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We conjecture that the equilibrium waiting-time distribution in an M/O/s  queue increases stochastically when the 
service.time distribu¢ion becomes more variable. We discuss evidence in support of this conjecture and others, ~,:~sed partly on 
light.traffic and heavy-traffic limits. We also establish an insensitivity property for the case of many servers in light traffic. 
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I. Introduction 

In this paper we pose some important queuing 
problems, make some conjectures about their solu- 
tion, and present some evidence in support of the 
conjectures. We consider the standard GI/G/s 
queueing model with s homogeneous servers in 
parallel, unlimited waiting room, the first-come 
first-served discipline and lid (independent and 
identically distributed) service times (with a gen- 
eral distribution) tha~ are independent of a re- 
newal arrival process. We discuss how greater vari- 
ability in the service.time distribution affects the 
equilibrium waiting-time distribution. We prim- 
arily focus on the case of Poisson arrivals 
(M/G/s) .  

To make comparisons, we use several stochastic 
order relations. We say one random variable X or 
its cdf F' is less than or equal to another X" or its 
cdf F" in the sense of stochastic order (denoted by 
~<st), increasing convex order (denoted by ~i~), 
and convex order (denoted by ~<~), respectively, if 
Eg(X) ~< Eg(X") holds for all nondecreasing, all 
nondecreasing and convex, and all convex real-val- 
ued functions g for which the expectations are well 
defined; see Chapter 1 of Stoyan [24] or Whitt [27] 
and references there. Convex order expresses 
greater variability and implies equal means. With 
equal means, increasing convex order coincides 
with convex order. Let W(G) denote the equi- 
librium waiting time (until beginning service) as a 

function of the service-time cdf G, assuming 
throughout that there is a fixed arrival process 
with nonzero rate and that the system is stable. 
Our boldest conjecture is 

Conjecture I.I. If  G' <~icG" in an M/G/s  queue, 
then W( G ) ~<stW(G"). 

The first such comparisons for queues involved 
the ordering ~st for both the conditon and the 
conclusion; see Whitt [28] and references there. 
The or&rings ¢ ic and ¢ c were first considered by 
Stoyan and Stoyan [25]; for example, they estab- 
lished the modification of Conjecture 1.1 for s -  1 
in which the conclusion as well as the condition 
involve ¢ic. . 

Here interest centers on going from the variabil- 
ity orderings ¢ ~ and ~ ¢ in the condition to the 
monotonicity ordering ~ st in the conclusion. Even 
for s - 1, Conjecture 1.1 was an open problem, but 
in response to this paper, a proof has been pro- 
vided by Daley and Rolski [2]. For s -  1, Conjec- 
ture 1.1 under the stronger condition G' ~¢G" 
(equal means) was proved by Rolski and Stoyan 
[20]. Related results were also obtained by 
Miyazawa [12]. For s > 1, Conjecture 1.1 with this 
stronger condition is also an open problem. In 
fact, it is an open problem in natural special cases; 
e.g., it is known that Erlang distributions with a 
common mean satisfy £k, t  ~¢Ek (see Example 3 
in [27]), but we do not know if Conjecture 1.1 is 
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valid for Erlang service-time distributions. This 
special case was also conjectured by Miyazawa 
[12]. 

In this paper we focus on the waiting time, but 
we remark that the orderings ~<~t and ~<ic for 
W(G) in two multiserver systems having a com- 
mon arrival process imply that the equilibrium 
queue lengths at arbitrary times are ordered simi- 
larly, by virtue of (3.21) of Miyazawa [13] and 
(2.15) of Miyazawa [14], respectively. 

In this paper, we show that Conjecture 1.1 is 
true in b, ,th light and heavy traffic. We also define 
a two-parameter family of service-time distribu- 
tions (mixtures of an exponential and a point mass 
at zero) for which the M/G/s  queue can be solved 
exactly and for which we can verify Conjecture 
1.1. The results for this special service-time distri- 
bution also yield useful approximations for the 
distribution of W(G) and the distribution of the 
entire queue-length process in an M/G/s  queue 
given only the partial information provided by the 
arrival rate and the first two moments of the 
service time. 

For s > 1, our weakest conjecture is the follow- 
ing. 

Conjecture 1.2. If G <~,.G" and G ' ~  G" in an 
M/G/s  queue, then EW( G') <~ EW( G"). 

Of course, we obtain several different candidate 
comparison results as we vary the condition and 
the conclusion. For example, Conjecture 1;1 be- 
comes valid for GI/G/s systems if we strengthen 

Table 1 
Stochastic comparison results for the equilibrium waiting time 
as a function of the service-time distribution 

Condition Conclusion Result 
(~' ~ ,,o" w((;').~ , ,w(&)  

(7' ~,~(;" w((;) (,,w((;") 

~w(~)  ~ ~w(~") 

(~'~ ~(7" st'((;) (~w((7") 

Theorem for OllG/s 
Kiefer and Wolfowitz (1955) 

Theorem for M/G/1 
Rolski and Stoyan (1976) 
Counterexamples for Gi/G/I 
Whirr (1983) 
Counterexamples for Gi/G/s 
Wolff (1977) and Ross (1978) 

Theorem for (71/6/1 
Stoyan and Stoyan (1969) 

the condition to G' ~<~tG". Also Conjecture 1.1 
becomes valid for GI/G/1 systems if, instead, we 
weaken the conclusion to W(G)~<icW(G"), but in 
that setting the conclusion is not valid with ~< ~t; 
see [29]. The results are summarized in Table 1. 

For GI/G/s  queues, even the conclusion 
EW(G)<~ EW(G") is not valid when G' <~G"; see 
Wolff [31], Ross [21] and Remark 3.7 in [29]. Since 
the difficulty for GI/G/s  systems in heavy traffic 

2 is the with large s occurs when c 2 > 1, where c,, 
squared coefficient of variation (variance divided 
by the square of the mean) of the interarrival time, 
it is natural to extend the conjecture to cover 
renewal arrival processes in which the interarrival 
time is less than an exponential in the convex 
order. However, even for D/G/1 systems, Conjec- 
ture 1.1 with the stronger condition G' ~<~G" is not 
valid; see Remark 3.2 of [29]. We now state an 
extended version of Conjecture 1.2. 

Conjecture 1.3. Suppose that F <~cM, where M is 
an exponential cdf. If  G' <~ cG" with G' ~ G" in a 
GI/G/s  queue with interarrival-time cdf F, then 
EW(6')< 

In support of Conjectures 1.2 and 1.3, we do 
have the following positive result for the mean 
waiting times in general GI/G/s systems with the 
same arrival process. If G' ~< ~G", then 

Ew(  Ew(  ,s") + - 6') 

(1.1) 

where/~-t is the common mean and c2(G) is the 
squared coefficient of variation of the service-time 
cdf G; see Theorem 7 of [27]. (It is elementary that 
c2(G') ~ c2(G") is implied by, but does not imply, 

Related comparison resuls have been obtained 
for tandem queues by Niu [16], and for arrival 
process by Rolski [19] and Lemoine [11] and Da- 
ley and Rolski [2]. Delay and Rolski [2] have 
established for GI /M/s  queues the analogue of 
the Stoyan and Stoyan [25] result: If - u '  ~ tc - u" ,  

where u' and u" are the interarrival times, and 
~t'>~/t" in two GI /M/s  systems, then W' ~<icW". 
In (5.2) of [12], Miyazawa also obtained W' ~< i~W" 
in some cases. We all conjecture the following 
analogue of Conjecture 1.1, which would complete 
the multiserver extension of Rolski and Stoyan 
I2O]. 
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Conjecture 1.4. Under the assumptions above, 
W' <~stW' in two GI/M/s systems. 

The rest of this paper is organized as follows. 
Section 2 discusses the comparison implications of 
a recent light-traffic theorem for the M/G/s  queue 
by Burman and Smith [1]. Section 3 contains an 
asymptotic insensitivity result for many servers in 
light traffic (as the number of servers increases). 
Section 4 discusses the implications of scheduling 
results by Pinedo [17] for queues with bursty 
(highly variable) arrival processes in light traffic. 
Section 5 discusses the comparison implications of 
heavy-traffic limits for the GI/G/s queue by K61- 
lerstriSm [8]. Finally, Section 6 introduces the spe- 
cial family of service-time distributions for which 
the M/G/s queue can be solved exactly. The 
solution not only makes it easy to verify Conjec- 
ture 1.1 in this class, but it also lends support for 
simple approximations in general M/G/s  queues. 

We conclude the introduction by mentioning 
that there has recently been considerable success 
in developing algorithms for computing the equi- 
librium distributions in the M/G/s  queue and 
various GI/G/s generalizations; see [3-6,15,22, 
23,26]. The data we have looked at are consistent 
with the conjectures. 

2. The M / G / s  queue in light traffic 

Burman and Smith [1] have recently described 
the asymptotic behavior of W(G) as the arrival 
rate ~, approaches zero. Their description involves 
the stationary-excess cdf Ge associated with the 
service-time cdf G with mean/~-!, defined by 

Ge(t)--l~fot[1-G(u)] du, t>_.O; (2.1) 

For their proofs, Burman and Smith require that 
the service-time distribution be phase-type, but the 
results hold more generally. In fact, Reiman and 
Simon [18] have a new proof without this condi- 
tion. We extract the following from their results. 

Theorem 2.1 (Burman and Smith). In an M/G/s 
queue, 

lim ~- "P ( W > O)- 1/~tSs ! (2.2) 
~,-*0 

and, for each x, 

lira P(W(G) <~ xIW(G) > O) 
A-..O 

- P(min{ X,,...,X~ } < x), (2.3) 

where X~,...,Xs are lid with stationary-excess cdf 

Coiollary 2.1. Under the conditions of Theorem 2.1, 

limX-sp(W(G)> x ) -  1 -  G(u)] du 
A-~O 

(2.4) 

and 

x-.o > x)  
lim P(W(O") > x) 

£®[1-G"(u) ldu  

£®[1 - ¢~'(u)l du 

(2.5) 

If G' ~< icG", then the right side of (2.5) is greater 
than or equal to 1 for all x. When the fight side is 
strictly greater than 1, we obtain a conclusive 
inequality in support of Conjecture 1.1 in light 
traffic, but any x for which the right side equals 1 
is inconclusive. (Under the stronger condition 
G' ~<cG", we have equal means and the right side 
of (2.5) is 1 for x - 0 . )  Nevertheless, we regard 
(2.5) as strong evidence in support of Conjecture 
1.1. If it turns out that Conjecture 1.1 is false, then 
it is natural to strengthen the condition in Conjec- 
ture 1.1 by requiring that the right side of (2.5) be 
strictly greater than 1 for all x or, equivalently. 

£ ~ [ G ' ( u ) -  G"(U)] d u > 0  (2.6) 

for all x. 
The light-traffic approach of Reiman and Simon 

[18] may be viewed as taking successive derivatives 
of P(W(G)> x) with respect to the Poisson arrival 
rate ~, at ~ , -0 .  Theorem 2.1 depicts the first 
nonzero derivative. For stochastic order, it is obvi- 
ously necessary to have all higher derivatives 
ordered as well. We conjecture: (i) that all higher 
derivatives are indeed ordered, (ii) that such com- 
parisons are necessary and sufficient for stochastic 
order, and (iii) that P(W(G)> x) is analytic as a 
function of ~,, so that it is characterized by all 
these derivatives. 

Formula (2.3) suggests another conjecture con- 
cerning the conditional waiting times given that a 
customer must wait before beginning service. 
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Conjecture 2.1, If G <~G" in an M/G/s  queue, 
then 
(W(G') IW(G') > 0) ~<s,(W(G") I W(G") > 0). 

Since G' ~< cG" if and only if G~ < stG", Conjec- 
ture 2.1 is valid in light traffic. It is important to 
realize that we have used the condition of equal 
means. Conjecture 2.1 is not valid for the weaker 
condition G' ~<i~G". In fact, it is not valid under 
the condition G' ~< ~tG". 

Example 2.1. Even for s = 1, the condition G' <-, ,,tG" 
does not imply that 

E(w(<;') Iw(G') > O) .< E(W(G")  I W(C;") > 0). 
(2.7) 

Given (2.3), it suffices to show that we need not 
have ml(G~)<~ml(G~') where ink(G) i~; the kth 
moment of G and ml(G~)= m2(G)/2ml(G). For 
a concrete example, let G' be obtained from a pmf 
(probability mass function) with mass ~ on 1, 2 
and 10; let G" be obtained from a pmf with mass 
on 10 and -23 on 1; then G' ~<stG" but m(G~)- 
102/24 > 105 /26 -  m(G~'), as in Example 2.1 of 
[30]. 

We close this section by noting that if G' ~< G" 
in one of the stronger stochastic orderings --<r 
(failure rate order) or ~<r (monotone likelihood 
ratio order) defined in [30], then G" ~< G~' in the 
same ordering by Corollary 3.4 of [30], so that 
(2.7) and stronger stochastic orderings for the con- 
ditional waiting times are valid in light traffic. 
(For this application we use the continuous sta- 
tionary-excess operator in (1.1) of [30], for which 
Corollary 3.4 is still valid.) 

3. lnsensitiviff in light traffic with many servers 

The M/G/s/O loss system and the M/G/oo 
system are insensitive: the equilibrium distribution 
of the number of busy servers depends on the 
service-time distribution only through its mean. 
However, as demonstrated by (2.3), the M/G/s  
delay distribution depends on the service-time dis- 
tribution beyond its mean. We now show that 
there is asymptotic insensitivity of the delay distri- 
bution in light traffic as s--, oo. If we just let 
s ~ ao, then such insensitivity is trivial; the M/G/s  
system approaches the M/G/o~ system and there 

is no delay. We consider the conditional delay 
distribution and normalize so that there is a non- 
trivial limit as first )~ -~ 0 and then s ~ oo. (Note 
that the normalized probability of delay is insensi- 
tive in light traffic for all s by (2.2).) We apply a 
simple extreme-value limit theorem, as on p. 56 of 
Lamperti [9]. 

Theorem 3.1. For an M/G/s  queue in which G(O) 
" -  O ,  

lim i ime(sW(G)> xlW(G)>O)-e-~X 
s ' - *  ao ~ ~ 0 

for all x. 

Proof. From (2.3) and (2.1), 

lim l imP(sW(G)> xJW(G)>O) 
s " *  ~ ~ " * 0  

= lim [1 - Ge(x/s)] 2 

= iim [ 1 - ( l ~ x / s ) + o ( l / s ) ] " f e  -~'. 
S-'-* QO 

4. Batch arrivals in light traffic 

In this section we illustrate the negative results 
that can arise with bursty arrival processes. We let 
arrivals occur in batches and show that greater 
variability in the service-time distribution sys- 
tematically causes the equilibrium waiting-time 
distribution to decrease in an appropriate sense in 
light traffic. 

Consider the GlU/G/s queue with a batch re- 
newal arrival process in which each batch has 
exactly n customers. The arrival process of batches 
is assumed to be a renewal process in which the 
renewal interval has no atom at the origin. Of 
course, the arrival process of customers is then not 
a renewal process. Unlike Section 2, if n > s, then 
as the rate of the renewal process converges to 0 
(say, by scaling the renewal interval), the equi- 
librium waiting-time W(G) converges to a nontriv- 
ial limit, say WL (G). The distribution of Wz. (G) is 
a mixture of the waiting-time distributions of 
customers 1, 2 , . . . ,n  in the stochastic scheduling 
problem treated by Pinedo [17], in which there are 
exactly n jobs, all of which are in the system at 
time 0. As a consequence of Theorem 2 of [17], we 
have 

Theorem 4.1. If  G' <~cG" in an GID/G/s system in 
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light traffic, then - W L ( G') <~ ic 
EWL(G") < EWL(G'). 

- W L(G''), so that 

Proof. Apply Theorem 2 of Pinedo [17]. The ex- 
peted value of the increasing concave function 
with respect to the n-dxture is the weighted sum of 
the corresponding expected values. (Recall that 
- f (  - x ) is increasing convex when f ( x )  is increas- 
ing concave.) 

5. The G I / G / s  queue in heavy traffic 

In this section we consider the GI/G/s  queue. 
As before, let ~, be the arrival rate, I t  the service 

2 and c2--c2(G) the squared coeffi- rate, and ca 
cients of variation of an interarrival time and a 
service time, respectively. As h--, sit (p--?~/sit 
--, 1) from below (with associated sequence of 
interarrival-time and service-time distributions 
appropriately controlled), (1 - p)W(G) converges 
to an exponential distribution with mean 
(%2 + c2)/2it; see K611erst~m [8]. Hence, Conjec- 
ture 1.1 with the stronger condition G' ~<cG" is 
valid for the limit of ( 1 -  p)W(G) as p--* 1 be- 
cause c2(G ') < c2(G ' ' )  if G' <~G" and G' # G". 
Conjecture 1.1 with the weaker condition G' ~< tc G''  
is also valid for the limit of (1 - p")W(G) because 
if the means are not equal, then ( 1 -  p")W(G') 
converges to O. For W(G) itself, the heavy-traffic 
limit implies that 

e(w(G') > e(W(G") > (5.1) 
for sufficientlylarge x and p. However, the heavy- 
traffic limit does not imply that (5.1) is every valid 
for fixed x and p ~ 1. Similarly, the gap in (1.1) 
trivially disappears when you multiply both sides 
by (I- p) and let p ~ I. If Conjecture 1.1 is not 
true, then (1.2) is likely to fail for small x, e.g., 
x=0. 

Since P(W(G)> 0)-, I as p~ I with s fixed, 
Conjecture 2.1 is verified in heavy traffic too. 

6. A special family of service.tih, e dl~,~'ibutions 

In this section we introduce a family of service- 
time distributions for which the orderings ~< ~ and 
~< i~ can be considered and for which the M/G/s  
queue can be solved exactly. Let the cdf Gp be the 
mixture of an exponential cdf with probability p 

and the cdf of a point mass on 0 with probability 
1 - p. The orderings ~< ic and ~< c are easily char- 
acterized in this class. For this purpose, let m(Gp) 
be the mean of Gp. 

Lemma 6.1. If p I >~P2 and rn(Gp,)~ m(Ge2), then 
c,, ,oo, . 

Proof. If Pl - P 2 ,  then Gp, ~< stGp2. Suppose Pl > P2. 
As in the examples in Section 2 of [27], apply the 
characterization in Theorem 2 there. Let X be 
distributed as Gp. If X ffi 0, let Y ffi 0; if X ffi x, let 
Y ffi - x  with probability 1 - ( P 2 / P l )  and let Y ffi 

yx with probability P2/Pl, with y chosen so that 
X +  Y is distributed as Gp,; i.e., y-[m(Gp2 ) -  
m(Gp,)]/m(Gp,). Since E(YIX)>_. O, we have veri- 
fied that Gp, <~ icGp,. 

It is also not difficult to completely describe the 
behavior of an M / G / s  queue with service-time cdf 
Gp. Let ~, be the arrival rate and It the individual 
service rate. Let N(t) be the stochastic process 
representing the number of customers in the sys- 
tem, including any in service. It is not difficult to 
see that N(t ) is a Markov process. For N( t ) ~< s - 1, 
the process evolves as an M / M / s  queue with 
arrival rate ~p and individual service rate Itp. 
(Arrivals with zero service time can be ignored.) 
When the process N(t) hits s, it evolves as an 
M/G/1  queue with arrival rate ~ and service-time 
distribution G;, modified by having the rate of 
the exponential component multiplied by s. 
(Customers with zero service time must wait, but 
there are batch departures.) Until N(t) hits s -  1 
again from above, the process evolves as this 
M/G/1  queue conditioned on a nonzero busy 
period having begun at the instant N(t)  hit s from 
below. The successive first passage time from s - 1 
to s and back again from s to s - 1  form an 
alternating renewal process. The time to go from 
s - 1 to s, say T(s - 1, s), has mean 

s - I  

er( - 1, = 1)! E 
k-O 

(6.1) 
A simple way to obtain (6.1) is to observe that in 
an M/M/s /O  loss system, with arrival rate h p 
and service rate Itp, the well-known equilibrium 
probability of s busy servers can be expressed as 
( I /p i t s ) / lET(s -  1, s) + (1/pits)]. Similarly, the 
time to go from s to s - 1, T(s, s - 1), has mean 
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ET( s, s - 1 ) = 1/psp ( 1 - p ). (6.2) 

Formula (6.2) is the appropriate mean M / G / l  
busy period conditioned that it is greater than 0 
(which means dividing by p). 

Let N be the equilibrium distribution of N(t). 
From (6.1) and (6.2), we see that P (N >t s) coin- 
cides with the M / M / s  value. Hence, P(N = k) 
coincides with the M / M / s  value for k < s - 1. On 
the other hand, P(n = s + kiN >i S) coincides with 
the M / G / 1  value with s= 1 and faster service 
rate. Since Poisson arrivals see time averages, see 
Wolff [32], (W(Gp)IW(Gp) > 0) is distributed as 
the M / G / I  value using Gp with service rate multi- 
plied by s. As a consequence, P(W(Gp)> 0) is 
independent of p and 

> o) 

_ _ I +c'(Gp) _- I (6.3) 
2s (1 - p)  - p ) '  

where 

(6.4) 

This convenient characterization of tV(Gp) in terms 
of the M / M / s  queue and ce(Gp) is a natural 
candidate for approximating more general M / G / s  
queues. Note that (6.3) is consistent with the 
established light-traffic and heavy-traffic behavior. 
(The stationary-excess distribution associated with 
Gp is exponential with rate pp.) For this special 
service-time distribution, s / t O -  o)E(W(Gp)I 
W(Gp) > 0) is independent of 0, just as in the Case 
s--  1. For the special case involving Gp, we obtain 
the familiar Lee and Longton [10] approximation 
formula for E W as an exact result, i.e., 

f.W(~,)/~.W(G,)= l + c2(~,) 
2 ; (6.5)  

EW(Gp) is exactly the M / M / s  value multiplied 
by ( c2(Gp ) + I)/2. 

The established structure allows us to apply the 
results for s = 1 [2,20] to verify Conjectures 1.1 
and 2,1 

Theorem 6,1. Within the class of Gp service.time 
distributions, Conjectures 1.1 and 2.1 are valid. 

We also obtain useful insights about the time- 
dependent behavior. Compared to a standard 
M / M / s  system with p = 1, the process N(t) with 

p < 1 is slowed down when N(t) < s - 1; when 
N(t) >1 s, the overall arrival and service rates are 
the same, but the process is altered by having 
batch service completions. 

We close this section by remarking that we can 
do a similar detailed analysis of the GI/G/s  sys- 
tem in which both the interarrival-time and 
service-time distributions are from the Gp class. 
The formulas confirm negative comparison results 
in [29]. 

7. Conclusions 

We have presented several conjectures about 
the qualitative behavior of multi-server queues and 
some supporting evidence based on light-traffic 
and heavy-traffic limits and a special family of 
service-time distributions. In the continued search 
for results, it may be useful to restrict the class of 
service-time distributions (e.g., with increasing 
failure rate) and consider other stochastic order 
relations (as in [30]). It is also interesting to know 
how the established properties change as we change 
the model, e.g., as we change the rule for assigning 
customers to servers. 
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