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 THE CONTINUITY OF QUEUES

 WARD WHITT, Yale University

 Abstract

 Kennedy (1972) showed that the standard single-server queueing model is
 continuous. These results are extended to the standard multi-server model
 here. Even when there is only one server, an additional condition is needed for
 the queue length process.

 CONTINUITY OF QUEUES; APPROXIMATIONS FOR QUEUES; MULTI-SERVER QUEUES;
 GI/GIs QUEUES; WEAK CONVERGENCE ON FUNCTION SPACES; THE CONTINUOUS
 MAPPING THEOREM

 1. Introduction

 Kennedy (1972) recently demonstrated that the standard single-server queueing
 model is continuous. Using the weak convergence theory for probability measures

 on function spaces, he showed that sequences of queueing processes such as
 queue length processes and virtual waiting time processes associated with a sequence
 of queueing systems converge if the sequences of underlying interarrival time
 and service time sequences converge. The purpose of this paper is to suggest
 slightly different proofs, to correct a minor error in Theorem 4.2, and to indicate
 how the results can be extended to multi'-server queues.

 Somewhat cleaner proofs result from eliminating probability measures from
 the discussion. We work with various deterministic queueing processes which
 are possible realizations (sample paths) of the corresponding stochastic processes.
 After continuity has been verified without any probability measures, it extends
 immediately to the stochastic setting by virtue of the continuous mapping theorem
 associated with weak convergence, cf. Section 5 of Billingsley (1968). An essential
 ingredient of our approach is the identification of appropriate subsets of the
 basic function spaces containing the sample paths of our queueing processes.
 For further discussion about this approach and the basic function spaces, see
 Whitt (1974a, b).

 We now chart the way ahead. The representation of the initial data is discussed
 in Section 2. The single-server and multi-server systems are treated in Sections 3
 and 4 respectively. Finally, applications are indicated in Section 5.

 Received in revised form 17 July 1973. Research partially supported by N.S.F. Research
 Initiation Grant GK-27866.
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 176 WARD WHITT

 We have also verified similar continuity properties for the single-server pre-
 emptive-resume priority model and the s-server rotation-server-selection model,
 but we shall not include the details. The continuity is closely related to other
 structural relationships such as monotonicity and stochastic bounds; see Brumelle

 (1971), (1972), Jacobs and Schach (1972), Ross (1973), Stoyan (1972), Yu (1973)
 and references there.

 2. The initial data

 The standard multi-server queueing model is typically specified by a sequence
 of ordered pairs of non-negative random variables, depicting the interarrival
 times and service times of successive customers. We call this sequence the initial
 data of the model. We begin by examining the possible sample paths of this
 basic sequence.

 The function spaces here will all be subspaces of R" or D[0O, oo) or products
 of these spaces. In order to have no difficulty with the weak convergence theory,
 we shall require that all these subspaces be Polish spaces (topological spaces
 which are metrizable as CSMS- complete separable metric spaces). Let all subsets
 of topological spaces have the relative topology and let all products of topological
 spaces have the product topology. Recall that a subset of a Polish space is Polish
 if and only if it is a G, (countable intersection of open subsets) while a subset
 of a CSMS is a CSMS if and only if it is closed.Also recall that a countable product
 of Polish spaces is Polish.

 Let R be the real line with the usual Euclidean metric: d(x, y) = x - y .
 Since the Euclidean metric makes R a CSMS, the product space R " is Polish.

 Let R+ be the subset of strictly positive (> 0) elements in R. Since R+ is open
 in R, R+ is Polish but not a CSMS with the Euclidean metric. Since countable
 products of open proper subsets are neither open nor closed, R' is Polish but
 neither open nor closed in R". Let I" be the subset of R " in which k = F0
 (let the index begin at 0). By Lemma 3.1 and Theorem 3.3 of Whitt (1974b),
 I" is Polish (IT here is If there).

 We shall consider our queueing systems to be defined by a probability measure

 on the Polish space I- I x? R' (I for initial data of the model). Let
 {(u,, ,,), n ? 0} be a generic element of I. We interpret u, as the interarrival time

 between the nth and (n + 1)th customers and we interpret v, as the service time
 of the nth customer. We assume a Oth customer arrives at time t = 0 to find

 an empty system. (In this interpretation u, and v, are not random variables but
 possible realizations.)

 Note that our interarrival times are constrained to satisfy '= ok ,0k = 00. This guarantees that only finitely many arrivals can occur in any finite interval. Also
 note that the interarrival times and service times must be strictly positive.

 There are several other equivalent representations of the initial data. For
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 The continuity of queues 177

 example, instead of interarrival times, we could specify the arrival epochs of
 successive customers (U, = u0 + "' + u,, n ? 0) or the function U(t) counting
 the number of arrivals in the interval (0, t] for t ? 0:

 (2.1) U() =max(k 2 0: uo + uk-1 < t, U < ,
 O, uo > t, t> O.

 Instead of {v,}, we could look at {V,} where V. = Vo + "' + vn, n > 0, but a
 counting function for {v,} might not be well defined (could be infinite) because

 = o v < co is possible.
 It turns out that all these representations are equivalent in a very strong sense.

 In particular, they are homeomorphic if we regard the set of all counting functions

 as a subset of the function space D[0, oo) with Skorohod's J1 topology, cf. Co-
 rollary 3.2 of Whitt (1974b). Since the interarrival times cannot be zero, the
 counting functions all have unit jumps. Consequently, the M, and J, topologies

 agree on this subset of D[0O, oo), cf. Theorem 3.2 of Whitt (1974b). If we relax
 the strict positivity condition, then the homeomorphism result remains true

 with the M, topology on D[0O, oo) but not with the J, topology, cf. Whitt (1974b).

 3. The single server queue

 We now introduce various continuous maps from I into R" or D[0, oo)
 with the J1 topology. The images of the sequence {(uw,vn)} under these maps
 will be the sample paths of the associated stochastic processes. The associated
 stochastic processes themselves are the image measures of the measure on I
 under these mappings. We shall describe a map from I into D[0, oo) by writing

 {(Un,v.)} -+ {X(t), t _ 0}, where {X(t), t _ 0} is the image of the map in D[0, oo). Many maps on I will actually be the composition of several other maps. We
 frequently use the fact that the composition of two continuous maps is continuous.
 If the domain of any map is not I, it is understood to be the range of the pre-
 ceding map. All the domains will be Polish spaces, but we will not give proofs.

 We start with the sequence of waiting times {W},. The map {(un,vo)} -, {Xn),
 where X, = v,- u,, is obviously continuous but not one-to-one. The map

 {Xj -+ {S,}, where So = 0 and S, = X0 + ... + X.-1 for n > 1, is obviously a homeomorphism. The map from R" to [0, oo)00 defined by

 (3.1) W,= S, - min Sk,n n O,

 is obviously continuous but not one-to-one. Thus, the map from I into [0, oo)"

 mapping the basic data into {W.} is continuous but not one-to-one.
 Let L(t) represent the total workload in service time to enter the system during

 [0,t]. It can be defined by
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 178 WARD WHITT

 (3.2) L(t) = vo + ... + v(t) = V0(,, t > O.
 The net input, virtual waiting time, and accumulated idle time can then be defined
 by

 Y(t) = L(t) - t, t 0 ,

 (3.3) W(t) = Y(t) - inf Y(s), t > 0,

 I(t) = - inf Y(s), t O.

 The following corresponds to Theorems 3.1-3.3 in Kennedy (1972).

 Theorem 3.1. Each of the maps

 {LtW)t), tt 00}
 3-- ){Y(t), t 2 0} W(t)t 0}

 -  {I(t), t __0 } is continuous and one-to-one.

 Proof. The first map involves the equivalent representations of the initial
 data discussed in Section 2. The second map is a composition which is conti-
 nuous by Theorem 3.1 (iii) of Whitt (1974a). In that context, we need to work

 with {VYt,, t _ 0} instead of {V,Y but they are homeomorphic by Corollary 3.2 of Whitt (1974b). Alternatively, a direct argument can be given. The third map
 requires no comment. The fourth and fifth maps were shown to be continuous
 in proofs of heavy traffic limit theorems, cf. p. 62 of Whitt (1968). The one-to-one

 property follows because un > 0 and vn > 0 for all n.

 Remark 3.1. The maps

 {L(t), t 0} -- {Y(t), t 0} -+ {W(t), t _ 0}
 are also homeomorphisms onto their range, but the map {(un, vn)} -{ W(t), t > 0}
 is not. However, it is a homeomorphism on the G, subset of I in which u, > e
 and vn > e for all n for some E > 0.

 Let Dn denote the epoch of the nth departure, defined by

 (3.4) Dn = Un+ W,+ vn, n >2 0.
 Obviously, the map {(un,vn)} -+ ({Dn} is continuous. Since Dn+1 - Dn, vn+1 > O,
 the map taking {Dn) into the associated counting function

 min(k 1: Dk-1 < t}, Do < t, (3.5) D(t)
 O, Do > t, t >O,
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 The continuity of queues 179

 is also continuous by virtue of Lemma 3.4 and Corollary 3.1 of Whitt (1974b).

 The queue length process {Q(t), t _ 0} can now be defined by
 (3.6) Q(t) = U(t) - D(t), t 0.

 It is apparent that the map {(u,v,)} -+ {Q(t), t ) 0} need not be continuous
 because addition is not continuous on D[0, oo) x D[0, oo), cf. Section 4 of Whitt
 (1974a). The following example demonstrates this, and thus shows that Theorem
 4.2 of Kennedy (1972) needs an extra condition.

 Example 3.1. Consider a sequence {(u,,v,)} in which uo = vo. Then the
 first customer arrives at the same instant the Oth customer departs. Thus Q(t) = 1

 for all t, 0 t < uo + (u/ A v1). Also consider a double sequence {(u', vn)}
 in which u' = u, and v = v, for all n ? 1 and all i 1, while

 (3.7) = o - 2

 and v = o + 2-', i 1.

 Let i be sufficiently large so that u' > 0. Obviously, {(u, vi)} )- {(u,qv.)) in I
 as i -~ oo, but Q' -- Q in D[0, oo) with the J, topology. Note that Q'(t) assumes
 the value 2 at t = uo for all i, while Q(t) is 1 in a neighborhood of uo.

 Since the mapping ((u,,v,)} -+ Uj - Dk is obviously continuous for each j
 and k, the subset {j Uj -Dk I > 0} is open in I and the subset

 (3.8) A= r nf {lUj-DkI>>0} j=o k=0

 is a G,.

 Theorem 3.2. The map {(u,v.)} -+ ({Q(t), t t 0} is measurable on I and
 continuous at all limit points in A.

 Proof. The processes {U(t), t ? 0} and {D(t), t > 0} have no common dis-
 continuities if {(u,,v.)} e A. Thus, we can apply Theorem 4.1(i) of Whitt (1974a).
 Addition is known to be measurable on D[0, oo) x D[0, oo).

 Remark 3.2. It is easy to impose conditions on the measure P on I in order
 to obtain P(A) = 1. For example, it suffices for {u,} and {v,} to be independent
 sequences of independent random variables with the distributions of the random
 variables in one of the two sequences being nonatomic.

 4. The multi-server queue

 We now consider the standard s-server model in which customers are served

 in order of arrival by the first available server, with some unspecified procedure

This content downloaded from 128.59.222.107 on Wed, 05 Jan 2022 17:51:48 UTC
All use subject to https://about.jstor.org/terms



 180 WARD WHITT

 to break ties. The starting point is again an element of I, that is, a deterministic

 sequence {(un,gv), n ? 0}1. Let {W,} be the vector-valued waiting time sequence

 introduced by Kiefer and Wolfowitz (1955). The map {(un,v))~ - {W,} is ob-
 viously the composition of several continuous maps and is thus continuous.
 The actual waiting time W, is of course just the first component of W,. Let D,
 denote the epoch of departure for the nth arriving customer, defined in (3.4).

 Obviously, the map {(un,v.)} -+ {Dn} is continuous. Note that {Dn} is not neces-
 sarily an increasing sequence, but the map which rearranges {Dn} into ascending
 order is continuous. The ascending sequence, say {El), depicts the epochs of
 successive departures. Continuity is easy to verify for the rearrangement because

 only Do,"**,Dn_- could be less than U, for each n.
 The map {En} -+ {D(t), t > 0}, where D(t) counts the number of departures
 in [0, t], is not necessarily continuous because {En} need not be strictly increasing.
 Let B be the subset of I defined by

 00

 (4.1) n n {I D - Dk I > 0}.
 j=O kwj

 Just as with A in (3.8), B is a G, subset of I. Corollary 3.2 of Whitt (1974b) implies

 that the map {En} -+ {D(t), t > 0} is continuous on I at limits in B (of course,
 the domain is actually f(I) where f({(un, v.)}) = {En}). Again in that context we

 should use {Et,, t > 0} but it is homeomorphic with {E,}. Since the first passage time map is continuous on the subset of D[0, co) con-

 taining {Et,], t > 0} for all of I in the M, topology, it is measurable in the Borel field associated with the M, topology. Since the Borel fields on this subset of
 D[O, oo) associated with the M, and J1 topologies coincide, cf. Theorem 2.3
 of Whitt (1974a), measurability of the map {En} -+ {D(t), t > 0} is established
 for all I.

 We now define the queue length just as in (3.6). Again, the map {(un,vn)) -*

 {Q(t), t > 0} is measurable but not continuous. However, the argument of
 Theorem 3.2 applies again to yield continuity for this map on the G, subset
 A n B, where A is defined in (3.8) and B is defined in (4.1). Just as in Remark 3.2,

 it is easy to impose conditions on the measure P on I so that P(AfnB) = 1,
 which is sufficient for the continuous mapping theorem associated with weak
 convergence. It suffices for {un) and {vj to be independent sequences of indepen-
 dent random variables with the distributions of the random variables in one

 sequence being nonatomic.
 The output in completed service time can then be represented by the continuous

 map

 (4.2) 0(t) = fQ(s)ds , t 0.

 The total workload to enter the system in [0, t] can be defined just as in (3.2).
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 The continuity of queues 181

 Then the function W(t) recording the total workload in service time still in the
 system at time t can be defined by

 (4.3) W(t) = L(t)- O(t), t > 0.
 Since 0(t) is a continuous function, the addition in (4.3) is continuous, cf. Theorem

 4.1 of Whitt (1974a).

 5. Applications

 First, we illustrate a weak convergence consequence. Consider a sequence
 of GI/GIs queues indexed by n with interarrival time c.d.f.'s F, and service time

 c.d.f.'s Gn. Also consider a prospective limiting GI/G/s system with corresponding

 c.d.f.'s F and G. Let Q,n {Qn(t), t 0 and Q = {Q(t), t O} denote the
 associated queue length stochastic processes. Let = denote weak convergence.

 Corollary 5.1. If F, = F, G, = G, and F or G is continuous, then

 Q,. :Q in (D[0, oo), J1).

 Proof. Since the systems are GI/GIs systems, the basic sequences {un, k > 0}

 and {(v, k _ 0} are independent sequences of i.i.d. random variables for each n. The independence means that weak convergence on I is characterized by weak

 convergence u~ = uk and vn :> Vk in R for each k separately, cf. Theorem 3.2

 of Billingsley (1968). Since F or G is continuous too, the map {(un,v)} - {Q(t),
 t > 0) is continuous almost surely with respect to the limit measure.

 Remark 5.1. At the outset we assumed that all interarrival and service times

 are strictly positive. However, in this context it suffices to have F(O) = 0 and
 G(O) = 0. The first passage time function will then be continuous almost surely
 with respect to the limit, cf. Theorem 3.2 of Whitt (1974b).

 Continuity results serve at least two purposes. First, they help justify the
 application of queueing models. We now know that if the distributions of the
 interarrival times and services times are close to those of a standard M/M/s
 model, then related stochastic processes such as the queue length process will
 also be close to the corresponding stochastic processes in a standard M/M/s
 model.

 Second, continuity suggests various approximations. For example, the class
 of EN/EN/s or general Erlang queues is dense in the class of all GI/GIs queues.
 (A general Erlang distribution is an Erlang distribution with random shape
 parameter.) This can be seen from an approximation scheme used by Schassberger
 (1970), (1972). For any given c.d.f. F(t) concentrating on [0, o), a sequence
 of general Erlang c.d.f.'s (F,(t), n > 1} can be constructed so that F, = F.
 This is done by setting
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 182 WARD WHITT

 (5.1) FA(t) = , [F(k/n)- F((k-1)/n)]E (t), t > 0, k=0

 where E (t) is the c.d.f. of the k-fold convolution of an exponential distribution
 with mean n-'. Since the mean and variance of E'(t) are k/n and k/n2 respec-
 tively, it is easy to see that

 (5.2) lim Fn(t) = j[F(t +) - F(t-)]
 t--+00

 for each t ? 0. This implies that Fn(t) converges to F(t) at all continuity points
 of F, which is the condition for weak convergence. We can thus construct a
 sequence of general Erlang models in which the interarrival time and service
 time c.d.f.'s are constructed from those associated with a given GI/GIs model
 by means of (5.1). Since we have GI/GIs systems, convergence of these two se-
 quences of c.d.f.'s implies weak convergence of the corresponding sequence
 of measures on I. Corollary 5.1 can then be applied to show that the queue length

 process in the GI/GIs system is the weak convergence limit of the sequence of
 queue length processes associated with the sequence of EN/EN/s systcms.

 The possibility of approximating an arbitrary distribution concentratirg on
 [0, oo) by general Erlang distributions is apparently widely known, cf. p. 1230
 of Kingman (1963) and pp. 114-116 of Cox and Smith (1961), but it has not yet
 been extensively exploited. Queues with general Erlang components were studied
 by Luchak (1958) and Prabhu and Lalchandani (1966). Erlang models are na-
 turally structured for an application of the method of stages and phases, cf.
 p. 110 of Cox and Smith (1961), and this is the procedure used by Schassberger
 (1970), (1972) to determine Laplace transforms of the virtual waiting time processes
 in the Erlang systems. Convergence of these Laplace transforms to the correspond-
 ing Laplace transforms of the general independent queue is a consequence of
 Theorem 3.2 of Kennedy (1972) or Theorem 3.1 here and corresponding results
 for the priority model. A few additional steps are necessary to go from convergence

 of the processes to convergence of the transforms in Schassberger (1970), (1972),
 but these steps are not difficult.

 Finally, observe that (5.1) yields a sequence of approximating distribution
 functions for many other E1k(t) besides the one given there. For example, if
 Ek(t) is the distribution function corresponding to a unit mass at the point k/n,
 then F,(t) is a sequence of discrete distribution functions converging weakly
 to F(t). In this way, we see that all discrete queueing models, as well as all general
 Erlang models, are dense in the class of general independent queues. Another
 approximating system is obtained by letting EF(t) be the k-fold convolution of
 a Bernoulli distribution which assumes the values 0 and 2/n each with probability
 j. Of course, E (t) need not be a convolution at all. It is only necessary that
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 the mean be k/n and the variance go to 0 appropriately. Since the resulting classes
 are each dense in the general independent queues, they are potential approxi-
 mations and warrant further study.
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