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It is often possible to effectively calculate probability density
functions (pdf’s) and cumulative distribution functions (cdf’s)
by numerically inverting Laplace transforms. However, to do so
it is necessary to compute the Laplace transform values. Un-
fortunately, convenient explicit expressions for required trans-
forms are often unavailable for component pdf’s in a probability
model. In that event, we show that it is sometimes possible to
find continued-fraction representations for required Laplace
transforms that can serve as a basis for computing the trans-
form values needed in the inversion algorithm. This property is
very likely to prevail for completely monotone pdf’s, because
their Laplace transforms have special continued fractions
called S fractions, which have desirable convergence proper-
ties. We illustrate the approach by considering applications to
compute first-passage-time cdf’s in birth-and-death processes
and various cdf’s with non-exponential tails, which can be used
to model service-time cdf’s in queueing models. Included
among these cdf’s is the Pareto cdf.

M any probability density functions (pdf’s) and cumulative
distribution functions (cdf’s) of interest in queueing models
and other probability models arising in operations research
can be effectively computed by numerically inverting
Laplace transforms; see Abate, Choudhury and Whitt,[1]

Abate and Whitt,[4, 5] and references therein. The biggest
challenge in this approach, when there is a challenge, is
usually computing the required Laplace transform values,
because convenient closed-form expressions for Laplace
transforms often are not available. In this article we point
out that continued fractions can sometimes serve as a basis
for effectively computing the required Laplace transform
values needed in the inversion algorithms.

A simple motivating example is the steady-state waiting-
time pdf in the M/G/1 queue. The classical Pollaczek-
Khintchine (transform) formula gives the Laplace transform
of the steady-state waiting-time pdf in terms of the Laplace
transform of the service-time pdf. Thus we can compute the
waiting-time transform values in order to compute the wait-
ing-time pdf or cdf by numerical inversion whenever we can
compute the service-time transform values. A possible dif-
ficulty, however, is that we might want to consider service-
time pdf’s for which convenient explicit expressions for the
Laplace transform are unavailable. Indeed, this difficulty
often arises when we consider distributions that have non-

exponential tails, e.g., that cannot be represented as phase-
type distributions. The present paper provides a way to
address this problem: Under favorable circumstances, we
may be able to construct a continued-fraction representation
of the service-time Laplace transform that enables us to
compute the service-time Laplace transform values, which
in turn enables us to compute the waiting-time Laplace
transform values needed to perform the desired numerical
inversion. A specific example covered by this approach is
the Pareto pdf.

For background on continued fractions and their use for
numerical computation, see Baker and Graves-Morris,[12]

Bender and Orszag,[13] Chapter 12 of Henrici,[26] Jones and
Thron,[28] Section 5.2 of Press, Flannery, Teukolsky, and
Vetterling,[32] and Wall.[35] Applications of continued frac-
tions in statistics and applied probability are described in
Bowman and Shenton[15] and Bordes and Roehner.[14] More
recently, Guillemin and Pinchon[20–23] have used continued
fractions to analytically derive important properties of
queueing models. A summary of that work is contained in
Dupuis and Guillemin.[16] However, continued fractions ev-
idently have not been suggested previously as a way to
numerically compute transform values in order to perform
numerical transform inversion.

The use of continued fractions is an alternative to com-
putation of Laplace transforms via infinite-series represen-
tations, which we recently discussed in Abate and Whitt.[9]

We make an explicit numerical comparison to show that
continued fractions can be far superior in some circum-
stances, even when the series converges geometrically (see
Section 6).

Here is how the rest of this article is organized: In Section
1 we briefly define continued fractions and specify the basic
recursive algorithm for numerical computation. In Section 2
we discuss the relation between continued fractions and
power series. There we show how to compute the continued
fraction elements from the moments of a probability distri-
bution (which are related to the coefficients of a power
series—the moment generating function). In Section 3 we
point out that completely monotone pdf’s can be identified
with special continued fractions called S fractions, which
have nice convergence properties. In Section 4 we show how
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continued fractions can be used to compute the Laplace
transforms of first-passage-times pdf’s in birth-and-death
processes. We can exploit S fractions for this purpose be-
cause first passage times to neighboring states have com-
pletely monotone pdf’s.

The rest of the article is devoted to numerical examples. In
Section 5 we consider the M/M/� busy period, which is a
special case of a first passage time in a birth-and-death
process. In Section 6 we consider the beta mixture of expo-
nential (BME) pdf’s from Abate and Whitt[8, 9] and show that
continued fractions can be much more effective for comput-
ing Laplace transform values than the previously considered
infinite-series representations. In Section 7 we show how the
continued fractions associated with the BME pdf’s can be
used to compute the Laplace transforms of other pdf’s re-
lated to the BME pdf’s, including a Pareto pdf. Finally, in
Section 8 we discuss continued fraction representations of
Laplace transforms of other pdf’s.

1. Continued Fractions
An (infinite) continued fraction (CF) associated with a se-
quence {an�n � 1} of partial numerators and a sequence
{bn�n � 1} of partial denominators, which are complex num-
bers with an � 0 for all n, often called elements, is the
sequence {wn�n � 1}, where

wn � t1 � t2 � . . . � tn�0� , n � 1, (1.1)

and

tk�u� �
ak

bk � u
, k � 1; (1.2)

i.e., wn is the n-fold composition of the mappings tk(u) in
(1.2) applied to 0, called the nth approximant. If limn3� wn �
w, then the CF is said to be (properly) convergent and the
limit w is called the value of the CF. We write

w � �n�1
�

an

bn
or w �

a1

b1�

a2

b2�

a3

b3�
· · · . (1.3)

When we consider Laplace transforms of pdf’s, the CF
elements an and bn will be functions of the complex variable
s. In particular, we will consider special CFs called S frac-
tions (S for Stieltjes), which can be expressed as

w � w�s� �
1

1�

a2s
1�

a3s
1�

a4s
1�

· · · (1.4)

where ak is real and positive for all k. However, S fractions
may appear in other forms, because CFs have many equiv-
alent representations. Indeed, for any sequence of complex
numbers {cn�n � 0} with c0 � 1, the CF

�n�1
�

cn	1cnan

cnbn
(1.5)

has the same approximants as the CF in (1.3); see p. 478 of
Henrici.[26] We call such CFs equivalent and use the notation �.

It is significant that there is a relatively simple recursion
for calculating the successive approximants of a CF, due to

Euler in 1737. In particular, given the CF in (1.3),

wn �
Pn

Qn
, (1.6)

where P0 � 0, P1 � a1, Q0 � 1, Q1 � b1 and

Pn � bnPn	1 � anPn	2 (1.7)

Qn � bnQn	1 � anQn	2

for n � 2. In performing numerical calculations, it is prudent
to renormalize after, say, every 10 iterations by dividing the
current values of Pk, Qk, Pk	1 and Qk	1 all by Qk, and then
proceed.

We will be interested in the special case of S fractions, as
in (1.4). Based on our computational experience, we con-
clude that the S fraction converges rapidly and is easy to
compute if an � O(1) as n 3 �. If an � O(n) as n 3 �, then
the S fraction converges, but more slowly and requires more
work to calculate. If the elements grow much faster, then
computation is likely to be infeasible. (We will give exam-
ples later.) The S fraction with an � nk can be shown to be
convergent if and only if k 
 2; see p. 486 of Henrici.[26]

2. Power Series and Continued Fractions
Continued fractions are intimately related to power series.
This relationship is useful in probability applications be-
cause the moments of probability distributions can be re-
garded as coefficients of a power series, namely, the moment
generating function (mgf).

Let f be a pdf on the nonnegative real line with associated
cdf F(t) � �0

t f(u)du, t � 0, and associated complementary cdf
(ccdf) Fc(t) � 1 	 F(t), t � 0. Assume that the pdf f has finite
moments of all orders, i.e.,

mn� f � � �
0

�

tnf�t�dt , n � 1, (2.1)

and let f̂ be the Laplace transform (LT) of f, i.e.,

f̂ �s� � �
0

�

e	stf�t�dt , (2.2)

where s is a complex variable. We often are most interested
in computing the cdf F(t) or ccdf Fc(t), which we can do via
their LTs F̂(s) � f̂(s)/s and F̂c(s) � (1 	 f̂(s))/s. The associated
mgf is f̂(	s).

The Laplace transform f̂ is analytic for all s with Re(s)  0.
The nth moment of f can be recovered from the nth deriva-
tive of the transform, i.e.,

mn� f � � 	
d �n�

ds
f̂ �s� � s�0 , (2.3)

where limits are taken through real positive s, and the LT can
be represented as a formal power (Maclaurin or Taylor) series

f̂ �s� � �
n�0

�

cnsn, (2.4)
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where c0 � 1 and

cn � �	1�n
mn� f �

n! , n � 1, (2.5)

by which we mean that, for each N � 1,

f̂ �s� � �
n�0

N

cnsn � O�sN�1� as s3 0. (2.6)

However, in general we cannot conclude that the power
series (2.4) has a positive radius of convergence. It will if and
only if the LT is analytic at 0, which is not always the case.

Given a formal power series such as (2.4), we can con-
struct rational approximants, called Padé approximants, that
match the coefficients of (2.4) as far as possible; see Chapter
1 of Baker and Graves-Morris.[12] The [L/M] Padé approxi-
mant to f̂ is the rational function

�L/M� �
a0 � a1s � · · · � aLsL

1 � b1s � · · · � bMsM , (2.7)

where the first L � M � 1 coefficients of the Maclaurin series
of (2.7) match the first L � M � 1 coefficients in (2.4).

Given a formal power series such as (2.4), it is also pos-
sible to construct an associated CF of the form

f̂ �s� � a0 � �n�1
�

ans
1 , (2.8)

whose approximants also have Maclaurin series that match
the initial terms of the power series (2.4). (A CF with the
variable s in each coefficient as in (2.8) is sometimes called a
RITZ fraction; e.g., see p. 515 of Henrici.[26]) To obtain the CF
representation, we use the notion of the reciprocal of a
power series to create an appropriate recursion. In particu-
lar, we consider the reciprocal of the series

1 �
c2s
c1

�
c3s2

c1
� · · · � �1 � c1

�1�s � c2
�1�s2 � · · ·�	1 (2.9)

to obtain

�
n�0

�

cnsn � c0 �
c1

1 � c1
�1�s � c2

�1�s2 � · · ·
(2.10)

from (2.4). Next consider the reciprocal of the series

1 �
c2

�1�s
c1

�1� �
c3

�1�s2

c1
�1� � · · · � �1 � c1

�2�s � c2
�2�s2 � · · ·�	1 (2.11)

to obtain

�
n�0

�

cnsn � c0 �
c1s

1 �
c1

�1�s
1 � c1

�2�s � c2
�2�s2 � · · ·

. (2.12)

Proceeding by induction, we obtain (2.8) with a0 � c0, a1 �
c1 and an � c1

(n	1), n � 2.
Since the approximants of the CF in (2.8) are rational

functions, it should come as no surprise that there is a link
between the CF in (2.8) and Padé approximants. It turns out

that the CF approximants w2M and w2M�1 are “diagonal”
Padé approximants; in particular, they are precisely the
[M/M] and [M � 1/M] Padé approximants, respectively; see
Theorem 4.2.1 of Baker and Graves-Morris.[12] (If the CF is
terminating, corresponding to a rational function, then the
approximants may be of lower order.)

Thus, methods for computing diagonal Padé approxi-
mants are equivalent to methods for computing approxi-
mants for CFs associated with power series. A powerful
computational procedure is the quotient-difference (QD) algo-
rithm; see Chapter 3 and Section 4.3 of Baker and Graves-
Morris.[12] The QD algorithm has a1 � c0, a2k � 	qk

0 and
a2k�1 � 	ek

0, k � 1, where qk
j and ek

j are defined recursively by

qk�1
j � ek

j�1qk
j�1/ek

j (2.13)

and

ek
j � ek	1

j�1 � qk
j�1 � qk

j (2.14)

for k � 1 and j � 0, with e0
j � 0, j � 1, and q1

j � cj�1/cj, j �
0. The QD algorithm is related to the �-algorithm; e.g., see
Chapter 3 of Baker and Graves-Morris[12] and Chapter 8 of
Wimp.[37]

An essentially equivalent computational procedure is the
product-difference (PD) algorithm due to Gordon.[19] The PD
algorithm involves only a single array pi

j, instead of the two
arrays ei

j and qi
j in the QD algorithm. In particular, the

recursion is

pi
j � p1

j	1pi�1
j	2 � p1

j	2pi�1
j	1 , (2.15)

where, for i � 1, pi
1 and pi

2 are initialized to p1
1 � 1, pi

1 � 0 for
i � 2, and pi

2 � ci	1 for i � 1. Then

an �
p1

n�1

p1
n	1p1

n . (2.16)

Hence, given the moments of a pdf as in (2.1), we can
obtain a CF representation of its LT in (2.2), with the prop-
erty that the CF approximants coincide with diagonal Padé
approximants. We now discuss additional structure that
ensures that the CF is actually convergent.

3. Complete Monotonicity and S Fractions
Probability applications of CFs are especially appealing
when we have a completely monotone (CM) pdf because
then the associated LTs can be represented by special CFs
called S fractions, which are known to converge under mi-
nor regularity conditions. A CF of the form (2.8) is an S
fraction if all of the coefficients an (not considering the com-
plex variable s) are positive. With such a simple character-
ization, it is also often possible to verify that a CF is an S
fraction directly.

A function f on [0, �) is completely monotone (CM) if it
possesses derivatives of all orders that alternate in sign, i.e.,

�	1�n f �n��t� � 0 for all t � 0 and n � 0; (3.1)
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see p. 439 of Feller[18] and p. 66 of Keilson.[29] All CM pdf’s
are log convex, i.e., log f(t) is convex, and thus have decreas-
ing failure rate (are DFR); see p. 74 of Keilson.[29] The family
of CM pdf’s is closed under mixtures. A pdf f on [0, �) is CM
if and only if f is a mixture of exponential pdf’s, i.e.,

f�t� � �
0

�

y	1e	t/ydH� y� (3.2)

for some cdf H on [0, �). Examples of CM pdf’s appear in
Abate and Whitt[2, 6, 8] and references therein.

By making the change of variables x � y	1, we see that the
CM pdf f in (3.2) can also be represented as

f�t� � �
0

�

xe	xtdH̃� x� , (3.3)

where dH̃(x) � x	2dH(x	1) and dH(x) � x	2dH̃(x	1). We
call H in (3.2) the mixing cdf and H̃ in (3.3) the spectral cdf.
(The mixing and spectral cdf’s for the M/M/1 busy period
are displayed in Abate and Whitt.[2]) Let X be a mean-1
exponential random variable; let Y and Ỹ be random vari-
ables with cdf’s H and H̃, respectively. Then the represen-
tations (3.2) and (3.3) are the pdf’s of XY and X/Ỹ, respec-
tively.

The CM pdf f in (3.2) has Laplace transform

f̂ �s� � �
0

�

e	stf�t�dt � �
0

�

�1 � sy�	1dH� y� . (3.4)

Associated with any cdf F is a ccdf Fc(t) � 1 	 F(t). Associ-
ated with the CM pdf f is a dual ccdf

Gc�t� � �
0

�

e	xtdH� x� , t � 0, (3.5)

and associated dual pdf

g�t� � �
0

�

xe	xtdH� x� , t � 0, (3.6)

which are obtained by switching the roles of H and H̃.
Clearly, Gc(t) and g(t) are CM too. It is evident from (3.4) and
(3.5) that the dual Laplace transforms are related by

Ĝc�s� � �
0

�

e	stGc�t�dt � �
0

�

�s � x�	1dH� x� � s	1f̂ �s	1� .

(3.7)

Note that the moments of the CM pdf f in (3.2) are related
to the moments of the mixing cdf H by

mn� f � � mn�H�n! for all n � 1. (3.8)

Thus if f has moments of all orders, then its LT has the

(formal) power series representation

f̂ �s� � �
n�0

� f̂ n�0�sn

n!

� �
n�0

� mn�F��	s�n

n! � �
n�0

�

mn�H��	s�n, (3.9)

where f̂ (0)(0) � f̂(0) � m0(F) � m0(H) � 1. If the LT f̂(s) is
analytic at 0, then the power series (3.9) has a positive radius
of convergence and is not formal, but it suffices to have only
a formal power series.

We now relate these probabilistic quantities to continued
fractions. The main connection is that, under the complete
monotonicity assumption, the CF associated with the power
series of f̂(s) in (3.9) is an S fraction; see Chapter 5 of Baker
and Graves-Morris.[12] Except for the normalization f̂(0) � 1,
which holds for pdf’s, Laplace transforms of CM pdf’s with
all moments finite, having the integral representation (3.4),
coincide with Stieltjes functions in the theory of continued
fractions; see p. 193 of Baker and Graves-Morris.[12] As a
regularity condition to avoid the case of terminating CFs, it
is usually assumed that the underlying cdf H has infinitely
many points of increase (does not have finite support). The
associated series �n�0

� mn(H)(	s)n in (3.9) then is called the
associated Stieltjes series. The series is called formal because
it may not converge for any s (except s � 0). In Section 2 we
saw that there is a CF with denominator elements 1 associ-
ated with any formal power series. The fact that we have a
Stieltjes series implies that the numerator CF elements (not
counting the complex variable s) are all positive, i.e., that we
have an S fraction. The advantage of S fractions is that there
is more supporting convergence theory.

We now note duality properties of the CM pdf f(t) in (3.2)
and the dual ccdf Gc(t) in (3.5). Since the LTs are related by
Ĝc(s) � s	1 f̂(s	1), it is immediate that the CM for f̂(s) con-
verges at s if and only if the CM for Ĝc(s) converges at s	1.
We can also relate the two CFs.

Proposition 3.1. The LT of a CM pdf f has an S fraction repre-
sentation

f̂ �s� �
a1

1�

a2s
1�

a3s
1�

a4s
1�

· · · (3.10)

with a1 � 1 and ak  0 for all k if and only if the LT of the dual
ccdf Gc has the S fraction representation

Ĝc�s� � s	1� a1

1�

a2s	1

1�

a3s	1

1�
· · ·�

�
a1

s�

a2

1�

a3

s�

a4

1�
· · · (3.11)

Proof. Since Ĝc(s) � s	1 f̂(s	1), from (3.10) we immediately
see that Ĝc(s) has the first representation in (3.11). Then we
obtain the second relation in (3.11) by applying the equiva-
lence transformation in (1.5). �
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The convergence of S fractions is intimately linked to the
classical moment problem; see Akhiezer,[11] Chapter 5 of
Baker and Graves-Morris,[12] and Sections 12.7–12.14 of
Henrici.[26] For the following result, we apply Theorems
12.14b and 12.8e in Henrici.[26] We also use the fact that the
CF associated with Ĝc(s) converges to s if and only if the CF
associated with f̂(s) converges at s	1.

Theorem 3.1. Let f be a CM pdf as in (3.2) with all moments
finite. Then the CFs associated with the LTs f̂ in (3.4) and Ĝc in
(3.7) are convergent (uniformly in compact subsets of the complex
plane minus the negative real axis) if and only if the moments
mn(H) uniquely determine the cdf H.

Note that an assumption in Theorem 3.1 is that the pdf f
in (3.2) has all moments finite. By (3.8), H too necessarily has
all moments finite. Note that Theorem 3.1 does not preclude
f̂ having a convergent S fraction when the pdf f does not have
all moments finite. Indeed the dual ccdf Gc may fail to have
all moments finite when the conditions of Theorem 3.1 are
satisfied, so that Ĝc has a convergent S fraction.

It is also possible that the cdf H has all moments finite and
is uniquely determined by those moments, but that the cdf F
is not uniquely determined by its moments. An example of
such an F is the Weibull cdf with exponent 1/2. Thus this
Weibull cdf is not uniquely determined by its moments, but
its LT nevertheless has a convergent S fraction. (We discuss
this example in Section 8.)

When the complex variable s in an S fraction is real and
positive, we also have a convenient a posteriori bound on
the numerical errors in the approximants, because then the
even approximants w2m are increasing, while the odd ap-
proximants are decreasing, so that

w2n�s� � f̂ �s� � w2n�1�s� for all n ; (3.12)

see Theorem 12.11d of Henrici.[26] Moreover, we can numer-
ically verify convergence for all complex s (except negative
real s) by considering the case of any single positive real s, by
Theorem 12.8e of Henrici.[26] Various a priori and a poste-
riori bounds on the error are also given in Henrici.[26]

The fact that property (3.12) holds for all positive real s
motivates using inversion methods based on positive real s.
One such method is the Gaver-Stehfest inversion algorithm
in Abate and Whitt.[4] However, in our numerical examples
we use the Fourier-series method with Euler summation,
which is the main method described in Abate and
Whitt.[1, 4, 5] It requires computing Laplace transform values
at complex s.

We close this section by showing what happens for a
typical diverging S fraction. We let an � (n 	 1)3 for n � 2.
Table I shows the values of the even and odd approximants
as a function of n for s � 1 and s � 10. First, monotonicity as
in (3.12) and non-convergence are evident from the numer-
ical results. Second, the odd and even approximants con-
verge remarkably slowly to their limits, so that we cannot
easily make use of the limits of the odd and even approxi-
mants either.

When the power series (3.9) is only formal, it is typically
divergent. However, we have seen that the associated CF

may nevertheless be convergent. On the other hand, as
illustrated by Table I, the CF may be divergent. When the CF
converges, we have a way to sum a divergent series—called
Stieltjes summation; see Chapter 19 of Wall.[35]

4. First Passage Times in Birth-and-Death Processes
In this section we show how CFs can be used to compute the
LT of a first-passage-time pdf in a birth-and-death (BD)
process. Let Ti,j be a random variable representing the first
passage time from state i to state j. It is elementary that such
first passage times can be expressed in terms of first passage
times to neighboring states; e.g., if i � j, then

Ti, j � Ti, i�1 � Ti�1, i�2 � · · · � Tj	1, j , (4.1)

where the random variables on the right are mutually inde-
pendent, and similarly if i  j. Let fi,j be the pdf of Ti,j and let
f̂i,j be its LT, i.e.,

f̂ i, j�s� � �
0

�

e	stf i, j�t�dt � Ee	sTi, j. (4.2)

From (4.1), we have

f̂ i, j�s� � 	
k�i

k�j	1

f̂ k,k�1�s� (4.3)

if i � j. Hence, in order to compute the LT f̂i,j, it suffices to
be able to compute the LT of the first passage time to a
neighboring state.

First passage times to neighboring states are especially
tractable because their pdf’s are always CM. For finite-state
BD processes, this CM property is an elementary conse-
quence of the spectral theory associated with these revers-
ible Markov processes; see Section 3.4B of Keilson.[29] For
first passage times up in infinite-state BD processes, the
states above the destination state play no role, so that the
state space may be considered finite. For first passage times
down in infinite-state BD processes, the CM property can be
deduced by considering the limit of the finite-state approx-
imations for which in the BD process n the original birth rate
(in the infinite-state model) in state n, �n, is set equal to 0.
(The holding time in state n is then exponential with mean
�n

	1, where �n is the death rate.)
Let T i

(n) denote the first passage time down from state i to

Table I. Values of Even and Odd S Fraction
Approximants For s � 1 and 10 When an � (n � 1)3

For n � 2

index
n

s � 1 s � 10

even odd even odd

4,000 0.6637 0.7927 0.1777 0.7312
8,000 0.6643 0.7921 0.1783 0.7301
12,000 0.6646 0.7918 0.1785 0.7296
16,000 0.6648 0.7917 0.1787 0.7293
20,000 0.6649 0.7916 0.1788 0.7291
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state i 	 1 in BD process n with state space {0, 1, . . . , n},
where n  i. Let Fi

(n) be the cdf of Ti
(n). By the construction

above, we can make sample-path comparisons as in
Whitt[36] to deduce that a stochastic order relation holds as
we change n, i.e.,

Ti
�n� 
st Ti

�n�1� for n � i , (4.4)

by which we mean that

Fi
�n��t� � Fi

�n�1��t� for all t . (4.5)

Hence, Fi
(n)(t) decreases to a limit Fi(t) as n3 �, which need

be a proper cdf. We then apply the following result to
deduce that the limiting cdf Fi is CM.

Proposition 4.1. If {Fn�n � 1} is a sequence of CM cdf’s on [0, �)
such that Fn(t)3 G(t) as n3 � for each t, then the limit G is CM.
If Fn

c (0) 3 1, then G is proper.

Proof. Recall that the ccdf’s Fn
c can be expressed as

Fn
c �t� � �

0

�

e	xtdHn� x� (4.6)

for cdf’s Hn by the CM property, so that the ccdf Fn
c (t) can be

identified with the Laplace-Stieltjes transform of the cdf Hn

evaluated at s � t for t real and positive. Hence we can apply
the continuity theorem for Laplace transforms on p. 431 of
Feller.[18] �

It is also easy to directly construct CFs representing the
LTs of first passage times down with an infinite state space.
Let �i and �i denote the birth and death rates in state i,
respectively. Let f̂i denote the LT of the pdf of the first
passage time from state i to state i 	 1. By considering the
first transition, we obtain the recursion

f̂ i�s� � � � i

� i � � i
� � � i � � i

� i � � i � s�
� � � i

� i � � i
� 
 � � i � � i

� i � � i � s� f̂ i�1�s� f̂ i�s��
�

� i

� i � � i � s
�

� i f̂ i�1�s� f̂ i�s�

� i � � i � s
(4.7)

from which we obtain

f̂ i�s� �
� i

� i � � i � s � � i f̂ i�1�s�
. (4.8)

Iterating on (4.8) produces the CF

f̂ i�s� � 	
1

� i	1
�k�i

�
	�k	1�k

�k � �k � s
, (4.9)

which directly has the form of a real J fraction ( J for Jacobi),
which can be shown to be equivalent to an S fraction; see
Baker and Graves-Morris,[12] Wall,[35] and Dupuis and Guil-
lemin.[16] However, the CM property implies the equiva-
lence, so that we do not need to construct one.

The analysis above shows that first passage times to
neighboring states have CM pdf’s, so that by Section 3 their

LTs have CF representations that are S fractions. This S
fraction representation provides a basis for computing the
LT, which in turn can be used to calculate the more general
first-passage-time pdf’s and cdf’s by numerical transform
inversion, using (4.3).

Given the CM transform representation (3.4), if the mixing
cdf H has all moments finite, then the CF (4.9) is convergent
if and only if the moments of H uniquely determine H by
Theorem 3.1. As noted at the end of Section 3, numerically,
convergence for all s (except negative real s) can be verified
by considering the case of a single real s. Then there is
convergence if and only if the gap between odd and even
approximants i.e., w2n�1(s) 	 w2n(s) in (3.12) decreases to 0
as n increases.

In queueing applications the first passage time of greatest
interest is T10, which corresponds to the busy period. Inter-
esting special cases are the M/M/1, M/M/s, M/M/�,
M/M/s/0 and M/M/s/r systems. It is interesting that the
mixing and spectral cdf’s have a continuous spectrum (in-
terval of support) in the M/M/1 case, see Abate and
Whitt,[2] but have a countably infinite spectrum (support) in
the M/M/� case; see the next section. Alternative methods
for computing the first-passage-time LTs in the M/M/s/0
case were recently discussed in Abate and Whitt.[7]

5. The M/M/� Busy Period
In this section we apply the CF for BD first-passage-time LTs
in Section 4 to calculate the busy-period ccdf in the M/M/�
queue. We apply the Fourier-series method with Euler sum-
mation, the algorithm EULER in Abate and Whitt,[5] to
numerically invert the LT after we calculate the required LT
values.

The busy period is the time between an arrival to an
empty system and the epoch when the system becomes
empty again. It is the first passage time T10. The LT of the
busy cycle (busy period plus subsequent independent idle
period) is given in (2) on p. 210 of Takács,[34] from which the
transform of the busy period itself is easily obtained. Let the
arrival rate be � and the service rate be 1. Let b(t) be the
probability density function (pdf) of the busy period and let
b̂(s) its Laplace transform. From Takács,[34] we obtain

b̂�s� � �
0

�

e � stb�t�dt �
� � s

�

� 
 �e � ��
0

�

exp�	sx � �e � x�dx� � 1. (5.1)

Computation directly with (5.1) is inconvenient because of
the integral.

There is a quite substantial literature related to the
M/G/� busy period associated with type II particle
counters and coverage problems; e.g., see Hall.[25] In partic-
ular, Stadje[33] shows that the complementary cdf (ccdf) of
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an M/G/� busy period has the form

Bc�t� � �
t

�

b�u�du � �	1�
n�1

�

c*n�t� , t � 0, (5.2)

where c*n(t) is a pdf, the n-fold convolution of a pdf with

c�t� � �Hc�t�Cc�t� , t � 0, (5.3)

Hc(t) is the service-time ccdf and Cc(t) is the ccdf of c(t),
which has the form

Cc�t� � exp� 	��
0

t

Hc�u�du . (5.4)

Thus, in the M/M/� case,

c�t� � �e	�exp�	t � �e	t� , t � 0. (5.5)

While (5.2) and (5.5) provide interesting structural informa-
tion, they do not seem so useful for computation.

In contrast, Dupuis and Guillemin[16] show that (5.1) can
be given a series representation which is numerically useful,
see p. 61 of Dupuis and Guillemin,[16] in particular,

b̂�s� �
� � s

�
�

e�s

��1 � s	̂�s��
, (5.6)

where

	̂�s� � �
n�1

�
�n

�s � n�n! . (5.7)

From (5.6) and (5.7), it is easy to get the first two moments

m1 � �e� � 1�/� and m2 � 2e� �
n�1

�
�n	1

n�n!� . (5.8)

For example, for � � 1 we get m1 � 1.72, m2 � 7.17 and c2 �
(m2 	 m1

2)/m1
2 � 1.42. It is interesting that the squared

coefficient of variation as a function of �, c2(�), approaches 1
both as � 3 0 and as � 3 �. Moreover, c2(�) first increases
and then decreases, so that there is a � maximizing c2(�), in
particular, �max � 2.97 and c2(2.97) � 1.73. A rough expo-
nential approximation based on matching the first two mo-
ments is

Bc�t� �
2

c2 � 1 exp�	2m1t/m2� . (5.9)

Approximation (5.9) is supported by the fact that Bc(t) is
asymptotically exponential as t3 �; see p. 62 of Dupuis and
Guillemin.[16]

Dupuis and Guillemin also show that the busy-period pdf
is a countably infinite mixture of exponentials. In addition,
they determine the CF

b̂�s� � 	
1
�

�n�1
�

	�n
s � � � n

, (5.10)

which we can also obtain as a special case of (4.9) by letting
�n � � and �n � n. Additional insight into the M/M/�
transient behavior is provided by Preater.[31]

The values of the Laplace transform b̂(s) are easily com-
puted by either the series (5.7) or the CF (5.10). For the
argument s needed in the numerical inversion, and for other
representative s, we found that 30 terms of each was suffi-
cient to produce 20-digit precision in the transform values.
We then applied the Fourier-series method with Euler sum-
mation from Section 1 of Abate and Whitt[5] using parame-
ters A � 15 log 10, m � n � 25 to compute values of the ccdf
Bc(t). (Hence a sum of m � n � 1 � 51 terms had to be
computed with s values (A � 2k
i)/2t, k � 0, 1, . . . , 50.)
Sample results are displayed in Table II. The two different
methods agreed at least to the 15 decimal places displayed.

From the last three entries of Table II, we obtain an
estimate of the exponential asymptotics for the tail proba-
bilities

Bc�t� � 0.71200 exp�	0.450265t� as t3 � . (5.11)

In contrast, approximation (5.9) yields Bc(t) � 0.826e	0.480t.
In this case we did not actually need CFs, because the

series representation is effective. We used the series repre-
sentation to confirm the effectiveness of the CF. The situa-
tion is different if we consider the excursion time above
some level c, i.e., the first-passage-time Tc�1,c. Guillemin and
Simonian[24] show that the Laplace transform of the excur-
sion time in the M/M/� system can be represented as the
ratio of two Kummer functions, i.e.,

f̂ c�s� �
c � 1

c � 1 � s
M�s , c � s � 2, ��

M�s , c � s � 1, ��
, (5.12)

where M is the Kummer function

M�a , b , z� � �
n�0

�
�a�n

�b�n

zn

n! , (5.13)

with (x)n being the Pochhammer symbol, i.e., (x)0 � 1 and
(x)n � x(x � 1) . . . (x � n 	 1) � �(x � n)/�(x), where �(x)

Table II. Values of the M/M/� Busy-Period ccdf Bc(t)
Computed by the Fourier-Series Method to 10�15

Precision Based on Computing the LT Values b̂(s)
Computed to 20-Digit Precision by Both the Series, (5.6)

and (5.7), and the Continued Fraction (5.10)

t Bc(t)

0.1 0.909,084,551,819,689
1.0 0.490,128,803,420,172
3.0 0.185,450,685,115,345
5.0 0.074,977,023,964,783

10.0 0.007,888,690,353,660
20.0 0.000,087,403,419,314
30.0 0.000,000,968,394,367
40.0 0.000,000,010,729,416
50.0 0.000,000,000,118,878
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is the gamma function. In this case, we know of no alterna-
tive for computation of f̂c�1 to the CF

f̂ c�1�s� � 	
1
�

�n�1
�

	��n � c�

s � � � n � c
, (5.14)

which again follows immediately from (4.9).
Giullemin and Simonian[24] also prove that the scaled

excursion time cTc�1,c in the M/M/� system with arrival
rate �c and individual service rate 1 converges to the busy
period T10 in an M/M/1 system with arrival rate � and
service rate 1 as c 3 �. We can establish additional results.
We can make a stochastic comparison by noting that the
scaled M/M/� system above level c is equivalent to a BD
process with constant birth rate �k � � and death rates
�k(c) � (c � k)/c. Since �k(c) decreases to 1 as c increases, we
can apply Whitt[36] again to conclude that the variables
cTc�1,c increase stochastically in c, i.e.,

cTc�1,c 
st �c � 1�Tc�2,c�1 (5.15)

for all c, as well as converge in distribution as c 3 �.
Moreover, we can show that the entire scaled BD process
above c converges to the M/M/1 queue-length process in
the sense of weak convergence on function space. Similar
observations are made by Preater.[31]

The M/G/1 busy-period LT is known to satisfy the Ken-
dall functional equation

b̂�s� � ĝ�s � � � � b̂�s�� , (5.16)

where ĝ(s) is the service-time LT. For M/M/1, ĝ(s) � (1 �
s)	1, so that (5.16) becomes

b̂�s� � �1 � s � � � � b̂�s��	1, (5.17)

which upon iteration gives the CF

b̂�s� � 	
1
�

�n�1
�

	�

s � � � 1 , (5.18)

as in (4.9). Of course, we can solve (5.17) to get

b̂�s� �
1

2�
�1 � � � s � ��1 � � � s�2 � 4�� . (5.19)

If we scale the M/M/1 busy-period pdf to have mean 1 and
squared coefficient of variation c2 � v then the LT has the form

b̂�s� �
1

v � 1 �s � v � ��s � v�2 � �v2 � 1�� ,

(5.20)

which can be written as a functional equation

b̂�s� �
�v � 1�/ 2

s � v � � v � 1
2 � b̂�s�

. (5.21)

From (5.21), we obtain the J fraction

b̂�s� �
	2

v � 1 �n�1
�

	
�v2 � 1�

4
s � v

. (5.22)

However, from (2.26) on p. 161 of Abate and Whitt[2] and
(94.23) on p. 376 of Wall,[35] we see that the LT b̂ has an S
fraction of the form (3.10) with a1 � a2 � 1, a2k	1 � (v 	 1)/2
and a2k � (v � 1)/2 for all k � 2.

We now apply numerical inversion to evaluate the quality
of the approximation for various values of c. Since the
M/M/1 busy period pdf does not have a pure-exponential
tail, whereas the M/M/� busy period has a pure exponen-
tial tail, we are led to expect some discrepancies for large
values. The numerical results are displayed in Table III.
Consistent with our expectations, when t is small, the lim-
iting M/M/1 values are good approximations when c is not
large. However, as t increases, c needs to increase too in
order for the approximation to be good.

6. Beta Mixtures of Exponentials
In Abate and Whitt[8] we studied a class of pdf’s obtained by
taking beta mixtures of exponentials (BMEs), i.e.,

v� p , q ; t� � �
0

1

y	1e	t/yb� p , q ; y�d y , (6.1)

where b(p, q; y) is the standard beta pdf, i.e.,

b� p , q , y� �
�� p � q�

�� p���q�
yp	1�1 � y�q	1, 0 � y � 1, (6.2)

�(x) is the gamma function and p  0 and q  0. We
observed that the BME pdf v(p, q; t) has Laplace transform

v̂� p , q ; s� � �
0

�

e	stv� p , q ; t�dt � 2F1�1, p ; p � q ; 	s� ,

(6.3)

where 2F1(a, b; c; z) is the Gauss hypergeometric function.
In Abate and Whitt,[8, 9] we showed that the BME pdf and

its Laplace transform have Laguerre-series representations,
which can be used for numerical calculations. For the BME
LT, we obtain a closed-form expression for the Laguerre

Table III. The ccdf Bc(t) for the Scaled Busy Period
cTc�1,c in an M/M/� System with Arrival Rate c and

Service Rate 1 for Three Values of c

time t

Scaled M/M/� M/M/1
c � �c � 100 c � 1000 c � 10,000

1 .48583276 .48930439 .48965265 .48969135
3 .24519851 .25005028 .25053923 .25059360

10 .08584378 .09192578 .09255093 .09262058
50 .00617291 .00983952 .01029354 .01034506

100 .00054713 .00173518 .00193941 .00196341
200 .00000571 .00010209 .00013611 .00014051
400 .00000000 .00000067 .00000143 .00000156
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coefficients, so that

v̂� p , q ; s� �
1

1 � s �
n�0

�
�q�n

� p � q�n
� s

1 � s�
n

, (6.4)

where (x)n is again the Pochhammer symbol. Here we ob-
serve that continued fractions tends to be more effective for
this example.

The CF representation for the Gauss hypergeometric func-
tion in (6.3) was found by Gauss in 1812 by exploiting
recursions; see p. 88 of Erdelyi.[17] The CF can also be con-
structed by the QD scheme mentioned at the end of Section
2 from the series representation of 2F1; see p. 533 of Hen-
rici.[26] For 2F1(1, p, p � q; 	s), the elements can be taken to
be bn � 1, n � 1, a1 � 1,

a2n �
� p � n � 1�� p � q � n � 2�s

� p � q � 2n � 3�� p � q � 2n � 2�
, n � 1,

(6.5)

a2n�1 �
n�q � n � 1�s

� p � q � 2n � 2�� p � q � 2n � 1�
, n � 1.

For the special case p � 1/2 and q � 3/2, the BME pdf
coincides with the reflected Brownian motion (RBM) first-
moment pdf, i.e., ĥ1(s) � v̂(1/2, 3/2; s); e.g., see Abate and
Whitt.[8] In that case, a2n � a2n�1 � 1/4 for all n � 1. The
special role of the RBM first-moment LT ĥ1(s) can be ex-
plained from the fact that it is the unique fixed point of the
exponential mixture operator; see p. 93 of Abate and Whitt[6]

and Abate and Whitt.[3]

The CF associated with the BME transform tends to con-
verge rapidly. This can be seen from the fact that an � k/4
(independent of n) as n 3 � in the S fraction for v̂(p, q; ks).
Table IV displays the first seven coefficients for the S frac-
tions associated with the LTs of four distributions. One is an
exponential; two are BME’s; and the last is an exponential
mixture of exponentials (EME) with pdf

f�t� � �
0

�

x	1e	t/xe	xdx . (6.6)

The exponential LT is a simple rational function, so it has a
simple terminating CF. The two BME examples have an �

O(1) as n3 �, so the CF’s are easily calculated. The EME has
an � O(n) as N 3 �, so the CF can be calculated with some
effort.

To illustrate the computational advantages of continued
fractions over the series representation (6.4), we consider the
number of terms (in units of 10) required to compute the
BME transform v̂(1, 1; s) to obtain 16-digit precision. The
numerical values for several s are displayed in Table V.

As noted in Section 2 of Abate and Whitt,[9] when we
apply the Fourier-series method of numerical inversion of
Laplace transforms incorporating Euler summation, we typ-
ically need to compute transform values at about 40 values
of s � u � iv, with u � 15/t and v � k
/t for k � 1, 2, . . . ,
40. For the series in (6.4), the worst case (making �s/(1 � s)�
close to 1) is k � 40. Then the required number of terms for
the series (6.4) is approximately n � 4.4t	1 � 104. In contrast,
Table V shows that the continued-fraction method is much
more efficient.

7. Distributions Associated with BMEs
Our ability to calculate BME LTs enables us to calculate LTs
of several other important related distributions. First, in
Abate and Whitt[8] we also considered a second beta mixture
of exponentials, denoted by B2ME, which is constructed by
using the beta pdf of the second kind, i.e.,

v2� p , q ; t� � �
0

�

y	1e	t/yb2� p , q ; y�d y , t � 0, (7.1)

where

b2� p , q ; t� �
�� p � q�

�� p���q�
yp	1�1 � y�	� p�q�, y � 0. (7.2)

Unlike the BME ccdf, the B2ME ccdf has a long tail, i.e.,

Vc� p , q , t� �
�� p � q�

�� p�tq e	t as t3 � (7.3)

Table IV. The Coefficients of S Fractions Associated
with Laplace Transforms of Four Different pdf’s

coef.
exp.

1/(1�s)

BME

EMEv̂(1, 1; 2s) v̂(.5, 1.5; 4s)

a1 1 1 1 1
a2 1 1 1 1
a3 0 1/3 1 1
a4 0 2/3 1 2
a5 0 2/5 1 2
a6 0 3/5 1 3
a7 0 3/7 1 3

Table V. The Number of Terms Needed to Compute
the BME Transform v̂(1, 1; s) to 16-Digit Precision by the

Series in (6.4) and the Continued Fraction in (1.7) and
(6.5) for Several Values of s

complex
number s series

continued
fraction

1 50 30
3 130 40
5 190 50
9 330 60
15 540 70
20 710 80
25 890 90
1 � 5i 630 60
2 � 10i 1470 70
15 � 125i 44,000 250
150 � 1250i 440,000 710
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and

V2
c� p , q ; t� �

�� p � q�

�� p�tq as t3 � . (7.4)

By Theorem 1.6 of Abate and Whitt,[8] the ccdf’s are related
simply by

V2
c� p , q ; t� � etVc� p , q ; t� , t � 0. (7.5)

Thus, from (1.22) and (5.6) of Abate and Whitt,[8] the LTs are
related by

v̂2� p , q ; s� �
1

s � 1 �sv̂� p , q , s � 1� � 1� . (7.6)

Thus, the CF for v̂(p, q, s 	 1) yields the LT v̂2(p, q; s).
A third BME ccdf, denoted by B3ME, is the dual ccdf as

defined in Section 4, i.e.,

V3
c� p , q , t� � �

0

�

e	txb� p , q ; y�d y , t � 0, (7.7)

for b(p, q; y) in (6.2), with Laplace transform

V̂3
c� p , q ; s� � s	1v̂� p , q ; s	1� . (7.8)

The B3ME LT is easily computed from the BME LT via (7.8).
In Section 7 of Abate and Whitt[8] we considered gamma

mixtures of exponentials (GME) pdf’s as limits of BME pdf’s.
Directly the GME pdf can be represented as

f� p ; t� � �
0

�

y	1e	t/y
yp	1e	y

�� p�
d y

�
2

�� p�
t � p	1�/ 2Kp	1�2 �t� . (7.9)

In Abate and Whitt[8] we noted that the LT of f(p; t) is

f̂ � p ; s� � s	pe1/ 2��1 � p , s	1� , (7.10)

where �(a, z) is the incomplete Gamma function.
In Abate and Whitt[8] we noted that f̂(p; s) � limq3� v̂(p,

q; qs). Hence, we can let q 3 � in the CF for 2F1(1, p; p � q;
	qs) in (6.5) to obtain a CF representation of f(p; s) of the
form (3.10) with a2n � n � p 	 1 and a2n�1 � n.

Now consider the dual ccdf associated with the pdf f(p; t),
obtained as a mean-1 exponential random variable divided
by a gamma random variable, i.e.,

Gc� p ; t� � �
0

�

e	t/y
e	1/y

yp�1�� p�
d y � �1 � t�	p, (7.11)

which is a Pareto distribution. Since Gc(s) � s	1 f̂(s	1), from
(7.10) we obtain

Ĝc� p ; s� � sp	1es��1 � p , s� , (7.12)

which can be shown to be the Laplace transform of (1 � t)	p

from p. 21 of Oberhettinger and Badii.[30] Again the CF can
be used to compute the transform values. By the duality, we
see that Ĝc(p; s) has a CF of the form (3.11) with a2n � (n �

p 	 1) and a2n�1 � n. Since the pdf f(p; t) in (7.9) and ccdf
Ĝc(t) in (7.11) are CM, it is natural to consider computations
of the Laplace transforms by continued fractions.

8. Other Examples
We conclude with a few other examples of pdf’s whose LTs
can be effectively computed via CFs. These examples show
that the CF elements can have remarkably simple structure.

Example 8.1. First Bell pdf. As in Example 6.1 of Abate and
Whitt,[9] consider the first Bell pdf with Laplace transform

f̂ �s� � �
k�1

�

�e	1/k!��1 � sk�	1, (8.1)

which has moments mn � n!b(n), where

b�n� � e	1 �
k�1

� kn

k! (8.2)

is the nth Bell number. By (8.1), the pdf is a countably infinite
mixture of exponentials. The LT values can be effectively
computed from the series (8.1), but they also can be effec-
tively computed from CFs. The PD algorithm applied to
these moments yields a CF of the form (2.8) with a2n�1 � n
and a2n � 1. Since a2n�1 � O(n), computation of the CF is
possible but not easy.

Example 8.2. Second Bell pdf. As in Example 6.2 of Abate and
Whitt,[9] consider the second Bell pdf with Laplace trans-
form

f̂ �s� � �
k�1

�

2	�k�1��1 � sk�	1, (8.3)

which has moments mn � n!b̃(n), where

b̃�n� � �
k�0

� kn

2k�1 (8.4)

is the nth ordered Bell number. This second Bell pdf is also a
countably infinite mixture of exponentials. Again the LT
values can be computed from either the series (8.3) or a CF.
The PD algorithm applied to these moments yields a CF of
the form (2.8) with a2n�1 � 2n and a2n � n. Again an � O(n),
so that computation of the CF is possible but not easy.

Example 8.3. EMIGs. As in Abate and Whitt,[6, 10] consider
the two-parameter exponential mixture of inverse Gaussian
(EMIG) pdf scaled to have mean 1 and squared coefficient of
variation c2  1. The pdf thus has explicit LT

f̂ �s� �
c2 � 1

c2 � 2 � �1 � 2�c2 � 1�s
. (8.5)

From Theorem 4.1 of Abate and Whitt,[10] the LT in (8.5) has
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integral representation

f̂�s� ��
0

1 1
1 � 2�c2 � 1�sy

1

�1 � y

y
c2 � 1

�1 � ��c2 � 2�2 � 1�y�
dy.

(8.6)

By applying (94.22) on p. 375 of Wall,[35] we see that the
LT has the CF representation (3.10) with a1 � a2 � 1 and ak �
(c2 	 1)/2 for all k � 3.

Since the LT is given explicitly in (8.5), the CF is not
needed for computation. We display the CF because it has a
remarkably simple form. For the special case c2 � 3, ak � 1
for all k � 1. The case c2 � 3 corresponds to the RBM
first-moment LT ĥ1(s). The CF for ĥ1(s) also can be obtained
from the property that it is the unique fixed point of the
exponential mixture operator, i.e.,

ĥ1�s� �
1

1 � sĥ1�s�
; (8.7)

see Section 7 of Abate and Whitt.[6]

Example 8.4. Weibull pdf’s. Consider a random variable Xr

with the Weibull ccdf

Fr
c�t� � exp�	r�t�1/r� , t � 0; (8.8)

see Chapter 20 of Johnson and Kotz.[27] Since Xr
1/r is distrib-

uted as X1/r, the nth moment of Xr is

mn�Xr� � E�Xr
n� �

��nr � 1�

rnr . (8.9)

Given the moments, we can construct the CF using the PD
algorithm.

Here we are interested in the “long-tail” case of r  1. The
ccdf Fr

c(t) in (8.8) is CM in that case, so that the CF of the LT
is an S fraction. It is known that the moments do not deter-
mine the distribution in that case. The indeterminateness fol-
lows from the Krein condition, i.e., for r  1, the divergence

�
0

�

�1 � x2�	1 log fr� x�dx � 	� (8.10)

fails to hold, where fr is the pdf associated with Fr; e.g. see
Akhiezer.[11]

For integer r  1, we can identify products of random
variables (mixtures of distributions) that have the moments
of Xr. (We conjecture that the full distributions coincide with
the Weibull as well.) For integer r,

mn�Xr� �
�nr�!

rnr

� � 1
r�

n
� 2

r�
n

· · · � r � 1
r �

n

�1�n

�
�1/r�n

�1�n

�2/r�n

�1�n
· · ·

��r � 1�/r�n

�1�n
�1�n

r , (8.11)

where as before (x)n is the Pochhammer symbol. However,
recall that for 0 � p 
 1, 0 � q � 1, (1)n � n!, (p)n and

(p)n/(p � q)n are the moment sequences of the exponential,
gamma and beta pdf’s; e.g., see Abate and Whitt.[8] Let Z(p)
be a random variable with a gamma pdf having shape
parameter p, as in (7.9), so that Z(1) has a mean-1 exponen-
tial pdf, and let Y(p, q) be a random variable having the beta
pdf in (6.3) with parameters p and q. Then, for integer r  1,

E�Xr
n� � E 	

k�1

r

Z�k/r�

� E
 	
k�1

r	1

Y�k/r , �r � k�/r� 	
k�1

r

Zk�1�� (8.12)

for all n, where the random variables on the right are mu-
tually independent, with Zk(1) all distributed as Z(1).

For the case r � 2, we can conclude that they have the
same distributions, because Fr

c(t) is CM for r  1. Hence,

X2 �
d

Z�1/ 2� Z�1� , (8.13)

where
d
� denotes equality in distribution. Since the gamma

(1/2) pdf of Z(1/2) is determined by its moments and X2 is
CM, (8.13) is justified. Moreover, we can apply Theorem 3.1
to conclude that the S fraction associated with the LT Ee	sX2

converges.
However, for integer r  2, we can conclude that the S

fraction associated with Ee	sXr fails to converge, because the
moments mn(Xr)/n! do not determine the mixing cdf H.

To illustrate, the first 7 numerator elements of the CF
(3.10) for Ee	sXr are given in Table VI. (In Table VI all
distributions are scaled to have mean 1.) Since an � n 	 1 for
X2, we see that convergence takes place, but it is not too
rapid. For r � 3 and 4, we see that an fails to be O(n) as n3
�. Moreover, for r � 3, 4 the CF fails to converge, demon-
strating that the moments of the mixing cdf H indeed do not
determine H.
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