≤M , 1 ≤ i ≤ N , the relative traffic intensities.

ρj0 =
∑N
i=q+1

∑

(r,i)∈Cj
ρ′ri and ρji =

∑

(r,i)∈Cj
ρ′ri for i = 1, 2, . . . , q,

the aggregate relative traffic intensities.

For this model, the steady-state distribution is given by (5.158) and the
partition function is given by (5.159), where

f(n) =

[

q
∏

i=1

ni!

M
∏

r=1

ρ′
nri
ri

nri!

]





N
∏

i=q+1

M
∏

r=1

ρ′
nri
ri

nri!



 . (5.166)

The generating function ĝ(z) is given by (5.161), using (5.159) and (5.166). By
changing the order of summation, it can be seen that ĝ(z) can be expressed
remarkably simply as

ĝ(z) =
exp

(

∑p
j=1 ρj0zj

)

∏q
i=1

(

1−∑pj=1 ρjizj
) . (5.167)

In general, there may be multiplicity in the denominator factors of (5.167)
if two or more queues are identical with respect to visits by customers of all
classes. In such a situation (5.167) becomes

ĝ(z) =
exp

(

∑p
j=1 ρj0zj

)

∏q′

i=1

(

1−∑pj=1 ρjizj
)mi , (5.168)

52

where
q′
∑

i=1

mi = q . (5.169)

Here (5.168) is the preferred form, not (5.167); i.e., the key parameters are
p and q′. The inversion algorithm simplifies by having different queues with
identical single-server parameters.
Given the normalization constant g(K) in (5.159) and (5.166), we can di-

rectly compute the steady-state probability mass function p(n) in (5.158).
Moreover, several important performance measures can be computed directly
from ratios of normalization constants. For example, the throughput of class r
jobs at queue i is

θri = eri
g(K− 1j)
g(K)

for (r, i) ∈ Cj , (5.170)

where 1j is the vector with a 1 in the j
th place and 0’s elsewhere.

From (5.170) we see that we will often need to compute normalization con-
stants g(K) for several closely related vector arguments K. When the popula-
tion vector K is large, it is possible to calculate such closely related normaliza-
tion constants efficiently by exploiting shared computation; see [20]
The means E[nri] and E[qji] and higher moments E[n

k
ri] and E[q

k
ji] can

also be computed directly from the normalization constants, but the standard
formulas involve more than two normalization constant values. Choudhury,
Leung and Whitt [20] developed an improved algorithm for means and higher
moments via generating functions, which we now describe.
Given the steady-state probability mass function, we can calculate moments.

Without loss of generality, let (r, i) ∈ C1. We start with a standard expression
for the probability mass function of q1i, the number of chain 1 customers at
queue i, namely,

P (q1i = k) =
ρk1i(g(K− k11)− ρ1ig(K− (k + 1)11))

g(K)
, (5.171)

see (3.257) on p. 147 of Lavenberg [61]. (A similar expression holds for the
mass function of nri. It involves ρ

′
ri instead of ρ1i.)

From the telescoping property of (5.171), we can write the tail probabilities
as

P (q1i ≥ k) =
ρk1ig(K− k11)

g(K)
. (5.172)

From (5.172) we obtain the standard formula for the mean,

E[q1i] =

∞
∑

k=1

P (q1i ≥ k) =
K1
∑

k=1

ρk1i
g(K− k11)
g(K)

; (5.173)

TRANSFORM INVERSION 53

e.g., see (3.258) on p. 147 of Lavenberg [61]. Unfortunately, formula (5.173) is
not too convenient, because it requires K1 + 1 normalization function calcula-
tions and thus K1 + 1 numerical inversions. We now show how this mean can
be calculated by two inversions.
For this purpose, we rewrite (5.173) as

E[q1i] =
ρK11i h(K)

g(K)
− 1, (5.174)

where

h(K) =

K1
∑

k=0

ρ−k1i g(k,K2) , (5.175)

with K2 defined after (5.162). Let ĥ1(z1) be the generating function of h(K)
with respect to K1. Then

ĥ1(z1) =

∞
∑

m=0

zm1 h(m,K2) =

∞
∑

m=0

zm1

m
∑

k=0

ρ−k1i g(k,K2)

=

∞
∑

k=0

ρ−k1i g(k,K2)

∞
∑

m=k

zm1 =
g(1)(z1/ρ1i,K2)

1− z1
, (5.176)

where g(1)(z1,K2) is the partial generating function in (5.162). Now, if ĥ(z)
represents the full generating function of h(K), then from (5.176) it is clear
that

ĥ(z) =
ĝ(z1/ρ1i, z2, . . . , zp)

1− z1
. (5.177)

Since ĥ(z) is of the same form as ĝ(z) it may be inverted by the established
inversion procedure. Hence, we can obtain the mean E[q1i] using two inversions

from (5.174). We invert ĝ(z) and ĥ(z), respectively, to obtain g(K) and h(K).
By the same approach, we can also calculate higher moments, see [20].

1.5.2 Dimension Reduction by Decomposition

In general, the inversion of a p-dimensional generating function ĝ(z) repre-
sents a p-dimensional inversion, whether it is done directly or by our proposed
recursive technique. This presents a major problem because the computational
complexity of the algorithm is exponential in the dimension. Fortunately, how-
ever, it is often possible to reduce the dimension significantly by exploiting spe-
cial structure. To see the key idea, note that if ĝ(z) can be written as a product
of factors, where no two factors have common variables, then the inversion of
ĝ(z) can be carried out by inverting the factors separately and the dimension
of the inversion is thus reduced. For example, if ĝ(z1, z2, z3) = ĝ1(z1)ĝ2(z2, z3),
then ĝ can be treated as one two-dimensional problem plus one one-dimensional
problem, which is essentially a two-dimensional problem, instead of a three-
dimensional problem.

54

We call the direct factorization of the generating function ĝ an ideal decom-
position. It obviously provides reduction of computational complexity, but we
do not really expect to be able to exploit it, because it essentially amounts to
having two or more completely separate models, which we would not have with
proper model construction. We would treat them separately to begin with.
Even though ideal decomposition will virtually never occur, key model ele-

ments (e.g., closed chains) are often only weakly coupled, so that we can still
exploit a certain degree of decomposition to reduce the inversion dimensional-
ity, often dramatically. The idea is to look for conditional decomposition. The
possibility of conditional decomposition stems from the fact that when we per-
form the (j−1)st inversion in (5.163), the outer variables z1, . . . , zj−1 are fixed.
Hence, for the (j − 1)st inversion it suffices to look for decomposition in the
generating functions regarded as a function of the remaining p−j+1 variables.
For example, if ĝ(z1, z2, z3) = ĝ1(z1, z2)ĝ2(z1, z3), then for each fixed z1, the
transform ĝ as a function of (z2, z3) factors into the product of two functions
of a single variable. Hence ĝ can be treated as two two-dimensional problems
instead of one three-dimensional problems.
More generally, we select d variables that we are committed to invert. We

then look at the generating function with these d variables fixed and see if
the remaining function of p − d variables can be factored. Indeed, we write
the function of the remaining p − d variables as a product of factors, where
no two factors have any variables in common. The maximum dimension of
the additional inversion required beyond the designated d variables is equal
to the maximum number of the p − d remaining variables appearing in one
of the factors, say m. The overall inversion can then be regarded as being of
dimension d + m. The idea, then, is to select an appropriate d variables, so
that the resulting dimension d+m is small.
This dimension reduction can be done whenever a multidimensional trans-

form can be written as a product of factors. From (5.168), we see this structure
always occurs with closed queueing networks. For closed queueing networks
there is a factor for each queue in the network, and the variable zj appears in
the factor for queue i if and only if chain j visits queue i. Thus, conditional
decomposition tends to occur when chains tend to visit relatively few queues.
This property is called sparseness of routing chains in Lam and Lien [60]. As
noted by Lam and Lien, this sparseness property is likely to be present in large
communication networks and distributed systems.
To carry out this dimension reduction, we exploit the representation of the

generating function ĝ(z) as a product of separate factors, i.e.,

ĝ(z) =

m
∏

i=1

ĝi(ẑi) (5.178)

where m ≥ 2 and ẑi is a subset of {z1, z2, . . . , zp}. We assume that each ĝi(ẑi)
cannot be further factorized into multiple factors, unless at least one of the
latter is a function of all variables in the set ẑi.

TRANSFORM INVERSION 55

We now represent the conditional decomposition problem as a graph prob-
lem. We construct a graph, called an interdependence graph, to represent the
interdependence of the variables zk in the factors. We let each variable zk be
represented by a node in the graph. For each factor ĝi(ẑi) in (5.178), form a
fully connected subgraph Γi by connecting all nodes (variables) in the set ẑi.
Then let Γ =

⋃m
i=1 Γi.

Now for any subset D of Γ, we identify the maximal connected subsets Si(D)
of Γ−D; i.e., Si(D) is connected for each i, Si(D)∩Sj (D) = ∅ when i 6= j and
⋃

i Si(D) = Γ−D. Let |A| be the cardinality of the set A. Then the dimension
of the inversion resulting from the selected subset D is

inversion dimension = |D|+max
i
{|Si(D)|} . (5.179)

It is natural to consider the problem of minimizing the overall dimension of
the inversion. This is achieved by finding the subset D to achieve the following
minimum:

minimal inversion dimension = Min
D⊆Γ
{|D|+max

i
{|Si(D)|} . (5.180)

In general, it seems difficult to develop an effective algorithm to solve this graph
optimization problem; it seems to be an interesting research problem. However,
for the small-to-moderate number of variables that we typically encounter, we
can solve (5.180) by inspection or by enumeration of the subsets of Γ in increas-
ing order of cardinality. Since our overall algorithm is likely to have difficulty
if the reduced dimension is not relatively small (e.g., ≤ 10), it is not necessary
to consider large sets D in (5.180). This dimension reduction is illustrated in
the example in Section 1.5.4.
Even though it is not at first obvious, it turns out that the approach to

dimension reduction developed by Choudhury, Leung and Whitt [20] is essen-
tially equivalent to the tree algorithm of Lam and Lien [60] used with the
convolution algorithm. The connection can be seen by noting that convolu-
tion of normalization constants corresponds to multiplication of the generating
functions. Dimension reduction may be easier to understand with generating
functions, because multiplication is a more elementary operation than convo-
lution.

1.5.3 Scaling

In this subsection we discuss scaling to control the aliasing error. This
additional step is needed here because, unlike probabilities, the normalization
constants are not bounded.
To make the motivation clear, we specify the inversion in (5.163) in more

detail. Letting gj(Kj) = g
(j−1)(zj−1,Kj) and ĝj(zj) = g

(j)(zj ,Kj+1), we can
apply Theorem 8 to express the jth step of the inversion in (5.163) as

gj(Kj) = g
a
j (Kj)− ej ,

56

where

gaj (Kj) =
1

2`jKjr
Kj
j

lj
∑

k1=1

e
−
πik1
lj

lj−1
∑

k1=0

e
−
πik1
lj

Kj−1
∑

k=−Kj

(−1)kĝj
(

rje
πi(k1+ljk)

ljKj

)

,

(5.181)
lj is a positive integer, rj is a suitably small positive real number and ej rep-
resents the aliasing error, which is given by

ej =
∞
∑

n=1

gj(Kj + 2nljKj)r
2nljKj
j . (5.182)

Note that, for j = 1, g1(K1) = g(K) is real, so that ĝ1(z1) = ĝ1(z1). This
enables us to cut the computation in (5.181) by about one half. For j = 1, we
replace (5.181) by

ga1 (K1) =
1

2`1K1r
K1
1

[

ĝ1(r1)− (−1)K1 ĝ1(−r1) + 2
l1
∑

k1=1

e
−πik1
l1

×
K1−1
∑

k=0

ĝ1

(

r1e
πi(k1+l1k)/l1K1

)

]

. (5.183)

To control the aliasing error (5.182), we choose

rj = 10
−

γj

2`jKj . (5.184)

Inserting (5.184) into (5.182), we get

ej =
∞
∑

n=1

gj(Kj + 2nljKj)10
−γjn . (5.185)

This choice of rj enables us to more easily control the aliasing error ej using
the parameter γj . For instance, if gj were bounded above by 1, as is the
case with probabilities, then the aliasing error would be bounded above by
10−γj/(1− 10−γj) ≈ 10−γj .
As is clear from (5.185), a bigger γj decreases the aliasing error. However,

since r
−Kj
j = 10γj/2`j , the factor r

−Kj
j in (5.181) increases sharply with γj and

thus can cause roundoff error problems. Since the parameter lj does not appear

in the aliasing error term (5.185), it can be used to control the growth of r
−Kj
j

without altering the aliasing error. As indicated in Section 1.2.2, bigger values
of lj yield less roundoff error, but more computation because the number of
terms in (5.181) is proportional to lj .
Since the normalization constants can be arbitrarily large, the aliasing error

ej in (5.185) can also be arbitrarily large. Thus, in order to control errors,
we scale the generating function in each step by defining a scaled generating
function as

ĝ∗j (zj) = α0j ĝj(αjzj), (5.186)

TRANSFORM INVERSION 57

where α0j and αj are positive real numbers. We invert this scaled generating
function after choosing α0j and αj so that the errors are suitably controlled. Let
gj(Kj) represent the inverse function of ĝ

∗
j (zj). The desired inverse function

gj(Kj) may then be recovered from gj(Kj) by

gj(Kj) = α
−1
0j α

−Kj
j gj(Kj) . (5.187)

A way to choose the parameters α0, α1, . . . , αp especially designed for CQNs
was developed in Choudhury, Leung and Whitt [20]. Here we present a more
general approach from Choudhury and Whitt [29] that can also be used in other
contexts. For a p-dimensional inversion, our general strategy is to choose p+1
parameters α0, α1, . . . , αp so that

gα(K) = α0

p
∏

j=1

α
Kj
j g(K) (5.188)

is approximately a probability mass function (pmf) withK being approximately
its mean vector. Then we should be able to control the discretization error in
computing gα(K) by acting as if it is bounded inK. If we succeed in calculating
gα(K) with small discretization error, by (5.188), we succeed in calculating
g(K) with small relative discretization error.
The scaling algorithm is based on the following theorem.

Theorem 13 Suppose that ĝ(z) is the p-dimensional generating function of a
nonnegative function g(K). For any vector (m1, . . . ,mp) of positive numbers,
if the set of p equations

zi
∂

∂zi
log ĝ(z1, . . . , zp)|zj=αj for all j = mi , 1 ≤ i ≤ p , (5.189)

has a solution (α1, . . . , αp) with ĝ(α1, . . . , αp) <∞, then gα(K) in (5.188) with

α0 =
1

ĝ(α1, . . . , αp)

is a pmf with mean vector (m1, . . . ,mp).

Proof. Note that

zi
∂

∂zi
log ĝ(z)|z=α =

zi
∂
∂zi
ĝ(z)|z=α
ĝ(α)

= =

∑∞

K1=0
. . .
∑∞

Kp=0
Ki
∏p
j=1 α

Kj
j g(K)

∑∞

K1=0
. . .
∑∞

Kp=0

∏p
j=1 α

Kj
j g(K)

= mi .

It remains to solve the p equations (5.189). Choudhury and Whitt [29]
suggest using an iterative procedure, fixing all parameters except α0 and αi

58

for some i and the solving the single equation in (5.189) for i. Solving a single
equation is relatively easy because the left side of (5.189) is strictly increasing
in αi. (See Theorem 7.1 of [29].) To speed up convergence, after a few initial
steps, a Newton-Raphson root finding algorithm can be used.
To illustrate, we consider a CQN with two chains. Equation (5.167) then

yields the generating function

ĝ(z1, z2) =
exp(ρ10z1 + ρ20z2)

(1− ρ11z1 − ρ21z2)(1− ρ12z1 − ρ22z2)
. (5.190)

We work with the scaled generating function

ĝα(z1, z2) = α0ĝ(α1z1, α2z2) . (5.191)

The scaling parameters α1 and α2 are obtained from the two equations

ni = zi
∂

∂zi
log ĝ(z1, z2)|z1=α1,z2=α2

= αi



ρi0 +

q
∑

j=1

ρij

1−∑2k=1 ρkjαk



 for i = 1, 2 . (5.192)

We must solve the pair of nonlinear equations in (5.191). As suggested above,
we can fix α2 and search for the value α1 that satisfies the equation for i = 1.
Next, fixing α1 at the value obtained, we search for the value α2 that satisfies the
equation for i = 2. We do this repeatedly until convergence is achieved based
on some prescribed error criterion. We observed that this procedure indeed
converges, but the rate of convergence becomes slow as n1 and n2 increases.
By contrast, the two-dimensional Newton-Raphson method (see Press et al.
[71], Chapter 9) converges very fast (less than 10 steps), provided that we start
not too far from the root. So we initially use the search procedure a few times
and then the Newton-Raphson method.
Here is a concrete with generating function (5.190). It corresponds to a

CQN with two single-server queues, one infinite-server queue and two chains.
Given (5.190), we need not specify all parameters. The relevant parameters
are:

ρ1,0 = 1 , ρ2,0 = 1 , ρ1,1 = 1 , ρ2,1 = 2 ,

ρ1,2 = 2 , ρ2,2 = 3 .

Numerical results for several values of the chain populations n1 and n2 are
displayed in Table 5.1. The accurate computation in the last case would be
challenging by alternative algorithms. For that case, we use Euler summation in
each dimension and it took only seconds. Accuracy was checked by performing
two independent computations with two sets of inversion parameters.

TRANSFORM INVERSION 59

Table 5.10 Numerical results for the normalization constant gn1,n2 in a closed queueing
network with two chains.

n1 n2 gn1,n2 α1 α2 α0

3 2 0.243883E+04 0.240070 0.104428 0.806627E-01
30 20 0.627741E+33 0.294397 0.130311 0.589928E-02
300 200 0.973460E+331 0.299451 0.133032 0.564701E-03
3000 2000 0.235196E+3318 0.299945 0.133303 0.562179E-04

1.5.4 A Challenging Example

We conclude this section and this chapter by giving a challenging numerical
example. We calculate the normalization constant g(K) given by (5.159) and
using (5.166) for specified population vectors K from the generating function
ĝ(z) in (5.168). Thus the parameters are the number of chains, p, the number
of distinct single-server queues, q′, the multiplicities mi, the aggregate relative
traffic intensities ρji, 1 ≤ j ≤ p, 0 ≤ i ≤ q′, and the desired population vector
K.
From (5.168), note that the normalization constant g(K) only depends on

these parameters p, q′, mi, ρji and K. Hence, we do not fully specify the
models below. In particular, we do not give the routing probabilities Rri,sj or
the mean service times tri. Thus, there are many detailed models consistent
with our partial model specifications. One possible routing matrix consistent
with the data that we provide is a cyclic routing matrix, all of whose entries are
0’s and 1’s, which yields visit ratios eri = 1 for all stages (r, i) from (5.165). If
we consider this case, then tri = ρ

′
ri and the throughputs θri in (5.170) coincide

with the normalization constant ratios g(K− 1j)/g(K). We also display these
ratios along with the values of g(K) in our numerical results below. We note
that the throughputs for any more detailed model can be found by solving
(5.165) for the visit ratios eri and then applying (5.170).
The particular example that we consider has 11 closed chains and 1000

queues. Specifically, p = 11, q = 1000, q′ = 10 and mi = 100, 1 ≤ i ≤ 10. A
crucial step is dimension reduction, which reduces the effective dimension from
11 to 2. We consider three cases. First, let the chain populations be Kj = 200
for 2 ≤ j ≤ 11. We obtain four subcases by considering four different values
for K1. Our numerical results are given below in Table 5.2.
The accuracy was checked by performing the calculations twice, once with

l1 = 1 and once with l1 = 2.
The results in Table 5.2 were obtained in less than one minute by exploiting

Euler summation with 51 terms. This example would seem to be out of the
range of many other algorithms. For example, convolution would require a

60

Table 5.11 Numerical results for Case 1 of the 11-chain example.

chain populations normalization ratio
Kj for 2 ≤ j ≤ 11 K1 constant g(K) g(K− 11)/g(K)

200 20 1.232036e278 4.582983e-3
200 200 2.941740e579 4.281094e-2
200 2000 3.399948e2037 2.585489e-1
200 20,000 9.07177e8575 4.846930e-1

storage of size 20010 × 2× 104 = 2.5× 1027 for the last case of Table 5.2. The
last case would appear to be difficult even for the tree algorithm [60].
Some asymptotic methods require that there be an IS queue and that each

chain visit this queue or that all chain populations be large. To show that
our algorithm does not have such limitations, we consider two modifications of
Case 1. Case 2 has classes 1 and 2 with small populations, while the other class
populations remain large. In particular, we let K2 = 2 and K3 = 5. Numerical
results for Case 2 appear below in Table 5.3.

Table 5.12 Numerical results for Case 2 of the 11-chain example.

chain populations normalization ratio
Kj for 2 ≤ j ≤ 11 K1 constant g(K) g(K− 11)/g(K)
in all cases: 2 3.842031e407 5.128582e-4
K2 = 2, 20 1.484823e454 5.087018e-3
K3 = 5 and 200 6.003231e747 4.706783e-2
Kj = 200, 4 ≤ j ≤ 11 2000 5.442693e2154 2.705391e-1

20,000 2.494765e8617 4.852817e-1

Case 3 is a modification of Case 2 in which we remove all the IS nodes, i.e.,
we set ρj0 = 0 for all j. Numerical results for Case 3 appear below in Table 5.4.
As for Case 1, Cases 2 and 3 required about a minute on the SUN SPARC-2
workstation.
Before closing this section, we point out that if the model is such that we

cannot take advantage of any of available speed-up techniques (namely, dimen-
sion reduction, fast summation of large sums and large queue multiplicities),
then the inversion algorithm will be slower than the convolution algorithm, as
indicated in [20]. Similarly, if dimension reduction is possible but none of the

TRANSFORM INVERSION 61

Table 5.13 Numerical results for Case 3 of the 11-chain example.

chain populations normalization ratio
Kj for 2 ≤ j ≤ 11 K1 constant g(K) g(K− 11)/g(K)
in all cases: 2 9.959619e313 4.762073e-4
K2 = 2, 20 1.447107e361 4.728591e-3
K3 = 5 and 200 1.222889e660 4.417444e-2
Kj = 200, 4 ≤ j ≤ 11 2000 2.948943e2096 2.645993e-1

20,000 4.210541e8588 4.851015e-1

other speed-ups, then the inversion algorithm will be slower than the tree con-
volution algorithm, which also does dimension reduction in the time domain.
To illustrate, Lam and Lien [60] analyze an example with 64 queues and 32

chains, requiring about 3× 107 operations. Choudhury, Leung and Whitt [20]
analyzed this model and observed that the effective dimension can be reduced
from 32 to 9. However, all chain populations are between 1 and 5 and so the
speed-up technique based on Euler summation does not apply. Also there are
no multiplicities. Choudhury et al. estimated that the operation count for this
example would be about 1012, so that the inversion algorithm is considerably
slower than the tree convolution algorithm, even though the inversion algorithm
is faster than the pure convolution algorithm, which has an operation count of
about 1023. It appears that the inversion algorithm nicely complements the tree
algorithm, because the tree algorithm will be faster if the effective dimension
after dimension reduction remains large but all chain populations are small.
In contrast, the inversion algorithm will be faster if the effective dimension
after dimension reduction is small (typically 5 or less) but some of the chain
populations are large.

References

[1] J. Abate, G. L. Choudhury, D. M. Lucantoni, and W. Whitt. Asymptotic
analysis of tail probabilities based on the computation of moments. Ann.
Appl. Prob., 5:983–1007, 1995.

[2] J. Abate, G. L. Choudhury, and W. Whitt. Calculation of the GI/G/1
waiting-time distribution and its cumulants from Pollaczek’s formulas.
Archiv für Elektronik und Übertragungstechnik, 47:311–321, 1993.

[3] J. Abate, G. L. Choudhury, and W. Whitt. Waiting-time tail probabili-
ties in queues with long-tail service-time distributions. Queueing Systems,
16:311–338, 1994.

[4] J. Abate, G. L. Choudhury, and W. Whitt. Exponential approximations
for tail probabilities in queues, I: waiting times. Oper. Res., 43:885–901,
1995.

[5] J. Abate, G. L. Choudhury, and W. Whitt. On the Laguerre method for
numerically inverting Laplace transforms. INFORMS Journal on Comput-
ing, 8:413–427, 1996.

[6] J. Abate, G. L. Choudhury, and W. Whitt. Numerical inversion of mul-
tidimensional Laplace transforms by the Laguerre method. Performance
Evaluation, 31:229–243, 1998.

[7] J. Abate and W. Whitt. The Fourier-series method for inverting trans-
forms of probability distributions. Queueing Systems, 10:5–88, 1992.

[8] J. Abate and W. Whitt. Numerical inversion of probability generating
functions. Oper. Res. Letters, 12:245–251, 1992.

[9] J. Abate andW. Whitt. Solving probability transform functional equations
for numerical inversion. Oper. Res. Letters, 12:275–281, 1992.

[10] J. Abate and W. Whitt. Numerical inversion of Laplace transforms of
probability distributions. ORSA J. on Computing, 7:36–43, 1995.

63

64

[11] J. Abate and W. Whitt. Calculating transient characteristics of the Erlang
loss model by numerical transform inversion. Stochastic Models, 14:663–
680, 1998.

[12] S. Asmussen. Applied Probability and Queues. Wiley, New York, 1987.

[13] S. Asmussen, O. Nerman, and M. Olsson. Fitting phase type distributions
via the EM algorithm. Scand. J. Statist., 23:419–441, 1996.

[14] V. E. Beneš. The covariance function of a simple trunk group with appli-
cations to traffic measurements. Bell System Tech. J., 40:117–148, 1961.

[15] V. E. Beneš. Mathematical Theory of Connecting Networks and Telephone
Traffic. Academic Press, New York, 1965.

[16] A. Bertozzi and J. McKenna. Multidimensional residues, generating func-
tions, and their application to queueing networks. SIAM Review, 35:239–
268, 1993.

[17] A. A. Borovkov. Asymptotics Methods in Queueing Theory. Wiley, New
York, 1984.

[18] M. L. Chaudhry, M. Agarwal, and J. G. C. Templeton. Exact and ap-
proximate numerical solutions of steady-state distributions arising in the
GI/G/1 queue. Queueing Systems, 10:105–152, 1992.

[19] G. L. Choudhury, K. K. Leung, and W. Whitt. An algorithm to compute
blocking probabilities in multi-rate multi-class multi-resource loss models.
Adv. Appl. Prob., 27:1104–1143, 1995.

[20] G. L. Choudhury, K. K. Leung, and W. Whitt. Calculating normaliza-
tion constants of closed queueing networks by numerically inverting their
generating functions. J. ACM, 42:935–970, 1995.

[21] G. L. Choudhury, K. K. Leung, and W. Whitt. Efficiently providing multi-
ple grades of service with protection against overloads in shared resources.
AT&T Tech. J., 74:50–63, 1995.

[22] G. L. Choudhury, K. K. Leung, and W. Whitt. An inversion algorithm
to compute blocking probabilities in loss networks with state-dependent
rates. IEEE/ACM Trans. Networking, 3:585–601, 1995.

[23] G. L. Choudhury and D. M. Lucantoni. Numerical computation of the
moments of a probability distribution from its transform. Oper. Res.,
44:368–381, 1996.

[24] G. L. Choudhury, D. M. Lucantoni, and W. Whitt. Multidimensional
transform inversion with applications to the transient M/G/1 queue. Ann.
Appl. Prob., 4:719–740, 1994.

REFERENCES 65

[25] G. L. Choudhury, D. M. Lucantoni, and W. Whitt. Squeezing the most
out of ATM. IEEE Trans. Commun., 44:203–217, 1996.

[26] G. L. Choudhury, D. M. Lucantoni, and W. Whitt. Numerical solution of
Mt/Gt/1 queues. Oper. Res., 45:451–463, 1997.

[27] G. L. Choudhury and W. Whitt. Q2: A new performance analysis tool
exploiting numerical transform inversion. In Proc. Third Int. Workshop
on Modeling, Analysis and Simul. of Computer and Telecomm. Systems,
pages 411–415, Durham, NC, 1995. (MASCOTS ‘95).

[28] G. L. Choudhury and W. Whitt. Computing distributions and moments in
polling models by numerical transform inversion. Performance Evaluation,
25:267–292, 1996.

[29] G. L. Choudhury and W. Whitt. Probabilistic scaling for the numerical
inversion of non-probability transforms. INFORMS J. Computing, 9:175–
184, 1997.

[30] J. W. Cohen. The Single Server Queue. North-Holland, Amsterdam,
second edition, 1982.

[31] A. E. Conway and N. D. Georganas. Queueing Networks – Exact Compu-
tational Algorithms: A Unified Theory Based on Decomposition and Ag-
gregation. MIT Press, Cambridge, MA, 1989.

[32] D. A. Darling and J. F. Siegert. The first passage problem for a continuous
Markov process. Ann. Math. Statist., 24:624–639, 1953.

[33] B. Davies and B. L. Martin. Numerical inversion of the Laplace transform:
A survey and comparison of methods. J. Comp. Phys., 33:1–32, 1979.

[34] P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. Aca-
demic Press, New York, second edition, 1984.

[35] G. Doetsch. Guide to Applications of Laplace Transforms. Van Nostrand,
London, 1961.

[36] G. Doetsch. Introduction to the Theory and Application of the Laplace
Transformation. Springer-Verlag, New York, 1974.

[37] H. Dubner and J. Abate. Numerical inversion of Laplace transforms by
relating them to the finite Fourier cosine transform. J. ACM, 15:115–123,
1968.

[38] N. G. Duffield and W. Whitt. A source traffic model and its transient
analysis for network control. Stochastic Models, 14:51–78, 1998.

[39] F. Durbin. Numerical inversion of Laplace transforms: an efficient im-
provement to Dubner and Abate’s method. Comput. J., 17:371–376, 1974.

66

[40] A. Feldmann and W. Whitt. Fitting mixtures of exponentials to long-
tail distributions to analyze network performance models. Performance
Evaluation, 31:245–279, 1998.

[41] W. Feller. An Introduction to Probability Theory and its Applications,
volume II. Wiley, New York, second edition, 1971.

[42] D. P. Gaver. Observing stochastic processes and approximate transform
inversion. Operations Research, 14:444–459, 1966.

[43] D. P. Gaver and P. A. Jacobs. Waiting times when service times are stable
laws: tamed and wild. In J. G. Shanthikumar and U. Sumita (eds.), edi-
tors, Recent Contributions in Applied Probability and Stochastic Processes,
Festschrift for Julian Keilson. Kluwer, Boston, 1998.

[44] W. C. Giffin. Transform Techniques for Probability Modeling. Academic
Press, New York, 1975.

[45] T. Hosono. Numerical inversion of Laplace transform. J. Inst. Elec. Eng.
Jpn., pages A54–A64, 1979. 494 (In Japanese).

[46] T. Hosono. Numerical inversion of Laplace transform and some applica-
tions to wave optics. Radio Sci., 16:1015–1019, 1981.

[47] T. Hosono. Fast Inversion of Laplace Transform by BASIC. Kyoritsu
Publishers, Japan, 1984. (In Japanese).

[48] D. L. Jagerman. Some properties of the Erlang loss function. Bell System
Tech. J., 53:525–551, 1974.

[49] D. L. Jagerman. An inversion technique for the Laplace transform with
applications. Bell System Tech. J., 57:669–710, 1978.

[50] D. L. Jagerman. An inversion technique for the Laplace transform. Bell
Sys. Tech. J., 61:1995–2002, 1982.

[51] R. Johnsonbaugh. Summing an alternating series. Amer. Math. Monthly,
86:637–648, 1979.

[52] E. P. C. Kao. An Introduction to Stochastic Processes. Duxbury Press,
New York, 1997.

[53] J. Keilson. Markov Chain Models – Rarity and Exponentiality. Springer-
Verlag, New York, 1979.

[54] J. Keilson and H. F. Ross. Passage time distributions for Gaussian Markov
(Ornstein-Uhlenbech) statistical processes. Selected Tables in Mathemati-
cal Statistics, 3:233–327, 1975.

[55] J. F. C. Kingman. The single server queue in heavy traffic. Proc. Camb.
Phil. Soc., 57:902–904, 1961.

REFERENCES 67

[56] L. Kleinrock. Queueing Systems, Volume I: Theory. Wiley, New York,
1975.

[57] C. Knessl. On the transient behavior of the M/M/m/m loss model.
Stochastic Models, 6:749–776, 1990.

[58] H. Kobayashi. Modeling and Analysis: An Introduction to System Perfor-
mance Evaluation Methodology. Addison-Wesley, Reading, MA, 1978.

[59] Y. K. Kwok and D. Barthez. An algorithm for the numerical inversion of
the Laplace transform. Inverse Problems, 5:1089–1095, 1989.

[60] S. S. Lam and Y. L. Lien. A tree convolution algorithm for the solution
of queueing networks. Commun. ACM, 26:203–215, 1983.

[61] S. S. Lavenberg, editor. Computer Performance Modeling Handbook. Aca-
demic Press, Orlando, FL, 1983.

[62] D. M. Lucantoni, G. L. Choudhury, and W. Whitt. The transient
BMAP/G/1 queue. Stochastic Models, 10:145–182, 1994.

[63] D. Mitra and A. Weiss. The transient behavior in Erlang’s model for
large trunk groups and various traffic conditions. In Teletraffic Science
for new cost-Effective Systems, Networks and Services, pages 1367–1374,
Amsterdam, 1989. Elsevier-Science.

[64] M. F. Neuts. Matrix-Geometric Solutions in Stochastic Models. The Johns
Hopkins University Press, Baltimore, 1981.

[65] M. F. Neuts. Structured Stochastic Matrices of M/G/1 Type and Their
Applications. Marcel Dekker, New York, 1989.

[66] C. A. O’Cinneide. Euler summation for Fourier series and Laplace trans-
form inversion. Stochastic Models, 13:315–337, 1997.

[67] B. Van Der Pol and H. Bremmer. Operational Calculus. Cambridge Press,
reprinted Chelsea Press, New York, 1987.

[68] F. Pollaczek. Fonctions caractéristiques de certaines répartitions définies
au money de la notion d’ordre. Application à la théorie de attentes. C. R.
Acad. Sci. Paris, 234:2334–2336, 1952.

[69] F. Pollaczek. Concerning an analytic method for the treatment of queueing
problems. In W. L. Smith and W. E. Wilkinson, editors, Proceedings of
the Symposium on Congestion Theory, pages 1–25 and 34–42, Chapel Hill,
1965. The University of North Carolina Press.

[70] A. D. Poularikas. The Transforms and Applications Handbook. CRC Press,
Boca Raton, FL, 1996.

68

[71] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Nu-
merical Recipes, FORTRAN Version. Cambridge University Press, Cam-
bridge, England, 1988.

[72] F. Reif. Fundamentals of Statistical and Thermal Physics. McGraw-Hill,
New York, 1965.

[73] M. Reiser and H. Kobayashi. Queueing networks with multiple closed
chains: theory and computational algorithms. IBM J. Res. Dev., 19:283–
294, 1975.

[74] J. Riordan. Stochastic Service Systems. Wiley, New York, 1962.

[75] R. M. Simon, M. T. Stroot, and G. H. Weiss. Numerical inversion of
Laplace transforms with applications to percentage labeled experiments.
Comput. Biomed. Res., 6:596–607, 1972.

[76] W. L. Smith. On the distribution of queueing times. Proc. Camb. Phil.
Soc., 49:449–461, 1953.

[77] R. Srikant and W. Whitt. Simulation run lengths to estimate blocking
probabilities. ACM J. TOMACS, 6:7–52, 1996.

[78] L. Takács. Introduction to the Theory of Queues. Oxford University Press,
New York, 1962.

[79] G. P. Tolstov. Fourier Series. Dover, New York, 1976.

[80] W. T. Weeks. Numerical inversion of Laplace transforms using Laguerre
functions. J. ACM, 13:419–426, 1966.

[81] W. Whitt. Heavy-traffic approximations for service systems with blocking.
AT&T Bell Lab. Tech. J., 63:689–708, 1984.

[82] J. Wimp. Sequence Transformations and Their Applications. Academic
Press, New York, 1981.

REFERENCES 69

Joseph Abate received the B.S. degree from the City College of New York in 1961, and the
Ph.D. degree in Mathematical Physics from New York University in 1967. From 1966 to 1970
he was employed by Computer Applications Corporation where he specialized in evaluating
the performance of real-time computer systems. In 1971, he joined AT&T Bell Laboratories
and retired in 1990. He has since served as a consultant to AT&T and Lucent Technologies.
For most of his career, he worked on the design and analysis of transaction processing systems
used in support of telephone company operations. For many years he has had a great passion
for the use of Laplace transforms in queueing problems.

Gagan L. Choudhury received the B. Tech. degree in Radio Physics and Electronics from
the University of Calcutta, India in 1979 and the MS and Ph.D. degrees in Electrical Engi-
neering from the State University of New York (SUNY) at Stony Brook in 1981 and 1982,
respectively. Currently he is a Technical Manager at the Teletraffic Theory and System Per-
formance Department in AT&T Laboratories, Holmdel, New Jersey, USA. His main research
interest is in the development of multi-dimensional numerical transform inversion algorithms
and their application to the performance analysis of telecommunication and computer sys-
tems.

Ward Whitt received the A.B. degree in Mathematics from Dartmouth College, Hanover,
NH, USA, in 1964 and the Ph.D. degree in Operations Research from Cornell University,
Ithaca, NY, USA, in 1969. He was on the faculty of Stanford University and Yale Univer-
sity before joining AT&T Laboratories in 1977. He is currently a member of the Network
Mathematics Research Department in AT&T Labs-Research in Florham Park, NJ, USA.
His research has focused on probability theory, queueing models, performance analysis and
numerical transform inversion.

